
Spectral analysis of ZUC-256
Jing Yang1, Thomas Johansson1 and Alexander Maximov2

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{jing.yang,thomas.johansson}@eit.lth.se

2 Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. In this paper we develop a number of generic techniques and algorithms in
spectral analysis of large linear approximations for use in cryptanalysis. We apply the
developed tools for cryptanalysis of ZUC-256 and give a distinguishing attack with
complexity around 2236. Although the attack is only 220 times faster than exhaustive
key search, the result indicates that ZUC-256 does not provide a source with full
256-bit entropy in the generated keystream, which would be expected from a 256-bit
key. To the best of our knowledge, this is the first known academic attack on full
ZUC-256 with a computational complexity that is below exhaustive key search.

Keywords: ZUC-256 · Stream Cipher · 5G Mobile System Security.

1 Introduction
ZUC is the stream cipher being used as the core of 3GPP Confidentiality and Integrity
Algorithms UEA3 & UIA3 for LTE networks [ETS11a]. It was initially proposed in 2010
as the candidate of UEA3 & UIA3 for use in China. After external and public evaluation
and two ZUC workshops, respectively in 2010 and 2011, it was ultimately accepted by
3GPP SA3 as a new inclusion in the LTE standards with a 128-bit security level, i.e., the
secret key is 128-bit.

Like most stream ciphers, ZUC has a linear part, which is an LFSR, and a non-linear
part, called the F function, to disrupt the linearity of the LFSR contribution. But different
from common stream ciphers, which are often defined over binary fields GF (2) or extension
fields of GF (2), the LFSR in ZUC is defined over a prime field GF (p) with p = 231 − 1
while the registers in F are defined over GF (232). There is a bit-reorganization (BR) layer
between the LFSR and F serving as a connection layer to extract bits from the LFSR and
transform them into F . Thus normal cryptanalysis against common stream ciphers can
not be directly applied to ZUC and till now, there is no efficient cryptanalysis of ZUC.
Below are some of the attempts trying to give cryptanalysis results on ZUC.

After ZUC was proposed, some evaluation and research work were conducted to evaluate
the cipher[ETS11b], [SB10], [WHN+12]. A certain weakness in the initialization phase was
found in [SB10], [WHN+12] and this directly resulted in an improved version. After the
adoption as the UEA3 & UIA3 standard, there were also various works trying to give some
cryptanalysis, but none of them resulted in an efficient attack. A guess-and-determine
attack to ZUC is proposed in [GDL13] based on half-words, i.e. 16-bit blocks, by splitting
the registers in LFSR and FSM into high and low 16 bits, where some carry bits are
introduced due to the splitting. It requires 6 keystream words and the complexity is
O(2392), which is much worse than exhaustive key search. In [ZFL11], a differential trail
covering 24 rounds of the initialization stage was given, but this does not pose a threat
since ZUC has 32 initialization rounds. [LMVH15] also showed that weak inputs do not

mailto:{jing.yang, thomas.johansson}@eit.lth.se
mailto:alexander.maximov@ericsson.com

2 Spectral analysis of ZUC-256

exist when ZUC is initialized with 32 rounds. These works all indirectly indicate that ZUC
is resistant against common attacks.

In January 2018, ZUC-256 was announced as the 256-bit version of ZUC [Tea18], to
satisfy the 256-bit security level requirement for 5G from 3GPP [3GP18]. Compared to
ZUC-128, the structure of ZUC-256 keeps the same, while only the initialization and
message authentication code generation phases are improved to match with the 256-bit
security level. Subsequently, in July 2018, a workshop on ZUC-256 was held and some
general cryptanalysis were presented, but no obvious weaknesses of ZUC-256 were found.
To conclude, until now, there are no efficient cryptanalysis methods succeeding to reduce
the claimed security levels of ZUC (128-bit or 256-bit).

In this paper, we propose a distinguishing attack on ZUC-256 with computational
complexity around 2236, by linearly approximating the non-linear part F and the different
finite fields between the LFSR and F . The important techniques we employ to find a good
linear approximation and compute the bias are called spectral tools here for cryptanalysis,
using e.g., the Walsh Hadamard Transform(WHT) and the Discrete Fourier Transform
(DFT). The spectral tools for cryptanalysis are widely used in linear cryptanalysis to,
for example, efficiently compute the distribution or the bias of a linear approximation,
since there exist fast algorithms for WHT and DFT which can reduce the computation
complexity from O(N2) to O(N logN) [MJ05], [LD16]. It is also widely used to investigate
the properties of Boolean functions and S-boxes, which can be considered as vectorial
Boolean functions. These include properties like correlation, autocorrelation, propagation
characteristics and value distributions, etc [NH07], [HN12]. We explore the use of WHT and
DFT and find new results about efficiently computing the bias or correlations. Importantly,
we show how a permutation or a linear masking in the time domain would affect the
spectrum points in the frequency domain for widely used operations, such as �,⊕, and
S-boxes. Based on that, we give a number of further results on how to choose linear
maskings in the time domain by considering the behavior of noise variables in the frequency
domain such that a decent approximation with a large bias can be found.

We employ the new findings in spectral analysis of ZUC-256 and use them to develop
a distinguishing attack. Even though the distinguishing attack is not a very strong one, it
indicates that ZUC-256 can not achieve the full 256-bit security level under this case.

The rest of this paper is organized as follows. We first give the general design and
structure of ZUC-256 in Section 2 and then the spectral analysis techniques are given in
Section 3. After that, we in Section 4 give a distinguishing attack on ZUC-256 using the
spectral tools. Specifically, we first derive a linear approximations in Subsection 4.1; and
then we show how efficiently derive the bias of the approximation in Subsection 4.2 ∼
Subsection 4.4 by using the spectral analysis and a technique called “bit-slicing technique”;
and lastly we give the distinguishing attack based on the derived approximation. In
Section 5, we conclude the paper.

2 Description of ZUC-256
In this section, we present a brief description of the ZUC-256 algorithm. Basically, the
structure of ZUC-256 is exactly the same as that of ZUC-128, except that the length
of the secret key K is changed to be 256-bit and the loading process of key and IV is
changed correspondingly [Tea18]. ZUC-256 takes the 256-bit secret key K and a 128-bit
public-known initial vector IV as input and produces an output sequence usually called
keystream. In this paper, we use z(t) to denote the generated keystream block at time
instance t for t = 1, 2, In ZUC-256, each keystream block is a 32-bit word, so we write
z(t) ∈ GF (232), t = 1, 2, Furthermore, each (K, IV) pair should produce a unique
keystream sequence, and in practice K is usually fixed and the IV value varies to generate
many different keystream sequences.

Jing Yang, Thomas Johansson and Alexander Maximov 3

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15

1+28 220221217215

mod (231-1)

X0 X1 X2 X3

R1 R2

<<< 16

Z

S*L1 S*L2

T1

T1'

T2

T2'

Figure 1: The keystream generation phase of the ZUC-256 stream cipher

The overall schematic of the ZUC-256 algorithm is shown in Figure 1. It consists of
three layers: the top layer is a linear feedback shift register (LFSR) of 16 stages; the
bottom layer is a nonlinear block which is called F function; while the middle layer, called
bit-reorganization (BR) layer, is a connection layer between the LFSR and F . Now we
would give some details of the three layers, and for more details refer to the original design
document [ETS11a].

The LFSR Layer

The LFSR part consists of 16 cells denoted (s0, s1, ..., s15) each holding 31 bits and
giving 496 bits in total. Every value in the cells is an element from GF (p), where p = 231−1
and it can be written in a binary representation as

x = x0 + x12 + . . .+ x30230.

Then 2k · x mod p is computed as x≪31 k, where≪31 k is the left 31-bit circular shift
by k steps. This makes the implementation quite efficient. One can see that the LFSR in
ZUC is operating over a prime field instead of GF (2) or GF (2n) as most stream ciphers.
This makes it insusceptible to common linear cryptanalysis and until now, there is no
efficient cryptanalysis on ZUC. The feedback polynomial of the LFSR is given by:

F (x) = −x16 + 215x15 + 217x13 + 221x10 + 220x4 + (1 + 28) ≡ 0 mod p.

F (x) is a primitive polynomial over GF (p) and this ensures that the LFSR sequence is
an m-sequence with period p16 − 1 ≈ 2496.

If we denote the LFSR state at clock t as (s(t)
0 , s

(t)
1 , ..., s

(t)
15), then at the next clock t+ 1,

s
(t)
i is shifted to s(t+1)

i−1 , i.e., s(t)
i = s

(t+1)
i−1 , for 1 ≤ i ≤ 15, while s(t+1)

15 is updated by:

s
(t+1)
15 = 215s

(t)
15 + 217s

(t)
13 + 221s

(t)
10 + 220s

(t)
4 + (1 + 28)s(t)

0 mod p.

4 Spectral analysis of ZUC-256

If s(t+1)
15 = 0, then set s(t+1)

15 = p (i.e., the representation of element 0 is the binary
representation of p).

The BR Layer

The BR layer is the connection layer between the LFSR and F . It extracts 128 bits
from the LFSR and forms 4 32-bit words X0, X1, X2, X3 with the first three being fed to
F and the last one xor-ed with the output of F to finally generate the keystream symbol.
For a cell si in the LFSR, the low and high 16 bits are extracted as:

siL = si[0...15],
siH = si[15...30].

Then the Xi’s are constructed as follows:

X0 = s15H ||s14L,

X1 = s11L||s9H ,

X2 = s7L||s5H ,

X3 = s2L||s0H ,

where || denotes the concatenation of two 16-bit integers into a 32-bit one. Then X0, X1, X2
will be sent into F to update the registers there.

The Non-linear Layer F

The nonlinear layer F has 2 internal 32-bit registers R1 and R2 updated through linear
and nonlinear operations. It is a compression function taking X0, X1, X2 as the input
and producing one 32-bit word which would be used to generate the keystream symbol as
below:

z(t) = ((R1(t) ⊕X0)�32 R2(t))⊕X3.

Then F is updated by:

T1 = R1(t) �32 X1,

T2 = R2(t) ⊕X2,

R1(t+1) = S ∗ L1(T1L||T2H),
R2(t+1) = S ∗ L2(T2L||T1H).

Here S is a 32× 32 S-box composed of 4 juxtaposed S-boxes S = (S0, S1, S0, S1), where
S0 and S1 are two different 8-to-8 S-boxes. Also, L1, L2 are two 32× 32 linear transforms
which are defined as follows:

L1(X) = X ⊕ (X≪32 2)⊕ (X≪32 10)⊕ (X≪32 18)⊕ (X≪32 24),
L2(X) = X ⊕ (X≪32 8)⊕ (X≪32 14)⊕ (X≪32 22)⊕ (X≪32 30).

Just like other stream ciphers, ZUC-256 uses an initialization phase before generating
a keystream sequence, to fully mix the secret key and IV. During the initialization phase,
the key and IV are loaded into the LFSR register and the cipher runs 32 times with the
output from the F function being fed back to the LFSR instead of producing keystream
symbols. After the initialization, the cipher enters the keystream mode, with the first
output word from F being discarded and the following outputs forming the keystream by
xoring with X3. Since the attacks in this paper only use the keystream mode, we do not
give the details of the initilization mode, but refer to the design document for the details
[ETS11a], [Tea18].

Jing Yang, Thomas Johansson and Alexander Maximov 5

3 Spectral tools for cryptanalysis
In multidimensional linear cryptanalysis one often has to deal with large distributions,
and be able to find good approximations with large biases that can further be used in
an attack. In this section, we give several techniques in spectral analysis which help to
efficiently explore a good linear approximation and compute its bias. We will later use
most of the presented techniques in cryptanalysis of ZUC-256.

Notations. Let X(1), X(2), . . . , X(t) be t independent random variables taking values
in an alphabet of n-bit integers, such that the total size of the alphabet is N = 2n. For a
random variable X, let the sequence of Xk, k = 0, 1, . . . , N − 1 represent the distribution
table of X, i.e., Xk = Pr{X = k}, or a sequence of occurrence values in the time domain,
e.g. Xk = the number of occurrences of X = k. If such a sequence of numbers would be
normalized by dividing each entry by the total number of occurrence, we would talk about
an empirical distribution or a type [CT12].

We will denote by W(X) the N -point Walsh-Hadamard Transform (WHT) and by
F(X) the N -point Discrete Fourier Transform (DFT). Individual values of the transforms
will be addressed byW(X)k and F(X)k, for k = 0, 1, . . . , N −1. We will denote by X̂k the
spectrum value of point k, i.e., X̂k =W(X)k or X̂k = F(X)k, depending on the context.
The values X̂k, for k = 0, 1, . . . , N − 1, in the frequency domain constitute the spectrum of
X.

WHT and DFT. The DFT is defined as:

X̂k = F(X)k =
N−1∑
j=0

Xj · e−
i2π
N kj , for k = 0, 1, ..., N − 1,

where ω0 = e−
i2π
N is a primitive N -th root of unity. Every point value F(X)k is a complex

number with the real part Re() and imaginary part Im(), i.e., X̂k = Re(X̂k) + i · Im(X̂k).
WHT is a special variant of DFT and it is defined as

X̂k =W(X)k =
N−1∑
j=0

Xj · (−1)k·j ,

where k · j now denotes the bitwise dot product of the binary representation of the n-bit
indexes k and j. I.e., one can rewrite the dot product in the vectorial binary form:

k · t = (k0, k1, . . . , kn−1) · (j0, j1, . . . , jn−1)T mod 2,

where ki, ji are the i-th bits of the binary form of k and j, for i = 0, 1, . . . , n− 1. Every
W(X)k has only a real part which is an integer.

The squared spectrum density of a point k is derived by |X̂k|2 = Re(X̂k)2 + Im(X̂k)2.
The point k = 0 in the spectrum represents the sum of all values in the time domain for
both WHT and DFT cases, i.e.,

|X̂0| =
N−1∑
j=0

Xj . (1)

There are many well-known fast algorithms computing DFT or WHT in time O(N logN)
and this makes the spectral transform widely used in cryptanalysis and in many other
areas as well.

Convolutions. A typical operation in linear multidimensional cryptanalysis is to
compute the distribution of a noise variable which is the sum (⊕ or �) of other noise
variables (referred to as sub-noise variables). While computing the distribution directly

6 Spectral analysis of ZUC-256

in the time domain might be complicated, the complexity could be largely reduced when
using DFT and WHT [MJ05] through:

(X(1) �X(2) � . . .�X(t))k = F−1(F(X(1)) · F(X(2)) · . . . · F(X(t)))k,
(X(1) ⊕X(2) ⊕ . . .⊕X(t))k =W−1(W(X(1)) · W(X(2)) · . . . · W(X(t)))k, (2)

where · is the point-wise multiplication of two spectrum vectors. In particular, the overall
complexity is now O(t ·N logN).

3.1 Precision problems and the bias in the frequency domain
The bias of a multidimensional noise variable X is often expressed in the time domain as
the Squared Euclidean Imbalance (SEI), which is also called the capacity in some papers
[HN12], defined in [BJV04] as follows:

ε(X) = N

N−1∑
i=0

(Xi/f − 1/N)2, (3)

where f =
∑N−1
i=0 Xi is the normalization factor, used in case that the distribution table of

X is not normalized. For example, the table in the time domain for X stores the number
of occurrences of each entry. If the distribution table of X is already normalized, then
f = 1 as expected for the sum of all probabilities.

It is known that to distinguish a noise distribution X with the above bias ε(X)
from random using hypothesis testing, one needs to collect O(1/ε(X)) samples from this
distribution[BJV04], [HG97].

Precision problems. Assume that we want to compute the bias of the noise variable
X, which is the sum (⊕ or �) of t other sub-noises X(1), . . . , X(t) using the convolution
formulae given in Equation 2. If the expected bias is ε(X) ≈ 2−p, then in practice we
would expect that some probability values will be around 2−n ± 2−p/2−n/2, and then a
float data type should be able to maintain at least O(|p/2 + n/2 − n|) bits of precision
for every value of Xk in the time domain, conditioned that the float data type has the
exponent field (e.g., data types float and double in standard C).

For example, when n = 32 bits and we want to compute the bias ε > 2−512 (p = 512)
then the underlying data types for float or integer values should hold at least 240 bits of
precision. This forces a program to using long number arithmetics (e.g., BIGNUM, Quad,
etc), which requires larger RAM and HDD storage, and expensive computation time.

In the following, we show that the bias of X may be computed in the frequency domain
without having to switch to the time domain, and the required precision may fit well into
the standard type double in C/C++.

Theorem 1. For an n-bit random variable X with either normalized or non-normalized
probability distribution (X0, X1, ..., XN−1) and its spectrum (X̂0, X̂1, ..., X̂N−1), computed
either in DFT or WHT, the bias ε(X) can be computed in the frequency domain as the sum
of the normalized squared spectrum density of each nonzero point, where the zero point,
X̂0, serves as the normalization factor, i.e.,

ε(X) = |X̂0|−2
N−1∑
i=1
|X̂i|2.

Proof. From Equation 1 we get that the normalization factor is f = |X̂0|. The SEI
expression can be written as ε(X) = N

∑N−1
i=0 (Xi/f − Ui)2, where U is the uniform

distribution. According to the Parseval’s theorem, we can derive ε(X) = N
∑N−1
i=0 |Xi/f −

Jing Yang, Thomas Johansson and Alexander Maximov 7

Ui|2 = N · 1
N

∑N−1
i=0 |F(X/f − U)i|2 =

∑N−1
i=0 |X̂i/f − Ûi|2. Since X̂0 = f, Û0 = 1, and

Ûk = 0 for k = 1, 2, . . . , N − 1, we get that ε(X) =
∑N−1
i=1 |X̂i/f |2, from which the proof

follows.

Theorem 1 means that the required precision of values in the frequency domain can
be as small as just a few bits, but the exponent value must be correct and preserved. In
C/C++ it is therefore good enough to store spectrum of a distribution in type double
which has 52 bits of precision and the smallest exponent it can hold is 2−1023. We can
barely imagine cryptanalysis where the expected bias will be smaller than that, and if it
will, we can always change the factor X̂0 to a larger value.

A similar technique to compute the bias in the frequency domain has been given
in [BJV04], but the probability sequence in the time domain there is the probability
differences to the uniform distribution, while the probability sequence here is the original
probabilities of variable X. By this, we could further directly compute the bias of the
sum(� or ⊕) of several sub-noises in the frequency domain by combining Theorem 1 and
Equation 2: the bias of the �-sum of several sub-noises can be computed by

ε(X(1) � . . .�X(t)) = 1
f

N−1∑
k=1
|F(X(1))k|2 · . . . · |F(X(t))k|2 = 1

f

N−1∑
k=1

(
t∏
i=1
|F(X(i))k|

)2

f = |F(X(1))0|2 · . . . · |F(X(t))0|2 =
(

t∏
i=1
|F(X(i))0|

)2

, (4)

and a similar result holds under the ⊕-sum for the WHT case. Note, if we convert each
spectrum value F(X(i))k to log2(|F(X(i))k|2) (and, similarly, for the WHT case), then
arithmetics in the frequency domain, such as in Equation 4, change from computing
products to computing sums. This can give additional speed up, RAM and storage savings.
Later we will show how these results help to find a good approximation.

The main observation and motivation for developing further algorithms: In
linear cryptanalysis of stream ciphers where we have an FSM and an LFSR, the approach
is usually to first approximate the FSM and get the noise variable X, then the LFSR
contribution in the linear approximation is canceled out by combining several (say t) time
instances, thus only the noise terms remain. Thus, the final noise is the t-folded noise,
written as t×X (i.e., the total noise is the sum of t independent noise variables that follow
the same distribution as X), for which the bias is ε(t×X). Normally, an attacker tries to
maximize this value.

One of the important observations from Equation 4 is that if there is a peak (maximum)
value |X̂k| in the spectrum of X at some nonzero position k, then that peak value will be
the dominating contributor to the bias ε(t×X), as it will contribute |X̂k|2t, while other
points in the spectrum of X will have a much less or even negligible contribution to the
total bias as t grows.

This important observation also affects the case when trying to align the spectral points
from several sub-noises with different distributions to achieve a large bias. We should
actually try to move the peak spectrum values of each of those sub-noises such that they
are aligned at some nonzero index k. Then the product of those peak values will result
in a large total bias value. This motivates us to develop further algorithms to rotate or
linearly mask variables and align them at a expected or desired spectrum location k. Below
are some new findings and algorithms of WHT or DFT, which help to find a good linear
approximation for common operations in the nonlinear part of a stream cipher, such as
�,⊕, S-boxes, etc.

8 Spectral analysis of ZUC-256

3.2 Algorithms for WHT type approximations
Consider the expression

X = M (1)X(1) ⊕M (2)X(2) ⊕ . . .⊕M (t)X(t), (5)

where distribution tables of X(i)’s are known, and the attacker can freely select n × n
full-rank Boolean matrices M (i), i = 1 . . . t, we want to find a method to efficiently search
for the choices of M (i)’s to maximize the total bias ε(X). Below we first give a theorem
and then an algorithm to achieve this based on the theorem.

Theorem 2. Given a distribution table X and an n× n full-rank Boolean matrix M we
have

W(M ·X)k =W(X)k·M

Proof. Note that Pr{M · X = j} = Pr{X = M−1 · j}, then we have W(M · X)k =∑N−1
j=0 XM−1·j(−1)k·j [i=M−1·j]=

∑N−1
i=0 Xi(−1)k·M ·i =W(X)k·M .

Note that the left-side matrix multiplication M · X is switched to the right-side
multiplication k ·M .

We want to maximize ε(X) in Equation 5 and we know that if the spectrum values
of X(i)’s are aligned after linear masking of M (i)’s, we could achieve the maximum bias.
By “aligned” we mean that the largest spectrum densities of each X(i) are at the same
location, and this holds for the second largest, the third largest spectrum densities and so
on. But in practice, it is unlikely to achieve such a perfect alignment. Instead, we can try
to align n large spectrum densities and thus achieving a decent bias. Algorithm 1 below
can be used to achieve this based on Theorem 2.

Algorithm 1 Find M (1), . . . ,M (t) that maximize spectral points of X at n indexes K
Input The distribution of X(i) and the index matrix K, which must be an n× n full-rank
Boolean matrix where each row Ki,∗ is a binary form of the i-th spectrum index where we
want the best alignment to happen.
Output The n× n full-rank Boolean matrices M (1),M (2), . . . ,M (t)

1: procedure WhtMatrixAlign(K,X(1), . . . , X(t))
2: for q = 1, . . . , t do
3: Compute W =W(X(q))
4: Let {λ1, λ2, . . . , λN−1} be sorted indexes such that |Wλi | ≥ |Wλj |, j < i
5: Construct the n× n Boolean matrix Λ in a greedy approach as follows:
6: Set a variable l = 1 and an n× n Boolean matrix Λ = 0
7: for i = 0, 1, . . . , n− 1 do
8: do
9: Set the i-th row of Λ as Λi,∗ = λl

10: l := l + 1
11: while rank(Λ) 6= (i+ 1)
12: Then we want that K ·M (q) = Λ, from which we derive M (q) = K−1 · Λ.

In the above algorithm we do not really have to sort and find all N − 1 indexes of λ, it
is most likely that the inner loop will use just a bit more than n values of the first “best”
λ’s. Thus, it is enough to only collect the best c · n indexes, for some small c = 2, 3, 4,
out of which the full-rank matrix Λ can be constructed. We note that the algorithm does
not necessarily gives the best overall bias, but it guarantees that at least n points in the
spectrum of X will have the largest possible peak values.

Jing Yang, Thomas Johansson and Alexander Maximov 9

Linear approximation of S-boxes. S-boxes, which can be regarded as vectorial
Boolean functions, are widely used in both stream ciphers and block ciphers, serving as
the main nonlinear operation to disrupt the linearity. Therefore, the linear approximation
of S-boxes are widely researched in the literature of cryptanalysis. For the one dimensional
approximation of an S-box, i.e., ax ⊕ bS(x) where a, b ∈ GF (2)n are linear masks, the
common way is to construct the linear approximation table (LAT), by trying all possibilities
of a, b values. The complexity is O(22n), which is affordable for small S-boxes, e.g., 4-bit, 8-
bit. WHT is usually employed to speed up the process. For multiple linear approximations,
i.e., Ax⊕BS(x), where A,B are n× n binary masking matrices, testing every choice of
A,B would be impossible, and the main task is rather to find A,B such that the linear
approximation would be highly biased. Some papers have investigated the properties of
multiple linear approximations, such as [HN12], [HCN19], but there are not much research
on how a linear masking in the time domain would affect the spectrum points in the
frequency domain, and how to explore good linear maskings to achieve a highly biased
approximation. Below we give new results in these aspects.

Let S(x) be an S-box that maps ZN → ZN , and x ∈ ZN , N = 2n. For the sake of
notation in this section the expression of the kind W(F (x)) means the WHT over the
distribution table that is constructed through the function F (x) : ZN → ZN by running
through all values of x.

For an S-box S(x) and an n-bit integer k let us introduce the k-th binary function,
associated with S(x), as follows

B
[k]
{S(x)} = 1/N · (−1)k·S(x), for x = 0, 1, . . . , N − 1,

where k · S(x) is the scalar product of two binary vectors, i.e., k · S(x) =
⊕n−1

i=0 ki · S(x)i,
and 1/N is the normalization factor. Such a combination is called a component of the
S-box, and for a well-chosen S-box, every component should have good cryptographic
properties. We can derive the following results.

Theorem 3. For a given S-box S(x) and a full-rank Boolean matrix Q we have

W(S(x)⊕Q · x)k =W(B[k]
{S(x)})k·Q.

Proof. Let X be a non-normalized (epmirical) noise distribution of the expression (S(x)⊕
Q · x), where every Xi is the number of different values of x for which i = S(x)⊕Q · x.
Then we have:

W(S(x)⊕Q·x)k = 1
N

N−1∑
j=0

Xj ·(−1)k·j = 1
N

N−1∑
x=0

(−1)k·(S(x)⊕Q·x) =
N−1∑
x=0

B
[k]
{S(x)} ·(−1)k·Q·x,

from which the result follows, since the last term is exactly W(B[k]
{S(x)})k·Q.

Theorem 3 can now be used to derive a matrix Q such that at least n points in the
noise spectrum will have peak values (thus, making the total bias large). Basically, we
first search for the > n best one-dimensional linear masks and then we build a matrix Q
that contains these best peak values in the spectrum, see Algorithm 2 for details.

In Algorithm 2, the choice of the parameter c should be such that we do not need to
generate final rows of K and Λ randomly. The algorithm does not guarantee to get the
maximum possible overall bias, but it guarantees that at least the maximum possible peak
value will be present in the noise spectrum, which would allow to get a fairly large bias in
the end. The complexity is O(N2 logN), but in practice there are usually other sub-noises
that depend solely on k, which can be used to select a subset of “promising” k values for
actual probing of the total noise spectrum.

Other useful formulae on spectral analysis of S-boxes can be derived based on Theorem 2
and Theorem 3.

10 Spectral analysis of ZUC-256

Algorithm 2 Find Q that maximizes n spectral points of S(x)⊕Q · x
Input The S-box S(x)
Output The n× n full-rank Boolean matrix Q

1: procedure WhtSBoxApproximation(S(x))
2: Let Φ be the sorted list of maximum c ·n (for some small c ≈ 4) best triples (k, λ, ω)

sorted by the magnitude of ω, where k is the index of the binary function of the S-box,
λ denotes the index of the spectrum points and ω is the corresponding spectrum value.
If the list is full and we want to add a new triple then the last (worst) list entry is
removed.

3: for k = 1, . . . , N − 1 do
4: Compute W =W(B[k]

{S(x)}), where B
[k]
{S(x)} = 1/N · (−1)k·S(x)

5: for λ = 1, . . . , N − 1 do
6: Consider the triple (k, λ, ω = |Wλ|). If ω is larger than in the worst triple

in Φ, then add (k, λ, ω = |Wλ|) to the list.
7: From the list Φ use the greedy approach to construct n × n full-rank Boolean

matrices K and Λ, similar to how it was done in Algorithm 1.
8: Set l = 0
9: for i = 0, 1, . . . , n− 1 do

10: do
11: if l = |Φ| then
12: generate the remaining rows of K and Λ randomly
13: exit from the for-loop
14: Set the ith row of K as Ki,∗ = Φ(l).k
15: Set the ith row of Λ as Λi,∗ = Φ(l).λ
16: l := l + 1
17: while rank(K) 6= (i+ 1) or rank(Λ) 6= (i+ 1)
18: Set Q = K−1Λ.

Corollary 1. Let M,P,Q be n× n full-rank Boolean matrices, and let S(x) be a bijective
S-box over n-bit integers. Then

W(MS(Px)⊕Qx)k =W(M(S(x)⊕M−1QP−1x))k =W(S(x)⊕M−1QP−1x)k·M
(6)

=W(B[k·M]
{S(x)})k·M ·M−1QP−1 =W(B[k·M]

{S(x)})k·QP−1 , (7)

W(MS(Px)⊕Qx)k =W(Mx⊕QP−1S−1(x))k =W(B[k·QP−1]
{S−1(x)})k·M , (8)

W(M(S(Px)⊕Qx))k =W(S(x)⊕QP−1x)k·M =W(B[k·M]
{S(x)})k·MQP−1 , (9)

W(B[k·P]
{S(x)})k·Q =W(B[k·Q]

{S−1(x)})k·P . (10)

Theorem 4 (Linear transformation of S-boxes). Let us consider the following k-th binary
function at its spectrum point λ = k ·M , for some full-rank Boolean matrix M , where the
original S-box S(x) is linearly transformed with other full-rank Boolean matrices R and Q:

W(B[k]
{RS(Qx)})λ (11)

We want to find a set of the best m triples {(k, λ, ε)} sorted by the maximum bias ε.
Assume we have a fast method to find best m triples {(k′, λ′, ε)} for W(Bk′{S(x)})λ′ , instead,
then that set can be converted to {(k, λ, ε)} as follows:

{(k, λ, ε)} = {(k′ ·R−1, λ′ ·Q, ε)}

Jing Yang, Thomas Johansson and Alexander Maximov 11

Proof. W(B[k]
{RS(Qx)})λ =W(RS(Qx)⊕Mx)k =W(RS(x)⊕MQ−1x)k =W(B[k·R]

{S(x)})k·MQ−1 ,
from which the result follows.

Theorem 5 (S-box as a disjoint combination). Let us consider an n-bit S-box constructed
from t smaller n1, n2, . . . , nt-bit S-boxes S1(x1), S2(x2), . . . , St(xt), such that

S(x) =
(
S1(x1) S2(x2) . . . St(xt)

)T
,

where the n-bit input integer x is split into t ni-bit (n =
∑
i ni) disjoint sub-values as

x = (x1|x2| . . . |xt). Let us also split indexes k, λ in a similar way as k = (k1|k2| . . . |kt)
and λ = (λ1|λ2| . . . |λt). Then we have the following result

W(B[k]
{S(x)})λ =

t∏
i=1
W(B[ki]

{Si(x)})λi .

Proof. Since all xi are independent from each other, the combined bias at any point λ
is the product of sub-biases at corresponding λi’s for each ki-th binary function of the
corresponding S-box Si(x), which can be proved by below.

t∏
i=1
W(B[ki]

{Si(x)})λi = (1
N1

N1−1∑
x1=0

(−1)k1S1(x1)⊕λ1x1) · ... · (1
Nt

Nt−1∑
xt=0

(−1)ktSt(xt)⊕λtxt)

= 1
N1N2...Nt

N1−1∑
x1=0

...

Nt−1∑
xt=0

(−1)k1S1(x1)⊕λ1x1...ktSt(xt)⊕λtxt

= 1
N

N−1∑
x=0

(−1)kS(x)⊕λx =W(B[k]
{S(x)})λ.

Theorem 4 and Theorem 5 pave the way to compute the bias of any pair (k, λ) in
Equation 11 efficiently in time O(t), without even having to construct a large n-bit
distribution of the S-box approximation (e.g., X = RS(Qx) ⊕Mx), given that S(x) is
constructed from smaller S-boxes, which is a common case in cipher designs. We can
simply precompute the tables of {(ki, λi, ε)} exhaustively, then apply the theorems to
compute the bias for a large composite S-box for any pair (k, λ). This also leads to an
efficient and fast algorithm to search for the best set of triples {(k, λ, ε)} in Equation 11.
These findings have a direct application in the upcoming cryptanalysis of ZUC-256.

General approach of spectral cryptanalysis using WHT. With the tools and
methods developed in this subsection, we can now propose a general framework for finding
the best approximation, based on probing spectral indexes.

1. Derive the total noise expression based on basic approximations and S-box ap-
proximations. The noise expression may involve ⊕ operations, Boolean matrices
multiplications, where some of the matrices can be selected by the attacker.

2. Derive the expression for the k-th spectrum point of the total noise, using the
formulae that we found earlier.

3. Convert expressions such as k ·M , where the matrix M is selectable, to be some
parameter λ. If there are more selectable matrices then more λ’s can be used.

4. Probe different tuples (k, λ, . . .) to find the maximum peak value in the spectrum for
the total noise. The search space for k may be shrunk by spectrum values of basic
approximations.

5. Convert the best found tuple into the selected matrices, and compute the final
multidimensional bias using the constructed matrices.

12 Spectral analysis of ZUC-256

3.3 Algorithms for DFT type approximations
In this section we provide a few ideas on spectral analysis for DFT type convolutions.
Although these methods were not used in the presented attack on ZUC-256, they can be
quite helpful in the linear cryptanalysis for some other ciphers.

Consider the expression

X = c1X
(1) � c2X

(2) � . . .� ctX
(t) mod N, (12)

where the attacker can choose the constants ci, which must be odd, and X(i)’s are
independent random variables. We will propose the algorithm to find the best combination
of the constants ci such that the total noise X will have the best peak spectrum value.

The theorem below would help to decide how to rearrange the spectrum points in the
frequency domain to achieve a larger total bias, by multiplication with a constant in the
time domain, which is a linear masking.
Theorem 6. For a given distribution of X and an odd constant c we have

F(c ·X)k = F(X)k·c mod N ,

for any spectrum index k = 0, 1, . . . , N − 1.

Proof. F(c·X)k =
∑N−1
n=0 xc−1n·

(
e−i2π/N

)kn =
∑N−1
n=0 xn·

(
e−i2π/N

)k·c·n = F(X)k·c mod N .

Corollary 2. Any spectrum value at index k = 2m(1 + 2q), for some m = 0 . . . n− 1, q =
0 . . . 2n−m − 1, can only be relocated to another index k′ of the form k′ = 2m(1 + 2q′), for
some q′ = 0 . . . 2n−m − 1.

Proof. The constant c is odd and c = 1 + 2r, for some r. If F(c ·X)k′ = F(X)k, we get
that c · k′ ≡ k mod N , and then k′ = 2m(1 + 2q) · (1 + 2r)−1 mod N .

Corollary 3. Any spectrum value at index k = 2m(1 + 2q), for some m = 0 . . . n− 1, q =
0 . . . 2n−m − 1, can be relocated to the index 2m in the spectrum by applying the constant
c = 1 + 2q.

Proof. F(c ·X)2m = F((1 + 2q) ·X)2m = F(X)2m(1+2q) = F(X)k.

The results above can be used to solve the problem of finding the constants ci in
Equation 12 such that the spectrum of X would contain the maximum possible peak value.

Algorithm 3 Find ci’s that maximize the peak spectral point of X in Equation 12
Input The distributions of X(i), for i = 1, 2, . . . , t.
Output The coefficients ci, for i = 1, 2, . . . , t.

1: procedure DftConstantsAlign(X(1), X(2), . . . , X(t))
2: Initialize a t× n matrix Ψ with 0, each cell of which contains the pair (c, ω).
3: for i = 1, . . . , t do
4: Compute W = F(X(i))
5: for m = 0, . . . , n− 1 and q = 0, . . . , 2n−m − 1 do
6: Set ω = |W2m(1+2q)|
7: if ω ≥ Ψi,m.ω then set Ψi,m = (1 + 2q, ω)
8: Set m′ = 0 and ω′ = 0
9: for m = 0, . . . , n− 1 do

10: Compute ω =
∏t
i=1 Ψi,m.ω

11: if ω > ω′ then set m′ = m and ω′ = ω
12: for i = 1, . . . , t do
13: Assign ci = Ψi,m′ .c

Jing Yang, Thomas Johansson and Alexander Maximov 13

The complexity of the above algorithm is O(t ·N logN).

4 Linear cryptanalysis of ZUC-256
In this section, we perform a linear cryptanalysis on ZUC-256. Normally, the basic idea
of linear cryptanalysis is to approximate the nonlinear operations as linear ones and
further to find some linear relationships between the generated keystream symbols or
between keystream symbols and the LFSR states, and thus respectively resulting into a
distinguishing attack and correlation attack. In a distinguishing attack over a binary field
GF (2) or extension fields of GF (2), the common way is to find LFSR states at several time
instances (usually 3, 4 or 5) which are xor-ed to be zero such that the LFSR contribution
in the linear approximation is canceled out while only the noise terms remain which would
be biased. This common way, however, does not apply well to ZUC, since the LFSR states
in ZUC are defined over a prime field GF (231 − 1) which is different to the extension field
GF (232) in the F function.

In this section, we describe a more general approach where the expression that we use
to cancel out the LFSR states is directly included in the noise expression, which effectively
reduces the total noise, i.e., the final bias is larger. This general approach may be used in
cryptanalysis of any other stream cipher where an LFSR is involved.

Below we first give our linear approximation of the full ZUC-256, including the LFSR
state cancellation process. Then we describe in details how we employ the spectral
techniques given in Section 3 and a technique we called “bit-slicing” to efficiently compute
the bias. Finally, we use the derived linear approximation to launch a distinguishing attack
on ZUC-256.

4.1 Linear approximation
We first give the expressions for generating the keystream symbols at time instances t and
t+ 1 as follows,

Z(t) = [(T2(t) ⊕X2(t))� ((T1(t) �X1(t))⊕X0(t))]⊕X3(t),

Z(t+1) = [SL2(T2′(t))� (SL1(T1′(t))⊕X0(t+1))]⊕X3(t+1),

where � is the arithmetic subtraction modulo 232 and (T1′, T2′) = (T1, T2)≪ 16 is a
cyclic shift 16 bits to the left.

We try to find a four-tuple of time instances t1, t2, t3, t4 such that,

S(t1) + S(t2) = S(t3) + S(t4) mod p. (13)

From each S(ti), we define a 32-bit variable X(ti) which is the concatenation of the
low and high 16-bit part of S(ti). Then one can derive the following relation for X(ti)’s
according to Equation 13:

X(t1) �16 X
(t2) = X(t3) �16 X

(t4) �16 C, (14)

where �16 is the 16-bit arithmetic addition, i.e., addition modulo 216, of the low and high 16-
bit halves of X(ti)’s in parallel. Here C = (CL||CH) is a 32-bit random carry variable from
the approximation of the modulo p, and it can only take the values CL, CH ∈ {0,−1,+1}
mod 216, where the values in the low and high parts of C are independent.

Proposition 1. The distribution for C is as follows:

Pr{CL = 0} = Pr{CH = 0} ≈ 2/3,
P r{CL = −1} = Pr{CH = −1} ≈ 1/6,
P r{CL = +1} = Pr{CH = +1} ≈ 1/6.

14 Spectral analysis of ZUC-256

Proof. Let q denotes 216 for convenience. When S(t1) + S(t2) = S(t3) + S(t4), we could get
(X(t1)

L �qX
(t2)
L)+q(c1�qX

(t1)
H15�qX

(t2)
H15) = (X(t3)

L �qX
(t4)
L)+q(c2�qX

(t3)
H15�qX

(t4)
H15) mod q,

where X(ti)
H15 is the high 15-bit part of S(ti) and c1, c2 are the carriers from the low 16 bits

to the higher part. Then we can get X(t1)
L �q X

(t2)
L = X

(t3)
L �q X

(t4)
L mod q and in this

case CL = 0.
Given S(t1), S(t2) and S(t3), the value of S(t4) would be fixed. The number of all possible

combinations of S(t1), S(t2), S(t3) is p3. Now consider S(t1) + S(t2) = S(t3) + S(t4) = k for
2 ≤ k ≤ 2q, one can get that there are (k − 1)2 solutions for the combinations of S(ti)’s
when 2 ≤ k ≤ p+ 1, and (2p+ 1−k)2 solutions when p+ 2 ≤ k ≤ 2p. Then the probability
of Pr{CL = 0} is calculated as (1 + 22 + ...(p− 1)2 + p2 + (p− 1)2 + ...+ 22 + 1)/p3 =
(2p2 + 1)/3p2 ≈ 2/3.

Similary, we can get that when S(t1) + S(t2) = S(t3) + S(t4) + p or S(t1) + S(t2) + p =
S(t3) + S(t4), the CL carries would respectively be −1 and 1, both with equal probability
1/6.

The probability of CH can be obtained with a similar method, by considering the
carries to the 16-th bit under different combinations of the low 15-bit parts, e.g., Pr{CH =
0} = Pr{X(t1)

L15 +X
(t2)
L15 = X

(t3)
L15 +X

(t4)
L15} ≈ 2/3 in spite of the CL value, where X(ti)

L15 is the
low 15-bit part of S(ti).

Then the full approximation of ZUC-256 based on Equation 13 and its approximation
in Equation 14 is as follows:

Mσ[Z(t1) ⊕ Z(t2) ⊕ Z(t3) ⊕ Z(t4)]⊕ [Z(t1+1) ⊕ Z(t2+1) ⊕ Z(t3+1) ⊕ Z(t4+1)]

= MσN1(t1) ⊕
⊕

t∈{t1,...,t4}

M(σT1(t) ⊕ σT2(t)︸ ︷︷ ︸
=T1′(t)⊕T2′(t)

)⊕N2(t1)

⊕
⊕

t∈{t1,...,t4}

(SL1(T1′(t))⊕ SL2(T2′(t)))

= MσN1(t1) ⊕N2(t1)

⊕
⊕

t∈{t1,...,t4}

[
M · T1′(t) ⊕ SL1(T1′(t))⊕M · T2′(t) ⊕ SL2(T2′(t))

]
,

where σ is the swap of the high and low 16 bits of a 32-bit argument, andM is some 32×32
full-rank Boolean matrix that we can choose, which serves as a linear masking matrix.
The expressions for the noise N1(t1) (we furthermore split N1(t1) = N1a(t1) ⊕ N1b(t1))
and noice N2(t1) are as follows:

N1a(t1) = [((T2(t1) ⊕X2(t1))� ((T1(t1) �X1(t1))⊕X0(t1)))] (15)
⊕ [((T2(t2) ⊕X2(t2))� ((T1(t2) �X1(t2))⊕X0(t2)))]
⊕ [((T2(t3) ⊕X2(t3))� ((T1(t3) �X1(t3))⊕X0(t3)))]
⊕ [((T2(t4) ⊕ (X2(t1) �16 X2(t2) �16 X2(t3) �16 C2))� ((T1(t4)

� (X1(t1) �16 X1(t2) �16 X1(t3) �16 C1))

⊕ (X0(t1) �16 X0(t2) �16 X0(t3) �16 C0)))]⊕
⊕

t∈{t1,...,t4}

(T1(t) ⊕ T2(t)),

N1b(t1) = X3(t1) ⊕X3(t2) ⊕X3(t3) ⊕ (X3(t1) �16 X3(t2) �16 X3(t3) �16 C3),

Jing Yang, Thomas Johansson and Alexander Maximov 15

and

N2(t1) = [[(SL2(T2′(t1))� (SL1(T1′(t1))⊕X0(t1+1)))⊕X3(t1+1)]
⊕ [(SL2(T2′(t2))� (SL1(T1′(t2))⊕X0(t2+1)))⊕X3(t2+1)]
⊕ [(SL2(T2′(t3))� (SL1(T1′(t3))⊕X0(t3+1)))⊕X3(t3+1)]
⊕ [(SL2(T2′(t4))� (SL1(T1′(t4))⊕ (X0(t1+1) �16 X0(t2+1)

�16 X0(t3+1) �16 C0′)))⊕ (X3(t1+1) �16 X3(t2+1) �16 X3(t3+1) �16 C3′)]]

⊕
⊕

t∈{t1,...,t4}

(SL1(T1′(t))⊕ SL2(T2′(t))).

In our analysis we consider noise variables N1(t1) and N2(t1) as independent. By
this assumption the attacker actually looses some advantage since there is a dependency
between, for example, T1(t1), T2(t1) in N1(t1) and SL1(T1′(t1)), SL2(T2′(t1)) in N2(t1).
The attack can be stronger if we could take into account these dependencies, since then
there will be more information in these noise distributions. However, it is practically hard
to compute the bias in that scenario.

Next we want to compute the distribution and the bias of the noise terms. However, as
one can note, there are many variables involved in each sub-noise expression. For example,
the sub-noise N1a(t1) involves 17 32-bit variables, and 3 C-carries. In order to compute
the distribution of N1a(t1), a naive loop over all combinations of the involved variables
would imply the complexity O(93 · 217·32), which is computationally infeasible.

In the next subsections we make a recap of the bit-slicing technique and show how we
adapt it to our case to compute the distributions of the above noise terms.

4.2 Recap on the bit-slicing technique from [MJ05]
Let an n-bit noise variable N be expressed in terms of several n-bit uniformly distributed
independent variables, using any combination of bitwise Boolean functions and arithmetical
addition � and subtraction � modulo 2n. The distribution of such a noise expression,
referred to as a pseudo-linear function in [MJ05], can be efficiently derived through the
so-called “bit-slicing” technique in complexity O(k · 2n + k2n · 2n/2), for some (usually
small) k.

The general idea behind the technique is that if we know the set of distributions for
(n − 1)-bit truncated inputs for each possible outcome vector of the sub-carries’ values
for arithmetical sub-expressions, then we can easily extend these distributions to the
n-bit truncated distributions with a new vector of output sub-carries’ values. Then, the
algorithm may be viewed as a Markov chain where the nodes are viewed as a vector of
probabilities for each combination of sub-carries, and some transition matrices are used to
go from the (n− 1)-th state to the n-th state.

Example. Let us explain the technique on a small example. Let n = 32 bits and the
noise N is expressed in terms of random variables A,B,C:

N = [(A�B � C)︸ ︷︷ ︸
inner ADD-1

⊕ (A� C)︸ ︷︷ ︸
inner ADD-2

]�B

︸ ︷︷ ︸
outer ADD-3

.

For each n-bit value X with (xn−1 . . . x1x0) as its binary form, we will compute the
number of combinations of A,B,C such that the value of N is equal to X.

Carries and the state. Here we have 3 arithmetical parts: two inner and one
outer. We express the carriers using a carrier vector denoted (c1, c2, c3), where c1 ∈
{−1, 0,+1}, c2 ∈ {0, 1}, c3 ∈ {−1, 0}. At each bit position i, 0 ≤ i ≤ n − 1, we would

16 Spectral analysis of ZUC-256

have the input carrier vector coming from the first i − 1 bits, (c1in, c2in, c3in), and the
output carrier vector (c1out, c2out, c3out) going to the (i + 1)-th bit position. Introduce
a mapping τ function as: τ(c1, c2, c3) = ((c1 + 1) · 2 + c2) · 2 + (c3 + 1) ∈ [0 . . . 11], that
maps each value of the carrier vector to a unique integer index. Thus, at every step i,
we will have a column vector Vi of length k = 12, each entry of which corresponds to a
certain combination of output carries (c1out, c2out, c3out), and the value are respectively the
numbers of combinations of the i-bit truncated variables A,B,C such that the first i bits of
N are equal to the first i bits ofX. The initial vector is V0 = (0, . . . 0, 1(in the index τ(c1 =
0, c2 = 0, c3 = 0)), 0, . . . , 0)T.

Transition matrices. We will construct two k × k (12 × 12) transition matrices
M0,M1 for every bit position i when the i-bit value being 0 and 1, such that the vector Vi+1
is derived by Vi+1 = Mxi · Vi. When the i-th bit of X, xi, is 0, we apply M0; otherwise
M1. These two matrices are constructed as follows: initialize M0 and M1 with zeroes; loop
through all possible choices of the i-th bits of A,B,C ∈ {0, 1}3 and all possible values of
(c1in, c2in, c3in); then for each combination we compute the resulting bit r ∈ {0, 1} using
the noise expression and the vector of output carries (c1out, c2out, c3out), and increase the
corresponding matrix cell by 1 as inc(Mr[τ(c1out, c2out, c3out)][τ(c1in, c2in, c3in)]) at the
same time. Note, the inner output carries c1out and c2out should not be summed up in
the outer output carry c3out, but only the resulting 1-bit value of inner sums should go to
the outer expression.

The general formulae can now be derived as follows:

Pr{N = (xn−1 . . . x0)} = 1
2t·n · (1, 1, . . . , 1) ·

n−1∏
i=n/2

Mxi︸ ︷︷ ︸
High part, H[(xn−1...xn/2)]

·
n/2−1∏
i=0

Mxi · V0︸ ︷︷ ︸
Low part, L[(xn/2−1...x0)]

, (16)

where t is the number of involved random variables, in our example t = 3, and 1/2t·n is
the normalization factor for the distribution. The left-side row vector (1, 1, . . . , 1) due to
the last carries are truncated by modulo 2n operation and thus all combinations should be
summed up to the result.

Precomputed vectors. We intentionally split Equation 16 into two parts, since it
shows that the computation of Pr{N = X} for all values of X ∈ {0, 1, . . . , 2n − 1} can
be speeded up by precomputing vectors for all possible values of the high and low halves
of X, independently. The whole precomputation takes time O(n · 2n/2 · k2). Then the
probability Pr{N = X} is a simple scalar product, computed in time O(k) as:

Pr{N = (xn−1 . . . x0)} = 1
2t·n ·H[(xn−1 . . . xn/2)] · L[(xn/2−1 . . . x0)].

4.3 Bit-slicing technique adaptation to compute N1a, N1b and N2
In this section we will describe in more details how we adapt the bit-slicing technique in
order to compute the “heaviest” noise N1a. The remaining noises are computationally
less demanding and can be derived with a similar adaptation techniques.

A direct application of the bit-slicing technique to compute N1a, given in Equation 15,
is complicated due to: (1) we have �16 adders that stop some of the sub-carries to
propagate between the 15-th and 16-th bits; and (2) we have the C-carries that can have 3
values at the 0-th and 16-th bits.

The first problem is resolved by introducing two special transition matrices M (15)
r

(for r = 0, 1) which are only applied to the bit 15. In these matrices, all output sub-carries
would not propagate to the next bit 16 and are forced to be 0.

The second problem is solved by introducing another two special transition matrices
M

(0)
r (for r = 0, 1) that are only applied to the bits 0 and 16. These special matrices take

Jing Yang, Thomas Johansson and Alexander Maximov 17

into account C-values that are added to the 0-th and 16-th bits. The important fact here
is that all input sub-carries at bit positions where C’s are involved are always 0, and this
makes it possible to keep the sub-carry values in the expressions like (X3(t1)�16X3(t2)�16
X3(t)3�16 C3) in the smaller range [−1,+1], since C-value ∈ [−1,+1] only appears at the
first bit under the 16-bit addition/subtraction where input carries are zeroes, and in the
next bits C = 0. Thus, to construct M (0)

r ’s, we do the following: loop through the 1-bit
random variables involved in the noise expression; loop through sub-carries that propagate
over 32 bits; do not loop through the carries that are involved in 16-bit propagations; and
loop through C ∈ {−1, 0,+1} values. Then, instead of increasing the corresponding entry
of M (0)

r by 1, we actually add the product of the probabilities of all involved C-values.
Transition matrices for the remaining bits (except the bits 0, 15, 16) are constructed

as usual, but C-values are all 0.
Additional adaptation is done in the part of L/H precomputed tables of vectors.

We know that the low and high precomputations meet in the middle at the bits 15 and 16,
where all sub-carries in �16 adders vanish to 0. This makes it possible to shrink the size
of the vectors and only leave the states with sub-carries that propagate over the full 32-bit
of the noise expression.

Complexity. For N1a we have the following situation: 17 32-bit variables (T1 and T2
in 4 time instances and X0, X1, X2 in 3 time instances); 8 carries that propagate over 32
bits in (0, 1) and (−1, 0); 3 carries that propagate over 16 bits in the range [−1,+1]. Thus
we get the dimension of all involved transition matrices by k = 28 · 33, i.e., the matrices
are of size 212.8 × 212.8. If each entry of a matrix is of C-type double (8 bytes), then one
transition matrix occupies around 362Mb of RAM.

The precomputation phase to compute low (L) and high (H) vectors has time complexity
around O(22·12.8 ·32 ·216) = O(246.6). The size of the stored L/H vectors were dramatically
reduced from the vector lengths k = 212.8 down to the lengths k′ = 28, since there are only
8 binary-valued sub-carries that propagate between the bits 15 and 16, while other carries
were “truncated” by applying the matrix M (15)

r .
The total time complexity to construct the noise N1a is, therefore, O(246.6 + 232 · 28).

We compute N1b and N2 with a similar adapted bit-slicing technique, but the time
complexity there is a lot smaller.

4.4 Spectral analysis to find the matrix M

With the methods presented in Section 3, the spectral analysis becomes rather simple for
the ZUC-256 case, and we below give necessary expressions to perform that. Let us recall
that the expression for the total noise is:

N
(t1)
tot = MσN1(t1)⊕N2(t1)⊕

⊕
t∈{t1,...,t4}

[
SL1(T1′(t))⊕M · T1′(t) ⊕ SL2(T2′(t))⊕M · T2′(t)

]
.

The spectrum expression at some point k can thus be derived as follows.

W(N (t1)
tot)k =W(MσN1)k · W(N2)k · W(SL1(x)⊕Mx)4

k · W(SL2(x)⊕Mx)4
k

=W(σN1)λ · W(N2)k · W(B[k]
{SL1(x)})

4
λ · W(B[k]

{SL2(x)})
4
λ,

where λ = k ·M .
Our strategy for the spectral analysis is as follows. We select ≈ 224.78 “promising”

spectrum points for λ where |W(σN1)λ|2 > 2−150, and select ≈ 218 “promising” spectrum
points for k where |W(N2)k|2 > 2−80. Then we tried all combinations of the selected
(k, λ) and computed the total spectrum value. For the computation of spectrum points
for S-boxes (e.g., for W(B[k]

{SL1(x)})
4
λ), we utilized Theorem 4 and Theorem 5, so that we

18 Spectral analysis of ZUC-256

did not have to construct the full 32-bit distributions of the S-box approximations, but
exploring a spectrum point in time O(1). The total complexity of the analysis is ≈ O(241).

We then collected the best pairs {(k, λ)} in terms of the largest peak spectrum values,
and constructed two full-rank 32× 32 Boolean matrices K and Λ from the indices (k, λ)
with the greedy approach given in Algorithm 2. Then the matrix M was derived as
M = K−1 · Λ.

Results. We only used 7 pairs from the result of the spectrum analysis (due to many
other pairs did not give us full-rank matrices K and Λ), and the remaining 25 rows of K,Λ
were randomly generated. Thereafter, we tested that matrix M in the full approximation
and got the total bias:

ε(N (t1)
tot) ≈ 2−236.380623.

The 32× 32 binary matrix M is given below as a vector of 32-bit integers, where the
bit Mi,j , for 0 ≤ i, j ≤ 31, is extracted as Mi,j = bM[i]/2jc mod 2, and in standard C it
is then Mi,j =(M[i]>>j)&1.

uint32_t M[32] =
{ 0x26dad00b, 0x5de94454, 0x3bdfdb0d, 0x1423c42f, 0xc4f35585, 0x1f22e504,

0xeb07cc1e, 0x3633b301, 0x11b4bca3, 0x6f23b103, 0x912adb7d, 0x6a058e9e,
0x67d4ef5a, 0xdd0830b6, 0xee579099, 0x9af30192, 0x455d8a7b, 0x22133144,
0x7fb935a8, 0x4d923b96, 0xc0c9967e, 0x99db94fc, 0x442f1154, 0x17994e1f,
0x08d2662e, 0xccc8fe9c, 0x994d8fb8, 0xfba4f0dc, 0x462d2a69, 0x373306ed,
0x91282e11, 0x9b82d788 };

4.5 A distinguishing attack to ZUC-256

In a distinguishing attack, an adversary aims to find some linear relationships between the
generated keystream symbols by canceling the LFSR contribution in the linear approxima-
tion, thus being able to distinguish the keystream sequence from random.

In Subsection 4.1, we have shown that if we could find four time instances t1, t2, t3, t4
such that S(t1) + S(t2) = S(t3) + S(t4) mod p, then we can build the keystream samples
Mσ[Z(t1) ⊕ Z(t2) ⊕ Z(t3) ⊕ Z(t4)] ⊕ [Z(t1+1) ⊕ Z(t3+1) ⊕ Z(t3+1) ⊕ Z(t4+1)] to be biased
with a bias of 2−236.38. By collecting around O(2236.38) such samples, we could distinguish
this sample sequence from random, thus resulting into a distinguishing attack.

The remaining problem is how we can find such a time instance tuple t1, t2, t3, t4
satisfying the requirement, i.e., S(t1) +S(t2) = S(t3) +S(t4) mod p. It can be solved by the
algorithm in [LJ14] which is used to find a weight 4 multiple of the feedback polynomial.
But here we should find a weight 4 multiple with two coefficients being 1 and the other
two being -1. Let us first figure out how far we should run the cipher, i.e., the degree
of the multiple, to find such a tuple. Let q be the expected degree. If we consider all
t ≤ q, we could create

(
q
3
)
different combinations of S(t1) + S(t2) = S(t3) + S(t4) mod p

when we fix one time instance. Since there are 2496 possible such combinations, we can
expect that we need to go to the length such that

(
q
3
)
≈ 2496, resulting in q ≈ 2167.

We use the algorithm in [LJ14][YJM19] to find the time instance tuple, but note that
at the last step, instead of keeping xi1 + xi2 + xi3 + xi4 = 0 mod P (x), we should keep
xi1 + xi2 − xi3 − xi4 = 0 mod P (x). The algorithm requires computational complexity of
q and similar storage. For our case, the complexity is 2167. The algorithm to find the time
instance tuple can be found in Appendix A.

Thus we succeed to have a distinguishing attack on ZUC-256 for which we need to run
the cipher to around 2236 and collect around 2236 samples.

Jing Yang, Thomas Johansson and Alexander Maximov 19

5 Conclusions
In this paper, we give a number of spectral tools for linear cryptanalysis and further apply
them to ZUC-256 resulting in a distinguishing attack on ZUC-256 faster than exhaustive
key search.

We explored how a linear masking in the time domain would affect the spectrum points
in the frequency domain under some commonly used operations in cryptography, such as
�,⊕, and S-boxes, in both WHT and DFT types. We also gave a number of results and
algorithms about how to find a good linear masking in the time domain by aligning the
spectrum points in the frequency domain.

For the distinguishing attack, we first derive a linear approximation of the non-linear
part F and the transformation from GF (p) field in LFSR to GF (232) in F . We then
employ the spectral tools and adapt the bit-slicing technique to compute the bias of the
approximation efficiently. The linear approximation is then used to launch a distinguishing
attack by finding a weight 4 multiple of the generating polynomial to cancel out the
contribution from the LFSR. The distinguishing attack requires data complexity O(2236)
and storage complexity O(2167). It indicates that ZUC-256 does not provide a source with
full 256-bit entropy in the generated keystream, as would be expected from a 256-bit key.

References
[3GP18] 3GPP TSG-SA WG3. Liaison Statement on 256 bit Algorithms and Quantum

Computing (S3-183756), November 2018. https://www.3gpp.org/ftp/tsg_
sa/WG3_Security/TSGS3_93_Spokane/Docs/S3-183756.zip.

[BJV04] Thomas Baigneres, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In International Conference on the Theory and
Application of Cryptology and Information Security, pages 432–450. Springer,
2004.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[ETS11a] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algorithms
128-EEA3 & 128-EIA3. document 2: ZUC specification, 2011.

[ETS11b] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algorithms
128-EEA3 & 128-EIA3. document 4: Design and evaluation report, 2011.

[GDL13] Jie GUAN, Lin DING, and Shu-Kai LIU. Guess and determine attack on
snow3g and zuc [j]. Journal of Software, 6:1324–1333, 2013.

[HCN19] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional linear
cryptanalysis. Journal of Cryptology, 32(1):1–34, 2019.

[HG97] Helena Handschuh and Henri Gilbert. χ2 cryptanalysis of the SEAL encryption
algorithm. In International Workshop on Fast Software Encryption, pages
1–12. Springer, 1997.

[HN12] Miia Hermelin and Kaisa Nyberg. Multidimensional linear distinguishing
attacks and Boolean functions. Cryptography and Communications, 4(1):47–64,
2012.

[LD16] Yi Lu and Yvo Desmedt. Walsh transforms and cryptographic applications in
bias computing. Cryptography and Communications, 8(3):435–453, 2016.

https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_93_Spokane/Docs/S3-183756.zip
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_93_Spokane/Docs/S3-183756.zip

20 Spectral analysis of ZUC-256

[LJ14] Carl Löndahl and Thomas Johansson. Improved algorithms for finding low-
weight polynomial multiples in F2[x] and some cryptographic applications.
Designs, codes and cryptography, 73(2):625–640, 2014.

[LMVH15] Frédéric Lafitte, Olivier Markowitch, and Dirk Van Heule. Sat based analysis
of lte stream cipher zuc. Journal of Information Security and Applications,
22:54–65, 2015.

[MJ05] Alexander Maximov and Thomas Johansson. Fast computation of large
distributions and its cryptographic applications. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
313–332. Springer, 2005.

[NH07] Kaisa Nyberg and Miia Hermelin. Multidimensional walsh transform and a
characterization of bent functions. In 2007 IEEE Information Theory Workshop
on Information Theory for Wireless Networks, pages 1–4. IEEE, 2007.

[SB10] Li C Sun B, Tang XH. Preliminary cryptanalysis results of zuc. In In: Proc.
of the Record of the 1st Int’l Workshop on ZUC Algorithm, 2010.

[Tea18] ZUC Design Team. The ZUC-256 Stream Cipher, 2018. http://www.is.cas.
cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf.

[WHN+12] Hongjun Wu, Tao Huang, Phuong Ha Nguyen, Huaxiong Wang, and San Ling.
Differential attacks against stream cipher zuc. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
262–277. Springer, 2012.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear ap-
proximations for attacks on snow 3g. In 27th Annual Fast Software Encryption
Conference, FSE 2020, 2019.

[ZFL11] Chunfang Zhou, Xiutao Feng, and Dongdai Lin. The initialization stage
analysis of zuc v1. 5. In International Conference on Cryptology and Network
Security, pages 40–53. Springer, 2011.

A The algorithm to find a multiple of P (x)

Algorithm 4 Finding a multiple of P (x) with weight 4 and two nonzero coefficients being
1 and the other two being -1
Input Polynomial P (x), a small integer b
Output A polynomial multiple K(x) = P (x)Q(x) of weight 4 and expected degree 2d
with two of the nonzero coefficients being 1 and the other two being -1
1. From P (x), create all residues xi1 mod P (x), for 0 ≤ i1 < 2d+b and put (xi1 mod
P (x), i1) in a list L1. Sort L1 according to the residue value of each entry.
2. Create all residues xi1 + xi2 mod P (x) such that φ(xi1 + xi2 mod P (x)) = 0, for 0 ≤
i1 < i2 < 2d+b and put in a list L2. Here φ() means the d least significant bits. This is done
by merging the sorted list L1 by itself and keeping only residues φ(xi1 +xi2 mod P (x)) = 0.
The list L2 is sorted according to the residue value.
3. In the final step we merge the sorted list L2 with itself to create a list L, keeping only
residues xi1 + xi2 − xi3 − xi4 = 0 mod P (x), i.e., xi1 + xi2 = xi3 + xi4 mod P (x).

http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf

	Introduction
	Description of ZUC-256
	Spectral tools for cryptanalysis
	Precision problems and the bias in the frequency domain
	Algorithms for WHT type approximations
	Algorithms for DFT type approximations

	Linear cryptanalysis of ZUC-256
	Linear approximation
	Recap on the bit-slicing technique from maximov2005fast
	Bit-slicing technique adaptation to compute N1a, N1b and N2
	Spectral analysis to find the matrix M
	A distinguishing attack to ZUC-256

	Conclusions
	The algorithm to find a multiple of P(x)

