
Multi-Device for Signal

Sébastien Campion3, Julien Devigne1, Céline Duguey1,2, and Pierre-Alain
Fouque2

1 DGA Mâıtrise de l’information, Bruz, France julien.devigne@intradef.gouv.fr
2 Irisa, Rennes, France, celine.duguey@irisa.fr, pierre-alain.fouque@irisa.fr

Abstract. Nowadays, we spend our life juggling with many devices such
as smartphones, tablets or laptops, and we expect to easily and efficiently
switch between them without losing time or security. However, most ap-
plications have been designed for single device usage. This is the case
for secure instant messaging (SIM) services based on the Signal proto-
col, that implements the Double Ratchet key exchange algorithm. While
some adaptations, like the Sesame protocol released by the developers
of Signal, have been proposed to fix this usability issue, they have not
been designed as specific multi-device solutions and no security model
has been formally defined either. In addition, even though the group key
exchange problematic appears related to the multi-device case, group
solutions are too generic and do not take into account some properties
of the multi-device setting. Indeed, the fact that all devices belong to a
single user can be exploited to build more efficient solutions.
In this paper, we propose a Multi-Device Instant Messaging protocol
based on Signal, ensuring all the security properties of the original Signal.

Keywords: cryptography, secure instant messaging, ratchet, multi-device

1 Introduction

1.1 Context

Over the last years, secure instant messaging has become a key application ac-
cessible on smartphones. In parallel, more and more people started using several
devices - a smartphone, a tablet or a laptop - to communicate. They need to be
able to frequently and rapidly switch between them. Security protocols such as
SIM have to be adapted to this ever-changing multi-device setting. However, the
modifications have to be as light as possible for the users and efficient so that it
will be the same if we use this or that device.
The Double Ratchtet algorithm, implemented in the Signal protocol, is currently
the leading key management algorithm for SIM. It is implemented in WhatsApp
(1.5 billion of users, for 60 billions of messages sent each day 3), in Facebook
Messenger as an optional secret conversation mode (1,3 billion of users 4), in
3 http://techcrunch.com - Facebook Q4 2017 earnings announcement
4 www.socialmediatoday.com/news Facebook Messenger by the numbers 2019

Wire, Viber, Google Allo and, of course, in the Signal app itself. It has been
released in 2016 by its designers Perrin and Marlinspike [21]. The idea of the
Double Ratchet, and of other ratcheted key exchanges (RKE), is to propose
a continuous update of session keys. The interesting property of this protocol
is that the confidentiality of past and future messages is still guaranteed even
after an exposure of long-term keys or even of state secrets by a passive adver-
sary. This forces the adversary to expose keys regularly. Those features are often
identified as forward secrecy and healing (or future secrecy, post-compromise
security). Regrettably, the Double Ratchet algorithm has been designed for de-
vice to device interaction and its use in a multi device context is more difficult.
Consequently, each SIM application has developed its own strategy to solve this
problem.

1.2 Existing solutions

WhatsApp. The most widely used SIM is designed to be used on a single
phone. However, in order to enable its users to communicate from a computer,
WhatsApp developers released WhatsApp web. This interface establishes a se-
cure channel between the “master phone” and the computer, with the former
just pushing data from the server to the latter, and conversely. Thus, a user can
use WhatsApp from its computer only if his phone is also connected.

Facebook Messenger. This SIM enables end-to-end encryption as an option,
called secret conversation. A technical white paper issued in May 2017 [13] ex-
plains that “Secret conversations with more than two devices use the Signal Pro-
tocol’s group Messaging Protocol”. In this solution, called Sender’s Key, each
device sends (through a Signal Channel unused afterward) a same symmetric
key: the Sender’s key. This key is ratcheted through a key derivation function
(KDF), without additional key exchange information. This protocol does not
achieve future secrecy and does not offer the security we are looking for.

Signal. In April 2017, Open Whisper Systems (the company who developed
Signal) released Sesame, a new protocol dedicated to multi-device secure mes-
saging [23]. Sesame consists in establishing Signal sessions between all devices,
as shown in Figure 1. If Alice has nA devices and Bob nB , it requires for Alice
(nA − 1) · nB encryptions for each message she sends, and as many ratchet ex-
ecutions. Adding or removing a device from a user’s pool of devices is possible
through opening/closing the corresponding pairwise channel. In Sesame as in
Facebook Messenger, Alice knows that Bob communicates from several devices.
She can even identify which channel - hence which device - sent the message.

Messaging Layer Security. In a related area, Cohn-Gordon et al. proposed
in [8] a solution for groups based on Diffie-Hellman trees. This solution could be
adapted to the multi-device context, by considering each device as a single user.
However, secure group messaging tries to tackle a broader and more complicated
problem than secure multi-device messaging. We detail below some particular-
ities to multi-device messaging that we take advantage of. More generally, we

Fig. 1: Sesame multi-device proto-
col. Each array corresponds to pair-
wise Signal channel.

Fig. 2: Our Multi-Device Dynamic
Ratcheted Key Exchange protocol.
Only one Signal channel is needed
between Alice and Bob.

believe that designing a solution for the multi-device case is of prime importance
given the evolution of users’ practices, and that such a solution, besides being
secure, must also be efficient and easy to use in order to be widespread.

Multi-device messaging vs. group messaging. In multi-device messaging,
a single user owns and controls the different devices, while in group messag-
ing, multiple users discuss using a single device each. Passive authentication is
therefore easier to achieve in the multi-device case: received messages are au-
thenticated as coming from a valid device but the identity of the sending device
does not need to be revealed - the owner of the devices knows this information.
Moreover, to authenticate a new device to another one of the same user, one
can easily assume the devices will be physically close at some point. This means
that a QR code can be used to exchange data between them (as it is the case in
Sesame). Finally, assuming average usage, we will not take into account concur-
rent actions, such as revoking one’s phone from one’s tablet and conversely, at
the same time. This also exclude the case when one honest device and a mali-
cious one try to revoke each other at the same time. This could be handled at an
application level by requiring a password or some personal data before revoking,
what we consider out of the scope of this paper.

1.3 The Signal Protocol

Here we briefly describe Signal and its Double Ratchet algorithm. Signal is a non
interactive key exchange that proposes a continuous update of the message key
used to encrypt the messages. To achieve this, parties have to store many inter-
mediary keys. There are two kinds of update: the symmetric and the asymmetric
ratchet. The symmetric part is a one-way evolution of the message key that en-
sures forward secrecy : past message keys can not be deduced from the current
one. The asymmetric ratchet brings new entropy: a Diffie-Hellman computation
(DH) is performed with new random values to update the state, and ensures the
healing property. If some past keys are revealed, the privacy will be recovered

thanks to this new entropy. The security of Signal relies on a trusted distribution
server, to avoid interactivity between users. During the registration phase, each
user U sends to the server some public credentials: a long term (unchangeable)
user key upkU and some ephemeral initialization keys ephpkU . When Alice wants
to open a session with Bob, she asks the server for Bob’s credentials. Then she
can execute the non interactive key exchange protocol X3DH specified in [22]:
Alice and Bob compute a shared root secret, even if they are not on-line to
exchange data. From then, Alice and Bob store a common root key (rkx), a
chain key (ckx,y), a DH ratchet secret key (their own rchskA, rchskB), a DH
ratchet public key (rchpkB , respectively rchpkA, corresponding to the other’s
secret key). Those ratchet keys will be regularly renewed - this is how new en-
tropy is injected in the protocol. From a chain key ckx,y are derived a new chain
key ckx,y+1 and a message key mkx,y+1 - that will be used to encrypt messages
- with a key derivation function as: KDF CK(ckx,y) → ckx,y+1,mkx,y+1. This
is the symmetric ratchet.
As long as Alice sends messages, she updates her chain and message keys with
this symmetric ratchet procedure. Bob does the same on its side to obtain the
same message keys so that he can decrypt the messages he receives. Once Bob
wants to answer, he updates the root key rkx with an asymmetric ratchet. He
generates a new ratchet key pair: DHKeyGen(1n) → rchsk′B , rchpk

′
B . He per-

forms a DH between this new secret key and the ratchet public key of Alice
(rchpkA), obtaining a value E: DH(rchsk′B , rchpkA)→ E.
Then using a second KDF, he updates his rootkey and his chain key as follow:
KDF RK(rkx, E)→ rkx+1, ckx+1,0. The chain key ckx+1,0 initiates a new chain
of (chain key, message key) pairs. Bob sends his new ratchet public key rchpk′B as
an associated authenticated data with its messagem:AEAD(mx+1,1,m, rchpk

′
B),

so that Alice updates the root key the same way. An asymmetric ratchet is per-
formed each time Alice or Bob sends a first response to the other. The following
messages sent by the same sender only require the symmetric ratchet.

1.4 Our contributions

We propose a multi-device protocol based on the classical two users Signal. In
our solution, one user does not need to know how many devices the other has.
Neither can he find which device his correspondent uses. This is an improvement
in terms of privacy, as, for instance, the use of a particular device can leak
information about your location. The idea is to open a specific multicast channel
between a user’s devices to broadcast the one Signal secret essential to perform
the protocol: the ratchet secret key (rchskA in section 1.3). As illustrated in
Figure 2, each time one device of Alice sends a Signal message to Bob, it also
sends a specific message to Alice other devices, containing the new Signal ratchet
secret key. Thanks to this non interactive synchronization, all Alice devices have
the same voice in the Signal conversation: they speak through the same Signal
channel to Bob. On the way back, when Bob answers Alice through the unique
Signal channel, his message is duplicated by the Server to all of Alice devices.
A multicast channel is created for each Signal’s session. To keep the security

properties offered by the two-users ratchet, the multicast must guarantee these
properties.
We propose as a first step a new primitive: a Ratcheted dynamic multicast
(RDM). As for a traditional multicast, our RDM establishes a secure channel
shared between several participants (in our case devices). It is dynamic since
one can add or revoke devices during the execution of the protocol. The novelty
is that the keys used to secure this channel are regularly updated, so as to
obtain the forward secrecy and healing properties. This is the ratchet feature.
The update can be done independently by any party. It is of utmost importance
that each device remains independent in its ratcheting process, because in real
life, one does not want to wait for all - or even a small part - of its devices to
interact together before sending a message. For a similar reason, it is essential
that our RDM is decentralized, as we want to avoid having a master device that
one cannot afford to lose, have corrupted, or run out of battery. We propose a
security model in Section 2.1 for this new primitive, as well as a construction in
Section 2.2, that we prove secure. Our construction is based on standard well
known primitives: an authenticated asymmetric encryption and a MAC scheme,
that we recall in the Appendix A.
In a second step, we instantiate the integration of our multicast with Signal, to
obtain a Multi-Device version of Signal. Figure 3 represents a high level
view of our solution, with Alice sending messages to Bob. Alice sends messages
from any devices and Bob receives them on all of its devices. The square box
numbers highlight some of our design particularities that we motivate hereafter.
We consider the sending device is dA,i.
1. When Alice sends a message from any of her devices, this message is identi-

cally duplicated by the server and distributed to each of Bob’s device. This
can be done through mailboxes handled by the Server, who needs to know
about Bob’s devices (or at least about their numbers). This mailbox system
is already offered by the Sesame solution in [23].

2. When the other devices receive a message corresponding to a symmetric
Signal step performed by dA,i, they have to perform the symmetric ratchet
on their own to maintain their chain key up-to-date.

3. When the other devices receive a message corresponding to an asymmetric
Signal step performed by dA,i, they receive the corresponding ratchet secret
key rchskA. From this key, they can perform the asymmetric ratchet, to
derive the needed keys and maintain their state up-to-date.

4. As devices now share the ratchet secret, we need to change this secret when a
device is revoked. A revocation hence induces an extra ratchet in the Signal
conversation between Alice and Bob. As we do not want a newcomer to be
able to read past messages, an additional ratchet also comes up with the
joining process. Bob needs to know about this ratchet, otherwise the next
message he sends would correspond to old keys, that the revoked device
knows. An update message is sent to Bob, to let him know about the ratchet.
Bob knows there has been a ratchet, but he can not know if it corresponds
to an addition, a revocation, or a security update, and he has no clues about

Alice other devices dA,j Alice sending device dA,i Server Bob

dpkA,j , dskA,j , ukA, uskA dpkA,i, dskA,i, upkA, uskA upkB , uskB

Initiation

Require Bob’s credentials
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

upkB , ephpkB
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−RDM.Init creates a new RDM channel

RDM.Add&Join adds all dA,j to the channel
MS = X3DH(upkB , ephpkB , uskA, ephskA)

rchskA,0, rchpkA,0 ← DHkeyGen(1n)
E = DH(rchskA,0, ephpkB)
rk0, ck0,0 = KDF RK(MS,E)

RDM.Enc sends RK0, rchskA,0
ephemeral prekey index, rchpkA,0 ∗

−−−→ 1
*in reality sent as additional data with the first message

Symmetric Ratchet

ckx,y+1,mkx,y+1 = KDF CK(ckx,y)

RDM.Enc sends m, rchskA,x 2

ckx,y+1,mkx,y+1 = KDF CK(ckx,y)

AEAD(mkx,y,m, rchpkA,x)
−−−→

Asymmetric Ratchet

rchskA,x+1, rchpkA,x+1 ← DHkeyGen(1n)
E = DH(rchskA,x+1, rchskB,x)
rkx+1, ckx+1,0 = KDF RK(rkx, E)
ckx+1,1,mkx+1,1 = KDF CK(ckx+1,0)

RDM.Enc sends m, rchskA,x+1 3

E = DH(rchskA,x+1, rchskB,x)
rkx+1, ckx+1,0 = KDF RK(rkx, E)
ckx+1,1,mkx+1,1 = KDF CK(ckx+1,0)

AEAD(mkx+1,1,m, rchpkA,x+1)
−−−→

Addition/Revocation

rchskA,z, rchpkA,z ← DHkeyGen(1n)
RDM.Add&Join/Revoke Adds/Revokes a device E = DH(rchskA,z, rchskB,x)

rkz, ckz,0 = KDF RK(rkx, E)
ckz,1,mkz,1 = KDF CK(ckz,0)

RDM.Enc sends rchskA,z AEAD(mkz,1, “update”, rchpkA,z) 4
−−−→

Fig. 3: Multi-Device Signal protocol. Signal procedures
KDF RK,KDF CK,X3DH,AEAD are defined in § 1.3. Boxed mes-
sages are sent between Alice devices. The figure without them corresponds to
Signal. Boxed numbers 1 to 4 are justified in Section 1.4.

which devices are concerned. We take those extra ratchets into account in
our security analysis.

We detail the above description in Section 3. We explain in Section 3.1 how we
mix our RDM model with the Signal security model, to obtain a valid security
model for our Multi-Device Signal protocol. We introduce some important defi-
nitions and we detail how the freshness conditions in Signal’s model need to be
updated to take into account the multi-device feature, in particular the dynamic
aspects. Our model is based on the one issued from the first analysis of the Sig-
nal protocol in [9]. However, one could plug our RDM on another RKE security
model, with the same adaptations on the freshness conditions, obtaining a flavor

of Multi-Device Ratcheted Key Exchange (MDRKE). We implement our solu-
tion over the Signal library libsignal-protocol-java accessible on Signal GitHub
account. We give details and results in Appendix D.

How do we deviate from Signal. One of our goal is to upgrade the existing
Signal protocol in a transparent way. However, one modification was unavoidable:
the introduction of a device key, that every device generates for itself, before
registering to the Signal server. This key is used to initiate the RDM channels
between devices, and to add a new device. This key also plays a main part during
the revocation process. In this precise case, we allow the renewal of the Signal
ephemeral keys (ephpk, ephsk) and user keys (upk, usk). In the original Signal,
the user key cannot be modified without unregistering then registering again and
thus closing all current conversations. In our solution, the server accepts a new
user key for Alice if it is authenticated with one of Alice’s device key. On Bob’s
side, this will be exactly as if Alice had registered a new account (as it is now
in Signal). The main advantage is for Alice to keep her current conversations
when revoking a device. If she had registered again, she also would have to add
her devices again. Another deviation from the original Signal is that we make
it possible to achieve several ratchets in a row on Alice’s side (instead of the
ping-pong pattern adopted by the original Double Ratchet). We show that this
has no consequence on the security, nor on the possibility to deal with out-of-
order messages. However, it implied for us a small patch in the Signal library as
explained in Appendix D.

Our choices vs. Signal’s Sesame solution. Our solution differs from Sesame
or Facebook solutions in that, in our construction, a user is ignorant about his
correspondent’s devices. A message sent by Bob is only encrypted once for Alice,
instead of being encrypted for each device of Alice. This message is also encrypted
only once for all of Bob’s other devices, instead of once per device. The server
will be in charge of broadcasting the message to the appropriate devices. The
authentication of a new device is also different. The Sesame protocol offers two
options: the first requires all the devices of Alice to share a common IDkey. When
a new device is added, it obtains this IDkey. Bob recognizes the new device as a
device of Alice since it has the same IDkey. This makes the IDkey a very sensitive
data. In [10], authors clearly stipulate that this feature prevented the TextSecure
messaging app (the ancestor of Signal) from achieving post-compromise security.
In the second option, the devices do not share a common key. When Alice adds
a device, Bob should physically authenticate this device to be sure it is honest
and belongs to Alice. In our solution, we only require a new device of Alice to
be authenticated by another device of hers.

1.5 PFS, revocation and out-of-order messages

Forward secrecy ensures that a leakage of secret keys at some time does not
compromise the confidentiality of past exchanges. When confronted to reality
however, this ideal is hard to achieve perfectly. The first difficulty is to deal

with out-of-order messages. The Signal protocol handles with those messages by
keeping unused keys in memory. However, this option seriously weakens forward
secrecy and is not taken into account in [9]. Hence we do not consider out-of-
order messages neither. The other fundamental reason why we made this choice
is the revocation feature. If Bob still accepts unused old keys to face up with
the arrival of delayed messages, a revoked device of Alice can also use these
keys to infiltrate maliciously the session. Revocation would not be efficient. The
second obstacle to forward secrecy in a multi-device context is that we consider
each device shall receive all the messages in the conversation. If a device stays
offline for a long-time, it will process all the updates from the moment he went
offline until the moment he is back online. All the corresponding keys are still
sensible data. Forward secrecy is to be considered only for the messages sent
before the ”oldest offline device” went offline. This highlights that a multi-device
application should consider a process to prevent the devices from being offline
for a time too long (automatic revocation for instance). We consider this out of
the scope of this work.

2 Ratcheted Dynamic Multicast (RDM)

We introduce a new protocol for multicast communication. The idea behind the
ratchet feature is that the protocol is stateful and the state evolves during the
execution of the protocol. The goal is to strengthen the security of the channel.
In the security model, it means that the adversary can be given more abilities
than in a non-ratcheted version. From then, we will consider participants in the
RDM as devices.
We start by giving a formal description of a RDM. Each device i maintains two
states. The device state, πi, is valid for all the sessions of the protocol. It registers
long-term private key and public key: πi.sk, πi.pk. The session state πsi is valid
only for the session s of the protocol. It contains the following information:

- rand, the ephemeral information of the state.
- devices, the public keys of all devices involved in the session.
- PK, the current session public key for the group πsi .devices.

Protocol description. A RDM is defined by nine algorithms:
· SetUp(1n, i)→ πi. Generates secret and public keys (ski, pki) and creates a

device state πi.
· Init(πi, s)→ πsi . Initiates a new session s of the protocol. Generates a session

state πsi for this session.
· Enc(m,πsi)→ Cenc, π

s
i . On input a message m and a session state πsi , returns

a ciphertext Cenc and the updated state πsi .
· Dec(Cenc, πrj) → m,πrj . On input a ciphertext Cenc and a session state πrj ,

returns a message m and the updated state πrj .
· Add&Join({pkj`}`∈[1,z], π

s
i) → Cadd, Cjoin, π

s
i . On input a set of public keys

{pkj`}`∈[1,z] and a session state πsi (of the device that adds), returns infor-

mation Cjoin for the new devices, Cadd for the already enrolled devices and
the updated state πsi .
· DecJoin(Cjoin, πj , r) → πrj . On input a ciphertext Cjoin, a device state πj ,

and a session identifier r, returns a new session state πrj .
· DecAdd(Cadd, πok)→ πok. On input a ciphertext Cadd and a session state πok,

returns the updated session state πok.
· Revoke(pk, πsi)→ Crev, π

s
i . On input a public key pk and a session state πsi ,

returns a ciphertext Crev and the updated state πsi .
· DecRevoke(Crev, πok) → πok. On input a ciphertext Crev and a session state
πok, returns the updated state πok.

2.1 RDM security model
In this section we give an intuition of the security expected from a RDM prim-
itive. A more formal and detailed description is given in Appendix B.1. We
expect a RDM to provide indistinguishability under chosen-ciphertext attacks,
as defined in Appendix A, as well as forward secrecy and healing. We define
our security model by starting from an ideal case where the adversary has full
powers, and then excluding the attacks that we consider as unavoidable. The
adversary controls the execution of s sessions of the protocol and he can obtain
all the secret information he wishes. At some point, he can query an indistin-
guishability challenge on one session. He then has to distinguish between a real
ciphertext honestly produced by this session or some randomness. We exclude
the cases where he could trivially win, or the attacks that we consider as un-
avoidable by defining some freshness conditions. We introduce three necessary
definitions. Firstly, we formalize the notion of step of a protocol. A session can
live for a long life time (weeks, months) and some secret data may evolve during
this period. Steps are meant to follow this evolution. Secondly, we define match-
ing sessions, based on [5]. This is necessary because we consider a multi-session
context. Our definition helps us to define the correctness of our protocol: if two
participants are involved in a same execution and have reached corresponding
steps - i.e. if they are matching, they should be able to communicate together.
Moreover, as matching sessions may share common secret data, the adversary’s
powers are also defined ”matching-session” wise. Finally, because of the dynamic
feature, several sessions that correspond to a same execution of the RDM may
not be present at the same time, and so do not match. They are however re-
lated. We introduce the notion of chained sessions, to take this relationship into
account.

Let {d1, . . . , dnd } be the devices participating in the protocol. Each device di is
modeled by an oracle πi and each session s executed by a device di (session (i, s))
is modeled by an oracle πsi . Oracles maintain states as defined in Section 2. In
the following, the oracles and their state will be considered as equal.

Protocol steps. Data registered in a device state for a session will change
during the execution of the protocol. To model this phenomenon, we consider

steps of the protocol. Each Enc, Add&Join, Revoke or corresponding decryption
algorithm advances the protocol to a new step. Steps are formalized through a
counter t, set to 0 at initiation and incremented by oracle queries. This counter is
included in the oracle session state with πsi .step. It is not necessary in an imple-
mentation but needed by the model. (In a general way, we use the typewriter
typo for model specific elements). Going from one step to another indicates that
the algorithm has processed without error. Intuitively, steps will embody the
healing and forward secrecy properties: some restrictions can be needed at some
step t and released at step t + 1 (or reversely), meaning that the confidence is
back (is still there for past steps). We refer with (i, s, t) to the session (i, s) at
step t. We note πsi [t] when we refer to oracle’s state πsi as it was at step t. We
note πsi [t].X the access to item X at step t.

Matching sessions. We now define the notion of matching sessions. We de-
note πsi .sid the transcript of the protocol executed in session (i, s), that is, the
concatenation of all messages Ci sent or received by πsi . We write πsi [ts].sid =
Ci[0]‖Ci[1]‖ . . . ‖Ci[ts]. As no message is sent or received for the initiation, the
first component of a sid for a session running the Init procedure is set to INIT.
We refer to a session created by an Init algorithm as an initial session. As all
devices are playing similar roles, we do not consider roles in our definition of
the matching sessions. Since devices can join and leave during the protocol, we
define a matching that is step-wise.

Definition 1. (Matching sessions at some step.) One says (i, s, ts) and (j, r, tr),
ts ≥ tr ((i, s) joined first), are matching if ∃ sid′ substring of πsi [ts].sid such
that πsi [ts].sid =̃ sid′‖πrj [tr].sid (sid′ eventually empty). The symbol =̃ stands
for the following definition.
πsi [ts].sid =̃ sid′‖πrj [tr].sid if, ∀t ∈ [0; tr]:
· either Ci[ts − tr + t] = Cj [t],
· either Ck[ts − tr + t] = (Cadd, Cjoin) or Cadd and C`[t] = Cadd, k, ` ∈
{i, j}, k 6= `,
· or t = 0 and Ci[ts − tr] = (Cadd, Cjoin) or Cadd and Cj [0] = Cjoin with

(Cadd, Cjoin) having been produced by the same Add&Join call.

As devices can join the pro-
tocol at any moment, we de-
fine a way to link sessions that
corresponds to a same exe-
cution but were not present
at the same time. This com-
poses chains of sessions, as il-
lustrated in Figure 4.

(j, r) tr

t′0

(i0, s0) t0

t′1

(i1, s1) t1

t′n−1

(in−1, sn−1) tn−1

ts

(i, s)

Fig. 4: A chain of sessions between (i, s, ts) and
(j, r, tr).

Definition 2. (Chained sessions.) A session (j, r, tr) is chained with (i, s, ts) if
tr is maximal and there exists n sessions (iα, sα), and n couples (t′α, tα), t′α ≤ tα,
α ∈ [0, n− 1] such that:
· (j, r, tr) and (i0, s0, t

′
0) are matching,

· ∀α ∈ [0, n− 2], (iα, sα, tα) and (iα+1, sα+1, t
′
α+1) are matching,

· (in−1, sn−1, tn−1) and (i, s, ts) are matching.
{(iα, sα, tα)}α∈[0,n−1] is called a chain of session between (i, s, ts) and (j, r, tr).

Definition 3. (Correctness.) Suppose a passive adversary that sees communi-
cations and may only disturb their delivery. A RDM is said to be correct if, for
all matching sessions (i, s, ts) and (j, r, tr), for all messages m,

Dec(Enc(m,πsi [ts]), πrj [tr])) = m.

RDM indistinguishability. As in the original IND-CCA experiment, the ad-
versary A can query for one Challenge of indistinguishability. He is given access
to oracles that enables him to perfom the whole protocol: OInit, OEnc, ODec,
OAdd&Join, ODecAdd, ODecJoin, ORevoke, ODecRevoke. The oracle OInit defines
the experiment in a multi-session context. Finally, the adversary can Corrupt a
device to obtain its long term secret key, and he can choose to Reveal the state
secrets of any device.

Freshness. The natural restrictions defined here are meant to exclude unavoid-
able attacks or cases where the adversary could win trivially. These restrictions
are often valid for a session and all the corresponding chained sessions (not only
matching sessions). This expresses the fact that a device has to participate regu-
larly to the protocol to update its state. This is inherent to the ratchet process:
the participants have to be actively involved for the ratchet to be operational.
One of the direct consequence of this remark, is that we consider that the session
specific data are equal to the long term data until a participant is active. This
gives the adversary two ways of accessing long-term data, Corrupt and Reveal.
We carefully take into account these two paths for the adversary to trivially win
the Game.
1. A shall not Reveal state secrets just before the challenge.
2. A shall not Reveal a device concerned with the challenge. The sequels of

a Reveal are canceled by a OEnc. This ensures the security is back for di’s
secret after di performs an encryption. A Reveal on a device only threatens
the steps from the last encryption and until the next. This corresponds to
the healing property. It also means that forward secrecy depends on devices
regularly sending messages, as discussed in paragraph 1.5.

3. A shall not Corrupt a non active device before or after the challenge. A device
comes active as soon as it performs an encryption (it enters the ratcheting
process).

4. A shall not Reveal random secrets and use them to maliciously send an
encrypted message with its own new random, revoke someone, or join a non
authorized corrupted device. There is nothing we can do against this kind
of impersonation attack, and the two user ratchet is also vulnerable to it.

5. We prevent A from joining a device in a non existing session or after an ex-
posure. This models a physical authentication procedure between the device
that adds and the new device.

Definition 4. (Secure Ratcheted Dynamic Multicast) A RDM running with nd
devices is a secure Ratcheted Dynamic Multicast if it is correct and for all adver-
saries A, running in polynomial time, making at most q queries to the oracles,
there exists a negligible function negl(n) such that:

AdvRDM−IND
A,RDM,nd,q

(n) =
∣∣∣∣Pr
[

ExpRDM−IND
A,RDM,nd,q

]
− 1

2

∣∣∣∣ ≤ negl(n) .

We denote εRDM−IND this advantage.

2.2 RDM construction
We give a high-level view of our construction in Figure 5. The detailed pseu-
docode description is given in Appendix B.2. The main idea is that the keys used
to encrypt the multicast messages are updated regularly. We base our solution
on parallel asymmetric encryption, as studied in [2] or [3]. The authenticated
asymmetric encryption scheme is used as a multicast in an obvious manner:
PK is the set of public keys of all devices di concerned with the encryption.
EncAsym(m,PK) stands for {EncAsym(m, pk)}∀pk∈PK . We consider that the
number of devices remains reasonable: around ten for each user does not seem
so restrictive. This design allows us to choose among well-known and proven se-
cure primitives, as detailed in Appendix A. Decentralized broadcast solutions, as
studied in [24], either do not offer dynamism properties or do not enable regular
key resetting and offer fewer implementation evaluations.

An asymmetric ratchet. The Diffie-Hellman ratchet implemented in Signal is
only possible for two users. With more than two parties, multiparty computation
could be thought of as an option, but we do not want to wait for all, or even
a minimum number of devices to be present before sending a message: each
device has to be autonomous in its ratcheting process. Our ratchet consists in
generating new ephemeral asymmetric keys epk, esk for the device which sends
a message. The multicast public key is updated with the new ephemeral public
key epk. Here, we take advantage of the multi-device context. As all the devices
belong to a single person, we consider that no honest device will try to exclude
another device maliciously (by mis-updating the multicast public key). When
any device updates its ephemeral key pair, the others only receive the updated
common public key. They do not need to know about who updated it. However,
when a device wants to revoke another device, it has to know which ephemeral
public key to erase from PK. We deal with this by considering there exists a
correspondence between the list devices of long term keys recorded in each device
state and the list PK of ephemeral public keys. Requirements in the Add&Join
algorithm prevent a device from being present in the group several times. In such
a case, revoking this device once would not be enough to be sure it is definitively
out of the protocol.

Alice sending device
dA,1(dpk1,dsk1)

Alice other devices
dA,2(dpk2,dsk2),dA,3(dpk3,dsk3)

devices = {dpk1}
PK = {dpk1}

RDM.Init

Km ← KeyGenm(1n)
epk1, esk1 ← KeyGena(1n)
PK = {epk1}

RDM.Add&Join(dpk2)

K′m ← KeyGenm(1n)
devices = {dpk1, dpk2}
PK′ = {epk1, dpk2}

EncAsym(PK′‖devices‖K′m, dpk2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ for dA,2

RDM.Enc(m)

K′′m ← KeyGenm(1n)
epk′1, esk

′
1 ← KeyGena(1n)

PK′′ = {epk′1, dpk2}
τ = Mac(K′′‖PK′′,K′m)

{EncAsym(m‖K′′m‖τ, pk)}pk∈PK′′ , PK′′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

if RDM.Enc for a symmetric ratchet then
update chain key and message key

if RDM.Enc for an asymmetric ratchet then
update rootkey, chainkey, message key

RDM.Add&Join(dpk3)

K′′′m ← KeyGenm(1n)
devices = {dpk1, dpk2, dpk3}
PK′′′ = {epk1, dpk2, dpk3}
τ = Mac(K′′′m‖PK′′′,K′′m)

EncAsym(PK′′′‖devices‖K′′′m , dpk3)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ for dA,3

{EncAsym(K′′′m‖τ, pk)}pk∈PK′′ , PK′′′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ for all but dA,3

RDM.Revoke(dpk2)

K′′′′m ← KeyGenm(1n)
devices = {dpk1, dpk3}
PK′′′′ = {epk1, dpk3}
τ = Mac(K′′′′m ‖PK′′,K′′′m)

{EncAsym(K′′′′m ‖τ, pk)}pk∈PK′′′′ , PK′′′′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ for all but dA,2

Fig. 5: Our RDM protocol. The sending device can change for each procedure.
KeyGenm/a are Key Generation algorithm for the MAC/the asymmetric en-
cryption EncAsym schemes. The instructions * detail the integration of our
RDM with Signal.

Passive authentication. Another important point is that the messages have
to be identified as coming from an honest device, but again, its identity does
not matter. Our solution provides passive authentication thanks to a MAC key
Km shared between the devices. A new MAC key is generated with every ac-
tion: sending a message, joining, or revoking a device. Otherwise, an adversary
who could access the MAC key at some step could impersonate any device at
any step further. This new MAC key is authenticated under the previous one,
creating an authentication chain. This solution is less expensive than generating
new signature key pairs regularly.

Efficiency-wise, we generate two new keys for each encryption and only one for
additions and revocations. Maintaining several Signal channels requires a number
of key generations that grows linearly with the number of devices.

Ephemeral data esk, epk and Km constitute the randomness πsi .rand of the
model. For readability reasons, we keep them separate in the construction and
refer to them with πsi .esk, πsi .epk, and πsi .PK. To be able to initialize a session,
a device must have processed a SetUp to generate its global state πi.
The following theorem enunciates the security of our construction relatively
to the RDM security model described in Section 2.1. A proof is given in Ap-
pendix B.3.
Theorem 1. If ENC is an IND-CCA secure asymmetric encryption scheme, and
MAC is secure under multi-instance strong unforgeability, the above construction
is a secure ratcheted dynamic multicast for nd devices, such that, for any PPT
adversary making at most q queries to the oracles:

AdvRDM−IND
RDM,nd,q,A(n) =

∣∣∣∣Pr
[
ExpRDM−IND

RDM,nd,q,A(n)
]
− 1

2

∣∣∣∣
≤ q · εSUF + (q + 1) · nd · εIND-CCA.

In practice, one would use hybrid encryption instead of a single asymmetric
encryption scheme in this construction. It means that the asymmetric encryption
is used to transmit a common symmetric key to all devices and that data are
then encrypted with this key. This would modify the security argument only by
a negligible term due to the symmetric encryption. We decide to present our
construction with the asymmetric part so as not to add extra lines in an already
complex construction.

3 Multi-Device Signal

We detail our Multi-Device Signal solution, depicted in Figure 3. It is built from
the Signal protocol and our RDM protocol described in Section 2.2. The pseu-
docode description is given in Appendix C.2. The RDM enables us to share the
DH secrets, for all devices to perform the operation. It is also used to share the
message’s “body”. Every Signal sending is doubled with a RDM sending. This
way, any device can follow the conversation, can speak for itself, and can directly
receive messages sent by Bob. For each Signal session, a specific RDM channel is
opened between Alice’s devices. Addition and revocation induce extra ratchets,
for the joining/revoked device not to access previous/future conversations. We
introduce a new procedure, ExtraRatchet. When a device receives a ratchet
secret through the RDM channel, he has to update its Signal state accordingly.
This is done in an Update procedure. Those new procedures are given in Ap-
pendix C.2. We recall that our user key is equivalent to the traditional Signal
longterm key. It is shared among devices, as well as Signal’s ephemeral keys,
through the joining process. This is necessary for each device to be able to send
or receive an initiation message. The device key never changes.
To execute the protocol, a device has to record some information. To do so, a
device state πu,i aggregates all non session-specific elements, and a session state
πsu,i records all the session-specific ones. A device state πu,i is composed of:

- dID, the device identifier.
- uID, the user identifier.
- dsk, the device’s secret key.
- sprekeys, the user’s secret keys registered in Signal. This comprises the user

key and the ephemeral keying material needed for initialization (detailed in
MedTerm and One-Time prekeys in Signal).

- Devices, the public keys of the owner other devices.
- Sessions, a list of all sessions the device i is engaged in.

A session state πsu,i gathers a Signal part:
- role, the role of the user u: initiator or receiver,
- peer, the intended peer user of this session,
- rand, the current ratchet secret,
- randpeer, the current public ratchet value of the intended peer,
- sessionkey, the current messaging session key,
- state, all other secret information needed,

and a RDM part (the device item is already in the global state):
- devrand, the RDM randomness,
- PK the common public key.

A session state πsu,i has access to general information of the device state πu,i.
Conversely, a device state πu,i gives implicit access to every session state πsu,i. We
describe Signal as a multi-stage key exchange as in [9] (detailed in Appendix A),
except that we split the algorithm Run defined in into Sig.Send and Sig.Receive.
We detail Sig.Register to take into account the device key in addition to the user
key and the ephemeral keys usually used by Signal.

A device shall perform a RDM.SetUp to obtain its devices keys before he registers.
We gather Sig.KeyGen and Sig.MedTermKeyGen in a UserKeyGen procedure that
returns a set of prekeys prekeys. Those keys are registered to the server with the
device key. We obtain a Multi-Device Instant Messaging protocol, as formally
defined in Appendix C.1.

3.1 Security model

We build a security model for a MDIM by mixing our RDM model with Signal
security model described in [9]. A formal description can be found in the full
version. The joint between the two models is highly related to the way the two
primitives overlap in practice. As said before, the present model is there to ensure
that we keep the Signal security when adding our RDM. Let {P1, . . . ,PnU } be
the set of users in the protocol and {du,1, . . . , du,nd } the set of devices of the user
Pu. Each device du,i is modeled by an oracle πu,i and each session s executed
by a device du,i is modeled by an oracle πsu,i. Device oracles maintain device
states and session oracles maintain session states as defined in Section 3. In the
following, device or session oracles and their state will be considered as equal.
We identify sessions that were present during the initial step of the protocol as
initial sessions.

Protocol steps As in the RDM model, we consider the steps of the protocol.
Each Send, Add, Revoke, or corresponding Receive or Dec algorithm brings the
session to a new step and corresponding oracles will increment the step counter.
If no change occurs, values are transmitted from one step to another (e.g. if state
does not change at step ts, then πsu,i[ts + 1].state = πsu,i[ts].state). We refer to
session s run by πu,i at step ts as (u, i, s, ts).

Matching sessions. In order to define the matching between sessions run by
different users, we first need to consider the relationship between devices be-
longing to a single user. We introduce the notion of partnered sessions. For this
definition, we separate the conversation between devices (written in a session
identifier sid1) from the Signal messages (gathered in sid2). Partnered sessions
correspond to devices of a single user that are online at the same moment.

Definition 5. (Partnered sessions at some step.) Two sessions
(u, i, s, ts) and (u, j, r, tr) are partnered if:
· πsu,i.role = πru,j .role,
· πsu,i.peer = πru,j .peer,
· πsu,i.uID = πru,j .uID,
· (i, s, ts) and (j, r, tr) are matching in the sense of RDM (relatively to sid1).

We define chains of partnered sessions, as for the RDM, to connect sessions
that are active on different devices that were present at different steps. Those
structures are necessary to link any session to the initiation step when the au-
thentication is performed.

Definition 6. (Chained sessions.) A session (u, j, r, tr) is chained with (u, i, s, ts)
if tr is maximal and there exists n sessions (u, iα, sα), and n couples (t′α, tα),
t′α ≤ tα, α ∈ [0, n− 1] such that:
· (u, j, r, tr) and (u, i0, s0, t

′
0) are partnered,

· ∀α ∈ [0, n− 2], (u, iα, sα, tα) and (u, iα+1, sα+1, t
′
α+1) are partnered,

· (u, in−1, sn−1, tn−1) and (i, s, ts) are partnered.
{(u, iα, sα, tα)}α∈[0,n−1] is called a chain of sessions between
(u, j, r, tr) and (u, i, s, ts).

We consider matching sessions relatively to Signal conversation. We define πsu,i.sid2
as the concatenation of ciphertexts cout received by ReceiveOut(πs

u,i, ·) or pro-
duced either by πsu,i or by any partnered session. The matching is defined be-
tween two sessions (u, i, s) and (v, `, o). One session (u, i, s) can match several
other sessions (v, `z, oz). Our definition is recursive: a matching is well-defined if
one can trace the conversations from the very beginning on u and v’s side. This
is done by calling chains of sessions, and each chain element should match an
element in the other chain.

Definition 7. (Matching sessions at some step.) Two sessions (u, i, s, ts) and
(v, `, p, tp), ts ≥ tp are matching if:
• πsu,i.role 6= πpv,`.role,

• πsu,i.peer = πpv,`.user and πsu,i.user = πpv,`.peer,
• (u, i, s, ts) and (v, `, p, tp) are chained with respective initial sessions

(u, i0, s0, ts0), (v, l0, p0, tp0), through respective chains {(u, iα, sα, tα)}α∈[1,n],
{(v, `β , pβ , tβ)}β∈[1,m],

• ∃ sid subset of πsu,i[ts].sid2 such that πsu,i[ts].sid2 = sid‖πpv,`[tp].sid2,
• if (u, i, s, ts) is an initial session, then ∀ β ∈ [0,m], ∃ t̃β and sidβ such that
πsu,i[t̃β].sid2 = sidβ‖π

pβ
v,`β

[tβ].sid2,
• else (u, i, s, ts) and (v, `m, pm, tm) are matching.

We can estimate t̃β = t̃β−1 + tβ − t′β, t′β as in Definition 6.

Definition 8. (Correctness of MDIM.) A Multi-Device Instant Messaging is
said to be correct if:
· for all users u, all devices i, j, all session identifiers s, r, and all ts, tr such

that (u, i, s, ts) and (u, j, r, tr) are partnered,
πsu,i[ts].rand = πru,j [tr].rand and πsu,i[ts].sessionkey = πru,j [tr].sessionkey.
· For all users u, v, all devices i, `, all session identifiers s, p, and all ts,
tp such that (u, i, s, ts) and (v, `, p, tp) are matching, πsu,i[ts].sessionkey =
πpv,`[tp].sessionkey.

MDIM indistinguishability. We will consider an adversary A that has ac-
cess to a pool of registered devices. He controls communications through oracles
corresponding to the protocol algorithms. A has access to the oracles corre-
sponding to RDM corruptions (CorruptDevice, RevealDevRand) and to those
corresponding to the Signal security model we consider (RevealSessionKey,
CorruptUser, CorruptOpt, RevealState, RevealRandom) .

Freshness. Freshness conditions are obtained by considering the RDM fresh-
ness conditions and upgrading the original Signal freshness in the following way:
each time an element of a session was concerned in the original freshness, the
same element has now to be considered for this session and all the partnered
and chained sessions. More precisely, we try to stipulate clearly all the ways
that an element can leak to the adversary: directly from the targeted device or
a partnering or matching one, or through the communication between devices.
For the latter, data of a session (u, i, s) at step t can leak if a device (u, i)’s ran-
domness (or device keys if it has not been active in the ratcheting process yet)
is compromised, or if the device randomness of a partnered session is compro-
mised or if there exists a session chained with (u, i, s) whose device randomness
is compromised (if it is chained, it means it will not perform any action until it
matches (u, i, s, t) - if not revoked - it just has not received all of its messages).

Initial freshness. As in the original model for Signal, we treat separately
the initiation phase, and it has to be treated very carefully. As written in the
definition, Signal prekeys (including user key) are renewed with every revocation.
On the one hand, this restricts the consequences of a user corruption to the

period between two revocations. On the other hand, it means that the prekeys
have to be shared with the other devices. Hence the security of a session initiation
is now related to the security of the communication between the devices since
the last renewal of prekeys, that is, since the last revocation.

Definition 9. (Secure Multi-Device Instant Messaging.) A MDIM executed with
np users, each having nd devices is said to be secure in the above model if it
is correct and for all adversary A running in polynomial time, the following
advantage is negligible:

AdvMDIM−IND
A,MDIM,np,nd

(n) =
∣∣∣∣Pr
[

ExpMDIM−IND
A,MDIM,np,nd

(n)
]
− 1

2

∣∣∣∣ .
Theorem 2. Let Signal be a secure multi-stage key-exchange protocol with ad-
vantage εsig and RDM a RDM− IND secure ratcheted dynamic multicast with
advantage εRDM−IND, the above construction is a secure MDIM such that, for any
PPT adversary running ns sessions from nd devices of np users, making at most
q queries to the oracles:

AdvMDIM−IND
A (n) ≤ n2

p · (2 · εRDM−IND + εsig).

We give a proof of Theorem 2 in Appendix C.3.

4 Related Work

The first ideas for ratcheting appeared in protocol such as Off-the-Record or
TextSecure (the predecessor of Signal) and were studied respectively in [7] and [14].
In [17], Green and Miers studied the interest of puncturable encryption instead
of using ratchet to achieve forward security in messaging. The first formal analy-
sis of the Signal protocol has been given by Cohn-Gordon et al. in [9]. The same
year, Kobeissi et al. proposed in [20] a formal verification of a variant of the Sig-
nal protocol with ProVerif and CryptoVerif. Later, Bellare et al. formalized in [6]
the idea of ratcheting, and proposed a security model, as well as constructions,
for a single unilateral ratchet key exchange, and the corresponding communica-
tion channel. The authors target the already identified security offered by the
ratchet: forward secrecy and healing. They clearly stipulate that an active attack
after exposure can lead to a continued violation of integrity. At Crypto’18, [26]
and [18] extended Bellare et al.’s work to define and evaluate the optimal se-
curity of bilateral ratcheted key exchanges (messaging channels respectively).
Their models define the best security one can expect from such protocols. The
drawback is that the associated constructions require less efficient primitives
like hierarchical identity-based encryption (HIBE, [16]). One remarkable point
of the first paper is that the model allows for concurrent actions. However, in
both cases messages still need to be received in the right order.

Recently, Durak and Vaudenay in [12] proposed a solution using standard public
key cryptography. They assume the order of transmitted messages is preserved
and their model does not allow for exposure of randomness. They also introduced
the Recover security to prevent from being safe again after a trivial imperson-
ation. They claim that this kind of recovery not only is not reached by RKE,
but also undesirable. Another recent work concerning the two-user ratcheted
key exchange setting is the paper by Jost et al., [19]. They introduce a security
model that considers suboptimal security. This includes forward secrecy and
healing, but they also consider post-impersonation security, under some con-
dition. They claim their model is a bit less permissive than the ones of [26]
and [18] but the constructions they propose only require standard public-key
cryptography. In [1] Alwen et al. proposed their own definition for secure mes-
saging, introducing a continuous key agreement primitive to cover the ratcheting
process. They consider a new security notion: the immediate decryption. This
property requires that any incoming message can be decrypted, even if some
previous messages were lost or arrive out-of-order. According to the authors,
Signal achieves this property, but all recent RKE propositions do not. In fact,
we discussed this out-of-order problematic in our introduction. Finally, the re-
cent papers [6], [26], [18], [19], [12] and [1] concern the ratcheting process and
do not analyze the initial non-interactive key exchange.

5 Conclusion

In this paper, we provide a solution to address the multi-device issue. For the
first time, this work introduces some questions that we think can provide great
motivation for future work. Studying how recently proposed RKE or messaging
schemes as [26], [19], [18] or [12] could be adapted to the multi-device context
with our multicast solution, seems a legitimate follow-up. In addition, the out-
of-order message, revocation, and PFS problematics, formally introduced in [1],
is definitely worth considering.

References
1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and

modularization for the signal protocol. In: Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I. pp. 129–158 (2019)

2. Baudron, O., Pointcheval, D., Stern, J.: Extended notions of security for multicast
public key cryptosystems. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP
2000: 27th International Colloquium on Automata, Languages and Programming.
Lecture Notes in Computer Science, vol. 1853, pp. 499–511. Springer, Heidelberg
(Jul 2000)

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Preneel, B. (ed.) Advances in Cryptology –
EUROCRYPT 2000. Lecture Notes in Computer Science, vol. 1807, pp. 259–274.
Springer, Heidelberg (May 2000)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. pp. 1–15. Springer-Verlag (1996)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology – CRYPTO’93. Lecture Notes in Computer
Science, vol. 773, pp. 232–249. Springer, Heidelberg (Aug 1994)

6. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted en-
cryption and key exchange: The security of messaging. In: Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 20-24, 2017, Proceedings, Part III. pp. 619–650 (2017)

7. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the
Electronic Society, WPES 2004, Washington, DC, USA, October 28, 2004. pp.
77–84 (2004)

8. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’18 (2018)

9. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017.
pp. 451–466 (2017)

10. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, June 27 - July 1, 2016. pp. 164–178 (2016)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) Advances in Cryptology
– CRYPTO’98. Lecture Notes in Computer Science, vol. 1462, pp. 13–25. Springer,
Heidelberg (Aug 1998)

12. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
without key-update primitives. Cryptology ePrint Archive, Report 2018/889 (2018)

13. Facebook: Messenger secret conversation, technical whitepaper, version 2.0 (May
2017)

14. Frosch, T., Mainka, C., Bader, C., Bergsma, F., Schwenk, J., Holz, T.: How secure
is TextSecure? Cryptology ePrint Archive, Report 2014/904 (2014)

15. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2), 81–104 (Mar 2004)

16. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
Advances in Cryptology – ASIACRYPT 2002. Lecture Notes in Computer Science,
vol. 2501, pp. 548–566. Springer, Heidelberg (Dec 2002)

17. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305–320. IEEE
Computer Society Press (May 2015)

18. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: The safety of messaging. In: Advances in Cryptology - CRYPTO 2018
- 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part I. pp. 33–62 (2018)

19. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guaran-
tees for secure messaging. IACR Cryptology ePrint Archive 2018, 954 (2018)

20. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: A symbolic and computational ap-
proach. pp. 435–450 (April 2017)

21. Marlinspike, M., Perrin, T.: The double ratchet algorithm. Signal’s web site (2016)
22. Marlinspike, M., Perrin, T.: The x3dh key agreement protocol. Signal’s web site

(2016)
23. Marlinspike, M., Perrin, T.: The sesame algorithm: Session management for asyn-

chronous message encryption. Signal’s web site (2017)
24. Phan, D.H., Pointcheval, D., Strefler, M.: Decentralized dynamic broadcast en-

cryption. In: Visconti, I., Prisco, R.D. (eds.) SCN 12: 8th International Confer-
ence on Security in Communication Networks. Lecture Notes in Computer Science,
vol. 7485, pp. 166–183. Springer, Heidelberg (Sep 2012)

25. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296 (2018)

26. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I.
pp. 3–32 (2018)

27. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001)

A Preliminaries and definitions

Notations We note M the message space, SKa and PKa, asymmetric secret
key and public key spaces, Ca an asymmetric ciphertext space, Km a MAC key
space and T a tag space.

Asymmetric encryption An authenticated asymmetric encryption scheme
ENC is composed of the three algorithms: KeyGena : 1n → SKa×PKa, EncAsym :
M×PKa → Ca, and DecAsym : Ca × SKa →M×⊥.
We consider the traditional IND-CCA security experiment as defined in Figure 6.

ExpIND-CCA
A,ENC (n)

1 : pk, sk ← KeyGena(1n)
2 : m0,m1 ← AODec,pk

3 : b←$ {0, 1}
4 : c̃← EncAsym(mb, pk)

5 : b′ ← AODec
′,pk

6 : return b = b′

ODec(c)

1 : m← DecAsym(c, sk)
2 : return m

ODec′(c)

1 : if c = c̃

2 : abort

3 : else
4 : m← DecAsym(c, sk)
5 : return m

ExpSUF
A,MAC (n)

1 : t← 0;XP ← ∅
2 : Invoke A
3 : Stop with 0

OGen()

1 : t← t+ 1
2 : Kmt ← KeyGenm(1n)
3 : MTt[]← ∅
4 : return

Expose(i)

1 : Require 1 ≤ i ≤ t
2 : XP ← XP ∪{i}
3 : return Kmi

OMac(i,m)

1 : Require 1 ≤ i ≤ t
2 : τ ←Mac(Kmi,m)
3 : MTi ←MTi ∪{(m, τ)}
4 : return τ

OVerify(i,m,τ)

1 : Require 1 ≤ i ≤ t
2 : v ← V erif(Kmi,m, τ)
3 : if i /∈ XP ∧ v = 1

∧ (m, τ) /∈MTi do
4 : stop with 1
5 : return v

Fig. 6: IND-CCA and multi-instance Strong Unforgeability security experiments.

Definition 10. We say that an asymmetric encryption scheme ENC = (KeyGena,
EncAsym, DecAsym) has indistinguishability under chosen ciphertext attack (is
IND-CCA-secure), if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl(n) such that:

AdvIND-CCA
A,ENC (n) =

∣∣∣∣Pr
[

ExpIND-CCA
A,ENC (n) = 1

]
− 1

2

∣∣∣∣
≤ negl(n) .

We denote εIND-CCA this advantage.

To give some examples, RSA-OAEP is proven IND-CCA secure in [15]. In [11],
Cramer and Shoup also propose an IND-CCA secure scheme. Another IND-CCA
secure solution based on Elliptic Curve (known as ECIES) is defined in [27].

Message authentication code A message authentication code scheme MAC
is composed of three algorithms: KeyGenm : 1n → Km, Mac : M× Km → T ,
VerifMac :M×T ×Km →{true, false}.

Multi-instance Strong Unforgeability Strong UnForgeability (SUF) of a
MAC scheme in a multi-instance setting has been defined in [25] and we recall
the associated experiment in Figure 6. This definition is similar to the classical
SUF except that the adversary can play with several instantiations of the MAC
by generating several MAC keys, and can expose MAC keys. He will try to forge
an instance whose key has not been exposed and on a pair (message, tag) that
is not registered as being created by the MAC oracle. The reduction from multi-
instance to the classical unforgeability induces a loss factor in the number of
instances.

Definition 11. A scheme MAC = (KeyGenm,Mac,Verif) is secure under strong
unforgeability attacks, if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl(n) such that:

AdvSUF
A,MAC(n) = Pr

[
ExpSUF
A,MAC (n) = 1

]
≤ negl(n).

We denote εSUF this advantage.

For instance, HMAC defined in [4] is proven to have strong existential unforge-
ability. Its security can then be extended to the multi instance setting as ex-
plained in [25].

Multi-stage key-exchange. In their security analysis, Cohn-Gordon et al.
modeled Signal as a multi-stage key exchange composed of the following algo-
rithms: KeyGen, MedTermKeyGen, Activate, and Run. They define the multistage
key-indistinguishability security. For sake of brevity, we do not recall the com-
plete security game here but we just give the following definition.

Definition 12. A key exchange scheme KE = (KeyGen,MedTerm-KeyGen,
Activate, Run) is a multi-stage key-indistinguishable scheme, if, for all proba-
bilistic polynomial-time adversaries A, running nP parties, recording each nM
MedTermKeys, nS sessions with maximum ns stages on a session, there exists
a negligible function negl(n) such that:

AdvMS−IND
nP ,nM ,nS ,ns,A,KE(n) ≤ negl(n).

We denote εsig this advantage for the Signal protocol.

The parameter nM is introduced by the authors to authorize the adversary to
choose among a pool of MedTermKeys, which is actually stronger than the actual
Signal description. For readability reasons, we consider nM equal to 1, but our
solution works the same with any nM .

B RDM security analysis

B.1 RDM security model

RDM Indistinguishability. Our experiment is detailed in Figure 7. We com-
plete the state description with flags, not required for the implementation, linked
with different oracles:

- corrupt. Flag on global state. Set to false at Register, set to true whenever
Corrupt is called.

All the followings are session state flags:
- reveal. Set to false at Init, set to true whenever Reveal is called on this

session.
- challenge. Set to false at Init, set to true whenever Challenge is called on

this session or on a matching session.
- active. Set to true if the device i has been called by oracle OEnc in session
s. A device gets active in the protocol as soon as it sends a message.

We note πsi .flag for πsi .flag = true and ¬πsi .flag for πsi .flag = false. We
identify a session s by the number si of sessions already run by i.

Freshness. We detail below the natural restrictions of our model. The first
two are traditional trivial attacks. The third means forward secrecy can be
achieved solely for active participants. The fourth models the healing property of
the ratchet. The fifth excludes impersonation attacks and finally, the last point
models an authentication procedure when adding a new participant, which we
consider out of the scope of this protocol. We define:
NoReveal− NoInactiveCorrupt(i, s, t) =
· ¬[πsi [t].reveal ∨ (πi.corrupt ∧ ¬πsi [t].active)] and
· ∀(j, r, tr) chained with (i, s, t),
¬[πrj [tr].reveal ∨ (πj .corrupt ∧ ¬πrj [tr].active)].

1. A shall not Reveal state secrets just before the challenge. This is prevented
by line 2 of Challenge.

ExpRDM−INDRDM,nd,q,A(n)

1 : b←$ {0, 1}
2 : P ← ⊥, initialdata← ⊥, C∗ ← ⊥
3 : for i = 1, . . . , nd do
4 : πi ← SetUp(1n, i), si ← 0
5 : initialdata← initialdata ∪ {πi.pk}
6 : b′ ← AOracles,Challenge(initialdata)
7 : return b = b′

OInit(i)

1 : si ← si + 1, s← si

2 : πsi [0]← Init(πi, s)
3 : πsi .step← 0, Esi ← 0, V si ← ∅
4 : return

OEnc(m, i, s)

1 : t← πsi .step

2 : Cenc, π
s
i [t+ 1]← Enc(m,πsi [t])

3 : V si ← V si ∪ Cenc
4 : for T ≥ t+ 1 do
5 : πsi [T].reveal← false

6 : πsi [T].challenge← false

7 : πsi [T].active← true

8 : Esi ← t+ 1, πsi .step← t+ 1
9 : return Cenc

ODec(Cenc, j, r)

1 : t← πrj .step

2 : Req.(1) ¬(Cenc = C∗ ∧ πrj [t].challenge)
3 : Req. NoReveal− NoInactiveCorrupt(j, r, t)
∨ ∃(k, o, to) matching (j, r, t) such that Cenc ∈ V ok
4 : m,πrj [t+ 1]← Dec(Cenc, πrj [t])
5 : πrj .step← t+ 1
6 : return m

OAdd&Join({j`}`∈[1,z], i, s)

1 : t← πsi .step

2 : Cjoin, Cadd, π
s
i [t+ 1]← Add&Join({πj` .pk}`∈[1,z], π

s
i [t])

3 : if ∃ ` such that πj` .corrupt then
4 : for T ≥ t do πsi [T].reveal← true

5 : V si ← V si ∪ {Cadd}, P ← P ∪ {Cjoin}
6 : πsi .step← t+ 1
7 : return Cjoin, Cadd

ODecJoin(Cjoin, j)

1 : Req. Cjoin ∈ P
2 : sj ← sj + 1, r ← sj

3 : πrj [0]← DecJoin(Cjoin, πj , r)
4 : πrj .step← 0, V rj ← ⊥, Esi ← 0
5 : return

ODecAdd(Cadd, k, o)

1 : t← πok.step

2 : Req. NoReveal− NoInactiveCorrupt(k, o, t)
∨ ∃(j, r, tr) matching (k, o, t) such that Cadd ∈ V rj
3 : πok[t+ 1]← DecAdd(Cadd, πok[t])
4 : πok.step← t+ 1
5 : return

ORevoke(pk, i, s)

1 : t← πsi .step

2 : Crev, π
s
i [t+ 1]← Revoke(pk, πsi [t])

3 : V si ← V si ∪ {Crev}
4 : πsi .step← t+ 1
5 : return Crev

ODecRevoke(Crev, k, o)

1 : t← πok.step

2 : Req. NoReveal− NoInactiveCorrupt(k, o, t)
∨ ∃(j, r, tr) matching (k, o, t) such that Crev ∈ V rj
3 : πok[t+ 1]← DecRevoke(Crev, πok[t])
4 : πok.step← t+ 1
5 : return

Corrupt(i)

1 : Req. ¬∃s, ts such that
πsi [ts].challenge ∧ ¬πsi [ts].active

2 : πi.corrupt← true

3 : return ski

Reveal(i, s)

1 : t← πsi .step

2 : Req. ¬πsi [t].challenge

3 : for T ≥ Esi do πsi [T].reveal← true

4 : if ¬πsi .active do πi.corrupt← true

5 : return πsi [t].rand

Challenge(m0,m1, i, s)

1 : t← πsi .step

2 : Req. NoReveal− NoInactiveCorrupt(i, s, t)
3 : C∗, πsi [t+ 1]← Enc(mb, π

s
i [t])

4 : for T ≥ t do
5 : πsi [T].challenge← true

6 : πsi [T].reveal← false

7 : for (j, r, tr) chained with (i, s, t) such that:
πj .pk ∈ πsi .devices do

8 : for T ≥ tr do
9 : πrj [T].challenge← true

10 : πsi .step← t+ 1
11 : return C∗

(1) Req. stands for Require.

Fig. 7: Ratcheted Dynamic Multicast Indistinguishability experiment.

2. A shall not Reveal a device concerned with the challenge. This is prevented
by line 2 in Reveal and lines 7-9 in Challenge. Line 6 in OEnc ensures the
security is back for i’s secret after i performs an encryption.

3. A shall not corrupt a non active device before or after the challenge. This
is prevented by line 2 of Challenge and lines 1-2 of Corrupt. A device comes
active as soon as it performs an encryption (it enters the ratcheting process).

4. A shall not reveal random secrets and use them to maliciously send an
encrypted message with its own new random, revoke someone, or join a
non authorized corrupted device. We prevent this by introducing the regis-
ter V si that keeps track of ciphertexts produced by the OEnc, OAdd&Join
and ORevoke oracles. Line 3 of Oracle ODec, and line 2 of ODecAdd and
ODecRevoke check whether the incoming ciphertext has been produced le-
gitimately. If not, those lines verify whether there was a Reveal at the same
step.

5. Register P initialized in line 2 of the Exp prevents A from joining a device in
a non existing session or after an exposure. This models an authentication
procedure between the device that adds and the new device.

About healing. The reveal flag can only be turned back to false with an en-
cryption (line 5 in OEnc). The counter E on line 2 of OEnc registers the step
of the last encryption. In Reveal, flags are turned to true only from this last
encryption. This means a Reveal on a device only threatens the steps from the
last encryption and until the next. This corresponds to the healing property.
Note that Esi = 0 is equivalent to πsi .active = false.

Definition. (Secure Ratcheted Dynamic Multicast) A RDM running with nd
devices is a secure Ratcheted Dynamic Multicast if it is correct and for all adver-
saries A, running in polynomial time, there exists a negligible function negl(n)
such that:

AdvRDM−IND
A,RDM,nd

(n) =
∣∣∣∣Pr
[

ExpRDM−IND
A,RDM,nd

]
− 1

2

∣∣∣∣ ≤ negl(n) .

We denote εRDM−IND this advantage.

B.2 RDM construction

We give a pseudocode detailed description of our RDM protocol in Figure 8.
The restrictions in the Add&Join procedure are there to prevent a same device
to be added several times. The requirement in the Revoke procedure prevents a
device to revoke itself.

B.3 Proof of Theorem 1

We recall Theorem 1 and provide a detailed proof of this result.

Theorem. If ENC is an IND-CCA secure asymmetric encryption scheme, and
MAC is secure under multi-instance strong unforgeability, the above construction

SetUp(1n, i)

1 : sk, pk ← KeyGena(1n)
2 : πi.sk ← sk, πi.pk ← pk

3 : πi.1n ← 1n

4 : return πi

Init(πi, s)

1 : Km ← KeyGenm(πi.1n)
2 : πsi .Km ← Km

3 : πsi .esk ← πi.sk, π
s
i .epk ← πi.pk

4 : πsi .PK ←{πi.pk}
5 : πsi .devices←{πi.pk}
6 : return πsi

Enc(m, πsi)

1 : K′m ← KeyGenm(πi.1n)
2 : Find ind such that πsi .PK[ind] = πsi .epk

3 : sk, pk ← KeyGena(πi.1n)
4 : πsi .esk ← sk, πsi .epk ← pk

5 : πsi .PK[ind]← πsi .epk

6 : τ ←Mac(“up”‖πsi .PK‖K′m, πsi .Km)
7 : c← EncAsym(m‖K′m‖τ, πsi .PK)
8 : Cenc ← c‖πsi .PK, πsi .Km ← K′m

9 : return Cenc, π
s
i

Dec(Cenc, πrj)

1 : c‖PK′ ← Cenc

2 : m‖Km‖τ ← DecAsym(c, πrj .esk)
3 : V erifMac(“up”‖PK′‖Km, τ, π

r
j .Km)

4 : πrj .Km ← Km, π
r
j .PK ← PK′

5 : return m,πrj

Revoke(pk, πsi)

1 : Require pk 6= πi.pk

2 : Find j such that πsi .devices[j] = pk

3 : if j = ⊥ return ⊥, πsi
4 : D ← πsi .devices \ {pk}
5 : πsi .PK ← πsi .PK \ πsi .PK[j]
6 : K′m ←$KeyGenm(πi.1n)
7 : τ ←Mac(“rev”‖πsi .PK‖D‖K′m, πsi .Km)
8 : c← EncAsym(K′m‖τ, πsi .PK)
9 : Crev ← c‖πsi .PK‖D

10 : πsi .Km ← K′m, π
s
i .devices← D

11 : return Crev, π
s
i

DecRevoke(Crev, πok)

1 : c‖PK‖D ← Crev

2 : Km‖τ ← DecAsym(c, πok.esk)
3 : V erifMac(“rev”‖PK‖D‖Km, τ, π

o
k.Km)

4 : πok.Km ← Km

5 : πok.PK ← PK, πok.devices← D

6 : return πok

Add&Join({pkj`}`∈[1,z], π
s
i)

1 : Require (∀ ` 6= `′, pkj` 6= pkj`′)
2 : ∧ {pkj`}`∈[1,z] ∩ πsi .devices = ∅
3 : K′m ← KeyGenm(πi.1n)
4 : PK′ ← πsi .PK ∪ {pkj`}`∈[1,z]

5 : πsi .devices← πsi .devices ∪ {pkj`}`∈[1,z]

6 : Cjoin ← Join({pkj`}`∈[1,z], PK
′,K′m, π

s
i)

1 : mjoin ← PK′‖πsi .devices‖K′m
2 : Cjoin ← EncAsym(mjoin, {pkj`}`∈[1,z])
3 : return Cjoin

7 : Cadd ← Add(PK′,K′m, πsi)

1 : madd ← “add”‖PK′‖πsi .devices‖K′m
2 : τ ←Mac(, πsi .Km)
3 : c̃← EncAsym(K′m‖τ, πsi .PK)
4 : Cadd ← c̃‖PK′‖πsi .devices
5 : return Cadd,

8 : πsi .PK ← PK′, πsi .Km ← K′m

9 : return Cjoin, Cadd, π
s
i

DecJoin(Cjoin, πj , r)

1 : PK‖D‖Km ← DecAsym(Cjoin, πj .sk)
2 : πrj .esk ← πj .sk, π

r
j .epk ← πj .pk, π

r
j .Km ← Km

3 : πrj .PK ← PK, πrj .devices← D

4 : return πrj

DecAdd(Cadd, πok)

1 : c‖PK‖D ← Cjoin

2 : Km‖τ ← DecAsym(c, πok.esk)
3 : V erifMac(“add”‖PK‖D‖Km, τ, π

o
k.Km)

4 : πok.PK ← PK, πok.devices← D,πok.Km ← Km

5 : return πok

Fig. 8: Ratcheted Dynamic Multicast construction.

is a secure ratcheted dynamic multicast for nd devices, such that, for any PPT

adversary making at most q queries to the oracles:

AdvRDM−IND
RDM,nd,q,A(n) =

∣∣∣∣Pr
[
ExpRDM−IND

RDM,nd,q,A(n)
]
− 1

2

∣∣∣∣
≤ q · εSUF + (q + 1) · nd · εIND-CCA.

Proof. We consider a lookup table B in which we will write each Corrupt or Reveal
query made by the adversary. Corrupt and Reveal are written and erased in B
the same way corresponding flags are turned to false or true, but we need this
table to identify the last reveal/corruption healing. We choose to observe the
experiment from one session (i, s) but what we actually look at is the behaviour
of the group at each step. Hence we consider in the lookup table lines that
concerns (i, s) or any matching session. If B contains only lines for non matching
session, we say it is empty. Of course adversary does not only play with (i, s) but
also with others. We therefore consider queries on (i, s) or on other sessions (j, r)
if it is a matching sessions because it has an effect on (i, s) state. We consider a
proof by iteration.

Case of initial sessions
Initialization. We consider an initial session (i, s). We initialize our iteration by
considering step 0 of the session. As (i, s) is an initial session, its step 0 concerns
only device i. First, a MAC key Km is generated and is not used at this moment,
so it can be considered as non revealed.

Case A: fresh departure. Step 0 is not corrupted nor revealed. B is empty. It
means i is not corrupted and Km is safe. As Km is safe, we show A can not
interfere.
Game 0. Let Game 0 be the original game with this configuration.
Game A.1. Let Game A.1 be as Game 0 except the simulator respectively
reject all ciphertexts Cenc and Cadd not produced by OEnc and OAdd&Join on
input to ODec and ODecAdd (Revocation is not considered here as i cannot
revoke himself). Otherwise, we can use it to build an adversary against strong
unforgeability of the MAC scheme. We obtain:

|Pr[SA.1]− Pr[S0] | ≤ εSUF.

At this point, we consider there are no forgeries, this means that all ciphertexts
accepted5 by different oracles are produced by other oracles and A cannot join
or send encrypted message maliciously.
5 For ciphertexts accepted by the ODecJoin, the security model already restricts the

ciphertext to belong to P (line 1. of this oracle). This is due to the fact that we do
not have made a choice to authenticate a device to another. By considering a specific
solution to authenticate them, we could delete this restriction in the security model
and describe here an additional game A.1’ in which we would apply the security of
this chosen authentication to obtain Cjoin on input to ODecJoin has been produced
by OAdd&Join.

From there, A can query for an OEnc, OAdd&Join, ORevoke, Reveal or Corrupt.
We do not consider decryptions here as there is still no ciphertext produced by
oracles OEnc, OAdd&Join, and ORevoke. We study each option:

- Corrupt(i). This query will lead to a non fresh step (step has not changed, it
just got corrupted) and (i, s) is written as corrupted in B (actually, we shall
write (i, s′) for all sessions runned by i, but, since we are only interested in
(i, s) now, we only consider this one).

- Reveal(i, s, 0). This query will lead to a non fresh step and (i, s) is written
as corrupted in B.

- Enc(m, i, s). Let Game A.2.Enc be as Game A.1 but ensures A learns
nothing about the newly generated MAC key K ′m. That is we replace the
ciphertext c = EncAsym(m‖K ′m‖τ, πsi .PK) produced in OEnc by a random
c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,m‖K ′m‖τ) in a list L for
later decryption. i is not corrupted and is the only receiver of this encryption
(πsi .PK = πi.pk). IND-CCA security of the encryption scheme ensures we
can do this substitution properly with loss:

|Pr[SA.2.Enc]− Pr[SA.1] | ≤ εIND-CCA.

We are in a fresh state with secure MAC key Km.
- OAdd&Join

(
{j`}`∈[1,z], i, s

)
with none of the j` corrupted. Consider a Game

A.2.Join that runs as Game A.1 except that we ensure thatA learns nothing
about the newly generated MAC key K ′m. We replace the ciphertext Cjoin =
EncAsym(PK ′‖K ′m, {pkj`}`∈[1,z]) produced in Join of OAdd&Join by Cjoin =
EncAsym(rand, {pkj`}`∈[1,z]) and ciphertext c̃ = EncAsym(K ′m‖τ, πsi .PK)
produced in Add of OAdd&Join by c̃′ = EncAsym(rand, πsi .PK). We keep
both couples (C ′join, PK ′‖K ′m, {pkj`}`∈[1,z]) and (c̃′,K ′m‖τ, πsi .PK) in the
list L for later decryption. None of the {j`}`∈[1,z] is corrupted and they are
the only receivers of the encryption Cjoin and i is not corrupted and is
the only receiver of the encryption c̃. IND-CCA security of the encryption
scheme - extended to parallel encryption - ensures we can do both substitu-
tions properly with loss:

|Pr[SA.2.Join]− Pr[SA.1] | ≤ εIND-CCA + z · εIND-CCA

≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km.
- OAdd&Join({j`}`∈[1,z], i, s) with one or more j` corrupted. For each j` cor-

rupted, (j`, allsessions) is written as corrupted in B. Adversary obtains the
new MAC key K ′m through the joining process and we are in a non fresh
step with unsafe MAC key.

Case B: unfresh departure. If i is corrupted, (i, s) is written as corrupted in B
and step 0 is not suitable for a Challenge query.
As before, A can query for an OEnc, OAdd&Join, and Reveal (a query OCorrupt
is useless here as i is already corrupted). We do not consider decryption oracles
here as there is still no ciphertext produced by oracles OEnc, OAdd&Join, and
ORevoke and A cannot join, revoke, or send encrypted message maliciously. This

last point is due to the natural restrictions in the security model: the model does
not allow A to forge a message after a corruption or an exposure.
Game 0. Let Game 0 be the original game with this configuration. We study
each option:

- Reveal(i, s, 0). This step remains a non fresh step and i is still written as
corrupted in B.

- OEnc(m, i, s). Let Game B.1.Enc be as Game 0 but ensures A learns noth-
ing about the newly generated MAC key K ′m. We replace the ciphertext c =
EncAsym(m‖K ′m‖τ, πsi .PK) produced in OEnc by c′ = EncAsym(rand, πsi .PK)
and keep the couple (c′,m‖K ′m‖τ) in the list L for later decryption. i is cor-
rupted, but during the execution of OEnc, this oracle generates for i a new
secret/public key (sk, pk) (line 3. of Enc) unknown to A and we can delete
the entry (i, s) from the table B. B is now empty. The ciphertext c is intended
for the sole new key of i, non corrupted at this step. IND-CCA security of the
encryption scheme ensures we can do this substitution properly with loss:

|Pr[SB.1.Enc]− Pr[S0] | ≤ εIND-CCA.

We are in a fresh state with secure MAC key Km.
- OAdd&Join({j`}`∈[1,z], i, s) with none of the j` corrupted. As A get the new

MAC key K ′m through the Add part of Add&Join, we demand no security
on the private side apart from the model restrictions. We are in a non fresh
state with unsafe MAC key.

- OAdd&Join({j`}`∈[1,z], i, s) with one or more j` corrupted. For each j` cor-
rupted, (j`, allsessions) is written as corrupted in B. Adversary obtains the
new MAC key K ′m through the joining process and we are in a non fresh
step with unsafe MAC key.

Iteration. We now consider a session (i, s) at step t in the protocol after q queries.
Each reveal or corrupt has been registered in B. As before, we consider case A
when we start from a fresh step and case B when we start from a non fresh step.

Case A: fresh departure (B is empty).
Game 0. Let Game 0 be the original game with this configuration.
Game A.1. Let Game A.1 be as Game 0 except the simulator respectively
reject all ciphertexts Cenc, Cadd, and Crev not produced by OEnc, OAdd&Join,
and ORevoke on input to ODec, ODecAdd, and ORevoke. Otherwise, we can use
it to build an adversary against strong unforgeability of the MAC scheme. We
obtain:

|Pr[SA.1]− Pr[S0] | ≤ εSUF.

At this point, all ciphertexts accepted6 by different oracles are produced by other
oracles and A cannot join or send encrypted message maliciously.
6 For ciphertexts accepted by the ODecJoin, as already explained, A cannot join a

maliciously DecJoin due to the security model.

From there A can query for an OEnc, OAdd&Join, ORevoke, Reveal, or Corrupt.
Decryption oracles do not induce changes on the honesty of the devices, on the
secret of the MAC key, or on the freshness of the step due to Game A.1, so we
do not detail them. We note t = πsi .step We study each option:

- Corrupt(i). If i is active in the session - meaning that it already does not use
his long term secret key πi.sk to communicate with the group of devices -,
then nothing happens. Else (i, s) is written as corrupted in B.

- Corrupt(j). If there exists r, ts ≤ t such that (j, r, πrj .step) is non active and
matches (i, s, ts), (j, r) is written as corrupted in B. Otherwise, as j is active
on all sessions matching with (i, s), nothing happens.

- Reveal(i, s). (i, s) is written as corrupted in B.
- Reveal(j, r). If there exists ts ≤ t such that (j, r, πrj .step) matches (i, s, ts),

(j, r) is written as corrupted in B. If ts < t, then the MAC key has changed
but as the secret key of j is known to the adversary, he has access to the
new MAC key also.

- OEnc(m, i, s). Let Game A.2.Enc be the same as Game A.1 but ensures
A learns nothing about the newly generated MAC key K ′m. That is we
replace the ciphertext produced in OEnc, c = EncAsym(m‖K ′m‖τ, πsi .PK),
by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,m‖K ′m‖τ) in the
list L for later decryption. B is empty, IND-CCA security of the encryption
scheme ensures we can do this substitution properly with loss n|PK| where
n|PK| is the number of public keys in πsi .PK, equals to the number of devices
in the group at this step:

|Pr[SA.2.Enc]− Pr[SA.1] | ≤ n|PK| · εIND-CCA

≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km.
- OEnc(m, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message pro-

duced is not valid. In fact, (j, r) matches on an older MAC key than the one
(i, s) uses now. If (j,r,πrj .step) matches (i, s, t), just process the same as for
OEnc(m, i, s). Otherwise do nothing.

- OAdd&Join({k`}`∈[1,z′], i, s) with none of the k` corrupted. Let the next
Game A.2.Join be as Game A.1 but ensures A learns nothing about the
newly generated MAC key K ′m. That is we replace the ciphertext Cjoin =
EncAsym(PK ′‖K ′m, pkk) produced in the Join subprocedure of OAdd&Join
by Cjoin = EncAsym(rand, pkk) and the cipher c̃ = EncAsym(K ′m‖τ, πsi .PK)
produced in Add of OAdd&Join by c̃′ = EncAsym(rand, πsi .PK). We keep
both couples (C ′join, PK ′‖K ′m, pkk) and (c̃′,K ′m‖τ, πsi .PK) in the list L for
later decryption. None of the k` is corrupted and they are the only receivers
of the encryption Cjoin. B is empty which means that the receivers of c̃ are
not corrupted. IND-CCA security of the encryption scheme ensures we can
do both substitutions properly with loss where n|PK| is the number of public
keys in πsi .PK, equals to the number of devices in the group:

|Pr[SA.2.Join]− Pr[SA.1] | ≤ (n|PK| + z′) · εIND-CCA

≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km.
- OAdd&Join({k`}`∈[1,z′], i, s) with one or more k` corrupted. For each k` cor-

rupted, (k`, allsessions) is written as corrupted in B. Adversary obtains the
new MAC key K ′m through the joining process and we are in a non fresh
step with unsafe MAC key.

- OAdd&Join({k`}`∈[1,z′], j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the
message produced is not valid. In fact, (j, r) matches on an older MAC key
than the one (i, s) uses now. If (j,r,πrj .step) matches (i, s, t), just processes
the same as for the previous case OAdd&Join({k`}`∈[1,z′], i, s). Otherwise do
nothing.

- ORevoke(pk, i, s). The construction verifies that ∃k such that pk = pkk
7. B

is empty, we revoke k even if it was not written as corrupted - in reality this
allows to prevent a further corruption. Let Game A.2.Rev be as Game
A.1 but ensures A learns nothing about the newly generated MAC key K ′m.
Again, we replace the ciphertext c = EncAsym(K ′m‖τ, πsi .PK) produced in
ORevoke by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,K ′m‖τ)
in the list L for later decryption. B is empty, IND-CCA security of the
encryption scheme ensures we can do this substitution properly with loss
n|PK| where n|PK| is the number of public keys in πsi .PK, equals to the
number of devices in the group:

|Pr[SA.2.Rev]− Pr[SA.1] | ≤ n|PK| · εIND-CCA

≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km.
- ORevoke(pkk, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message

produced is not valid. If (j,r,πrj .step) matches (i, s, t),just processes the same
as ORevoke(pkk, i, s). Otherwise do nothing.

Case B: unfresh departure. If B is not empty, there is at least an identifier (device,
session) written as corrupted in B and step t is not suitable for the Challenge
query.
As before, A can query for an OEnc, OAdd&Join, ORevoke, Reveal, and Corrupt.
As for the case B of the initialization, A cannot join, revoke, or send encrypted
message maliciously. Again, this is due to natural restrictions in the security
model.
Game 0. Let Game 0 be the original game with this configuration. We study
each option:

- Corrupt(i). If i is active in the session - meaning that it already does not use
his long term secret key π.sk to communicate with the group of devices -,
then nothing happens. Else (i, s) is written as corrupted in B.

- Corrupt(j). If there exists r, ts ≤ t such that (j, r, πrj .step) is non active and
matches (i, s, ts), (j, r) is written as corrupted in B. Otherwise, as j is active
on all sessions matching with (i, s), nothing happens.

- Reveal(i, s). (i, s) is written as corrupted in B.
7 In the following, we assume that revoke queries are always on a valid long term key
pkk.

- Reveal(j, r). If there exists ts ≤ t such that (j, r, πrj .step) matches (i, s, ts),
(j, r) is written as corrupted in B. If ts < t, then the MAC key has changed
but as the secret key of j is know to adversary, he will access to the new
MAC key also.

- OEnc(m, i, s). If (i, s) is the sole entry written as corrupted in B, then as
for the case B in step 0, we regain security. (i, s) is now not written as
corrupted in B. Let in this case, Game 1.Enc.fresh be as Game 0 but
ensures A learns nothing about the newly generated MAC key K ′m. We re-
place the ciphertext c = EncAsym(m‖K ′m‖τ, πsi .PK) produced in OEnc by
c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,m‖K ′m‖τ) in the list L
for later decryption. B is empty, CCA-security of the encryption scheme en-
sures we can do this substitution properly with loss n|PK| where n|PK| is the
number of public key in πsi .PK, equals to the number of devices in the group:

|Pr[SA.2.Enc]− Pr[SA.1] | ≤ n|PK| · εIND-CCA

≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km.
If B contains lines other than (i, s), security is still not back. (i, s) is erased
from B if it was previously written. Nothing more is expected since the new
MAC key K ′m is accessible through remained corrupted/revealed devices and
we are in a non fresh state.

- OEnc(m, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message pro-
duced is not valid, do nothing. If (j,r,πrj .step) matches (i, s, t), just process
the same as for OEnc(m, i, s). Otherwise do nothing.

- OAdd&Join({k`}`∈[1,z′], i, s) with none of the {k`}`∈[1,z′] corrupted. We do
nothing as the adversary will obtain the new MAC key K ′m through the
ciphertext Cadd. We remain in a non fresh step with unsafe MAC key.

- OAdd&Join({k`}`∈[1,z′], i, s) with one or more of the {k`}`∈[1,z′] corrupted.
For all corrupted k` we write the newly generated (k`, r`) as corrupted in B
as soon as DecJoin(k`, cjoin) is queried on the returned Cjoin message and
do nothing else as the adversary is able to obtain the new MAC key K ′m.
We remain in a non fresh step with unsafe MAC key.

- OAdd&Join({k`}`∈[1,z′], j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the
message produced is not valid, do nothing. If (j,r,πrj .step) matches (i, s, t),
just process the same as for the previous case OAdd&Join({k`}`∈[1,z′], i, s).
Otherwise do nothing.

- ORevoke(pkk, i, s). For all o, to, ts ≤ t such that (k, o) is written as corrupted
in B and (k, o, to) is matching (i, s, ts), we erase (k, o) from B. If (k, o) was
the sole entry written as corrupted in B, then as for the case B in step
0, we regain security. Let in this case, Game 1.Rev.fresh be as Game 0
but ensures A learns nothing about the newly generated MAC key K ′m. We
replace the ciphertext c = EncAsym(K ′m‖τ, πsi .PK) produced in ORevoke by
c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,K ′m‖τ) in the list L
for later decryption. B is now empty, IND-CCA security of the encryption
scheme ensures we can do this substitution properly with loss n|PK| where
n|PK| is the number of public keys in πsi .PK, equals to the number of devices

in the group:

|Pr[SA.2.Rev]− Pr[SA.1] | ≤ nd · εIND-CCA.

We are in a fresh state with secure MAC key Km. If B contains other lines not
concerning (k, o), security is still not back. Nothing more is attended since
the new MAC key K ′m is accessible through remained corrupted/revealed
devices and we are in a non fresh state.

- ORevoke(pkk, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then do nothing. If
(j,r,πrj .step) matches (i, s, t), just process the same as for ORevoke(pkk, i, s).
Otherwise do nothing.

Case of non initial sessions

Through restrictions, a session can only be created by the OInit. This means that
every session is chained with an initial session. The only modification in our game
hops is that we now consider chained session instead of solely matching sessions.
(For instance in a case OEnc(m, j, r), replace “If (j,r,πrj .step) matches (i, s, ts <
t) then the message produced is not valid, do nothing” by “If (j,r,πrj .step) is
chained with (i, s, t) then the message produced is not valid, do nothing.”) The
above game hops are still valid because one can go from the initial session to
the one of our interest following a chain of sessions. As we consider actions on
chained sessions and as those chains are taken into account in our restrictions,
the same logic applies.
Consider the event E: after q queries any session state is either corrupted or a
fresh state with no adversary having interfered. Suppose, nd is a fixed value and
correspond to the maximum number of devices the adversary can play with, we
obtain:

Pr[E] ≤ q · εSUF + q · nd · εIND-CCA.

Finally when adv queries a Challenge, if the step is not fresh, challenge is not
valid. If the step is fresh with secret keys and no adversary having infiltrated the
group, IND-CCA security of the encryption scheme used nd parallel times gives:

AdvRDM−IND
RDM,nd,q,A(n) =

∣∣∣∣Pr
[
ExpRDM−IND

RDM,nd,q,A(n)
]
− 1

2

∣∣∣∣
≤ Pr[E] + nd · εIND-CCA

≤ q · εSUF + (q + 1) · nd · εIND-CCA.

C Multi-Device Signal security analysis

C.1 Multi-Device Instant Messaging (MDIM) formal definition

Let {P1, . . . ,PnU } be the set of users in the protocol and for each user Pu, let
{du,1,. . . ,du,nd} be the set of his devices. Each device du,i is modeled by an oracle

πu,i and each session s executed by a device du,i is modeled by an oracle πsu,i.
Device oracles maintain device states and session oracles maintain session states
as defined in Section 3. In the following, device or session oracles and their state
will be considered as equals.

Protocol description We formalize here the description of our Multi Device
Signal protocol.
· UserKeyGen(1n)→ pprekeys, sprekeys. Generates two lists of prekeys. These

lists gathers respectively public and private user keys, and optional extra
keying material. We call these keys the “prekey bundle”.
· DeviceSetUp(1n, (u, i)) → πu,i. Generates the device key and records them

in a new state πu,i.
· Register(uID, πu,i)→ πu,i. Creates the prekey bundle and uID, and registers

them together with the device key on the server. Completes the device state
πu,i with the prekey bundle and uID.
· InitSession(role,pprekeysv,πu,i, s)→ Cinit, cout, πsu,i. On input a role, the
pprekeysv of the intended peer v, a device state πu,i, and a session identi-
fier s, returns a (eventually empty) ciphertext Cinit for u’s other devices, a
(possibly empty) ciphertext cout for the intended peer, and a session state
πsu,i.
· ReceiveInitSession(Cinit, πu,j , r)→ πru,j . On input a ciphertext Cinit, a device

state πu,j , and a session identifier r, outputs a session state πru,j .
· Send(m,πsu,i) → Cin, cout, π

s
u,i. On input a plaintext m and a session state

πsu,i, returns one ciphertext Cin for u’s other devices, a second ciphertext
cout for the intended peer πsu,i.peer, and an updated state πsu,i.
· ReceiveIn(Cin, πru,j)→ m,πru,j . On input a ciphertext Cin and a session state
πru,j , outputs a (eventually empty) message m and an updated session state
πru,j .
· ReceiveOut(cout, πpv,`) → m,πpv,`. On input a ciphertext cout and a session

state πpv,`, outputs a (potentially empty) message m and an updated session
state πpv,`.
· Add&Join(dpkj , πu,i)→{Cjoin,s, Cadd,s, cout,s}s∈S , πu,i

with S = πu,i.Sessions. On input a device public key dpkj and a device state
πu,i, returns, for each session s the device i is engaged in, one ciphertext
Cjoin,s for the new device j, one ciphertext Cadd,s for all the other devices, a
ciphertext cout,s for the intended peer, and an updated state πu,i (comprising
updated session states πsu,i for each s).

· DecJoin
(
{Cjoin,r }r∈[1,R] , πu,j

)
→ πu,j . On input R ciphertexts Cjoin,r and

a device state πu,j , returns an updated device state πu,j (comprising R new
session states πru,j).

· DecAdd
(
{Cadd,o}o∈[1,O] , πu,k

)
→ πu,k. On input O ciphertexts Cadd,o and a

device state πu,k, returns an updated device state πu,k (comprising updated
session states πou,k for each o).

· Revoke(dpk, πu,i) → {Crev,s, cout,s}s∈πu,i.Sessions, pprekeys, πu,i. On input
a device public key dpk and a user state πu,i, returns, for each session s the
device i is engaged in, a ciphertext crev,s for all the other devices of user
u and a ciphertext cout,s for the intended peer, and a new user state πu,i
(comprising updated session states πsu,i for each s).

· DecRevoke
(
{Crev,o}o∈[1,O] , πu,k

)
→ πu,k. On input O ciphertexts Crev,o

and a device state πu,k, returns an updated device state πu,k (comprising
updated sessions states πou,k for each o).

Protocol steps. As in the RDM model, we consider the steps of the protocol.
Each Send, Add, Revoke, or corresponding Receive or Dec algorithm brings the
session to a new step and corresponding oracles will increment the step counter.
If no change occurs, values are transmitted from one step to another (e.g. if state
does not change at step ts, then πsu,i[ts + 1].state = πsu,i[ts].state). We refer to
session s run by πu,i at step ts as (u, i, s, ts)

Matching sessions. Considering partnering sessions, we define the session
identifier sid1 as the concatenation of ciphertexts Cin sent by Send(·, πs

u,i) or
received through ReceiveIn(·, πs

u,i). Hence we can write the definition of partner-
ing as follow.

Definition. (Partnered sessions at some step.) Two sessions (u, i, s, ts) and
(u, j, r, tr) are partnered if:
· πsu,i.role = πru,j .role,
· πsu,i.peer = πru,j .peer,
· πsu,i.uID = πru,j .uID,
· there exists sid′ subset of πsu,i[ts].sid1 such that
πsu,i[ts].sid1=̃sid′‖πru,j [tr].sid1 (or reversely for πsu,i and πru,j if j was there
for longer than i), where =̃ is defined as in Definition 1.

The definition for a chain of sessions and matching sessions are the one given in
paragraph 3.1.

MDIM indistinguishability The MDIM-IND complete experiment is de-
scribed in Figure 9. We complete a session state πsu,i with flags linked to different
oracles. All flags are initialized with false. Flag active, is set to true as soon as
OSend(πs

u,i) is called. In a general way, revX is set to true whenever revealX is
invoked on this session. A flag value is transmitted from one step to another.
We detail below the different registers and counters we need to define our fresh-
ness.

- The register V su,i, as in RDM model in Section 2.1, is there to prevent A
from interfering if a device randomness is corrupted.

- The counter Esu,i records the step of the last Send.

- The counter F su,i records the step when the last change of randomness (what
we call ratchet) occurred.

- The counter Gsu,i records the step when the last change of state occurred.
Esu,i, F su,i and Gsu,i are useful to turn all necessary flags to true when Reveal
queries occur. If the Reveal query happens, then we turn all flags from Esu,i
(resp. F su,i, Gsu,i) to true. Some actions as Send or Add&Join or Revoke may
turn them back to false. This corresponds to the healing property. Remark
that in OSend and OReceiveIn, we identify ratchets by comparing random
values. In OReceiveOut, we identify on state changes by comparing state
values.

- The list Asu,i records all steps when an addition of a new device occurs. We
need to keep track of these because information is sent to the newcomer.
This list is emptied with every revocation.

For readability reasons we define:
ResetRand− State− Session(u, i, s, t)=
πsu,i[T].revRand← false and πsu,i[T].revState← false and
πsu,i[T].revSessionKey← false.
ResetState− Session(u, i, s, t)=
πsu,i[T].revState← false and πsu,i[T].revSessionKey← false.
NoReveal−NoInactiveCorrupt(u, i, s, t)=
¬[πsu,i[t].revDevRand ∨(πu,i.corruptDevice ∧ ¬πsu,i[t].active)] and
∀(u, j, r, tr) chained with (u, i, s, t)
¬[πru,j [tr].revDevRand ∨ (πu,j .corruptDevice ∧ ¬πru,j [tr].active)].

Freshness. We formalize here the intuition of the freshness given in Section 3.1.
We define:
DeviceLeak(u, i, s, ts) =
· πsu,i[ts].revDevRand
· or (πu,i.corruptDevice ∧ ¬πsu,i[ts].active)
· or ∃ (u, j, r, tr) partnering (u, i, s, ts) such that:
· πru,j [tr].revDevRand
· or (πu,j .corruptDevice ∧ ¬πru,j [tr].active)

· or ∃ (u, j, r, tr) chained with (u, i, s, ts) such that:
· πu,j .pk ∈ πsu,i[ts].devices and
∗ πru,j [tr].revDevRand
∗ or (πu,j .corruptDevice ∧ ¬πru,j [tr].active).

Initial freshness Freshness of the initial non interactive key exchange (NIKE)
is treated separately, because it is proper to X3DH, the NIKE used by Signal,
specified in [22]. One can imagine adopting another NIKE and designing a new
ad hoc initiation freshness. Let I be an interval of protocol steps. For readability
reasons we define:
DevLeakPrekeys(u, i, s, I) = ∃ a step t ∈ Addsu,i∩I such that DeviceLeak(u, i, s, t).
CorruptUser(u, I) = u.corruptUser within the period I or ∃ (u, i, s) such that

ExpMDIM−IND
A,MDIM,np,nd

(n)

1 : b←$ {0, 1}
2 : tested← ⊥
3 : initialdata← ⊥
4 : for u = 1, . . . , np do
5 : Pu ← ⊥
6 : for i = 1, . . . , nd do
7 : su,i ← 0
8 : dpku,i, πu,i ← DeviceSetup(1n, (u, i))
9 : πu,i, pubprekeysu ← Register(idu, idi)

10 : initialdata+ = u, pubprekeysu, dpku,i

11 : b′ ← AOracles,Challenge(initialdata)
12 : return tested 6= ⊥ ∧ Fresh(tested) ∧ b = b′

OInitSession(role, u, i, v)

1 : su,i ← su,i + 1, s← su,i

2 : Cinit, cout, π
s
u,i[0]

← InitSession(role, πv.pubprekeys, πu,i, s)
3 : Pu ← Pu ∪ Cinit
4 : πu,i.Sessions← s, πsu,i.step← 0
5 : V su,i ← ∅
6 : Esu,i ← 0, F su,i ← 0, 7 : Gsu,i ← 0, Asu,i ←{0}
8 : return cout, Cinit

OReceiveInitSession(Cinit, u, j)

1 : su,j ← su,j + 1, r ← su,j

2 : πru,j ← ReceiveInitSession(Cinit, πu,j , r)
3 : πu,j .sessions← r, πru,j .step← 0
4 : V ru,j ← ∅, Aru,j ←{0}
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0
6 : return

OSend(m, u, i, s)

1 : t← πsu,i.step

2 : Cin, cout, π
s
u,i[t+ 1]← Send(m,πsu,i[t])

3 : V su,i ← V su,i ∪ Cin, E
s
u,i ← t+ 1

4 : for T ≥ t+ 1 do
5 : πsu,i[T].revDevRand← false

6 : if πsu,i[t].active = false then
7 : for T ≥ t+ 1 do
8 : πsu,i[T].active← true

9 : if πsu,i[t+ 1].rand 6= πsu,i[t].rand then
10 : F su,i ← t+ 1, Gsu,i ← t+ 1
11 : for T ≥ t+ 1 do
12 : ResetRand− State− Session(u, i, s, T)
13 : πsu,i.step← t+ 1
14 : return Cin, cout

OReceiveIn(C, u, j, r)

1 : t← πru,j .step

2 : Req. NoReveal −NoInactiveCorrupt(u, j, r, t)
∨ C ∈ V ru,j
∨ ∃(u, k, o, to) partnered with (u, j, r, t)

such that C ∈ V ou,k
3 : m,πru,j [t+ 1]← ReceiveIn(c, πru,j [t])
4 : if πru,j [t+ 1].rand 6= πru,j [t].rand then
5 : F ru,j ← t+ 1, Gru,j ← t+ 1
6 : for T ≥ t+ 1 do
7 : ResetRand− State− Session(u, j, r, T)
8 : πru,j .step← t+ 1
return m

OReceiveOut(c, v, `, p)

1 : t← πpv,`.step

2 : m,πpv,`[t+ 1]← ReceiveOut(c, πpv,`[t])

3 : if πpv,`[t+ 1].state 6= πpv,`.state then
4 : Gpv,` ← t+ 1

5 : for T ≥ t+ 1 do ResetState− Session(v, j, r, T)
6 : πpv,`.step← t+ 1

7 : return m

OAdd&Join(j, u, i)

1 : {Cjoin,s, Cadd,s, cout,s}s∈πu,i.sessions , πu,i

← Add&Join(pkj , πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : Pu ← Pu ∪ {Cjoin,s}, V su,i ← V su,i ∪ {Cadd,s}
5 : F su,i ← ts + 1, Gsu,i ← ts + 1
6 : Asu,i ← Asu,i ∪ {ts + 1}
7 : πsu,i.step← ts + 1
8 : for T ≥ ts + 1 do

ResetRand− State− Session(u, i, s, T)
9 : return {Cjoin,s, Cadd,s, cout,s}s∈πu,i.Sessions

ODecAdd({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoReveal −NoInactiveCorrupt(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecAdd({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand− State− Session(u, k, o, T)
9 : F ou,k ← to + 1, Gou,k ← to + 1
10 : Aou,k ← Aou,k ∪{to}
11 : πou,k.step← to + 1
12 : return

ODecJoin({Cr }r∈[1,R], u, j)

1 : for 1 ≤ r ≤ R do Req. Cr ∈ Pu
2 : πu,j ← DecJoin({Cr }r∈[1,R] , πu,j , r)

3 : su,j ← R

4 : for 1 ≤ r ≤ R do
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0, V ru,j ← ⊥
6 : Aru,j ← {0}, πru,j .step← 0
7 : return

ORevoke(dpk, u, i)

1 : {Crev,s, cout,s}s∈πu,i.Sessions , πu,i,

pubprekeys← Revoke(dpk, πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : V su,i ← V su,i ∪ {Crev,s}
5 : F su,i ← ts + 1, Gsu,i ← ts + 1, Asu,i ← ∅
6 : πsu,i.step← ts + 1
7 : for T ≥ ts + 1 do

ResetRand− State− Session(u, i, s, T)
8 : u.corruptUser← false

9 : u.corruptOpt← false

10 : return {Crev,s, cout,s}s∈πu,i.Sessions , pubprekeys

ODecRevoke({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoReveal −NoInactiveCorrupt(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecRevoke({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand− State− Session(u, k, o, T)
9 : F ou,k ← to + 1, Aou,k ← ∅
10 : πou,k.step← to + 1
11 : return

RevealDevRand(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Esu,i do
3 : πsu,i[T].revDevRand← true

4 : if ¬πsu,i[t].active then
5 : πu,i.corruptDevice← true

6 : return πsu,i[t].devrand

RevealSessionKey(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ t do
3 : πsu,i[T].revSessionKey← true

4 : return πsu,i[t].sessionkey

RevealState(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Gsu,i do
3 : πsu,i[T].revState← true

4 : return πsu,i[t].state

RevealRandom(u, i, s)

1 : for T ≥ F su,i do
2 : πsu,i[T].revRand← true

3 : return πsu,i[t].Random

CorruptDevice(u, i)

1 : πu,i.corruptDevice← true
2 : return πu,i.dsku,i

CorruptUser(u)

1 : u.corruptUser← true
2 : return πu.usku

CorruptOpt(u)

1 : u.corruptOpt← true

2 : return πu.mtsku

Challenge(u, i, s, t)

1 : tested← (u, i, s, t)
2 : if b = 0 k ← πsu,i[t].sessionkey
3 : else k←$K
4 : return k

Fig. 9: Multi-Device Ratcheted Key Exchange Indistinguishability experiment.

DevLeakPrekeys(u, i, s, I).
CorruptOpt(u, I) = u.corruptOpt within the period I or ∃ (u, i, s) such that
DevLeakPrekeys(u, i, s, I).

For a session (u, i, s), let Iu identify the interval that starts with the last revoca-
tion on u’s side before (u, i, s) is initialized and ends with the first revocation on
u’s side after (u, i, s) is initialized. If no revocation occurs after initialization, Iu
ends with the experiment. If no revocation had occurred before the initialization,
Iu starts with the experiment. The same way, define Iū as the interval that starts
with the last revocation on πsu,i.peer’s side before (u, i, s) is initialized and ends
with the first revocation on πsu,i.peer’s side after (u, i, s) is initialized.

Definition 13. (Initiation freshness.) Consider a session (u, i, s). A session
πsu,i such that πsu,i.role = initiator has a fresh initiation if:
· ¬CorruptUser(u, Iu) ∨ ¬CorruptOpt(πsu,i.peer, Iū) or
· ¬πsu,i[0].revRandom ∨ ¬CorruptOpt(πsu,i.peer, Iū) or
· ¬πsu,i[0].revRandom ∨ ¬CorruptUser(πsu,i.peer, Iū).

A session πsu,i such that πsu,i.role = responder has a fresh initiation if:
· ¬CorruptUser(πsu,i.peer, Iū) ∨ ¬CorruptOpt(u, Iu) or
· ¬πov,k[0].revRandom for all (v, k, o, 0) matching (u, i, s, 0) if it exists
∨ ¬CorruptOpt(u, Iu) or
· ¬πov,k[0].revRandom for all (v, k, o, 0) matching (u, i, s, 0) if it exists
∨ ¬CorruptUser(u, Iu).

Freshness of the following steps Here we consider the same restrictions as
in [9] but we extend them relatively to partnered sessions, multiple matching
sessions and device leakage for data that are transmitted between the devices
(randomness and state data when a device is added).

Definition 14. (Freshness at some step.) A session (u, i, s, t), t > 0, is fresh if:
· ¬(πu,i.corruptDevice ∧ ¬πsu,i[t].active) and
· ¬RevealSessionKey(u,i,s,t) and
· ¬RevealState(u,i,s,t− 1) or ¬RevealRandom(u, i, s, t).

RevealSessionKey(u, i, s, t) stands for:
· πsu,i[t].revSessionKey
· or ∃ (u,j,r,tr) partnered with (u,i,s,t) such that πru,j [tr].revSessionKey
· or ∃ (v,`,o,to) matching (u,i,s,t) such that πov,`[to].revSessionKey.

RevealState(u, i, s, t) stands for:
· πsu,i[t].revState
· or ∃ (u,j,r,tr) partnered with (u,i,s,t) such that πru,j [tr].revState
· or ∃ (v,`,o,to) matching (u,i,s,t) such that πov,`[to].revState
· or t ∈ Asu,i and DeviceLeak(u, i, s, t)
· or ∃ (v,k,o,to) matching (u,i,s,t) such that to ∈ Aov,k and DeviceLeak(v, k, o, to)

RevealRandom(u, i, s, t) stands for:

· πsu,i[t].revRandom
· or ∃ (u,j,r,tr) partnering (u,i,s,t) such that πru,j [tr].revRandom
· or DeviceLeak(u, i, s, t).

Definition. (Secure Multi-Device Instant Messaging.) A MDIMexecuted with
np users, each having nd devices is said to be secure in the above model if it
is correct and for all adversary A running in polynomial time, the following
advantage is negligible:

AdvMDIM−IND
A,MDIM,np,nd

(n) =
∣∣∣∣Pr
[

ExpMDIM−IND
A,MDIM,np,nd

(n)
]
− 1

2

∣∣∣∣ .
C.2 MDIM construction

Our construction is detailed in Figure 11.
Based on [9], we consider the following description for the Signal protocol:

- Sig.KeyGen(1n)→ pk, sk.
- Sig.MedTermKeyGen(1n)→ ephpk, ephsk.
- Sig.Activate(role, ephpk, πsu,i) → cout, π

s
u,i. Computes the initial shared se-

cret, the first rootkey rk and the first chainkey ck. Returns a message cout
and an updated state πsu,i.

- Sig.Send(m,πsu,i)→ cout, π
s
u,i and Sig.Receive(c, πsu,i)→ m, πsu,i. Two proba-

bilistic algorithms that take as input a session state πsu,i and either a message
m or a ciphertext c and return an updated state πsu,i and either a ciphertext
c or a message m. The original run algorithm also takes as input ephemeral
and user keys, they are accessible from our session state.

We formalize the registering procedure as follow:
- Sig.Register(uID, πu,i, pprekeys)→ πu,i. On input a user ID, a device state

and a set of prekeys prekeys, registers on the server and updates the device
state πu,i with Signal data.

We detail in Figure 10 below the ExtraRatchet and Update procedures. The first
is needed to ensure confidentiality of conversation before adding a device or after
revoking one. The second enables devices that receive a ratchet secret through
the RDM channel (in a ReceiveIn), to maintain their Signal state up-to-date.

About addition and revocation Our Add&Join sends sprekeys and Devices
to everybody (the newcomer as the already enrolled devices). This last point is
done on purpose to be sure a newcomer cannot receive session specific informa-
tion without receiving global ones. Sending these data only with the RDM.Join
would lead to a more complicated model for the RDM and we choose to keep
the joining action unrelated to the shipping of encrypted messages.
As all Signal and RDM procedures take as an entry the device state and update
it, we simplify (except for initiation and key generation procedures) πsu,i, y ←
Proc(πsu,i, x) as y ← Proc(x).

Update(πsu,i, rchsk)

1 : if rchsk 6= πsu,i.rand

2 : E ← DH(rchsk, πsu,i.randpeer)
3 : RK,CK ← KDF RK(πsu,i.RK,E)
4 : πu,is.RK ← RK,πsu,i.CK ← CK

5 : CK,MK ←← KDF CK(CK)
6 : πsu,i.CK ← CK, πsu,i.MK ←MK

7 : return πsu,i

ExtraRatchet(πsu,i)

1 : rchsk, rchpk ← DHKeyGen(1n)
2 : E ← DH(rchsk, πsu,i.randpeer)
3 : RK,CK ← KDF RK(πsu,i.RK,E)
4 : πsu,i.RK ← RK,πsu,i.CK ← CK

5 : πsu,i.rand← rchsk

6 : return rchpk, πsu,i

Fig. 10: The ExtraRatchet and Update procedures.

C.3 Proof of Theorem 2

We recall Theorem 2 and provide a detailed proof of this result.

Theorem. Let Signal be a secure multi-stage key-exchange protocol with ad-
vantage εsig and RDM a RDM− IND secure ratcheted dynamic multicast with
advantage εRDM−IND, the above construction is a secure MDIM such that, for any
PPT adversary running ns sessions from nd devices of np users, making at most
q queries to the oracles:

AdvMDIM−IND
A (n) ≤ n2

p · (2 · εRDM−IND + εsig).

MDIM correctness

Proof. Correctness of the partnering. Suppose (u,i,s,ts) and (u,j,r,tr) are part-
nered sessions, with (u,j,r) being alive for longer than (u,i,s) (tr > ts). That
means πru,j [tr].sid1=̃sid′‖πsu,i[ts].sid1. By definition of sid1, the two sessions
are matching in the sense of ratcheted multicast. By the construction we have
that πsu,i[ts].sid1[0]=Cjoin where Cjoin is obtained from Add&Join(pki, πou,k) for
some session (u,k,o). By the partnering definition, two cases are possible as Cjoin
is intended to (u,i,s): either πru,j [tr].sid1 = sid′‖(Cjoin, Cadd)‖ · · · , (meaning
that (u,k,o)=(u,j,r)) or πru,j [tr].sid1 = sid′‖Cadd‖ · · · (meaning that (u,k,o) 6=
(u,j,r)) and both sessions share the same RK and CK, as they are encrypted in
the ciphertext Cin included in both Cjoin and Cadd ciphertexts of the Add&Join
algorithm. From this step, both sessions are included in the group of the multi-
cast and by correctness of the multicast, all messages exchanged via the multicast
canal are the same for (u, i, s) and (u, j, r): they have access to the same succes-
sive randsk. We now consider the chain of session from (u,i,s,ts) to an initial
session (u,iinit,sinit,tinit). We can see that the same chain links (u,j,r,tr) to the
same initial session. By construction, (u,j,r,tr) and (u,i,s,ts) will receive the
same Signal message in ReceiveOut hence the same public randomness from the
conversation peer. Since they have common root key and then common secret
and public ratchet randomness they compute the same sessionkey.

Proof. Correctness of the matching. Suppose (u,i,s,ts) and (v,`,p,tp) are match-
ing sessions. Consider the chains of sessions from (u,i,s) to an initial session

D
ev

ic
eS

et
U

p(
1n
,(
u
,i

))

1
:

π
u
,i
←
R
.S
et
U
p
(1
n
,(
u
,i

))
2

:
re

tu
rn

π
u
,i

U
se

rK
ey

G
en

(1
n
)

1
:

u
sk
,u
p
k
←
S
.K
ey
G
en

(1
n
)

2
:

ep
h
p
k
,e
p
h
sk
←
S
.M

T
K
ey
G
en

(1
n
)

3
:

p
p
k
←
u
p
k
,m

tp
k
,{
op
k
`
} `

4
:

sp
k
←
u
sk
,m

ts
k
,{
os
k
`
} `

5
:

re
tu

rn
p
p
k
,s
p
k

R
eg

is
te

r(
uI

D
,π

u
,i

)

1
:

if
uI

D
al

re
ad

y
re

gi
st

er
ed

th
en

re
tu

rn
//

ne
ed

to
do

ad
d

in
th

at
ca

se

2
:

el
se

3
:

p
p
k
,s
p
k
←
U
se
rK

ey
G
en

(1
n
)

4
:

π
u
,i
∪ ←−
S
.R
eg
is
te
r(

uI
D
,π
u
,i
,p
p
k
)

5
:

π
u
,i
.s
ec
p
re
k
ey
s
←
sp
k

6
:

π
u
,i
.D
ev
ic
es
←
∅

7
:

π
u
,i
.S
es
si
on
s
←
∅

8
:

re
tu

rn
π
u
,i

In
it

Se
ss

io
n(
ro
le
,p
p
re
k
ey
s v
,π
u
,i

)

1
:

c o
u
t
←
S
.A
ct
iv
a
te

(r
ol
e,
op
k
`
)

2
:

π
u
,i
.S
es
si
on
s
∪ ←−
{s
}

3
:

π
s u
,i
←
R
.I
n
it

(1
n
,π
u
,i
,s

)
4

:
sp
k
,r
ch
sk
,C
K
,R
K
←
π
s u
,i

5
:

D
←
π
s u
,i
.D
ev
ic
es

6
:

C
j
o
in
,C

a
d
d

←
R
.A
d
d
&
J
oi
n

(D
,π
s u
,i

)
7

:
m
R
D
M
←
R
K
‖C
K
‖r
ch
sk
‖s
p
k

8
:

C
in
←
R
.E
n
c(
m
R
D
M
,π
s u
,i

)
9

:
C
in
it
←
C
j
o
in
‖C

in

10
:

re
tu

rn
C
in
it
,c
o
u
t
,π
s u
,i

R
ec

ei
ve

In
it

Se
ss

io
n(
C
in
it
,π
u
,j

)

1
:

C
j
o
in
‖C

in
←
C
in
it

2
:

π
r u
,j
←
R
.D
ec
J
oi
n

(C
j
o
in
,π
u
,j

)
3

:
R
K
‖C
K
‖r
ch
sk

←
R
.D
ec

(C
in
,π
r u
,j

)
4

:
π
r u
,j
.s
ta
te
←
R
K
,C
K

5
:

π
r u
,j
.r
a
n
d
←
rc
h
sk

6
:

π
u
,j
.S
es
si
on
s
←
r

7
:

re
tu

rn
π
r u
,j

A
dd

&
Jo

in
(d
p
k
j
,π
u
,i

)

1
:

R
eq

ui
re
d
p
k
j
/∈
π
u
,i
.D
ev
ic
es

∧
i
6=
j

2
:

π
u
,i
.D
ev
ic
es

∪ ←−
d
p
k
j

3
:

D
←
π
u
,i
.D
ev
ic
es

4
:

sp
k
←
π
u
,i
.s
p
re
k
ey
s

5
:

fo
r
se
ss
io
n
s
∈
π
u
,i
.S
es
si
on
s

do
6

:
C
j
o
in
,s
,C

a
d
d
,s

←
R
.A
d
d
&
J
oi
n

(d
p
k
j
,π
s u
,i

)
7

:
E
x
tr
a
R
a
tc
h
et

(π
s u
,i

)
8

:
c o
u
t
←
S
.S
en
d
(”
u
p
d
a
te

”,
π
s u
,i

)
9

:
R
K
s
,C
K
s
,r
ch
sk
s
←
π
s u
,i

10
:

m
s ←
R
K
s
‖C
K
s
‖r
ch
sk
s
‖s
p
k
‖D

11
:

C
in
,s
←
R
.E
n
c(
m
s
,π
s u
,i

)
12

:
C
j
o
in
,s
←
C
j
o
in
,s
‖C

in
,s

13
:

C
a
d
d
,s
←
C
a
d
d
,s
‖C

in
,s

14
:

re
tu

rn
{C

j
o
in
,s
,C

a
d
d
,s
,

c o
u
t,
s
} s
∈
π
u
,i
.S
e
s
s
io
n
s
,π
u
,i

D
ec

A
dd

({C a
d
d
,o
} o
∈

[1
,O

]
,π
u
,k

)
1

:
fo

r
se
ss
io
n
o
∈

[1
,O

]d
o

2
:

C
a
d
d
,o
‖C

in
,o
←
C
a
d
d
,o

3
:

R
.D
ec
A
d
d
(C

a
d
d
,o
,π
o u
,k

)
4

:
m
o
←
R
.D
ec

(C
in
,o
,π
o u
,k

)
5

:
R
K
o
‖C
K
o
‖r
ch
sk
o
‖s
p
k
‖D
←
m

6
:

π
o u
,k
.r
a
n
d
←
rc
h
sk
o

7
:

π
o u
,k
.R
K
←
R
K
o

8
:

π
o u
,k
.C
K
←
C
K
o

9
:

π
u
,k
.D
ev
ic
es
←
D

10
:

re
tu

rn
π
u
,k

D
ec

Jo
in
({C j

o
in
,r
} r
∈

[1
,R

]
,π
u
,j

)
1

:
fo

r
r
∈

[1
,R

]d
o

2
:

C
j
o
in
,r
‖C

in
,r
←
C
j
o
in
,r

3
:

R
.D
ec
J
oi
n

(C
j
o
in
,r
,π
u
,j
,r

)
4

:
m
r
←
R
.D
ec

(C
in
,r
,π
r u
,j

)
5

:
R
K
r
‖C
K
r
‖r
ch
sk
r
‖s
p
k
‖D
←
m
r

6
:

π
r u
,j
.r
a
n
d
←
rc
h
sk
r

7
:

π
r u
,j
.R
K
←
R
K
r

8
:

π
r u
,j
.C
K
←
C
K
r

9
:

π
u
,j
.s
p
re
k
ey
s
←
sp
k

10
:

π
u
,j
.D
ev
ic
es
←
D

11
:

re
tu

rn
π
u
,j

Se
nd

(m
,π
s u
,i

)

1
:

c o
u
t
←
S
.S
en
d
(m
,π
s u
,i

)
2

:
rc
h
sk
←
π
s u
,i

3
:

C
in
←
R
.E
n
c(
rc
h
sk
‖m

,π
s u
,i

)
4

:
re

tu
rn

C
in
,c
o
u
t
,π
s u
,i

R
ec

ei
ve

O
ut

(c
o
u
t
,π
p v
,`

)

1
:

m
←
S
.R
ec
ei
v
e(
c o
u
t
,π
p v
,`

)

2
:

re
tu

rn
m
,π
p v
,`

R
ec

ei
ve

In
(C

in
,π
r u
,j

)

1
:

m
,r
ch
sk
←
R
.D
ec

(C
in
,π
r u
,i

)
2

:
U
p
d
a
te

(π
r u
,j
,r
ch
sk

)
3

:
π
r u
,j
.r
a
n
d
←
rc
h
sk

4
:

re
tu

rn
m
,π
r u
,j

R
ev

ok
e(
d
ev
p
k
,π
u
,i

)

1
:

R
eq

ui
re
d
ev
p
k
6=
π
u
,i
.d
p
k

2
:

Fi
nd

j
s.

t.
π
u
,i
.D
ev
ic
es

[j
]=

d
ev
p
k

3
:

if
j

=
⊥

re
tu

rn
⊥
,π
u
,i

4
:

p
p
k
,s
p
k
←
U
se
rK

ey
G
en

(1
n
)

5
:

S
←
π
u
,i
.S
es
si
on
s

6
:

fo
r
s
in
S

do
7

:
p
k
j
,s
←
π
s u
,i
.P
K

[j
]

8
:

rc
h
sk
s
←
π
s u
,i
.r
a
n
d

9
:

C
r
e
v
,s
←
R
.R
ev
ok
e(
p
k
j
,s
,π
s u
,i

)
10

:
E
x
tr
a
R
a
tc
h
et

(π
s u
,i

)
11

:
c o
u
t,
s
←
S
.S
en
d
(“

”,
π
s u
,i

)
12

:
m
R
D
M
←
rc
h
sk
s
‖s
p
k
‖d
ev
p
k

13
:

C
in
,s
←
R
.E
n
c(
m
R
D
M
,π
s u
,i

)
14

:
C
r
e
v
,s
←
C
r
e
v
,s
‖C

in
,s

15
:

π
u
,i
.D
ev
ic
es

\ ←−
{d
ev
p
k
}

16
:

re
tu

rn
{C

r
e
v
,s
,c
o
u
t,
s
} s
∈
S
,p
p
k
,π
u
,i

D
ec

R
ev

ok
e(
{C

r
e
v
,o
} o
∈
π
u
,k
.S
e
s
s
io
n
s
,π
u
,k

)

1
:

fo
r
se
ss
io
n
o
∈
π
u
,k
.S
es
si
on
s

do
2

:
C
r
e
v
,o
‖C

in
,o
←
C
r
e
v
,o

3
:

R
.D
ec
R
ev
ok
e(
C
r
e
v
,o
,π
o u
,k

)
4

:
m
o
←
R
.D
ec

(C
in
,o
,π
o u
,k

)
5

:
rc
h
sk
o
‖s
p
k
‖d
ev
p
k
←
m
o

6
:

π
o u
,k
.r
a
n
d
←
rc
h
sk
o

7
:

π
u
,k
.s
p
re
k
ey
s
←
sp
k

8
:

π
u
,k
.D
ev
ic
es

\ ←−
{d
ev
p
k
}

9
:

re
tu

rn
π
u
,k

Fig. 11: The Multi-Device Signal construction. A ∪←− {x} stands for A← A∪{x}
and A

\←− {x} stands for A← A \ {x}

(u,i0, s0) (chain U) and from (v,`,p) to the initial session (v,`0,p0) (chain V).
Those two chains exist according to the definition 7. Now we consider an ab-
stract super device Su that is present from the initiation step of session (u, i0, s0),
and until the step ts of session (u, i, s). Its state is limited to RK, randsk and
sid2. The state of this super device takes successively the values of the state of
the different sessions composing the chain U . This is possible without conflict,
because, when two partners are present at the same time, they share the same
RK, randsk and sid2. (For sid2 this is by definition, for the others, by cor-
rectness of partnering). Su.sid2 contains all Signal messages received and sent
from the initialization to the present step tr of (u, j, r). We consider a similar
super device Sv that aggregates state information along the V chain. The recur-
sive definition of the matching ensures those two users are matching in terms
of Signal transcripts at each moment, including the initialization step. The cor-
rectness of the Signal protocol provides that Su and Sv share the same session
key at each moment. As Su.sessionkey (respectively Sv.sessionkey) is defined
as πsu,i.sessionkey (resp. πsu,i.sessionkey) when session (u,i,s) (resp. (v,j,r)) is
alive, we obtain that (u,j,i,ts) and (v,j,r,tr) share the same sessionkey.

MDIM indistinguishability

Proof. For all games Gx, we denote Sx the event A wins in Gx.

Game 0 is the original MDIM− IND Game as described in 9.

In Game 1, we guess which pair of users (initiator/receiver) (u, v) will be tar-
geted by the adversary in order to apply only on them the RDM−IND security.
We have np users.

AdvG0
A (n) ≤ n2

p · AdvG1
A (n).

In Game 2, we will collapse all devices of each of these two users into a super
single user. First, as the MDIM− IND security game respects the same restric-
tions as in RDM ind game for the RDM part, RDM security of the multicast
ensures none of the information sent through the RDM canal leaks with security
loss bounded by the RDM− IND factor. Second, correctness of the RDM ensures
us at each step all “alive” devices share same secrets and transcripts for signal
part and that the device that sent the signal message is present in the partnering
pool. With this consideration, one can think of the pool of devices of one user
as a single signal superdevice.

|Pr[S2]− Pr[S1] | ≤ 2 · εRDM−IND.

What we have to show is that these superdevices execute the Signal protocol
as a classical device. What is different from the original Signal design? There
are additions and revocations of devices. Once the multicast communication are
“erased” (swallowed by superdevice), there remains additional asymmetric sig-
nal ratchets (not at initial stage) and prekey bundle updates.

About the asymmetric ratchets. Several ratchets in a row on Alice’s side for in-
stance means that Bob’s ratchet random will be used several times. In Signal
proof [9] we are in [asym-ir or ri] case. There are two options, either freshness
relays on the root key, then randoms are not concerned and we are still in the
model. Either freshness relays on randoms. In our model, freshness flag on a
random is maintained from step to step: if it is corrupted at a step t, it will re-
main corrupted for the followings steps. So assumptions on the freshness on the
root key or on the random still holds. If the tested session is an initiator type
session and that there has been several [asym-ir] type step before challenge,
there is no problem. We will receive values (X,Y) from the GDH Challenger
and replace last initiator public random by X, and last responder public ran-
dom by Y as much time as needed (the number of ratchet step there has been on
the initiator’s side). We knows the successive initiator’s ratchet secret and can
evaluate the root key as needed. If test occurs on responder’s side after several
ratchet on responder side it is the same. Responder’s public key eventually has
been used many steps before but we can simulate perfectly the corresponding
steps (not concerned with the DDH challenge) as we know initiator’s secret in
this case. Additional ratchets do not alter Signal’s model with GDH assumption.

About the additional keys. The devices keys are only concerned with the multi-
cast. The main difference is that the entire Signal prekey bundle can be refreshed
with the revoke algorithm. This refresh should correspond to an unregistering
then registering again with the difference here that already ongoing sessions are
still alive. Indeed, these ongoing sessions continue to be used as an asymmetric
ratchet has already been performed during the revoke algorithm but the Signal
prekey bundle related to these sessions is not used anymore (due to the ratchets).
For future new session, not initiated yet, the new Signal prekey bundle is used
and it can be viewed as a Signal prekey bundle for a new user. In others terms,
it is like if each superdevice were composed of many independant Signal users.
In Game 2, we are in the traditional Signal protocol execution. In Game 3, in
the Challenge, if b=0, we replace the session key by a random. Signal security
ensures we can do this substitution and we have:
|Pr[S3] − Pr[S2] | = εMS−IND . Finally, in Game 3, A has no advantage since
the returned key is always random and we obtain:

AdvG0
A (n) ≤ n2

p · (2 · εRDM−IND + εsig).

D Implementation

We implement our solution over the Signal library libsignal-protocol-java acces-
sible on https://github.com/signalapp/libsignal-protocol-java. This is the one
library considered in [9]. We build our test in the experimental InMemory ver-
sion of the Library. This version does not use a physical server but simulates
the transport layout. We use the JCE and the BouncyCastle libraries for cryp-
tography services. We implemented our RDM with ECIES on curve secp256r1

and AES with 128 bits keys for hybrid encryption, and HMAC SHA256 for
the MAC scheme. We play a scenario where Alice uses three devices and Bob
one. We run n iterations of the following: Alice sends a message from a random
device, Bob and Alice other devices decrypt, Bob answers, all devices of Alice
decrypt. Finally, to compare our implementation, we run a similar scenario with
Alice devices represented by 3 different users in the Sesame solution. Figure 12
presents the results in term of time and number of connection (each time a mes-
sage is sent or received) for a run of 1 000 exchanges. We run our test on a 2,9
GHz IntelCore i7 with 16 Go of LPDDR3 RAM memory at 2 133 MHz. Our
code is accessible on https://github.com/multidevicerke. In Appendix D,
we detail how we locally patched the original library.

time (ms) number of data weight (bits)
connections

our solution 20 690 8 000 2 186 000
Sesame 3 007 12 000 990 000

Fig. 12: Results for a run of n = 1 000 exchanges.

The Sesame solution is quicker which can be explained by the use of asymmetric
encryption in the RDM scheme. However, the difference can be minimized since
asymmetric like computation in the Sesame version (Diffie Hellman asymmetric
ratchet for all channels) are done using the native elliptic curve library available
in the original library, whereas we employ an external BouncyCastle Library
for the encryption computations. Finally, our solution requires one-third less
connections. This corresponds to Alice sending only one message for Bob and one
for all her other devices instead of one message for each device. As a connection is
an irreducible time-consuming operation, this gain is not negligible. Considering
the amount of exchanged data, we have a ratio of 273 bits/connection which is
largely acceptable.

Patch on the Signal Library. We add a half − ratchet method that corre-
sponds to our ExtraRatchet procedure described in Section 3. In the original
code, as soon as Bob receives a reply, he performs two asymmetric step. He com-
putes the ratchet with Alice new randomness and obtains the root key, chain
key pair: (RKr, CKr) also computed by Alice. Then Bob immediately prepares
his keys for his reply. He generates his new randomness and computes a new
pair (RKs, CKs). RKs becomes Bob’s current root key. CKs defines Bob’s fu-
ture sending chain. The positive of this solution is that the sending procedure
does not have to consider whether to perform an asymmetric ratchet or not. The
negative is that Bob stores his future secret keys before it is necessary, which
downgrades the future secrecy property. In our solution, Alice can send another
ratchet. She uses her current root key, which is equal to RKr. When Bob tries
to computes the ratchet from his current root key RKs, he fails. We separate

https://github.com/multidevicerke

the two ratchet step: the receiver chain is updated when receiving a message,
and the sending chain is updated, if necessary, before sending a message. We
add a RatchetCounter in the Signal state to deal with whether or not perform
a ratchet in the Encrypt procedure.

	Multi-Device for Signal
	Introduction
	Context
	Existing solutions
	The Signal Protocol
	Our contributions
	PFS, revocation and out-of-order messages

	Ratcheted Dynamic Multicast (RDM)
	RDM security model
	RDM construction

	Multi-Device Signal
	Security model

	Related Work
	Conclusion
	Preliminaries and definitions
	RDM security analysis
	RDM security model
	RDM construction
	Proof of Theorem 1

	Multi-Device Signal security analysis
	Multi-Device Instant Messaging (MDIM) formal definition
	MDIM construction
	Proof of Theorem 2

	Implementation

