Efficient FPGA Implementations of LowMC and
Picnic*

Daniel Kales!, Sebastian Ramacher?, Christian Rechberger!, Roman Walch!3,
and Mario Werner?

! Graz University of Technology, Graz, Austria
{daniel .kales,christian.rechberger,roman.walch,mario. werner}@iaik .tugraz.at
2 AIT Austrian Institute of Technology, Vienna, Austria
sebastian.ramacher@ait.ac.at
3 Know-Center GmbH, Graz, Austria

Abstract. Post-quantum cryptography has received increased attention
in recent years, in particular, due to the standardization effort by NIST.
One of the second-round candidates in the NIST post-quantum stan-
dardization project is PICNIC, a post-quantum secure signature scheme
based on efficient zero-knowledge proofs of knowledge. In this work, we
present the first FPGA implementation of PicNic. We show how to effi-
ciently calculate LOWMC, the block cipher used as a one-way function in
Picnic, in hardware despite the large number of constants needed dur-
ing computation. We then combine our LOWMC implementation and
efficient instantiations of KECCAK to build the full PicNIC algorithm.
Additionally, we conform to recently proposed hardware interfaces for
post-quantum schemes to enable easier comparisons with other designs.
We provide evaluations of our PICNIC implementation for both, the stan-
dalone design and a version wrapped with a PCle interface, and compare
them to the state-of-the-art software implementations of PICNIC and sim-
ilar hardware designs. Concretely, signing messages on our FPGA takes
0.25ms for the L1 security level and 1.24ms for the L5 security level,
beating existing optimized software implementations by a factor of 4.

Keywords: LowMC - FPGA - digital signatures - NIST PQC - Picnic

1 Introduction

Cryptographic primitives with low multiplicative complexity have many inter-
esting applications in higher-level protocolsﬂ Recently, the post-quantum secure

* This is the full version of a paper which appears in CT-RSA 2020 — The Cryptog-
raphers’ Track at the RSA Conference 2020, San Francisco, CA, USA, Februrary
24-28, 2020, Proceedings. (© Springer, 2020.

4 For example, they find use as pseudo-random functions (PRF) in secure multi-
party computation (MPC) |ARST15/GRR16/RSS17] to handle encrypted data,
as oblivious PRFs in private set intersection (PSI) [FIPRO5IKRS™19], but
also enable the elimination of ciphertext expansion in homomorphic encryption
schemes [NLVITIARS™15).

digital signature scheme P1cNic [CDGT17)CDG™19] used zero-knowledge proof
of knowledge schemes to build a signature based on the knowledge of a pre-image
of a one-way function (OWF). Since the size of the proof of knowledge is directly
related to the number of AND gates in the OWF, P1cNIC employed block ciphers
with low multiplicative complexity. In particular, the designers of PICNIC chose
LowMC |[ARST15], a very parameterizable block cipher design, to build the
OWF. PICNIC is currently a round 2 candidate in the NIST post-quantum cryp-
tography project [AASAT19] and, since the construction lends itself to design
more complex statements, it has also been extended to other signature variants
including ring and EPID signatures [DRSISHIKKWTISIBEFT9| as well as double-
authentication preventing signatures [DRS18a]. All of those signatures only rely
on symmetric-key primitives for their security guarantees.

LowMC allows its users to select parameters suitable for the intended ap-
plication. For the use in PICNIC, this means that one can select instances with a
reduced data complexity and thereby reducing the number of required rounds.
More importantly, it can also be parametrized in such a way that the number
of multiplication gates — in this case AND gates — is minimized. For classical
security of 128 bits, LowMC only requires 861 AND gates for full security and
546 AND gates in the reduced data complexity case. In comparison to that,
other candidates for lightweight cipher designs require significantly more AND
gates to achieve full data security: Simon requires 4352 AND gates [BSST13],
Kreyvium requires 1537 AND gates |[CCE 16|, and Fantomas requires 2112 AND
gates [GLSV14] (cf. [CDG™17, Section 6.1] and |JAGR™16, Table 1]). None of
them come close to the numbers of LOowMC. Only recently, GMiMC [AGP™19)
was proposed, which can be reduced to 783 AND gates and can compete in the
low data complexity scenario. For reference, AES-128 implemented over GF(2)
requires more than 5000 AND gates [BMP13] and a round reduced version for
the low data complexity case would amount to 3200 AND gates (including key
schedule) [BDF11D].

While the choice of LOowWMC with small multiplicative complexity signifi-
cantly reduces the signature size of PIcNIC, the number of LOwWMC rounds has
to be increased for security. Conversely, with higher multiplicative complexity,
fewer rounds are required to achieve a secure design. Since each round consists of
a matrix multiplication involving the full state, the number of rounds essentially
define the runtime characteristics of P1cNic. Additionally, one matrix is sampled
uniformly at random for each round during instance generation. In practice, this
means that the size of the constants stored in implementations also grows lin-
early in the number of rounds. For the instances selected for NIST’s L5 security
level of 128-bit post-quantum security, the constants sum up to 621 KB. Recent
optimizations of the linear layer by Dinur et al. [DKP™19| reduced the storage re-
quirements for the constants down to 129 KB. Even with these optimizations, the
sheer size of involved matrices seems to prohibit an implementation on resource-
constrained devices, like microcontrollers or FPGAs. While the size of constants
is less of a problem for software implementations running on desktops, servers

or mobile phones, the size of these constants has a direct impact on the area of
a hardware design or the hardware utilization of FPGA designs, respectively.

As the NIST post-quantum project progressed into the second round, the
performance of the candidates is becoming a more important criterion. Conse-
quently, NIST published targets for optimized implementations. Since optimized
software implementations of LOWMC and PICNIC already exist, we focus on the
implementation of several variants on FPGA platforms, including the Xilinx
Kintex-7 as well as the Xilinx Artix-7. The latter is one of the optimization
platforms recommended by NIST.

1.1 Contribution

Our contribution can be summarized as follows. We provide the first FPGA
implementation of LOWMC using a state machine design. Due to the structure
of LowMC, the evaluation of the encryption algorithm requires a large number
of constants in the form of uniformly random matrices and vectors. We adapt
the recent result of Dinur et al. [DKPT19] to our FPGA implementation and
are thereby able to significantly reduce the hardware utilization of our design
compared to a naive implementation.

We combine the LOWMC implementation and custom KECCAK modules
to instantiate the complete PICNIC design on a Xilinx Kintex-7 board. This
implementation conforms to the round 2 submission of the PICNIC signature
scheme [CDG™19| and supports the L1 and L5 parameter sets. Additionally, we
port our implementation of P1CNIC-L1 to the Xilinx Artix-7 board. The imple-
mentation is flexible enough to support signing only and verification only versions
besides the full version without significant overhead. However, our implementa-
tion focuses on the Fiat-Shamir transformed version of PICNIC due to recent
results [DEMS19/Chal9] improving the confidence in its post-quantum security.
Furthermore, the implementation also conforms to the proposed guidelines for
hardware designs [FFD™ 18] of post-quantum schemes in the NIST standardiza-
tion project to facilitate easier comparisons with other designs.

We evaluate the performance of our FPGA design and provide comparisons
to optimized software implementations of PicNIC. Our design performs up to
a factor 4 faster for signing and up to a factor 3 faster for verification than
SIMD optimized software implementations. We also compare our design to other
hardware designs of signature schemes including SPHINCS [BHH'15]. While
the P1cNIC design has a higher hardware utilization, it performs significantly
better in run time than the SPHINCS design.

We discuss potential modifications to the LOwMC cipher design that would
benefit the FPGA implementation of PICNIC. In particular, the suggested changes
improve the hardware utilization by up to 30% and makes it possible to fit a
PicNic implementation for the 128-bit post-quantum security level on the NIST
recommended Artix-7 evaluation board.

Finally, we also provide a pipeline design of LOwWMC for high throughput
scenarios. This design may also be of interest in other contexts such as PSI
protocols [KRS™19], or fast database joins on secret shared data [MRRI9].

1.2 Related Work

Efficient hardware implementations are a very active point of research, and the
NIST post-quantum standardization project only amplifies this [AASA™19]. In
the following, we discuss other works in this area, with a focus on hardware
implementations of post-quantum algorithms. We still want to mention that for
a wide variety of primitives and schemes, hardware implementations have been
proposed over the years [MPLT11JACZT6ISGISISATE], among others.

Basu et al. [BSNK19] provide an evaluation of 11 of the second-round can-
didates of the NIST post-quantum standardization project. Their approach is
based on an automated synthesis of post-quantum accelerators based on the C
code provided by the submissions to NIST. They analyze the designs for both
FPGA and ASIC targets and compare their runtime and hardware utilization.
But since PICNIC is a fairly complex design with a large number of individual
primitives and constants, an FPGA implementation is not straightforward and
can not be synthesized easily from the software implementation. Therefore, Basu
et al. do not include PICNIC in their evaluation.

Besides this generic approach, Amiet et al. [ACZI18] presented an FPGA ac-
celerator for SPHINCS-256 [BHH™ 15|, a predecessor of SPHINCS+ [BHK™19),
another candidate in the NIST post-quantum standardization project. Their im-
plementation provides a highly optimized CHACHA12 pipeline, which is the core
of the SPHINCS design. They report signing times of 1.53 ms on the same
FPGA we target in our work.

Wang et al. [WSN18] presented FPGA implementations of the Niederreiter
cryptosystem using binary Goppa codes. For key encapsulation mechanisms and
key exchange, Howe et al. [HOKG18] presented implementations of FrodoKEM,
a post-quantum key encapsulation mechanism, for FPGAs and microcontrollers.
Roy et al. [RM19] give an optimized implementation of SIKE, a post-quantum
key exchange algorithm based on supersingular isogenies, for FPGA platforms.
In a different approach, Albrecht et al. [AHH™19] repurpose existing RSA copro-
cessors to speed up computations of RLWE-based schemes, concretely for KEM
Kyber.

2 Preliminaries

We will give an overview of LOwMC, PI1cNIC and its main building blocks.

2.1 LowMC

LowMC [ARS™15| is a block cipher designed to reduce the number of AND
gates needed for symmetric encryption. The design of the cipher is based on
the substitution-permutation network (SPN) design strategy, with the choice to
move to a partial substitution layer instead of applying the Sbox on the full state.
The parameters block size (n), key size (k), number of Sboxes per round (m),
allowed data complexity (d) and the number of rounds (r) are parameterizable

Linear Layer

IR I

Fig. 1: One round of encryption with LOWMC (modified from [ARST15]).

R
<

pere ki ® C;

according to the LOowMC v3 round formula [RSTIS8|. This formula calculates
the lowest number of rounds necessary to provide secure encryption for the given
parameter set. The script for determining the number of rounds for a given set
of LowMC parameters can be found in the official GitHub repository [Low].

A LowMC encryption starts with an initial whitening by XORing the first
round key to the plaintext, followed by r rounds. As depicted in Figure [1| one
round consists of four steps: (i) SBOXLAYER, (ii) LINEARLAYER, (iii) CONSTAN-
TADDITION and (iv) KEYADDITION. In the SBOXLAYER, m 3-bit Sboxes are
applied to the first s = 3 - m bits of the state. The remaining bits of the state
are not affected by the SBOXLAYER. The Sbox is defined as

S(a,b,c) =(a®b-c,a®b®a-c,a®dbdcda-b),

with three GF(2) inputs and outputs. From this definition, it is obvious that
only 3 AND gates are required per Sbox. In the LINEARLAYER, the state is
multiplied with a pseudorandomly generated matrix L, € GF(2)"*", where r is
the current round. The matrices are chosen pseudorandomly from the set of all
invertible binary n X n matrices during the instantiation of LowMC. During the
CONSTANTADDITION the vector C,. € GF(2)" is XORed to the state, where r
describes the current round. The vectors are chosen pseudorandomly during the
instantiation of LowMC. During KEYADDITION, the round key of the current
round is XORed to the state. All round keys are generated as a result of the
multiplication of the master key with the matrix K, € GF(Q)”Xk, where 7 is
the current round. The matrices are chosen pseudorandomly from the set of all
full-rank binary n x k matrices during the instantiation of LowMC.

2.2 Picnic and ZKB++

The PICNIC signature scheme is based on zero-knowledge proofs of knowledge of
pre-images of one-way functions. Currently, PICNIC supports two proof systems:
ZKB++ |CDG™17] and KKW [KKW18]. They both improve on the “MPC-in-
the-head” paradigm [IKOS07], which describes a generic way to turn MPC pro-
tocols into zero-knowledge proofs. In this work we focus on the parameter set
using ZKB++, since it is more efficient in runtime.

ZKB++ builds the zero-knowledge proof system from (2, 3)-circuit decomposi-
tion, which we describe in more detail. Let ¢ be some circuit and y = ¢(x), where

x is some secret input and y is the publicy-known output. Within (2, 3)-circuit
decomposition, the computation is decomposed in the following way [GMO16]:

— SHARE splits the input into three input shares.

— UPDATE advances the computation one gate at a time, computes the wire
values for the next gate and returns the updated view.

— OuTPUT produces the output shares based on the final view.

RECONSTRUCT recomputes the output from the three output shares.

The decomposition of the circuit has to satisfy correctness and 2-privacy [GMO16]:

Correctness: The reconstruction of the output shares y; must always be the
result of the original relation y = ¢(x).

2-Privacy: It should not be possible to reveal information about the private
key x by publishing any information on any two players.

In ZKB++, (2, 3)-circuit decomposition is constructed as follows: Let R be an
arbitrary finite ring and ¢ a function such that ¢: R™ — R’ can be expressed
by an n-gate arithmetic circuit over the ring using addition (respectively mul-
tiplications) by constants, and binary addition and binary multiplication gates.
A (2, 3)-decomposition of ¢ is then given by:

Share(x, k1, ko, k3): Samples random 21,29 € R™ from k; and ks and computes
g such that 1 + 22 + x5 = . Returns views containing x1, x2, 3.

Updategj)(viewl(-j),viewl(-i)l,k;i,ki“): Computes player P;’s view of the output
wire of gate g; and appends it to the view. For the k-th wire w; where
w,(f) denotes P;’s view, the update operation is defined as follows:

Addition by constant (w, = w, + ¢): wl(f) =w) +cifi=1and w,(f) =
wt? otherwise. ' _

Multiplication by constant (w, = ¢ - w,): wl(f) =c-wd

Binary addition (w. = w, + wy): w&” = wc(f) + wél)

Binary multiplication (w. = w, - wp): w,(f) = wt(f) . wl()l) + w((lHl) ~w,(f) +
wt? _wl()erl) + R;(¢)— Riy1(c) where R;(c) is the c-th output of a pseudo-
random generator seeded with k;.

Outputi(viewl(-n)): Return the ¢ output wires stored in the view view

Reconstruct(y1, 2, y3): Computes y = y1 + y2 + y3 and returns y.

(n)

%

Note that the player P; can compute all gate types except for binary multipli-
cation gates locally as the latter requires inputs from P; ;. In other words, only
outputs of binary multiplication gates need to be serialized as part of the com-
munication transcript, and thus the view size and consequentially the signature
size of PICNIC depend on the size of the ring R and the number of these gates.

To create a proof the prover repeats the (2, 3)-circuit decomposition protocol
T times. For each run, the prover commits to the view of each player P; consisting
of the input share, a communication transcript, and the output share. After all
T runs, the prover sends all the output shares and commitments for each run
and player to the verifier, who responds with a challenge vector c. The challenge

tells the prover which two of the three players should be corrupted per run
and therefore which views should be published as part of the proof. Since the
decomposition satisfies the 2-privacy property, no information is leaked on the
secret key by publishing the views of two players. The verifier then recalculates
the two opened views and checks, (1) whether the opened views were calculated
correctly, (2) and if the three output shares can be reconstructed to y.

Each run gives some assurance that the prover knows the secret key x, there-
fore increasing the number of runs T" decreases the probability that the prover
can cheat without the verifier catching him at least once. Due to the nature of
the circuit decomposition, the prover could potentially cheat in 2 of the 3 pos-
sible challenges per run; therefore we calculate the probability for him to cheat
without getting caught as (2/3)7.

ZKB++ is a X-protocol, i.e., an interactive proof, that can be made non-
interactive by applying standard techniques such as the Fiat-Shamir (F'S) trans-
formation [FS86]. FS transformed X-protocols compute the challenge ¢ as the
output of a random oracle on the first message from the prover to the verifier,
which contains the commitments to the shares of the circuit evaluation. This
results in a non-interactive zero-knowledge proof protocol secure in the random
oracle model. To obtain a signature scheme the message is included in the call
to the random oracle as well.

In PICNIC, the circuit used for the circuit decomposition is C = LowMCy(p),
where k is a LOWMC secret key and (p, C'), a corresponding plain-/ciphertext
pair, which is known publicly and constitutes the public key. A signature is then
a proof of knowledge of a k satisfying this relation.

2.3 Picnic Instances and Parameters

For each of the three security levels S € {128,192,256}, there exist two variants
of the PicNIC algorithms differing in the choice of transformations turning the
JY-protocol into a signature scheme: one variant is based on the Fiat-Shamir
(FS) transformation, and the other is based on the Unruh (UR) transforma-
tion [Unrld]. In contrary to the FS transformation, which makes the resulting
non-interactive X-protocol secure in the random oracle model, the UR, transfor-
mation is provably secure in the quantum random oracle model (QROM) [BDF"11al,
where an adversary can query the random oracle in quantum superposition. How-
ever, recent results by Don et al. [DFMS19] and Chailloux [Chal9] show that
the specific use of the FS transformation in PICNIC is also secure in the quantum
random oracle model. Therefore, we focus our implementations on the variants
of P1cNIC using the F'S transformation and ignore the more costly variants based
on the Unruh transformation, that would require additional KECCAK instances
to be fitted into the FPGA design.

PicnNic uses LOWMC to reduce the size of the overall proof and thus the
signature. The proof contains a transcript of a party, i.e., the view of the party
for each AND gate in the circuit. Due to the additive secret-sharing used, XOR
gates can be computed locally and do not influence the signature size. There-
fore, LOWMC is used instead of other lightweight ciphers, since, as discussed

Table 1: PICNIC parameters with LOWMC instances (block size n, key size k, #
of Shoxes m, rounds r), sizes of public key pk, secret key sk and signatures o.

LowMC Hash/KDF Sizes
Parameter Set S T| n k m r|Algorithm l|pk sk o

Picnic-L1-FS 128 219|128 128 10 20| SHAKE128 25632 16 < 34032
Picnic-L3-FS 192 329|192 192 10 30 | SHAKE256 384 |48 24 < 76772
Picnic-L5-FS 256 438256 256 10 38| SHAKE256 51264 32 < 132856

in Section [I} alternatives to LOWMC require significantly more AND gates. Ta-
ble [I] shows the LowMC instances that are used in PICNIC and their AND gate
counts. We note that those instances are selected to provide a trade-off between
signature size and runtime [CDG'17]. We want to note though, that even when
the instances are selected based on this trade-off, they can still be represented
with a lower number of AND gates than alternative cipher designs.

Table [1| shows the parameters of the different PICNIC versions based on the
Fiat-Shamir transformation. The expected security of the various instances cor-
responds to S bits against classical attacks and S/2 bits against quantum attacks.
The parameter T describes the number of repetitions of ZKB++ required to re-
duce the soundness error to the desired security level [CDG™19]. Additionally,
Table[I]shows the different key and signature sizes for the PICNIC instances. One
particular optimization of ZKB++ [CDGT17] has the result that the signature
size is dependent on the challenge, because for one of the players in the MPC
protocol we need to include some auxiliary information in the proof. Therefore,
the expected signature size will be smaller than values specified in the table.

In the remainder of this work, we focus our implementation on the PICNIC
instances with security levels S € {128,256} based on the FS transformation,
namely PicNic-L1-FS and Pionic-L5-FS. Similarly, for LowMC the focus lies
on instances with 128 and 256-bit block and key sizes.

PicNic2 Instances. In the second round of the NIST post-quantum standard-
ization project, the PICNIC team introduced an additional new parameter set,
called PicNic2. The main difference in the new parameter set is the choice
of the underlying proof system. In PioN1c2, ZKB++ was complemented with
KKW [KKW18], which is also based on the “MPC-in-the-head” paradigm, but
uses a different MPC protocol with precomputation. The nature of the new proof
system allows for shorter signatures, but it has an increased number of players
in the simulated MPC protocol resulting in longer signing and verification times
when compared to PICNIC. An evaluation of these additional parameter sets on
FPGA platforms is an interesting topic for future work.

3 Implementation

We will now describe our implementationﬂ of LowMC and the PICNIC signa-
ture algorithm on an FPGA platform. We first give insight into the design of
the main module of PICNIC, the computation of LOWMC. Following that, we
show how to combine this module with several SHAKE modules to instantiate
the full PICNIC signature scheme for the L1 and L5 security levels. In our imple-
mentation, we use the dual-port RAM module available as in the open-source
framework MEMSEC [WUS™17/WU].

Target Platform. For our design, we target a Xilinx Kintex-7 board — concretely
we use a Xilinx Kintex-7 FPGA KC705 Evaluation Kit. Our target FPGA has
203800 lookup-tables (LUTs), 407600 flip-flops (FF) and 445 BRAMs available.
In an announcement on the official mailing list of the NIST post-quantum stan-
dardization project, it was specified that implementors should target the Artix-
7 platform due to its widespread use. Since the toolchain we use, Xilinx Vi-
vado, also supports Artix-7 platforms as a target, adaptation to this platform
is straightforward, and we discuss the resulting Artix-7 resource utilization in

Section .1l

3.1 Optimized VHDL Implementation of LowMC

One of the major modules in our PICNIC design is the evaluation of the LowMC
block cipher. During PICNIC’s signing process, a proof of knowledge is generated
by evaluating the LOWMC encryption function in an MPC protocol. As dis-
cussed in Section this is done by applying the (2, 3)-circuit decomposition as
defined by ZKB++ to the LOWMC circuit. In terms of the matrix multiplications,
the sharing of the circuit requires the 3-fold evaluation for signing.

In this section, we discuss our design choices and the difficulty of a LowMC
VDHL implementation and compare a straightforward standalone implementa-
tion of LOWMC with a standalone implementation using the optimizations by
Dinur et al. [DKPT19]. We shortly give an intuition of these optimizations in
the following Sections and refer the reader to [DKPT19| for a more detailed
explanation.

Design Choices. The difficulty in implementing LOwMC (and consequently
PicNic) in VHDL arises from the high number of constants involved in the
matrix multiplications in LOWMC’s linear layer and round key schedule. For
the LOWMC instance in PicNIC-L5, 621 kB of constants are required which
can be reduced to 129 kB by using the optimizations in [DKP'19|. Usually, we
consider using block RAM (BRAM), RAM cells directly located on FPGAs, for
storing a large amount of constants. The Kintex-7 FPGA comes with dual-port
BRAM cells with a capacity of 36 kB each, which are capable of providing at
most 72 bits during one clock cycle at each port. During one round we multiply

5 All implementations are available at https://github.com/IAIK/Picnic-FPGA!

https://github.com/IAIK/Picnic-FPGA

the inner state of LOWMC to an S x S bit (256 x 256 for P1cNIC-L5) matrix.
Considering a high-performance implementation, where we want to perform the
matrix multiplication in one clock cycle, we would have to use ~ 455 BRAM
cells in parallel, which exceeds the number of available cells. The alternative
multi-cycle approach would, therefore, necessarily lower the performance of the
implementation. Furthermore, in the case of high BRAM cell usage, additional
clock frequency penalties have to be expected due to increasing routing delays.

In our implementation, we decided to encode the constants for the matrices
in lookup-tables (LUTs). This decision implies a high hardware utilization of
our design, but comes with the advantage of fast matrix multiplications (1 clock
cycle each) and therefore with the best performance. A low area implementa-
tion of LOWMC (and consequently PICNIC) using BRAMs instead of LUTs for
constants could be an interesting topic for future work.

LowMC Optimizations. The main idea behind the optimizations proposed
in [DKP™19] is that all operations except the Sbox layer are linear. Further-
more, only part of the state is affected by the Sbox layer. For example, consider
the key addition: we can swap the order of the linear layer and the key addition
by multiplying the round key with the inverse of the linear layer. Subsequently,
we can move part of the key addition through the identity part of the Sbox layer
and combine this part of the key addition with the key addition of the previ-
ous round. This process can be repeated recursively until we have combined a
large part of the key additions in the initial key addition before the first round.
The same process can be repeated for the round constants. Using some more
advanced linear algebra properties, we can also move parts of the linear layer
matrix multiplication to the next or previous round, again repeating this process
to combine parts of the linear layer in the last or first round.

Figure [2a] shows the VHDL design of LowMC without the optimizations. In
Figure 2b] we present the design with the optimizations applied. Without the
optimizations, there is only one implementation for all the rounds, and the matrix
multiplications affect the entire state. In the optimized implementation, there
are 5 different matrix multiplication modules, each for a matrix with different
dimensions. The Sbox layer, round key, and constants of the new implementation
only affect the first s bits of the state, and the linear layer matrix multiplication
follows the algorithm in [DKP™19).

Optimized Hardware Utilization. The impact of the optimizations depends on
the concrete LOWMC instance. It especially depends on the number of Sboxes
m and the resulting size of the non-linear layer. The fewer Sboxes per round,
the more significant is the effect of the optimizations. The concrete effect of the
optimizations can be seen in Table [2, where the required lookup-tables (LUTs)
of the LowMC VHDL implementation are shown for the two different LowMC
instances used in PIcNIC-L1-F'S and PicNIc-L5-FS. The instance for security
level L1 only requires about a third of the LUTSs required before, and the instance
for security level L5 only requires about a fifth of the LUTs of the straightforward
version. Without the optimizations, it would not even be possible to synthesize

10

Plain

.
wo |
fa— siaie
Plain D
Reg
Q
o | %n
Key Lo State "
k Key
. . Cipher
D /i/
Round — i
Ki ck —p Reg Round —]
Q Py, Shox K
Const(Round) %,

Cipher

Shox li—l
n
L

n o
n
Round
N i i Perm,
; L
n
Round — i
L ' L;
s Li
Const(Round) i

(a) LowMC implementation without opti- (b) LOowMC implementation with opti-
mizations of the round key and linear layer mized round key computation and linear
computations. layer evaluation.

Fig. 2: State diagrams of different LOwMC implementations.

Table 2: LUTSs of one LOowMC with/without optimizations (203800 available).

LowMC LowMC without opt. with opt. Improv.
instance n k m r|LUTs %LUTs|LUTs % LUTs %
PicNic-L1-FS | 128 128 10 20| 42395 20.80% |13558 6.65% |68.02%
PicNIc-L5-FS | 256 256 10 38 (209348 102.72% | 44431 21.8% | 78.78 %

one LOWMC instance for security level L5 on our FPGA board, whereas we
require several instances for the PICNIC implementation. The improvement for
LowMC instances with larger non-linear layers is smaller, though.

3.2 Pipeline versus State Machine

Besides the implementation of LOWMC using a simple state machine, we also
provide an alternative implementation using a pipelined design. While both de-
signs have a latency of r cycles to get a specific ciphertext, the pipelined design
has a much higher throughput with 1 ciphertext per cycle. The state machine

11

design, on the other hand, has to wait for an encryption to be finished before it
can process another plaintext and therefore has a throughput of 1 ciphertext per
r rounds. However, the state machine design requires fewer lookup tables on an
FPGA, because the LOWMC round only needs to be instantiated once. For the
P1icNIC coprocessor, we use the state machine design due to smaller hardware
utilization. When interested in higher throughput, for example, when it is used
as an oblivious pseudo-random function in a PSI protocol, the pipeline design is
the better choice.

3.3 Optimized VHDL Implementation of Picnic

We now use the LOwMC implementation as a building block for our PicNic
coprocessors. In the following, we shortly describe the other different submodules
and finally, the high-level design of the PICNIC coprocessors.

LowMC-MPC. In PicNIC, three copies of the LOWMC encryption circuit are
evaluated with three random additive shares of the secret key. Since the secret-
sharing used is additive, XOR gates can be computed locally for each part,
while some communication between the parties and randomness is required for
computing an AND gate. While a straightforward implementation of this uses
three copies of the LOWMC circuit, we present a further optimization. The
nature of the secret-sharing and circuit decomposition used in ZKB++ ensures
that for each wire w in the circuit, the equality w = w; ® wy ® w3, holds, where
w; is the share of party i. If we evaluate the circuit once in plain and store all
intermediate values w, we can use only two instances of LOWMC for signing and
compute the shares of the third party ws = w & wi & we whenever needed. This
optimization allows us to implement the LOwWMC-MPC module using resources
equivalent to only two LOWMC circuit evaluations, while still being able to
evaluate all players simultaneously. Additionally, we can precompute the plain
evaluation of the LOWMC circuit in parallel to the Seeds calculation at the
beginning of the PICNIC signing process and, therefore, do not slow down signing
while using this optimization.

During signature verification, only two players perform the LowMC-MPC
circuit evaluation; therefore, we naturally only require resources of about two
LowMC circuit evaluations to perform all players in parallel.

SHAKE. In PicNIC, instances of SHAKE are used for different purposes, both
as a hash function with fixed output or as an extensible output function to
generate pseudorandom tapes of arbitrary size. Therefore, we implemented a
custom, flexible KECCAK design, supporting many different configurations while
maintaining efficiency and small hardware utilization.

Seeds, Tapes, and Commitments. In the beginning, one master seed is pseudo-
randomly generated and expanded into seeds for each of the T runs. We use
three instances of SHAKE to expand the seeds for each player’s current run
into its random tape and three more instances to commit to the transcript of

12

the current run for each player. We are capable of calculating the randomness
required for run ¢+ 1 of PICNIC’s circuit decomposition in parallel to calculating
the commitments of run ¢, reducing the overall number of clock cycles for signing
and verification. However, due to limited routing freedom due to high resource
utilization of our synthesized P1cNIC-L5 design, this optimization would signif-
icantly increase the critical path of the design and, therefore, this optimization
is only used for Picnic-L1.

Challenge Generation (H3). Based on the Fiat-Shamir transformation, we in-
stantiate the random oracle for the challenge generation using SHAKE. All
commitments for all 7" runs are hashed together with some additional parame-
ters to produce the challenge vector. Since the challenge vector consists of entries
in {0, 1,2} to denote the player that is not revealed for this run, the H3 module
takes care to filter the output bits of the SHAKE call according to the Picnic
specification.

Serialization and Deserialization. We also implemented small submodules to as-
semble the final signature as a byte array conforming to the PICNIC specification.
For verification, we parse incoming signatures and store all the intermediate val-
ues of the opened views in the block RAM cells of the FPGA. These modules
are implemented to be able to handle the variable signature length of PICNIC
internally.

High-Level Design. We developed several different VHDL designs for P1CNIC-
L1-FS and PicNic-L5-FS. We implemented a standalone version for message
signing or signature verification only, as well as a version which is capable of
doing both.

The overall design of the implementations is a nested state machine, where
the high-level design connects the inputs and outputs of all the described sub-
modules. Figure |3 shows a diagram of the high-level design, with the signing
process shown on the left side and the verification process on the right. In the
designs which are capable of doing both signing and verification, both processes
are implemented. Most of the submodules can be reused for both signing and
verification, only the MPC module has to implement two different Sbox calcula-
tions, and the combined design has to include both the Serialize and Deserialize
submodules. Therefore, the difference in hardware utilization between a sign-only
design and a sign/verify design is quite low.

4 Evaluation

In the following, we evaluate and discuss the performance and hardware utiliza-
tion of our design. We not only give cycle counts for signing and verification but
also show the real-world performance of our designs by additionally synthesizing
a PCle wrapper around our PICNIC cores and using them from a C library.

13

Message Message, Signature

Tapes|[0]
MPC[t]

‘ Commit[t] ‘ ‘ Tapes[t + 1] ‘ ‘ Commit[t] ‘ ‘ Tapes|[t + 1] ‘

Challenge

Serialize

Signature Invalid Valid

Fig. 3: High-level design of P1CNIC signing (left) and verification (right).

4.1 Hardware Utilization

First, we give an overview of the required hardware utilization of the different
P1cNiIC submodules, and then show the utilization of the developed coprocessors.
The used FPGA, a Xilinx Kintex-7 board, has 203800 lookup-tables (LUTS),
407600 flip-flops (FF) and 445 BRAMs available.

PicNic Submodules. To give an overview of the costs of the individual submod-
ules, we present their hardware utilization for PicN1Cc-L1-FS and PicNic-L5-FS
in Table[3] This table shows that the LowMC-MPC modules require by far the
most hardware utilization. However, observe that the combined submodule which
is able to do the LoWMC-MPC encryption for both signing and verification only
requires less than one percent more LUTs than the submodule which can only
be used for signing. This is because we can reuse large parts of the circuit for
both signing and verification, the only difference is in the Sbox layer, where the
AND gates are evaluated.

P1cNic Coprocessors. Table[d compares the hardware utilization of the different

submodules of the final coprocessors, including our 6 different PICNIC cores
synthesized for the Kintex-7. Our PICNIC cores require a lot of LUTs on the

14

Table 3: Hardware utilization for different parts of the L1 and L5 designs on
Kintex-7.

L1 L5
Design Part LUTs % FF % | LUTs % FF %
KECCcAK 3726 1.83% 1606 0.39% ‘ 3726 1.83% 1606 0.39%

Tapes (3x KECCAK) 9574 4.70% 5589 1.37%‘ 9420 4.62% 9621 2.36%
Commits (3x KECCAK) 12221 6.00% 5589 1.37%‘14160 6.95% 6357 1.56 %

Seeds (1x KECCAK) 5867 2.88% 1846 0.45% ‘ 8974 4.40% 2640 0.65%
H3 (1x KECCAK) 7236 3.55% 3641 0.89% ‘ 8815 4.33% 4085 1.00%
Serialize 1962 0.96% 125 0.03%| 1608 0.79% 172 0.79%
Deserialize 2025 0.99% 125 0.03%| 2317 1.14% 155 0.04%

LowMC-MPC Sign 31837 15.62% 3060 0.75% | 97066 47.63% 5940 1.46%
LowMC-MPC Verify 29756 14.60% 1126 0.28 % (93959 46.10% 2246 0.55%
LowMC-MPC 32224 15.81% 3061 0.75% 98319 48.24% 5958 1.46 %

Table 4: Hardware utilization for different parts of the coprocessor for Kintex-7.

Design Part LUTs %| FF % | BRAM %
PCle/DMA 22216 10.90% |22692 5.57%| 425 9.55%
PrcNic-L1 90037 44.18% |23105 5.67%| 52.5 11.80%

PicNic-L1-SIGN 76472 37.52% [21061 5.17% 52.5 11.80 %
PicNIc-L1-VERIFY 68614 33.67 % (16821 4.13% 33.5 7.53%

PicnNic-L5 167530 82.20% | 33164 8.14 % 98.5 22.13%
P1cNIC-L5-SIGN 149456 73.33 % | 30441 7.47% 98.5 22.13%
PICNIC-L5-VERIFY 138547 67.98 % | 24278 5.96 % 62.5 14.04%

used FPGA, especially the PicNic-L5-FS implementations. The PCle/DMA
Subsystem which connects the PICNIC cores to the PCle port of the used FPGA
board adds about 22000 additional LUTSs to the design.

On the Artix-7, the picture is quite different, as we only have 133800 LUTs,
267600 flip-flops and 365 BRAMSs available. Consequently, neither PIcNIC-L5
P1cNiIc-L5-SIGN, nor PICNIC-L5-VERIFY fit on this board. The hardware uti-
lization of the Artix implementations of L1 are depicted in Table

Critical Path. The critical path of the synthesized design is across the matrix
multiplications in LOwWMC’s linear layer and round key schedule, due to the
high number of constants involved. But we also observed, that since the PICNIC-
L5 design has a considerable hardware utilization, the synthesizer has much
less freedom in routing the design and, therefore, naturally produces long paths

15

Table 5: Hardware utilization on Artix-7.
Design Part LUTs %| FF % | BRAM %

Picnic-L1 90037 67.29% (23105 8.63% 52.5 14.38%
PionNic-L1-S1GN 76472 57.15% | 21061 7.87% 52.5 14.38%
PicNIc-L1-VERIFY 68614 51.28 % |16821 6.29 % 33.5 9.18%

between registers. These long paths make it very difficult to optimize the design
for high frequencies.

4.2 Clock Cycles

Table [6] lists the number of clock cycles each submodule of our PICNIC imple-
mentation requires. The LOWMC-MPC module performs the evaluation of a
round in two clock cycles and, therefore, requires 2 - r cycles in total. Evaluating
a round in one cycle would have drastically increased the critical path of the
design since two matrix multiplications (linear layer and round key schedule)
would have been performed sequentially in this case.

Our KECCAK implementation performs one round of the state transforma-
tion function during one clock cycle, which leads to 24 cycles for one absorb-
ing/squeezing phase. The number of absorbing/squeezing phases, therefore, de-
termines the number of clock cycles required for the Tapes, Commits, Seeds, and
the first part of the H3 submodules. The duration of the second part of the H?
submodule depends on the generated challenge and differs for every signature.

In PicNiC we have T runs of the FS transformed ZKB++ proof system, in
contrary to the Seeds, H3, Serialize and Deserialize modules which are only
required once. In Table [6] we, therefore, also show the overall runtime of each
submodule involved in the proof creation and it can be seen, that the proof
system dominates the overall runtime of the signature creation and verification
process.

4.3 Benchmarks

To verify the performance characteristics of our implementation, we compared
the runtime of the coprocessors running on a Kintex-7 board to the state-of-the-
art optimized software implementations of PicNIC. The platforms used for the
benchmarks are as follows:

Platform A Intel i7-960, 3.2 GHz with 16 GB RAM, Debian 9
Platform B Intel i7-4790, 3.6 GHz with 16 GB RAM, Ubuntu 18.04.1
Platform C Intel E31230, 3.2 GHz with 8 GB RAM, Ubuntu 18.04.2

We used platform A to test our coprocessors, platforms B and C were used in
the P1cNIC design document [CDG™T19] to test their optimized software imple-
mentations.

16

Table 6: Clock Cycles per Submodule.

Design Part Picnic-L1-FS Piconic-L5-FS
LowMC-MPC 40 76
Tapes 51 75
Commits 51 100
Seeds 1732 7904
H3 (absorb) 6490 26220
Deserialize 1 per 128 bit 1 per 128 bit
Serialize 1 per 128 bit 1 per 128 bit
Tx LowMC-MPC 8760 31844
Tx Tapes 11169 31425
Tx Commits 11169 41900

Table 7: Runtime comparison of the coprocessors on benchmark platform A.

clock clock FPGA C-Access
Coprocessor frequency (MHz) cycles runtime (ms)
PicNic-L1-siGN 125 ~ 31300 0.250 0.349
PicNic-L1-VERIFY 125 ~ 29600 0.237 0.395
PionNic-L5-s1GN 125 ~ 154500 1.236 1.383
PicNIC-L5-VERIFY 125 ~ 146600 1.173 2.128

Table [7] shows the average runtime of the developed coprocessors for signing
and verification. The column FPGA runtime is the calculated time resulting
from the clock frequency and the number of clock cycles (including 1 cycle per
128 bit of data transmission) and therefore is the actual runtime of the FPGA.
The column C-Access runtime is the measured runtime using our developed C
library on platform A.

As Table[7] shows, the C library developed to interface with the coprocessor
adds some overhead to the signing and verification process. For signing, the
overhead is about 0.1 ms in runtime, but for verification, the overhead is a bit
larger. Especially for PICNIC-L5-FS the measured runtime is much bigger than
the raw verification runtime of the coprocessor. We suspect that this is due to
the driver for the PCle/DMA Subsystem being slower for writing large amounts
of data, like the P1cNIC-L5-FS signature, from the PC to the FPGA board and
that this overhead could be optimized further.

For comparison, Table 8] shows the runtime of the optimized implementation
of P1cNIC in C and an optimized version which uses processor-specific compiler
intrinsics on two different benchmark platforms as described in the official P1c-
NIC design document |[CDG™19]. This table shows, that the runtime of PICNIC
highly depends on the underlying hardware and if the CPU supports single in-

17

Table 8: Runtime comparison of optimized software implementations [CDG™19).

Platform Parameters using SIMD Sign Verify

PicnNic-L1-FS 1.44ms 1.15ms
PicnNic-L5-FS 5.87Tms 4.92ms

PicNic-L1-FS 2.82ms 2.34ms
PicnNic-L5-FS 12.37ms 10.59 ms

PicNic-L1-FS 4.20ms 3.40ms
PiconNic-L5-FS 17.67ms 14.67ms

PicnNic-L1-FS 4.41ms 3.56ms
PicNic-L5-FS 19.52ms 16.81 ms

aalan|ww|ww
x x| Aa %%«

struction, multiple data (SIMD) instruction sets, like SSE2 and AVX2, which
further improve execution time. However, in any case, our developed coproces-
sors are faster than the corresponding software counterparts and do not rely
on specific CPU instructions. For PIcNIC-L1-FS signing is =~ 4 times faster
than the fastest software implementation, verification is ~ 3 times faster. For
PicNic-L5-F'S our implementations are =~ 4 times faster for signing and ~ 2.3
times faster for verification. For CPUs which do not support AVX2 instructions
and for portable C-only implementations the speedup of our coprocessors is even
more significant.

4.4 Comparison to FPGA Implementations of Other Signature
Schemes

To put our FPGA implementation in context of other signature schemes, we
compare our PICNIC coprocessors to implementations of ECDSA [ACZ16] and
RSA coprocessors [SA14] as well as implementations of SPHINCS-256 [ACZ18)]
and BLISS-IV [PDG14]. Table [J] compares several different FPGA implementa-
tions of various signature schemes, the runtime for signing ¢ is calculated from
the clock frequency and the number of clock cycles and therefore does not take
the overhead of any transmission of data via a C-program into account. Thus
this value compares to the column FPGA runtime of Table [7]

As Table [9] shows, our PI1CNIC-L5-FS coprocessors, which have the same
security level as a SPHINCS-256 [ACZ18] coprocessor, have a slightly better
runtime for signing on the Kintex-7 (K7) FPGA. Similar, for the SPHINCS+
design obtained from the high-level synthesis design flow [BSNK19], our copro-
cessor has a significant better runtime at the cost of higher hardware utiliza-
tion. The implementations of the traditional signature schemes RSA [SA14] and
ECDSA [ACZ16] on a Virtex-7 (V7) FPGA are also slower than our copro-
cessors. The ECDSA implementation in [Giinll] occupies more area but uses
high parallelism to drastically increase their throughput. The implementation of
BLISS-IV [PDG14], another post-quantum signature scheme based on lattices,

18

Table 9: Comparison of FPGA implementations (modified from [ACZIS]).

Security Area f t
Scheme Classic PQ FPGA LUT/FF/BRAM MHz ms
SPHINCS-256 [ACZ1§| 256 128 K7 19067/38132/36 525 1.53
SPHINCS+-128 [BSNK19] 128 64 V7 11438/3335/7 100 9.38
BLISS-1V [PDG14] 192 ? S6 6438/6198/7 135 0.35
ECDSA-256 [ACZ16] 128 x V7 6816/4442/0 225 1.49
ECDSA-256 [Giinli] 128 X V4 34869/32430/176 375 0.04
ECDSA-521 [ACZ16] 256 X V7 8273/7689/0 161 5.02
RSA-2048 [SA14] 112 x V7 3558 slices/0 399 5.68
Picnic-L1-FS 128 64 K7 90037/23105/52.5 125 0.25
PicNic-L5-FS 256 128 K7 167530/33164/98.5 125 1.24

on a Spartan-6 (S6) FPGA is very efficient regarding area and runtime for sign-
ing. However, it has a lower security level, and its security against a quantum
adversary is not as well understood as for schemes based on symmetric primitives
like SPHINCS and PIcNIC.

However, even though our coprocessors are very competitive with regards to
signing times, the hardware utilization is significantly higher in comparison to
implementations of other signature schemes. This is due to the nature of P1cNIC
relying on a high number of different KEcCAK and LOWMC primitives, where
especially the LowMC instances have a high hardware utilization on their own.
In comparison, the coprocessor of SPHINCS-256, a hash-based post-quantum
signature scheme, can be built efficiently using only one pipelined CHACHA12
instance and one instance of BLAKE-256 [ANWWI3| and as a result, requires
less hardware utilization [ACZI§].

4.5 Evaluation of the LowMC Pipeline Design

Finally, we evaluate our pipelined design. After r cycles, the design is capable
of producing one ciphertext per cycle (cf. Section 7 a feature which is of
particular interest for high throughput use cases. We compare our coprocessor
(f = 125MHz) for a LowMC instance with 128 bit block size and full data
complexity to AES-128 accelerated with the AES-NT instruction set [Int10]. For
this comparison we choose a LOWMC instance with n = 128, k = 128, m = 25,
r = 11. This instance provides a trade-off between costs in the linear layer and
the number of AND gates. The comparison of the coprocessor, including C-
access times, the raw FPGA runtime, the SIMD-optimized LOWMC software
implementation and AES-NI is depicted in Table [I0] These benchmarks were
recorded on a PC running Ubuntu 16.05 with an Intel i7-4790 CPU, 3.6 GHz.
As the table shows, the coprocessor speeds up encryption by a factor of ~ 84
compared to the LOWMC software implementation, and when considering the
C-access time, the improvement is still up to a factor of ~ 14. Compared to

19

Table 10: Performance of LowMC(n = 128,k = 128, m = 25,r = 11) imple-
mented in software and in our pipeline coprocessor, as well as AES-NI.

LowMC AES
Encryptions Size FPGA-Raw FPGA-C Software AES-NI
220 16 MB 0.008s 0.046s 0.677s 0.022s
Q2 256 MB 0.134s 0.771s 10.78s 0.359s
226 1024 MB 0.537s 3.11s 43.31s 1.436s
228 4096 MB 2.15s 12.57s 182.65s 5.743s

AES-NI, the raw performance on the FPGA is better by a factor of &~ 2.75, but
the access time adds significant overhead. Therefore, we expect this design to
render LOWMC an alternative for PSI protocols [KRS™19] or database joins on
secret shared data [MRRI9].

This speed up direct translates to the same performance gain in the setup
phase of the PSI protocol as proposed in [KRST19|. Thus, the excellent perfor-
mance of our coprocessor makes it feasible to use LOowMC in the PSI protocol.
Thereby, the PSI protocol can profit from reduced communication overhead dur-
ing the online phase due to the reduced multiplicative complexity of LowMC
without requiring the tradeoff of having a slower setup phase.

5 Reducing the Hardware Utilizations

The large size of the constants needed for LOWMOC is one of the limiting factors
to implement P1CNIC on FPGAs. Even after applying the optimizations to the
round key and linear layer computations, the constants are still too large to fit an
implementation on an Artix-7 board. To fit an implementation of PICNIC suit-
able for the 128-bit post-quantum security level on this board, different LowMC
instances with fewer rounds could be selected. Conversely, as this change requires
the number of Sboxes to be increased to retain the security guarantees, the sig-
nature size will increase. In addition to fitting P1CNIC on smaller FPGA boards,
the performance of the optimized implementations would also improve, since
fewer rounds are required to achive the same level of security when more Sboxes
are used. Alternatively, further improvements are required to reduce the size
of LowMC constants. We envision multiple alternatives that could make this
possible.

The current design of PICNIC was chosen to have an acceptable trade-off be-
tween area and runtime and, therefore, evaluates the LOwMC-MPC simulation
concurrently for all three players by using two instances of the LOWMC matri-
ces. By doing the MPC simulation consecutively, we would be able to reduce the
instances used to only one and reduce the hardware utilization. However, this
optimization would result in more clock cycles per LowMC-MPC rounds and

20

Table 11: Hardware utilization (LUTSs) with reduced LowMC.

Design Part LUTs Improvement Utilization
Kintex-7 Artix-7
LowMC MPC-L1 17751 44.91 % 8.71% 13.27%
LowMC MPC-L5 47615 51.57%| 23.36% 35.59 %
Picnic-L1 75662 15.97%| 37.13% 56.55%
PicNic-L1-SIGN 62272 18.57% | 30.56% 46.54%
PicNIc-L1-VERIFY 55321 19.37%| 27.14% 41.35%
PiconNic-L5 121299 27.60% | 59.52% 90.66 %
PicNIc-L5-SIGN 103688 30.62% | 50.88% T77.49%
PicNIC-L5-VERIFY 92910 32.94% | 45.59% 69.44%

longer critical paths after synthesis reducing the clock frequency, and, therefore,
would produce a very high performance penalty of at least a factor 2 if not more.

Another possibility to reduce the hardware utilization by modifying our de-
sign would be to reuse KECCAK instances for different purposes in the design.
However, this would again result in longer critical paths after synthesis, and since
our KECCAK design is very small in comparison to the LOWMC design, the re-
sulting performance penalty is too big in comparison to the actual reduction of
the hardware utilization.

The use of LOWMC in PIcNIC is relatively unique in the sense that it uses
LowMC instances with low data complexity. Only recently, LOWMC in this
setting has seen more security analysis [RST1§|, leading to LOowMC version
3 with a higher number of rounds. While the higher number of rounds on its
own is not a problem for the FPGA implementation, the size of the constants
also increases as more and more unique matrices are required. However, new
designs |[GKK™19| that are also optimized for a low multiplicative complexity
make use of a single matrix for the linear layer. We propose to apply this idea
also to LowMC, that is, the same uniformly random matrix is re-used for all
linear layersﬁ Thereby we can significantly reduce the hardware utilization as
can be seen in Table With this change, the Picnic-L5 design fits on the
Artix-7.

Furthermore, with this change in place, one could go a step further and re-
move the constants from the implementation altogether. The matrices and round
constants could then be derived from the LFSR as specified in the LowMC in-
stance generation algorithm. It would be necessary to store the intermediate
states of the LFSR where it is known to produce invertible matrices, though,
but then no invertible checks would need to be implemented. While deriving the

5 The LowMC designers confirmed in private communication that they do not expect
this change to enable a new attack vector. However, more security analysis on this
case would be required before this can be integrated into PICNIC itself.

21

matrices during runtime would come with a performance penalty, we expect it
the reduce the hardware utilization significantly.

Alternatively, LowMC could be replaced by recently proposed cipher designs
such as GMiMC |[AGP™19]. Similarly to LowMC, GMiMC — and in particular its
ERF variant — can be parameterized for the low data complexity scenario. It can
be parameterized in a way leading to roughly similar sized signatures with better
performance (in software). However, for an FPGA implementation, we expect it
to use a lot less area since the size of the constants is significantly smaller. For
the GMiMC instance over GF (217) with 63 rounds, the constants would consist
of only 63 field elements in total. The additional multipliers required for GF (217)
are cheap [ERI5] when compared to the size of LowMC matrices.

6 Conclusion

In this work, we presented two LOWMC designs for FPGAs. The first design
relying on a simple state machine shows the feasibility of implementing the post-
quantum signature scheme PICNIC on FPGA platforms. The resulting FPGA
design can sign messages for the L1 security level in ~ 31300 cycles and verify
signatures in /~ 29600 cycles. Using our concrete FPGA board, a Xilinx Kintex-7
FPGA KCT705 evaluation kit, this allows signing of a message using a C library
communicating with our board connected via PCle in 0.35 ms.

Acknowledgements. This work was partially supported by the EU’s Horizon 2020
ECSEL Joint Undertaking project SECREDAS under grant agreement n°783119,
by the European Research Council (ERC) under Horizon 2020 grant agreement
1°681402, by EU’s Horizon 2020 project Safe-DEED under grant agreement
n°825225, and by the IoT4CPS project which is partially funded by the “ICT of
the Future” Program of the FFG and the BMVIT. D. Kales was supported by
iov42 Ltd.

References

AASAT19. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone, and Yi-Kai Liu. Status report on the
first round of the nist post-quantum cryptography standardization pro-
cess, 2019.

ACZ16. Dorian Amiet, Andreas Curiger, and Paul Zbinden. Flexible fpga-based
architectures for curve point multiplication over gf(p). In DSD, pages 107—
114. IEEE Computer Society, 2016.

ACZ18. Dorian Amiet, Andreas Curiger, and Paul Zbinden. Fpga-based accelerator
for post-quantum signature scheme SPHINCS-256. JACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):18-39, 2018.

AGP™19. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofneg-
ger. Feistel structures for mpc, and more. In ESORICS (2), volume 11736
of LNCS, pages 151-171. Springer, 2019.

22

AGR*16.

AHHT19.

ANWW13.

ARST15.

BDF*11a.

BDF11b.

BEF19.

BHH™'15.

BHK*109.

BMP13.

BSNK19.

BSS*t13.

CCF™16.

CDG*17.

CDG*109.

Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. Mimec: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In ASTACRYPT (1), volume 10031 of
LNCS, pages 191-219, 2016.

Martin R. Albrecht, Christian Hanser, Andrea Holler, Thomas
Poppelmann, Fernando Virdia, and Andreas Wallner. Implementing rlwe-
based schemes using an RSA co-processor. JACR Trans. Cryptogr. Hardw.
Embed. Syst., 2019(1):169-208, 2019.

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. BLAKE2: simpler, smaller, fast as MD5. In ACNS,
volume 7954 of LNCS, pages 119-135. Springer, 2013.

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT (1), volume 9056 of LNCS, pages 430-454. Springer, 2015.

Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
ASIACRYPT, volume 7073 of LNCS, pages 41-69. Springer, 2011.
Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. In CRYPTO,
volume 6841 of LNCS, pages 169-187. Springer, 2011.

Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum EPID sig-
natures from symmetric primitives. In CT-RSA, volume 11405 of LNCS,
pages 251-271. Springer, 2019.

Daniel J. Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Pe-
ter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless
hash-based signatures. In EUROCRYPT (1), volume 9056 of LNCS, pages
368-397. Springer, 2015.

Daniel J. Bernstein, Andreas Hiilsing, Stefan K6lbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
In CCS, pages 2129-2146. ACM, 2019.

Joan Boyar, Philip Matthews, and René Peralta. Logic minimization tech-
niques with applications to cryptology. J. Cryptology, 26(2):280-312, 2013.
Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri.
NIST post-quantum cryptography- A hardware evaluation study. ePrint,
2019:47, 2019.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. ePrint, 2013:404, 2013.

Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrede Lepoint,
Maria Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers:
A practical solution for efficient homomorphic-ciphertext compression. In
FSE, volume 9783 of LNCS, pages 313-333. Springer, 2016.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In ACM CCS, pages 1825-1842. ACM, 2017.

Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Valdimir
Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Xiao Wang, and Greg Zaverucha. The picnic signature
scheme design document (version 2), 2019.

23

Chal9.

DFMS19.

DKP*19.

DRS18a.

DRS18b.

ER15.

FFDT18.

FIPRO5.

FS86.

GKK'19.

GLSV14.

GMOL16.

GRR™T16.

Ginll.

HOKGI18.

IKOSO07.

Int10.

André Chailloux. Quantum security of the fiat-shamir transform of commit
and open protocols. ePrint, 2019:699, 2019.

Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the fiat-shamir transformation in the quantum random-oracle model. In
CRYPTO (2), volume 11693 of LNCS, pages 356-383. Springer, 2019.
Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and
Christian Rechberger. Linear equivalence of block ciphers with partial
non-linear layers: Application to lowmc. In EUROCRYPT (1), volume
11476 of LNCS, pages 343-372. Springer, 2019.

David Derler, Sebastian Ramacher, and Daniel Slamanig. Generic double-
authentication preventing signatures and a post-quantum instantiation. In
ProvSec, volume 11192 of LNCS, pages 258-276. Springer, 2018.

David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring signatures
from symmetric-key primitives. In PQCrypto, volume 10786 of LNCS,
pages 419-440. Springer, 2018.

Hayssam El-Razouk and Arash Reyhani-Masoleh. New bit-level serial GF
(Zm) multiplication using polynomial basis. In ARITH, pages 129-136.
IEEE, 2015.

Ahmed Ferozpuri, Fearnoud Farahmand, Viet Dang, Malik Umar Sharif,
Jens-Peter Kaps, and Kris Gaj. Hardware API for Post-Quantum Public
Key Cryptosystems, 2018.

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In T'CC, volume 3378
of LNCS, pages 303—324. Springer, 2005.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, volume 263 of LNCS,
pages 186—194. Springer, 1986.

Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and poseidon: New hash
functions for zero knowledge proof systems. ePrint, 2019:458, 2019.
Vincent Grosso, Gaétan Leurent, Francgois-Xavier Standaert, and Kerem
Varici. Ls-designs: Bitslice encryption for efficient masked software imple-
mentations. In FSE, volume 8540 of LNCS, pages 18-37. Springer, 2014.
Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security Symposium, pages
1069-1083. USENIX Association, 2016.

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. Mpc-friendly symmetric key primitives. In ACM CCS,
pages 430—443. ACM, 2016.

Tim Giineysu. Utilizing hard cores of modern FPGA devices for high-
performance cryptography. J. Cryptographic Engineering, 1(1):37-55,
2011.

James Howe, Tobias Oder, Markus Krausz, and Tim Giineysu. Standard
lattice-based key encapsulation on embedded devices. TJACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2018(3):372-393, 2018.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21-30.
ACM, 2007.

Intel Corporation. Securing the enterprise with intel® aes-ni, 2010.

24

KKW18.

KRST19.

Low.

MPLT11.

MRR19.

NLV11.

PDG14.

RM19.

RSS17.

RST18.

SA14.

SG15.

Unrl5.

WSN18.

WU.

WUS*t17.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In ACM CCS, pages 525-537. ACM, 2018.

Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In
USENIX Security Symposium, pages 1447-1464. USENIX Association,
2019.

LowMC. Official LowMC Github Repository.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong
Wang. Pushing the limits: A very compact and a threshold implementation
of AES. In EUROCRYPT, volume 6632 of LNCS, pages 69-88. Springer,
2011.

Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins
for secret shared data. ePrint, 2019:518, 2019.

Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? In CCSW, pages 113-124. ACM, 2011.
Thomas Poppelmann, Léo Ducas, and Tim Giineysu. Enhanced lattice-
based signatures on reconfigurable hardware. In CHES, volume 8731 of
LNCS, pages 353—-370. Springer, 2014.

Debapriya Basu Roy and Debdeep Mukhopadhyay. Post quantum ECC on
FPGA platform. ePrint, 2019:568, 2019.

Dragos Rotaru, Nigel P. Smart, and Martijn Stam. Modes of operation
suitable for computing on encrypted data. JACR Trans. Symmetric Cryp-
tol., 2017(3):294-324, 2017.

Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full lowmcv2. TACR Trans. Symmetric Cryptol.,
2018(3):163-181, 2018.

Ismail San and Nuray At. Improving the computational efficiency of mod-
ular operations for embedded systems. Journal of Systems Architecture -
Embedded Systems Design, 60(5):440-451, 2014.

Pascal Sasdrich and Tim Giineysu. Implementing curve25519 for side-
channel-protected elliptic curve cryptography. TRETS, 9(1):3:1-3:15,
2015.

Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In EUROCRYPT (2), volume 9057 of LNCS, pages
755—784. Springer, 2015.

Wen Wang, Jakub Szefer, and Ruben Niederhagen. Fpga-based niederreiter
cryptosystem using binary goppa codes. In PQCrypto, volume 10786 of
LNCS, pages 77-98. Springer, 2018.

Mario Werner and Thomas Unterluggauer. Transparent memory encryp-
tion and authentication.

Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffen-
rath, and Stefan Mangard. Transparent memory encryption and authen-
tication. In FPL, pages 1-6. IEEE, 2017.

25

	Efficient FPGA Implementations of LowMC and Picnic

