
A note on the cost of computing odd degree isogenies

Daniel Cervantes-Vázquez and Francisco Rodŕıguez-Henŕıquez

Computer Science Department, CINVESTAV-IPN
dcervantes@computacion.cs.cinvestav.mx

francisco@cs.cinvestav.mx

Abstract

Finding an isogenous supersingular elliptic curve of a prescribed odd degree is
an important building block for all the isogeny-based protocols proposed to date.
In this note we present several strategies for the efficient construction of odd degree
isogenies, which outperform previously reported methods when dealing with isogeny
degrees in the range [7, 220].

1 Introduction

In the last few years there has been an intense interest in finding efficient formulas
for computing odd degree isogenies using different models of elliptic curves. Sev-
eral authors have found efficient formulas for computing isogenies using Weierstrass
curves [17], Edwards, Twisted Edwards and Huff curves [15], Montgomery curves [5],
and more recently, Hessian and twisted Hessian curves [7]. Nonetheless, designers
of isogeny-based protocols such as SIDH[11], CSIDH[2, 13] and BSIDH[4], regularly
prefer to adopt Montgomery and twisted Edwards curve models for their schemes.
This is because it is widely believed that for isogeny-based protocols these two el-
liptic curve models provide a much more efficient curve arithmetic.

Let q = pn, where p is a prime number and n a positive integer; and let ` be
an odd number ` = 2s + 1, with s > 1. Let E and E′ be two supersingular elliptic
curves defined over Fq for which there exists a separable degree-` isogeny φ : E → E′

defined over Fq. This implies that there must exist an `-order point P ∈ E(Fq) such
that Ker(φ) = {∞,±P,±[2]P, . . . ,±[s]P}. Given the domain elliptic curve E and an
`-order point P ∈ E(Fq), in this note we are interested in the problem of computing
the co-domain elliptic curve E′. Furthermore, given a point Q ∈ E(Fq) such that
Q 6∈ Ker(φ), a closely related problem is that of finding φ(Q), i.e., the image of the
point Q over E′.1

In order to find efficient formulations for the above two problems and inspired
in the notation used in [10, Table 1], we define KPS as the task of computing the
first s multiples of the point P , namely, the set {P, [2]P, . . . , [s]P}. Using KPS as

1We will sometimes refer to these two problems as the isogeny construction and the isogeny evaluation
computations, respectively.

1



KPS CODOM

PEVAL

point P
of order `

Point Q 6∈ 〈P 〉

Constants of
domain curve
E Constants of

co-domain curve E′

φ(Q), image of
point Q over E′

Figure 1: Given a supersingular elliptic curve E and an order-` point P ∈ E(Fq) this
diagram shows the main modules for computing a degree-` isogeneous curve E′ and the
image of a point Q ∈ E(Fq), subject to the condition that Q is not in the kernel subgroup
6∈ 〈P 〉. The circles are drawn to scale the relative computational costs of the modules.

a building block, the module CODOM computes the per-field constants that deter-
mine the co-domain curve E′ defined over Fq. Also, using KPS as a building block,
PEVAL computes the image point φ(Q).

Figure 1 shows the dependencies among the KPS , CODOM and PEVAL primitives,
where the circles are drawn to scale the relative costs of these three tasks.2. Both
CODOM and PEVAL require the points in Ker(φ) as input parameters, which are com-
puted by the KPS primitive. Notice that since CODOM and PEVAL show no dependen-
cies between them, once that the kernel points have been computed, it is possible to
compute CODOM and PEVAL in parallel. Furthermore, when evaluating an arbitrary
number of points in E that do not belong to the Ker(φ) subgroup, KPS must be com-
puted only once. Hence, the computational cost associated to KPS gets amortized
when computing the image of two or more points.

A Montgomery curve [14] is defined by the equation EA,B : By2 = x3 +Ax2 +x,
such that B 6= 0 and A2 6= 4. For the sake of simplicity, we will write EA for EA,1.
Moreover, it is customary to represent the constant A in the projective space P1 as
(A′ : C ′), such that A = A′/C ′ (see [6]). In [1] it was shown that every Montgomery
curve EA,B : By2 = x3 + Ax2 + x is birationally equivalent to a twisted Edwards
curve Ea,d : ax2 + y2 = 1 + dx2y2. The curve constants are related by

(A,B) =

(
2(a+ d)

a− d
,

4

a− d

)
and (a, d) =

(
A+ 2

B
,
A− 2

B

)
.

Table 1 summarizes the field arithmetic costs associated to the KPS and PEVAL op-
erations. Note that KPS is a straightforward computation that can be performed at
the cost of one point doubling and k − 2 point additions. Efficient formulas for
computing PEVAL can be found in [5] and [3] for Montgomery and twisted Edwards
curves, respectively.

In the remainder of this note, different strategies for the efficient computation of
the CODOM operation will be discussed. A Magma implementation of all the proce-

2In fact, KPS becomes more expensive than PEVAL starting from ` ≥ 11. When ` ≤ 7, the block KPS is
considerably cheaper or even free of cost for the case ` = 3.

2



Primitive M S
A

Montgomery[5] Edwards[3]
KPS 4(s− 1) 2(s− 1) 6s− 2 6s− 2
PEVAL 4s 2 6s 2s+ 4

Table 1: Current State-of-the-art costs for KPS and PEVAL . Field multiplication (M )
and squaring (S ) costs are taken from [5] and [3]. We are using the fact that KPS can
be computed by performing one point doubling and s− 2 point additions. The compu-
tational costs associated to the point addition and point doubling operations is of 4M +
2S + 6A and 4M + 2S + 4A , respectively.

dures described here along with the KPS , CODOM and PEVAL primitives, are available
at, https://tinyurl.com/uhhkvmd.

2 Twisted Edwards curves

In [15], Moody and Shumov presented à la Vélu formulas for computing isogenies
on Edwards, twisted Edwards and Huff curves. Later, Meyer and Reith in [13]
utilized a projective version of those formulas working on twisted Edwards YZ-
coordinates. Arguably, these formulas are more efficient than the corresponding to
Montgomery curves [5]. In the following, the projective version of Corollary 1 of [15]
using Edwards YZ-coordinates will be assumed.

Proposition 1. Let us suppose that F is a subgroup of the twisted Edwards curve
Ea,d with odd order ` = 2s+1, s > 1. Let the points in F be given in twisted Edwards
Y Z-coordinates as the set,

{(Y1 : Z1), . . . , (Ys : Zs)}.

Then, there exists a degree-` isogeny ψ with kernel F that takes us from the curve
Ea,d to the curve Ea′,d′ . The constants a′, d′ can be computed as,

By =

s∏
i=1

Yi; Bz =

s∏
i=1

Zi; a′ = a`B8
z ; d′ = B8

yd
`. (1)

Proof. From Corollary 1 of [15], if we consider F ′ = {∞, (±α1, β1), . . . (±αs, βs)},
then from the curve Ea,d to the curve Eā,d̄ there exists a degree-` isogeny ψ′ with
kernel F ′ that can be computed as,

B =

s∏
i=1

βi; ā = a`; d̄ = B8d`. (2)

Using βi = Yi/Zi and plugging in into Eq. (2) yields,

B =

s∏
i=1

Yi
Zi

=

∏s
i=1 Yi∏s
i=1 Zi

=
By

Bz
; ā = a`; d̄ = (

By

Bz
)8d`.

It is known from [1] that Ea,d
∼= E1,d/a. This implies that

Eā,d̄
∼= E

1,
(
By
Bz

)8d`

a`

∼= E
1,

B8
yd`

B8
za`

∼= Ea′,d′ .

3

https://tinyurl.com/uhhkvmd


The computational costs associated to Eq. (1) can be upper bounded by assuming
that the exponentiations to the power ` are performed independently and by means
of the binary method. Let H(`) and λ(`) denote the Hamming weight and the bit-
length of the integer `, respectively. Hence, the cost of computing the co-domain
curve is given as follows. The values B8

y and B8
z can be computed at a cost of 2(s−

1)M + 6S . When using the binary method the overall cost of the exponentiations
a` and d` is of 2(H(`)−1)M + 2(λ(`)−1)S . Two more multiplications are required
to obtain a′ and d′. Therefore, the cost of computing the constants a′ and d′ of
Eq. (1), which define the co-domain isogenous curve is upper bounded by

2(s+ H(`)− 1)M + 2(λ(`) + 2)S .

In the remaining of these note, several methods for improving the above upper bound
will be discussed.

2.1 Using NAF for reducing the computational cost of odd
degree isogenies

By exploiting once again the property Ea,d
∼= E1,d/a, one can in general reduce

the computation of the exponentiations of Eq. (1) using any signed representation
of the exponents such as the well-known Non-adjacent Form (NAF). Let us recall

that the NAF representation of a positive integer ` is an expression ` =
∑n−1

i=0 `i2
i,

where `i ∈ {0,±1}, `n−1 6= 0 and no two consecutive digits `i are nonzero [9]. Let
L = NAF (`). In the case of Eq. (5), one can notice that the positive and negative
values of the NAF representation of ` can be split as,

L = Lp − Lm, where Lp =

n−1∑
i=0|ki>0

`i2
i, and Lm = −

n−1∑
i=0|ki<0

`i2
i. (3)

As an illustrative example, let us consider the representations of the integer 353,

(353)2 = (1, 0, 1, 1, 0, 0, 0, 0, 1);

L = NAF (353) = (1, 0, 1̄, 0, 1̄, 0, 0, 0, 0, 1);

(Lp)2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1);

(Lm)2 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0).

Using the above split NAF representation, one can compute n` as nLpn−Lm . More-
over, exploiting Ea,d

∼= E1,d/a, one can compute a′ = a`B8
z and d′ = B8

yd
` as,

a′ = B8
za

LpdLm , d′ = B8
ya

LmdLp . (4)

Notice that the two exponentiations aLpdLm and aLmdLp of Eq. 4 can be computed
simultaneously (cf. [9, §3.3.3.]), by using a right-to-left exponentiation approach
that allows us to share the squaring operations. Moreover, since the positive bit
exponentiations aLp and dLp of Eq. 4 share the same exponent, they are naturally
synchronized. The same can be said about the negative bit exponentiations dLm and
aLm .

4



We carefully exploit the dependencies on these four exponentiations as shown in
Algorithm 1. The accumulators for the exponentiations (aLp , aLm) and (dLp , dLm),
are stored into the two-entry arrays Ta and Td, respectively. Notice that in lines 6-7,
these arrays are initialized to one. As we are dealing with odd `, this implies that
the least significant bit of NAF (`) is always non-zero. This observation is used to
save two multiplications as shown in line 9. Depending on the sign of L[0], in line 9
only the entries that will store the positive (or the negative) bit exponentiations get
initialized with a and d, respectively. The other entries are only initialized when
a sign change is detected. To simplify the algorithm, this change of sign can be
pre-computed off-line, by recording the exact position ω where this change occurs.
The two input parameters a, d are rewritten to accumulate the squaring operations
by updating them at each iteration of the two main loops in lines 10 and 21. They
are also updated in line 18 when a sign change has been detected. It can be shown
that the cost of computing a′ and d′ using Algorithm 1 is given as,

2(s+ H(L))M + 2(#L+ 2)S ,

where L = NAF (`). The above cost is often cheaper than the one presented in
the previous section for a binary representation. This is due to the fact that the
average non-zero density 1/3 of the NAF representation, is cheaper than the average
non-zero density 1/2 of the binary representation.

If the NAF expansion of ` contains no 1̄, then NAF (`) = (l)2 and a simple binary
exponentiation suffices. In this case the computational expense of Algorithm 1
becomes 2(s + H(`) − 1)M + 2(λ(`) + 2)S . Therefore, it can be concluded that
computing an isogeny using Algorithm 1 adds no extra costs, but savings due to the
fact that the NAF recoding guarantees a smaller non-zero density in comparison to
the binary method.3

As a relevant practical example, consider all the prime factors in the factor-
ization of (p512 + 1)/4 where p512 is the prime used in the CSIDH-512 proto-
col [2]. The NAF trick discussed here will have the same computational cost
as the one associated to the binary representation for those primes in the set
{5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337}. For all the other 63 prime factors of
(p512 + 1)/4, the NAF representation produces savings compared with the cost of
the binary one.

The Magma code of Algorithm 1 is available at, https://tinyurl.com/uhhkvmd.

Remark 1. When Algorithm 1 deals with the case `2 = NAF (`), the variable wL

must be set to any position in the vector L with value zero. This way, the assignment
on lines 19-20 does not interfere with the positive accumulator as the sign computed
in Line 17 is the opposite of the first sign computed (that must be positive as
`2 = NAF (L)). On Line 29 if L[ωL] = 0, then a′ and d′ are computed as in
Equation 1. Otherwise, a′ and d′ are computed as in Equation 4.

Remark 2. We are not aware of any isogeny-based protocol where the input param-
eter ` of Algorithm 1 must remain secret. Hence, no efforts to protect this procedure
against timing-attacks were attempted.

3It may incur though, to one extra squaring due to the extra bit associated to NAF [9]

5

https://tinyurl.com/uhhkvmd


Algorithm 1 Odd degree isogenous codomain curve computation using NAF recoding.
Require: Integer ` = 2s+ 1, Integer vector L = NAF (`), Integer ωL ∈ [0..(#L− 1)] in which the first change of

sign occurs. Edwards curve constants a and d, Subgroup F = (Y1 : Z1), . . . , (Ys : Zs).
Ensure: a′ and d′ defining the Twisted Edwards curve Ea′,d′ isogenous to Ea,d as in Corollary 1.
1: By ← Y1;
2: Bz ← Z1;
3: for i=2 to s do
4: By ← ByYi; Bz ← BzZi;
5: end for
6: Ta ← [1, 1] {Initialization of Ta which will hold ap and am}
7: Td ← [1, 1] {Initialization of Td which will hold dp and dm}
8: Sign← L[0]+1

2
;

9: Ta[Sign] = a ; Td[Sign] = d;
10: for i := 1 to (ωL − 1) do
11: a← a2; d← d2;
12: if L[i] 6= 0 then
13: Ta[Sign]← Ta[Sign] · a;
14: Td[Sign]← Td[Sign] · d;
15: end if
16: end for
17: Sign← (Sign+ 1) mod 2;{The opposite of the Sign of L[0]}
18: a← a2; d← d2;
19: Ta[Sign]← a;
20: Td[Sign]← d;
21: for i := (ωL + 1) to (#(L)− 1) do
22: a← a2; d← d2;
23: if L[i] 6= 0 then

24: Sign← L[i]+1
2

25: Ta[Sign]← Ta[Sign] · a;
26: Td[Sign]← Td[Sign] · d;
27: end if
28: end for
29: if L[wL] = 0 then
30: a′ ← B8

z · Ta[1].
31: d′ ← B8

y · Td[1].
32: else
33: a′ ← B8

z · Ta[1] · Td[0].
34: d′ ← B8

y · Ta[0] · Td[1].
35: end if
36: return a′, d′.

6



2.2 Using modular arithmetic for reducing the computational
cost of odd degree isogenies

As previously discussed, the computation of Eq. (1) requires two exponentiations to
the power `. These computational expenses can be reduced as follows.

Corollary 1. Let Ea,d, F and ` be given as in Corollary 1. Let us define k = b`/8c,
and r = ` mod 8. Then, from the curve Ea,d to the curve Ea′,d′ there exists a
degree-` isogeny ψ with kernel F, where the constants a′, d′ can be computed as

a′ = (akBz)8ar; d′ = (dkBy)8dr; , By =

s∏
i=1

Yi; and Bz =

s∏
i=1

Zi. (5)

Proof. It follows immediately from Proposition 1 and the property Ea,d
∼= E1,d/a.

At first glance it may appear that compared with Eq. 1, the computational
cost of Eq. (5) has been increased by the addition of two extra multiplications and
two exponentiations by r. Nevertheless, we will argue in the following that the new
formulation of Eq. (5) can save up to 6S compared with the costs associated to Eq. 1.
To this end, let us first analyze the computation of ar and dr. Since we are dealing
with odd degree isogenies, there are only four possible remainders modulo 8, namely,
r = 1, 3, 5, 7. The cheapest case occurs when r = 1, because we do not incur in any
additional multiplication and we trade two exponentiations to the power ` in Eq. (1),
by two exponentiations to the power k = b l8c in Eq. (5). Further, one can compute
the other three possible reminders at a cost of only two extra multiplications as
shown in Eq. 6.

[a′, d′] =

[((akBz)4a)2a, ((dkBy)4d)2d] r = 3
[((akBz)2a)4a, ((dkBy)2d)4d] r = 5

[(akBza)8d, (dkByd)8a] r = 7
(6)

Then, the cost of computing a′ and d′ as in Corollary 1 and assuming k > 0 is given
as {

2(H(k) + s)M + 2(λ(k) + 2)S if r = 1
2(H(k) + s+ 1)M + 2(λ(k) + 2)S otherwise

. (7)

We dub this method as the div8 approach.

Remark 3. Equation 7 holds for k > 0. When k = 0 one can save one extra
multiplication. Therefore, the specialized cost for a degree-3, -5 and -7 isogeny
computation using the div8 approach is of 4M + 6S , 6M + 6S and 8M + 6S ,
respectively.

2.3 Combining NAF and modular reduction

In §2.1, it was observed that the NAF representation applied to the exponent `
is advantageous for constructing odd degree isogenies. In §2.2 an efficient isogeny
construction by considering the exponent ` divided by eight and its respective re-
mainder was described. The next natural step is to apply the NAF representation
to the exponent k along the lines of the div8 approach.

7



Corollary 2. Let Ea,d, F and ` = 2d + 1 as in Corollary 1. Compute K =
NAF (bl/8c) and consider

Kp =

n−1∑
i=0|Ki>0

ki2
i, and Km = −

n−1∑
i=0|ki<0

ki2
i. (8)

Then, from the curve Ea,d to the curve Ea′,d′ there exists a degree-` isogeny ψ with
kernel F where

a′ = (aKpdKmBz)8ar; d′ = (aKmdKpBy)8dr;

By =

s∏
i=1

Yi; and Bz =

s∏
i=1

Zi.

The proof is the same as in Corollary 1 along with a straightforward computation.
The cost of computing this new rearrange is given by{

2(H(K) + s)M + 2(#K + 2)S if r = 1
2(H(K) + s+ 1)M + 2(#K + 2)S otherwise

(9)

The computational cost of the Corollary 2 given in Eq. (9) can be justified as follows,

• Again, in order to compute By and Bz one requires to perform 2(s− 1)M .

• In this case, it is unknown whether the first bit of K is zero or not, but
one can pre-compute off-line, how many zeros happen to be before the first
non-zero element. Then after initializing the accumulator, one can follow a
similar strategy as in Algorithm 1 to compute aKp , aKm , dKp and dKm . This
will help us to save two multiplications. The computational cost of this step
is 2(H(K)− 2)M + 2(#K − 1)S .

• Once we have Bz, By, a
r, dr, aKp , aKm , dKp and dKm , the cost of computing a′

and d′ is 6M + 6S .

• Using the result of Eq.(6), it can be seen that two extra multiplications are
required to compute ar and dr for r ∈ {3, 5, 7}, and no extra cost for the case
r = 1.

The addition of the above computational expenses gives the result presented in
Eq. (9).

3 Comparison

For the sake of fairness, in this section the isogeny construction methods that have
been proposed by different authors using their cheapest version for as many odd
values ` as possible, are reported. Table 2 shows the operation counts for several
state-of-the-art isogeny construction algorithms using different elliptic curve mod-
els. Note that the a from alpha approach proposed in [5], computes an isogeny
construction using the image of a two-torsion point in a Montgomery curve different
than the point (0, 0). This approach can only be used when considering rational
points over an extension of the base field Fp. Algorithm 3 point recover[5] re-
quires to know in advance the x-coordinates of the points x(P ), x(P ) and x(P −Q)
for some P and Q belonging to the co-domain curve. It appears that this approach

8



Work Model
Cost

M S A
a from alpha [5] Mont 4s 4 4s+ 3
3 point recover [5] Mont 8 5 11
CSIDH [2] Mont 6s− 2 3 4
Meyer-Reith [13] Ed 2(s+ H(`) 2(λ(`) + 2) 0
Onuki-Takagi [16] Mont 5s− 1 2 s+ 5

NAF exp (Algorithm 1) Ed 2(s+ H(L)− 1) 2(#L+ 2) 0
div8 r = 1 (§2.2) Ed 2(H(k) + s) 2(λ(k) + 2) 0
div8 r = 3, 5, 7 (§2.2) Ed 2(H(k) + s+ 1) 2(λ(k) + 2) 0
div8NAF r = 1 (§2.3) Ed 2(H(K) + s) 2(#K + 2) 0
div8NAF r = 3, 5, 7 (§2.3) Ed 2(H(K) + s+ 1) 2(#K + 2) 0

Table 2: General costs for different state-of-the-art isogeny construction algorithms
(dubbed CODOM in Fig 1). Notice that the algorithms from [5] require extra input data to
compute the co-domain curve, and might not be useful on the CSIDH framework. Here
` = 2s+ 1, k = bl/8c, r = l mod 8, L = NAF (`) and K = NAF (k).

Work Degree
Cost

M S A
Costello-Hisil [5] 3 2 3 14

This work (Remark 3) 3 4 6 0
This work (Remark 3) 5 6 6 0
This work (Remark 3) 7 8 6 0

Table 3: Specialized formulas for certain odd degree isogenies.

cannot be easily extended to a general scenario other than the key generation phase
of the SIDH protocol, where primes of the form p = `eaa `

eb
b f − 1 with `i < 5 are

used. The rest of the algorithms reported in Table 2 can easily be applied to more
generic settings.

We did not consider hybrid cases where curve constants must be translated into
another model of curve or to a better representation of the constants. For example,
Onuki and Takagi algorithm [16] returns the constant (A : C). The cost of com-
puting the constants A24 and C24 required for fast Montgomery curve-arithmetic is
not taken into account here. Also for the Edwards curves, the computation of the
constant e = a−d used in [3] to attain faster curve arithmetic is disregarded. Table
3 summarizes the operation counts of optimized formulas for certain specific isogeny
degrees. Among all state-of-the-art algorithms, only [5] reports one specialized al-
gorithm for a specific isogeny degree. In Remark 3 of this note, concrete isogeny
computation formulas for three specific degrees are given.

Tables 4 and 5 report the costs of computing the co-domain curve using M as
cost metric. In Table 4 it is assumed that S =0.8M as in [16]. For this setting,
it is observed that the div8 approach introduced in §2.2 outperforms the other
strategies for all the degrees except when computing isogenies of degree 3, where
the specialized formula of Costello and Hisil [5] is optimal. Arguably, the assumption
of the ratio S =0.8M for the field arithmetic is a bit unrealistic.4 Hence in Table

4We still consider S = 0.8M because this might be about the correct ratio for the Fp2 quadratic field
arithmetic.

9



degree Costello-Hisil [5] Onuki-Takagi [16] Meyer-Reith [13] div8

3 5.1(*) 5.9 10.4 8.8(*)
5 11.75 10.95 14 10.8(*)
7 15.95 16 18 12.8(*)
9 20.15 21.05 19.6 14.8
11 24.35 26.1 23.6 18.8

Table 4: Costs assuming S = 0.8M and A = 0.05M . All costs are given Using M as
unit of measure. Costs with(*) indicate that we are using the operation counts reported
in Table 3. The shaded cells indicate the minimum cost for each degree.

degree Costello-Hisil[5] Onuki-Takagi[16] Meyer-Reith [13] div8

3 5.7(*) 6.300 12 10(*)
5 12.55 11.35 16 12(*)
7 16.75 16.40 20 14(*)
9 20.95 21.45 22 16
11 25.15 26.50 26 20

Table 5: Costs assuming S = M and A = 0.05M . All costs are given Using M as unit
of measure. Costs with (*) indicate that we are using the operation counts reported in
Table 3. The shaded cells indicate the minimum cost for each degree.

5 a more realistic scenario for Fp arithmetic is considered by assuming S =M . In
this setting the algorithm by Onuki and Takagi [16] emerges as the optimal method
when constructing degree-5 isogenies. In the case of degree-3 isogeny constructions,
the approach by Costello and Hisil [5] remains unbeatable.

We executed our Magma scripts for determining the associated computational
costs for div8 , NAFexp and div8NAF . We also report the computational costs for
Onuki and Takagi [16] and Meyer-Reith [12] analyzed trough all the prime numbers
in the interval [11, 220]. The corresponding computational costs are summarized in
Tables 6 and 7.

The large interval considered in Tables 6 and 7 can be of interest for the search of
more conservative parameters for the CSIDH protocol. Moreover, BSIDH[4] uses `-
isogenies where the biggest bit-length of ` is of about 22 bits. Furthermore, recently
the SÉTA protocol, a new isogeny-based protocol, was introduced in [8]. The SÉTA
protocol seems to make use of `-isogenies where the largest ` is about 214.

Remark 4. We only consider odd prime degree isogenies due to the following obser-
vation. Let us assume that one wants to compute a composite odd degree-` isogeny
with ` =

∏r
i=1 `i, `i being distinct prime numbers and r > 1 a positive integer.

Such isogeny can be computed as the composition of the r degree-`i isogenies. It is
not hard to see that using that composition approach, the associated computational
complexity is linear5 with respect to

∑r
i=1 `i. If one would try to compute the `-

degree isogeny by directly applying the formulas presented in this document, the
computational complexity is also linear but this time with respect to

∏r
i=1 `i. The

latter is a much larger number than the one associated to the composition approach.

5And possibly linear-logarithmic with respect to
∏r

i=1 `i, if we employ a multiplicative strategy to
compute such composition (as in the CSIDH protocol).

10



Vs. Meyer-Reith [13] Onuki-Takagi [16] NAFexp div8 div8NAF

Meyer-Reith [13] - 100 6.163 0 0
Onuki-Takagi [16] 0 - 0.001 0 0

NAFexp 77.649 99.998 - 24.004 0
div8 100 100 62.254 - 9.408

div8NAF 100 100 100 67.239 -

Table 6: Comparison of different algorithms to compute CODOM , assuming S = M and
`2 6= NAF (`) for a prime ` ∈ [11, 220]. All numbers report the winning percentage when
comparing the algorithm in row i versus the algorithm in column j. Since for some
degrees there are ties, it may occur that the addition of the cells (i, j) + (j, i) could be
smaller than 100.

Vs. Meyer-Reith [13] Onuki-Takagi [16] NAFexp div8 div8NAF

Meyer-Reith [13] - 100 6.163 0 0
Onuki-Takagi [16] 0 - 0 0 0

NAFexp 87.379 100 - 37.745 0
div8 100 100 62.254 - 9.408

div8NAF 100 100 100 79.884 -

Table 7: Comparison of different algorithms to compute CODOM assuming S = 0.8M and
`2 6= NAF (`) for a prime ` ∈ [11, 220]. All numbers report the winning percentage when
compare the algorithm in row i versus the algorithm in column j. Since for some degrees
there are ties, it may occur that the addition of the cells (i, j) + (j, i) could be smaller
than 100.

4 Conclusion

The cost of constructing odd-degree isogenies on Edwards curves is closely related
to the problem of the simultaneous computation of several exponentiations over Fq.
In this note we review three strategies to compute such exponentiations. Our results
show that for most prime numbers in the interval [11, 220] the div8NAF approach
described in this note appears to be the best option for computing odd degree
isogenies on Edwards curves. On the other hand, if we focus on the prime numbers
that appear in the factorization of the prime p512 + 1 used in [2], it seems that
the div8 approach is the best (See Appendix A). Moreover, for the relevant case of
isogenies of degree 3, the best algorithm is the one provided by Costello and Hissil
in [5]. The best approach for constructing degree-5 isogenies is contested between
our div8 approach and the Onuki and Takagi [16] algorithm. The former strategy
is better when it is assumed that S =0.8M , but the latter is cheaper when S =M .

The main contribution of this note is the introduction of the NAF exponentiation
into the Edwards co-domain curve computation (§2.1) and the div8 (§2.2) and
div8NAF (§2.3) approaches. As a future work we will explore the use of wNAF
recodings into the construction of large odd degree isogenies and the use of parallel
computation of the three building blocks depicted in Fig. 1.

11



Acknowledgements

This work was done while the authors were visiting the University of Waterloo. The
authors would like to thank José Eduardo Ochoa-Jiménez for his useful comments.

References

[1] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Pe-
ters. Twisted edwards curves. In Serge Vaudenay, editor, Progress in Cryptol-
ogy – AFRICACRYPT 2008, pages 389–405, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[2] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: an efficient post-quantum commutative group action. In Ad-
vances in Cryptology - ASIACRYPT 2018 - 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part III, pages 395–427,
2018.

[3] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca
De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith. Stronger and
faster side-channel protections for csidh. In Peter Schwabe and Nicolas
Thériault, editors, Progress in Cryptology – LATINCRYPT 2019, pages 173–
193, Cham, 2019. Springer International Publishing.

[4] Craig Costello. B-sidh: supersingular isogeny diffie-hellman using twisted tor-
sion. Cryptology ePrint Archive, Report 2019/1145, 2019. https://eprint.

iacr.org/2019/1145.

[5] Craig Costello and Huseyin Hisil. A simple and compact algorithm for sidh
with arbitrary degree isogenies. Cryptology ePrint Archive, Report 2017/504,
2017. https://eprint.iacr.org/2017/504.

[6] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie–Hellman. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, pages 572–601, 2016.

[7] Thinh Dang and Dustin Moody. Twisted hessian isogenies. Cryptology ePrint
Archive, Report 2019/1003, 2019. https://eprint.iacr.org/2019/1003.

[8] Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit, and Javier
Silva. SÉta: Supersingular encryption from torsion attacks. Cryptology ePrint
Archive, Report 2019/1291, 2019. https://eprint.iacr.org/2019/1291.

[9] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer-Verlag, Secaucus, NJ, USA, 2003.

[10] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarderakhsh. Fur-
ther optimizations of csidh: A systematic approach to efficient strategies, per-
mutations, and bound vectors. Cryptology ePrint Archive, Report 2019/1121,
2019. https://eprint.iacr.org/2019/1121.

[11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography, pages 19–34, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

12

https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2017/504
https://eprint.iacr.org/2019/1003
https://eprint.iacr.org/2019/1291
https://eprint.iacr.org/2019/1121


[12] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators: An
efficient constant-time implementation of CSIDH. In Post-Quantum Cryptog-
raphy - 10th International Workshop, PQCrypto 2019, 2019.

[13] Michael Meyer and Steffen Reith. A faster way to the CSIDH. In Progress in
Cryptology - INDOCRYPT 2018 - 19th International Conference on Cryptology
in India, New Delhi, India, December 9-12, 2018, Proceedings, pages 137–152,
2018.

[14] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48:243–234, 1987.

[15] Dustin Moody and Daniel Shumow. Analogues of velu’s formulas for isoge-
nies on alternate models of elliptic curves. Cryptology ePrint Archive, Report
2011/430, 2011. https://eprint.iacr.org/2011/430.

[16] Hiroshi Onuki and Tsuyoshi Takagi. On collisions related to an ideal class of
order 3 in csidh. Cryptology ePrint Archive, Report 2019/1209, 2019. https:

//eprint.iacr.org/2019/1209.

[17] Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér.
A-B, 273:A238–A241, 1971.

Appendix A

For completeness, we include two Tables with the cost of the other 70 primes on the
factorization of p512 + 1 not included in Tables 4 and 5. We report both cases, when
S = 0.8M and S = M .

Degree Costello-Hisil[5] Onuki-Takagi [16] Meyer-Reith [13] div8 div8NAF

13 28.55 31.15 25.60 20.80 20.80
17 36.95 41.25 29.20 24.40 24.40
19 41.15 46.30 33.20 28.40 28.40
23 49.55 56.40 39.20 32.40 32.40
29 62.15 71.55 45.20 40.40 42.00
31 66.35 76.60 49.20 42.40 44.00
37 78.95 91.75 52.80 48.00 48.00
41 87.35 101.9 56.80 52.00 52.00
43 91.55 106.9 60.80 56.00 56.00
47 99.95 117.0 66.80 60.00 60.00
53 112.6 132.1 70.80 66.00 67.60
59 125.2 147.3 78.80 74.00 73.60
61 129.4 152.3 80.80 76.00 75.60
67 142.0 167.5 84.40 79.60 79.60
71 150.4 177.6 90.40 83.60 83.60
73 154.5 182.6 90.40 85.60 85.60
79 167.2 197.8 100.4 93.60 93.60
83 175.5 207.9 102.4 97.60 97.60
89 188.2 223.0 108.4 103.6 105.2
97 205.0 243.2 114.4 109.6 111.2
101 213.4 253.3 120.4 115.6 117.2
103 217.5 258.4 124.4 117.6 119.2

13

https://eprint.iacr.org/2011/430
https://eprint.iacr.org/2019/1209
https://eprint.iacr.org/2019/1209


107 226.0 268.5 128.4 123.6 125.2
109 230.2 273.5 130.4 125.6 127.2
113 238.5 283.7 132.4 127.6 127.2
127 267.9 319.0 152.4 145.6 143.2
131 276.3 329.1 150.0 145.2 145.2
137 288.9 344.2 156.0 151.2 151.2
139 293.1 349.3 160.0 155.2 155.2
149 314.1 374.5 170.0 165.2 165.2
151 318.3 379.6 174.0 167.2 167.2
157 330.9 394.8 180.0 175.2 175.2
163 343.5 409.9 184.0 179.2 179.2
167 351.9 420.0 190.0 183.2 183.2
173 364.5 435.2 196.0 191.2 191.2
179 377.1 450.3 202.0 197.2 198.8
181 381.3 455.3 204.0 199.2 200.8
191 402.3 480.6 218.0 211.2 210.8
193 406.5 485.7 212.0 207.2 208.8
197 414.9 495.8 218.0 213.2 214.8
199 419.1 500.8 222.0 215.2 216.8
211 444.3 531.1 234.0 229.2 230.8
223 469.5 561.4 250.0 243.2 242.8
227 477.9 571.5 250.0 245.2 244.8
229 482.1 576.6 252.0 247.2 246.8
233 490.5 586.7 256.0 251.2 250.8
239 503.1 601.8 266.0 259.2 258.8
241 507.3 606.9 264.0 259.2 256.8
251 528.3 632.1 278.0 273.2 268.8
257 540.9 647.2 275.6 270.8 270.8
263 553.6 662.4 285.6 278.8 278.8
269 566.1 677.6 291.6 286.8 286.8
271 570.3 682.6 295.6 288.8 288.8
277 582.9 697.8 299.6 294.8 294.8
281 591.3 707.9 303.6 298.8 298.8
283 595.6 712.9 307.6 302.8 302.8
293 616.6 738.2 315.6 310.8 310.8
307 645.9 773.5 331.6 326.8 326.8
311 654.3 783.6 337.6 330.8 330.8
313 658.6 788.7 337.6 332.8 330.8
317 666.9 798.8 343.6 338.8 336.8
331 696.3 834.1 355.6 350.8 350.8
337 708.9 849.2 359.6 354.8 354.8
347 729.9 874.5 373.6 368.8 370.4
349 734.1 879.6 375.6 370.8 372.4
353 742.6 889.7 375.6 370.8 372.4
359 755.1 904.8 385.6 378.8 380.4
367 771.9 925.0 395.6 388.8 390.4
373 784.6 940.2 399.6 394.8 394.4
587 1234. 1480. 613.2 608.4 608.4

14



Table 8: Costs assuming S = 0.8M and A = 0.05M . All costs are
given Using M as cost metric. Entries with (*) indicate cost using
NAF exponentiation.

Degree Costello-Hisil[5] Onuki-Takagi [16] Meyer-Reith [13] div8 div8NAF

13 29.35 31.55 28.00 22.00 22.00
17 37.75 41.65 32.00 26.00 26.00
19 41.95 46.70 36.00 30.00 30.00
23 50.35 56.80 42.00 34.00 34.00
29 62.95 71.95 48.00 42.00 44.00
31 67.15 77.00 52.00 44.00 46.00
37 79.75 92.15 56.00 50.00 50.00
41 88.15 102.2 60.00 54.00 54.00
43 92.35 107.3 64.00 58.00 58.00
47 100.8 117.4 70.00 62.00 62.00
53 113.4 132.5 74.00 68.00 70.00
59 126.0 147.7 82.00 76.00 76.00
61 130.2 152.8 84.00 78.00 78.00
67 142.8 167.9 88.00 82.00 82.00
71 151.2 178.0 94.00 86.00 86.00
73 155.3 183.0 94.00 88.00 88.00
79 168.0 198.2 104.0 96.00 96.00
83 176.3 208.3 106.0 100.0 100.0
89 189.0 223.5 112.0 106.0 108.0
97 205.8 243.7 118.0 112.0 114.0
101 214.2 253.8 124.0 118.0 120.0
103 218.3 258.8 128.0 120.0 122.0
107 226.8 268.9 132.0 126.0 128.0
109 231.0 273.9 134.0 128.0 130.0
113 239.3 284.1 136.0 130.0 130.0
127 268.8 319.4 156.0 148.0 146.0
131 277.2 329.5 154.0 148.0 148.0
137 289.8 344.7 160.0 154.0 154.0
139 293.9 349.7 164.0 158.0 158.0
149 314.9 374.9 174.0 168.0 168.0
151 319.2 380.0 178.0 170.0 170.0
157 331.8 395.2 184.0 178.0 178.0
163 344.3 410.3 188.0 182.0 182.0
167 352.8 420.4 194.0 186.0 186.0
173 365.3 435.6 200.0 194.0 194.0
179 377.9 450.7 206.0 200.0 202.0
181 382.2 455.8 208.0 202.0 204.0
191 403.2 481.0 222.0 214.0 214.0
193 407.3 486.1 216.0 210.0 212.0
197 415.8 496.2 222.0 216.0 218.0
199 419.9 501.2 226.0 218.0 220.0
211 445.2 531.5 238.0 232.0 234.0

15



223 470.3 561.8 254.0 246.0 246.0
227 478.8 571.9 254.0 248.0 248.0
229 482.9 576.9 256.0 250.0 250.0
233 491.3 587.1 260.0 254.0 254.0
239 503.9 602.2 270.0 262.0 262.0
241 508.2 607.2 268.0 262.0 260.0
251 529.1 632.5 282.0 276.0 272.0
257 541.8 647.6 280.0 274.0 274.0
263 554.4 662.8 290.0 282.0 282.0
269 566.9 677.9 296.0 290.0 290.0
271 571.1 683.0 300.0 292.0 292.0
277 583.8 698.1 304.0 298.0 298.0
281 592.1 708.2 308.0 302.0 302.0
283 596.4 713.3 312.0 306.0 306.0
293 617.4 738.6 320.0 314.0 314.0
307 646.8 773.9 336.0 330.0 330.0
311 655.1 784.0 342.0 334.0 334.0
313 659.4 789.1 342.0 336.0 334.0
317 667.8 799.1 348.0 342.0 340.0
331 697.1 834.5 360.0 354.0 354.0
337 709.8 849.6 364.0 358.0 358.0
347 730.8 874.9 378.0 372.0 374.0
349 734.9 879.9 380.0 374.0 376.0
353 743.4 890.1 380.0 374.0 376.0
359 755.9 905.2 390.0 382.0 384.0
367 772.8 925.4 400.0 392.0 394.0
373 785.4 940.6 404.0 398.0 398.0
587 1235. 1481. 618.0 612.0 612.0

Table 9: Costs assuming S = M and A = 0.05M . All costs are
given Using M as cost metric.

16


	Introduction
	Twisted Edwards curves
	Using NAF for reducing the computational cost of odd degree isogenies
	Using modular arithmetic for reducing the computational cost of odd degree isogenies
	Combining NAF and modular reduction

	Comparison
	Conclusion

