
New ideas to build noise-free homomorphic
cryptosystems

Gerald Gavin1 and Sandrine Tainturier2

1 Laboratory ERIC - University of Lyon
gerald.gavin@univ-lyon1.fr

2 Adecco - Geneve
sandrine-tainturier@orange.fr

Abstract. We design a very simple private-key encryption scheme whose
decryption function is a rational function. This scheme is not born natu-
rally homomorphic. To get homomorphic properties, a nonlinear additive
homomorphic operator is specifically developed. The security analysis is
based on symmetry considerations and we prove some formal results un-
der the factoring assumption. In particular, we prove IND-CPA security
in the generic ring model. Even if our security proof is not complete, we
think that it is convincing and that the technical tools considered in this
paper are interesting by themselves. Moreover, the factoring assumption
is just needed to ensure that solving nonlinear equations or finding non-
null polynomials with many roots is difficult. Consequently, the ideas
behind our construction could be re-used in rings satisfying these prop-
erties. As motivating perspectives, we then propose to develop a simple
multiplicative operator. To achieve this, randomness is added in our con-
struction giving hope to remove the factoring assumption in order to get
a pure multivariate encryption scheme.

Keywords.Homomorphic cryptosystem, Multivariate encryption scheme,
Generic ring model.

1 Introduction

The prospect of outsourcing an increasing amount of data storage and man-
agement to cloud services raises many new privacy concerns for individuals and
businesses alike. The privacy concerns can be satisfactorily addressed if users en-
crypt the data they send to the cloud. If the encryption scheme is homomorphic,
the cloud can still perform meaningful computations on the data, even though
it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption
scheme (FHE) supporting arbitrary functions f , was only recently solved by the
breakthrough work of Gentry [Gen09]. More recently, further fully homomorphic
schemes were presented [SS10],[vDGHV10],[CNT12],[GHS12a],[GSW13] follow-
ing Gentry’s framework. The underlying tool behind all these schemes is the use
of Euclidean lattices, which have previously proved powerful for devising many
cryptographic primitives. A central aspect of Gentry’s fully homomorphic scheme

(and the subsequent schemes) is the ciphertext refreshing Recrypt operation.
Even if many improvements have been made in one decade, this operation re-
mains very costly [LNV11], [GHS12b], [DM15], [CGGI18]. Indeed, bootstrapped
bit operations are still about one billion times slower than their plaintext equiv-
alents (see [CGGI18]).

In this paper, we adopt another approach where a ciphertext is a vector c
over Zn, n being an RSA modulus chosen at random. Given a secret multivari-
ate rational function Φ0/Φ

′
0, an encryption of x ∈ Zn is a vector c chosen at

random ensuring that Φ0/Φ
′
0(c) = x. Clearly, the expanded representations of

Φ0, Φ
′
0 should not be polynomial-size (otherwise the CPA attacker could recover

them by solving a polynomial-size linear system). In order to get polynomial-
time encryptions and decryptions, Φ0/Φ

′
0 should be written in a compact form,

e.g. a factored or semi-factored form. By construction, the generic cryptosystem
described above is not homomorphic in the sense that the vector sum is not a
homomorphic operator. This is a sine qua non condition for overcoming Gen-
try’s machinery. Indeed, as a ciphertext c is a vector, it is always possible to
write it as a linear combination of other known ciphertexts. Thus, if the vector
sum were a homomorphic operator, the cryptosystem would not be secure at
all. This simple remark suffices to prove the weakness of the homomorphic cryp-
tosystems presented in [XBY12], [KH12]. In order to use the vector sum as a
homomorphic operator, noise should be injected into the encryptions as done in
all existing FHE [Gen09],[BV11],[SS10],[vDGHV10],[CNT12],[GHS12a]. To get
homomorphic properties, we develop ad hoc a nonlinear additively homomorphic
operator Add and we obtain a noise-free additive encryption scheme.

The factoring assumption restricts the adversary’s power providing hope to
base the security of our scheme on this assumption. We prove a result based
on symmetry (see Lemma 1) encapsulating the idea that it is not possible to
extract roots of polynomials in Zn intuitively meaning that a CPA attacker can
only solve linear equations. For concreteness, Lemma 1 ensures that it cannot
recover non-symmetric values only given symmetric values. By construction the
CPA attacker has only access to symmetric values. Thus, it suffices to prove that
breaking semantic security requires to recover non-symmetric values. Compact
representations of Φ0 or Φ′0 deal with non-symmetric values implying that they
cannot be recovered according to Lemma 1. However, Φ0(c) = 0 provided c
encrypts 0 implying that the expanded representation of Φ0 could be recovered
by solving a linear system. This kind of attacks will be called attacks by lin-
earization. This attack fails by adjusting the parameters in order that Φ0 has an
exponential number of monomials. Nevertheless, the introduction of homomor-
phic operators may introduce new attacks by linearization. In section 5.3, we
propose to formally define this class of attacks and we prove that such attacks
do not exist against our scheme.

In Section 5.4, we propose a security analysis in the generic ring model
[AM09], [JS09]. In this model, the power of the CPA attacker is restricted in
the sense that it can only perform arithmetic operations. Recently, some results
were shown in the generic ring model. For instance, it was shown that break-

ing the security of RSA in the generic ring model is as difficult as factoring
[AM09]. An emblematic counterexample against security analysis in the generic
ring model deals with Jacobi’s symbol Jn. For concreteness, it was shown in
[JS09] that computing Jn is difficult in the generic ring model while it is not in
general. However, this result is neither surprising nor relevant because Jn is not
a rational function1. Indeed, we can even show that Φ(x) = Jn(x) with proba-
bility smaller than 1/2 provided Φ is a rational function and x uniform over Z∗n.
Moreover, as far as we know, there does not exist any rational function provably
difficult to compute in the generic ring model but not in general. Moreover, the
analysis in the generic ring model excludes lattice-based attacks which works
outside Zn. Nevertheless, all the considered random variables are uniform over
Zn contrarily to noise values considered in lattice-based cryptosystems.

We propose a general result reducing the generic IND-CPA security to al-
gebraic conditions (Proposition 7). These results essentially come from a fun-
damental result (see Theorem 1) shown in [AM09] claiming that, under the
factoring assumption, it is difficult to recover non-null polynomials having many
roots. We then prove generic IND-CPA security (see Proposition 8).

Although we prove some results suggesting the security of our scheme, the
security proof is not complete. Moreover the performance of our scheme is not
competitive with respect to other existing additively homomorphic schemes (e.g.
Paillier [Pai99], El Gamal [Elg85], Castagnos et al. [CL15]). So it is legitimate
to question the usefulness of this paper. In our opinion, the underlying ideas of
this paper are very promising and the proposed construction can be seen as a
feasibility study. We see at least two motivating perspectives from this work.
The principal one would be to build a multiplicative homomorphic operator.
In Section 6, we propose a noise-free compact-FHE. The algebraic condition
proposed for the homomorphic additive encryption remains valid. This condition
could be exploited to get a formal security proof at least in the generic ring model.
We propose a very short security analysis at least showing that our construction
has a chance to be secure. A second motivating perspective would be to remove
the factoring assumption to obtain a pure multivariate encryption scheme (such
a scheme is proposed in Appendix B). This assumption is required to get formal
results (Proposition 1, Lemma 1 and Proposition 4) but the function Decrypt does
not require the factorization of n. This gives hope to remove this assumption:
this basically consists of considering Schwartz-Zippel’s lemma [Sch80] instead of
Proposition 1 and adding randomness to the construction in order to maintain
the truth of the formal results proved under the factoring assumption.

Notation. We use standard Landau notations. Throughout this paper, we let
λ denote the security parameter: all known attacks against the cryptographic
scheme under scope should require 2Ω(λ) bit operations to mount. Let κ ≥ 2 be an
integer and let n = pq be a randomly chosen RSA modulus. All the computations
considered in this paper will be done in Zn.

1 It comes from the fact that Jn(x) mod p (resp. Jn(x) mod q) is not a function of
x mod p (resp. x mod q)

– ∆κ is the set of permutations over {1, . . . , κ}

– Σκ = {σ1, . . . , σκ} ⊂ ∆κ defined2 by σi(j) = (i+ j − 2 mod κ) + 1.

– The cardinality of a set S will be denoted by #S.

– ’Choose at random x ∈ X’ will systematically mean that x is chosen accord-
ing to uniform probability distribution over X.

– ’An algorithm A outputs a polynomial p’ will systematically mean that A
outputs a {+,−,×}-circuit representing p.

– The inner product of two vectors v and v′ is denoted by ⟨v,v′⟩

– The set of all square t− by − t matrices over Zn is denoted by Zt×t
n .

Remark 1. The number M(m, d) of m-variate monomials of degree d is equal to(
d+m− 1

d

)
. In particular, M(2κ, κ) ≈ 6κ/

√
κ.

2 Overview

In this section, we propose a high-level description of the main ideas of this
paper. All the computations will be done in Zn, n ≥ 3.

First encryption scheme. The secret key K contains 2κ randomly chosen
secret vectors s1, . . . , s2κ belonging to Z2κ

n .

Encrypting x ∈ Zn simply consists of randomly choosing c ∈ Z2κ
n satisfying

⟨s1, c⟩
⟨s2, c⟩

+ · · ·+ ⟨s2κ−1, c⟩
⟨s2κ, c⟩

= x (1)

In other words, by considering the 2κ − by − 2κ matrix S whose ith row is si
(assuming S invertible)

c = S−1


r1x1
r1
· · ·
rκxκ
rκ


where (xi, ri)i=1,...,κ is randomly chosen in (Zn × Z∗n)κ s.t. x1 + · · ·+ xκ = x.

Security analysis. By multiplying each side of (1) by Φ′0(c) =
∏κ

i=1⟨s2i, c⟩, we
get a degree-κ polynomial equation in the form

Φ0(c)− xΦ′0(c) = Φx(c) =
∑

t1+···+t2κ=κ

αt1,...,t2κc
t1
1 · · · c

t2κ
2κ = 0

2 σi(1) = i;σi(2) = i+ 1; . . . ;σi(κ) = i− 1.

where the coefficients αt1,...,t2κ are evaluations of degree-κ polynomials over S, x.
As Φx(c) = 0 if and only if c is an encryption of x, the knowledge of Φx is
sufficient to break IND-CPA security. Moreover, by sampling sufficiently many
encryptions of x, the monomials of Φx can be recovered by solving a linear
system. However, by choosing κ = Θ(λ), the number of monomials is exponential
(see Remark 1), making this attack fail.

Homomorphic properties. The vector sum is not an additive homomorphic op-
erator. But, contrarily to what we may intuitively think, this scheme has some
homomorphic capabilities coming from the following observation

⟨s1, c⟩⟨s2, c′⟩+ ⟨s2, c⟩⟨s1, c′⟩
⟨s2, c⟩⟨s2, c′⟩

+ · · ·+ ⟨s2κ−1, c⟩⟨s2κ, c
′⟩+ ⟨s2κ, c⟩⟨s2κ−1, c′⟩

⟨s2κ, c⟩⟨s2κ, c′⟩
= x+ x′

where c and c′ are encryptions of respectively x and x′. This will be used to
develop an additive homomorphic operator.

Second encryption scheme. This second encryption scheme is essentially
the same as the first one except that we consider an operator Add achieving
homomorphic additions. Given two encryptions c and c′ of x and x′, Add(c, c′)
returns an encryption c′′ defined by

c′′ = S−1


r1r
′
1(x1 + x′1)

r1r
′
1

· · ·
rκr
′
κ(xκ + x′κ)

rκr
′
κ


where c = S−1(r1x1, r1, . . . , rκxκ, rκ) and c′ = S−1(r′1x

′
1, r
′
1, . . . , r

′
κx
′
κ, r
′
κ).

Security analysis. Unfortunately, the adjunction of Add brings weaknesses. In-
deed, we can mount what we will call an attack by linearization. For concreteness,
the CPA attacker can efficiently build the vector c̃ defined by

c̃ = S−1


r
ϕ(n)
1 ϕ(n)x1

r
ϕ(n)
1

· · ·
r
ϕ(n)
κ ϕ(n)xκ

r
ϕ(n)
κ

 = ·S−1


ϕ(n)x1
1
· · ·
ϕ(n)xκ
1


by recursively applying Add over c. We let see the reader how to use it to
totally break our scheme3. To overcome this, the factoring assumption should

3 By considering 2κ randomly chosen encryptions c1, . . . c2κ of arbitrarily chosen plain-
texts x1, . . . , x2κ, the vectors c̃1, . . . c̃2κ can be generated as explained above. For any
i = 1, . . . , 2κ, it is ensured that ⟨v, c̃i⟩ = ϕ(n)xi, with v = s1 + s3 + · · · + s2κ−1.
Hence, by solving this linear system (where the variables are the components of v)
v can be recovered. This is sufficient to break the IND-CPA security of our scheme.
Indeed, given a challenge encryption c, the encrypted value x can be recovered, i.e.
x = ⟨v, c̃⟩/ϕ(n).

be introduced by choosing n as a RSA modulus. In this paper, we will show how
to efficiently implement Add and we will prove IND-CPA security in the generic
ring model under the factoring assumption assuming κ = Θ(λ). This represents
the main result of this paper.

Removing the factoring assumption? They are many other ways to define
an additive homomorphic operator. For instance, randomness can be introduced
in Add to get an operator Addrand by defining c′′ = Addrand(c, c′) by

c′′ = S−1


ρ1(c, c

′)rσ(1)r
′
σ′(1)(xσ(1) + x′σ′(1))

ρ1(c, c
′)rσ(1)r

′
σ′(1)

· · ·
ρκ(c, c

′)rσ(κ)r
′
σ′(κ)(xσ(κ) + x′σ′(κ))

ρκ(c, c
′)rσ(κ)r

′
σ′(κ)


where σ, σ′ are randomly (and secretely) chosen permutations of {1, . . . , κ} and
ρ1, . . . , ρκ are randomly (and secretely) chosen (e.g. quadratic) polynomials. By
doing this, the above attack does not work anymore and the factoring assump-
tion could be hopefully removed. We let it as a perspective (an example of
implementation is proposed in Appendix B).

Perspective of FHEs. By the same way, one can efficiently implement oper-
ators O computing c′′ = O(c, c′) defined by

c′′ = S−1


ρ1(c, c

′)rσ(1)r
′
σ′(1)xσ(1)x

′
σ′(1)

ρ1(c, c
′)rσ(1)r

′
σ′(1)

· · ·
ρκ(c, c

′)rσ(κ)r
′
σ′(κ)xσ(κ)x

′
σ′(κ)

ρκ(c, c
′)rσ(κ)r

′
σ′(κ)


Roughly speaking, c′′ stores κ products xixj . By combining several such well-
chosen operators (at least κ) and the additive homomorphic operator, one can
build a multiplicative homomorphic operator (by using the equality xx′ =

∑
ij xix

′
j).

Discussion. The first encryption scheme can be straightforwardly turned into a
new noise-free cryptographic problem. The search version of this problem would
consist of recovering the secret matrix S given sufficiently many encryptions of
0 and the decisional version would consist of distinguishing between encryptions
of 0 and randomly chosen vectors. We believe this problem hard for any n ≥ 3
assuming κ = Θ(λ). In our opinion, this problem could be fruitful in cryptogra-
phy and could merit to be independently studied. We briefly saw natural ways to
build homomorphic operators. We think that many other relevant constructions
can be achieved.

3 Some security results under the factoring assumption

Throughout this section, n denotes a randomly chosen RSA-modulus. Given a

function ϕ : Zr
n → Zn, zϕ

def
= #{x ∈ Zr

n|ϕ(x) = 0}/nr. Classically a polyno-
mial will be said null (or identically null) if each coefficient of its expanded
representation is equal to 0.

3.1 Roots of polynomials

The following result proved in [AM09] establishes that it is difficult to output a
polynomial ϕ such that zϕ is non-negligible without knowing the factorization of
n. The security of RSA in the generic ring model can be quite straightforwardly
derived from this result (see [AM09]).

Theorem 1. (Lemma 4 of [AM09]). Assuming factoring is hard, there is
no p.p.t-algorithm A which inputs n and which outputs4 a {+,−,×}-circuit rep-
resenting a non-null polynomial ϕ ∈ Zn[X] such that zϕ is non-negligible.

Thanks to this lemma, showing that two polynomials5 are equal with non-
negligible probability becomes an algebraic problem: it suffices to prove that
they are identically equal. This lemma is a very powerful tool which is the heart
of the security proofs proposed in this paper. We extend this result to the mul-
tivariate case.

Proposition 1. Assuming factoring is hard, there is no p.p.t algorithm A which
inputs n and which outputs4 a {+,−,×}-circuit representing a non-null polyno-
mial ϕ ∈ Zn[X1, . . . , Xr] such that zϕ is non-negligible.

Proof. See Appendix D.

�

3.2 Symmetry

Let κ ≥ 2 and t ≥ 1 be positive integers polynomials in λ. Recall that ∆κ

denotes the set of the permutations over {1, . . . , κ}. Throughout this section, we
will consider an arbitrary subset Σ ⊆ ∆κ. Let y1, y2 be randomly chosen in Zn.
It is well-known that recovering6 y1 with non-negligible probability given only
S = y1 + y2 or P = y1y2 is difficult assuming the hardness of factoring. In this
section, we propose to extend this. The following definition naturally extends
the classical definition of symmetric polynomials.

4 with non-negligible probability (the coin toss being the choice of n and the internal
randomness of A)

5 built without knowing the factorization of n
6 y1, y2 are the roots of the polynomial y2 − Sy + P .

Definition 1. Consider the tuples of indeterminate (Yℓ = (Xℓ1, . . . , Xℓt))ℓ=1,...,κ.
A polynomial ϕ ∈ Zn[Y1, . . . , Yκ] is Σ-symmetric if for any permutation σ ∈ Σ,

ϕ(Y1, . . . , Yκ) = ϕ(Yσ(1), . . . , Yσ(κ))

Let P be an arbitrary p.p.t algorithm which inputs n and outputs m Σ-
symmetric polynomials s1, . . . , sm and a non Σ-symmetric polynomial π. We
show that evaluating π only given evaluations of s1, . . . ,sm is difficult.

Lemma 1. Let n be a randomly chosen RSA modulus and (s1, . . . , sm, π) ←
P(n). Assuming the hardness of factoring, there is no p.p.t algorithm which
outputs π(y) given only s1(y), . . . , sm(y) with non-negligible probability over the

choice7 of n, y
$← Zκt

n .

Proof. See Appendix E.
�

4 An additively homomorphic private-key encryption
scheme

We first propose a private-key encryption scheme. The homomorphic operator
will be developed later.

Definition 2. Let λ be a security parameter. The functions KeyGen, Encrypt,
Decrypt are defined as follows:

– KeyGen(λ). Let η, κ be positive integers indexed by λ, let n be an η-bit RSA
modulus chosen at random. Choose at random an invertible matrix S ∈
Z2κ×2κ
n and let T = S−1. The ith row of S is denoted by si and Li denotes

the linear function defined by Li(v) = ⟨si,v⟩. Output

K = {S} ; pp = {n, κ}

– Encrypt(K, pp, x ∈ Zn). Choose at random r1, . . . , rκ in Z∗n and x1, . . . , xκ
in Zn s.t. x1 + · · ·+ xκ = x. Output

c = T


r1x1
r1
· · ·
rκxκ
rκ


– Decrypt(K, pp, c ∈ Z2κ

n). Output x =
∑κ

ℓ=1 L2ℓ−1(c)/L2ℓ(c).

7 y uniform over Zκt
n

Throughout this paper, pp = {n, κ} will be assumed to be public. The homo-
morphic operator(s), developed later, will be included in pp. Proving correct-
ness is straightforward by using the relation x = r1x1/r1 + . . . + rκxκ/rκ. The
function Decrypt can be represented as the ratio of two degree-κ polynomials
Φ0, Φ

′
0 ∈ Zn[X1, · · · , X2κ] defined by

Φ0 =

κ∑
ℓ=1

L2ℓ−1
∏
ℓ′ ̸=ℓ

L2ℓ′ ; Φ
′
0 =

κ∏
ℓ=1

L2ℓ (2)

i.e.

Decrypt(K, pp, c) = Φ0(c)/Φ
′
0(c)

At this step, our scheme is not homomorphic in the sense that the vector sum
is not an homomorphic operator. Indeed, c and a · c encrypt the same message
for any a ∈ Z∗n.

4.1 Externalizing the generation of n

To clearly understand the role of the factoring assumption in our security proof,
it is important to notice that the factorization of n is not used in KeyGen.
Consequently, the generation of n could be externalized8 (for instance generated
by an oracle). In other words, n could be a public input of KeyGen. This means
that all the polynomials considered in our security analysis are built without
using the factorization of n implying that they are equal to 0 with negligible
probability provided they are not null (according to Proposition 1).

4.2 A basic attack

We present here the most natural attack consisting of solving a linear system.
Let c ← Encrypt(K, pp, 0) be an encryption of 0. By definition9, it is ensured
that Φ0(c) = 0. By considering several encryptions c1, . . . , ct of 0, we get an
equation system Φ0(c1) = 0, . . . , Φ0(ct) = 0.

The expanded representation of Φ0 could be thus recovered10 by solving a
linear system whose variables are its monomial coefficients. However, this at-
tack fails provided κ = Θ(λ) because the expanded representation of Φ0 is
exponential-size in this case (see Remark 1). For instance, by choosing κ = 13,
the attack consists of solving a linear system with approximatively 5 · 109 vari-
ables.

It should be noticed that the previous equation system can be seen as a
nonlinear system whose variables are the coefficients of S. Proposition 4 will
ensure that this system cannot be solved assuming the hardness of factoring.

8 ensuring that its factorization was forgotten just after its generation
9 Φ0 defined in (2), satisfies Φ0(c) =

∑κ
ℓ=1 rℓxℓ

∏
ℓ′ ̸=ℓ rℓ′ = 0

10 within a multiplicative factor

4.3 The additive operator

Let S ← KeyGen(λ). In this section, we will consider the quadratic polynomials
Lij ∈ Zn[U1, . . . , U2κ, V1, . . . , V2κ] defined by Lij(u,v) = Li(u)Lj(v).

Definition 3. AddGen(S) outputs the expanded representation of the polynomi-
als q1, . . . , q2κ defined by

 q1
· · ·
q2κ

 = T


L12 + L21

L22

· · ·
L2κ−1,2κ + L2κ,2κ−1
L2κ,2κ


As each quadratic polynomial qi has O(κ2) monomials, the running time of
AddGen is O(κ4) (2κ sums of 2κ quadratic polynomials). The operator Add ←
AddGen(S) consists of evaluating the polynomials q1, . . . , q2κ, i.e. Add(u,v) =
(q1(u,v), . . . , q2κ(u,v)), leading to a running time in O(κ3). See Appendix A
for a toy implementation of Add.

Proposition 2. Add← AddGen(S) is a valid additive homomorphic operator.

Proof. Straightforward (see Fig. 1).
�

Add

T

r1x1
r1
· · ·
rκxκ
rκ

 , T


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = T


r1r

′
1(x1 + x′1)

r1r
′
1

· · ·
rκr

′
κ(xκ + x′κ)

rκr
′
κ



Fig. 1.
Description of the additive operator Add ← AddGen(S) showing that
Decrypt(K, pp,Add(c, c′)) = Decrypt(K, pp, c) + Decrypt(K, pp, c′).

As seen in Section 2, the operator Add introduces weaknesses provided the fac-
torization of n is known.

Proposition 3. IND-CPA security ⇒ hardness of factoring.

4.4 Efficiency

Encrypting/Decrypting/Add requires respectively O(κ2/κ2/κ3) modular multipli-
cations. A ciphertext is a 2κ-vector in Zn, implying that the ratio of ciphertext
size to plaintext size is 2κ. In terms of storage, Add contains 4κ3 +6κ2 elements
of Zn, which leads to a space complexity in O(|n|κ3).

By considering κ = 13 as done in Section 4.2, evaluating Add requires around
10500 modular multiplications vs only one for Paillier’s cryptosystem. Efficiency
could be improved by choosing n as a prime (large or not) in constructions not
requiring the factoring assumption. We propose an example of such a construc-
tion in Appendix B.

4.5 Discussion

The private-key encryption scheme is very simple. Many cryptographic construc-
tions based on this scheme can be imagined by adding auxiliary information, e.g.
the operator Add. For these reasons, we think that the security of this scheme
can be seen as a new cryptographic problem and its security can be studied
independently of related constructions.

The classic way (see [Rot11]) to transform a private-key cryptosystem into a
public-key cryptosystem consists of publicizing encryptions ci of known values
xi and using the homomorphic operators to encrypt x. Let Encrypt1 denote this
new encryption function. Assuming the IND-CPA security of the private-key
cryptosystem, it suffices that Encrypt1(pk, x) and Encrypt(K, pp, x) are compu-
tationally indistinguishable to ensure the IND-CPA security of the public-key
cryptosystem.

5 Security analysis

Notation. Let Y = ((Xiℓ, Riℓ)i=0,...,t, (S2ℓ−1,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ be a tuple

of indeterminate used throughout this section. Typically, a polynomial α ∈ Zn[Y]
will be evaluated over θn, θn containing the randomness used to build the knowl-
edge of the CPA attacker (see Definition 4) and α(θn) being a value known by
the CPA attacker.

Breaking IND-CPA security consists of recovering a p.p.t. algorithm A distin-
guishing encryptions of 0 from ones of 1, i.e. satisfying

|Pr(A(Encrypt(K, pp, 1)) = 0)− Pr(A(Encrypt(K, pp, 0)) = 0)| > ε(λ) (3)

where ε(λ) is a non-negligible quantity. Throughout our security analysis, it will
be assumed that

κ = Θ(λ)

5.1 Knowledge of the CPA attacker.

For technical reasons, we propose a slight modification in Definitions 2, 3 by
setting T = det2 S · S−1 (instead of T = S−1): each coefficient of T can be thus
expressed as a polynomial defined over S keeping true some symmetry properties
encapsulated in Lemma 2. It is straightforward to show that the decrypting
function and the operator Add remain correct.

There are classically two sources of randomness behind the knowledge of the
CPA attacker. The first source of randomness is the internal randomness of Key-
Gen, i.e. the choice ofK = {S}. The second source of randomness comes from the
encryption oracle. After receiving the challenge encryption c0 ← Encrypt(K, pp, x0),
the CPA attacker requests the encryption oracle to get encryptions c1, . . . , ct
of chosen plaintexts x1, . . . , xt ∈ Zn. Without loss of generality, we will here
assume that the encryptions are random meaning that the encryption ora-
cle randomly chooses11 plaintexts x1, . . . , xt itself and returns these values and
their encryptions c1, . . . , ct (drawn according to Encrypt). This assumption can
be done because the CPA attacker can use the operator Add, after receiving
c1, . . . , ct, x1, . . . , xt, to get encryptions of chosen plaintexts statistically indis-
tinguishable from encryptions output by Encrypt. Clearly, it suffices to consider
t = O(κ) to ensure this. All the randomness can be encapsulated in the vector
θn defined as follows.

Definition 4. Let S ← KeyGen(λ), let (xi1, ri1, . . . , xiκ, riκ) be the values (ran-
domly) chosen by the encryption oracle to produce12 ci. For any ℓ ∈ {1, . . . , κ},
the random vector θℓ ∈ Z4κ+2(t+1)

n is defined by

θℓ = ((xiℓ, riℓ)i=0,...,t, (s2ℓ−1,i, s2ℓ,i)i=1,...,2κ)

The random vector (θ1, . . . , θκ) is denoted by θn if x0 = x01+· · ·+x0κ is uniform

over Zn and θ
[x]
n if x0 = x.

It should be noticed that θn is drawn according to a probability statistically
indistinguishable from the uniform distribution over Zκγ

n . The knowledge of the
CPA attacker can be represented as a vector α ∈ Zγ′

n , with γ′ = O(κ3) provided
t = Θ(κ).

Definition 5. The CPA attacker’s knowledge (c0, . . . , ct, x1, . . . , xt,Add) can be
represented by a vector α ∈ Zγ′

n , the ith component of α being the evaluation of

a polynomial16 αi ∈ Zn[Y] over θn, i.e. α = (α1(θn), . . . , αγ′(θn))
def
= α(θn).

The polynomials αi are implicitly described in previous sections. Nevertheless,
we do not need to precisely define them. We will only exploit their symmetry
properties. For instance, Add is not impacted by switching the two first rows of
S with the two last ones. The following result generalizes it.

Lemma 2. Each polynomial αi is ∆κ-symmetric (see Definition 1).

Proof. See Appendix F.

�
11 according the the uniform distribution over Zn.
12 ci = T (ri1xi1, ri1, . . . , riκxiκ, riκ).

5.2 A fundamental result based on symmetry

By exploiting intrinsic symmetry properties of our scheme, one can show that S
cannot be recovered. Worse, non ∆κ-symmetric polynomials cannot be evaluated
over the secret matrix S.

Proposition 4. Let 16 π ∈ Zn[Y] be a non ∆κ-symmetric polynomial chosen
by the CPA attacker A. Assuming the hardness of factoring, A cannot recover
π(θn) with non-negligible probability over the choice of θn, n.

Proof. A direct consequence of Lemma 1 and Lemma 2.
�

Corollary 1. Assume the hardness of factoring.

1. The secret key S cannot be recovered.

2. Any product of strictly less than κ coefficients of S cannot be recovered.

3. The polynomials Li1 × · · · × Lit cannot be recovered13 provided t < κ.

This result is not sufficient to ensure that Φ0 =
∑κ

ℓ=1 L2ℓ−1
∏

ℓ′ ̸=ℓ L2ℓ′ cannot
be recovered. Indeed, each monomial coefficient of Φ0 is ∆κ-symmetric (and
thus could be recovered). However, the expanded representation of Φ0 (or its
multiples) is exponential-size provided κ = Θ(λ) and thus cannot be recovered.

By construction, Φ0 (or its multiples) could nevertheless be efficiently rep-
resented with the linear functions Li (or O(1)-products of these linear func-
tions). However, these compact semi-factored representations do not deal with
∆κ-symmetric quantities and they cannot be recovered according to Proposition
4. However, maybe other efficient representations of Φ0 can exist only dealing
with∆κ-symmetric values. We will show that it is not the case in the generic ring
model (see Proposition 8) which is sufficient to prove generic IND-CPA security
(see Proposition 7).

5.3 Attacks by linearization

Proposition 4 intuitively justifies that our security analysis can be restricted
to a natural class of attacks, called attacks by linearization, generalizing the
attacks described in Sections 2 and 4.2. For concreteness, the CPA attacker A
can generate new vectors v1, . . . ,vr by recursively applying the homomorphic
operator Add on the challenge encryption c0 and c1, . . . , ct in the hope that there
exists a small polynomial φ s.t. Φ(c0) = φ(v1, . . . ,vr) distinguishes between
encryptions of 0 and encryptions of 1. For instance, v1 = Add(c0, c0), v2 =
Add(v1, c0), v3 = Add(v2, c1), etc. The procedure (chosen by the attacker) which
outputs (v1, . . . ,vr) is denoted by GenVec, i.e. Φ(c0) = φ◦GenVec(c0, c1, . . . , ct).
If the expanded representation of φ is small enough then the CPA attacker could
recover it by solving a linear system.

13 and thus cannot be evaluated

Proposition 5. Assuming the hardness of factoring, the CPA attacker cannot
find14 a procedure GenVec and a polynomial-size polynomial15 φ ∈ Zn[X1, . . . , X2κr]
s.t. φ ◦ GenVec satisfies

|Prc0←Encrypt(pk,pp,1)(φ ◦ GenVec(c0, c1, . . . , ct) = 0)

− Prc0←Encrypt(pk,pp,0)(φ ◦ GenVec(c0, c1, . . . , ct) = 0)| > ε(λ)

with non-negligible probability over the choice of (ci ← Encrypt(pk, pp, xi))i=1,...,t

Proof. See Appendix G.
�

5.4 Generic IND-CPA security

Roughly speaking, a Generic Ring Algorithm (GRA) defined over a ring R (here
R = Zn) is an algorithm where only arithmetic operations +,−,×, / and equality
tests are allowed (see [AM09]). In the special case of R = Zn where n is a
randomly chosen RSA modulus, equality tests are not needed. This is implicitly
shown in [AM09] as a straightforward consequence of Theorem 1. Indeed, this
result ensures that two polynomials are either identically equal or equal with
negligible probability. We say that our scheme is secure in the generic ring model
if the CPA cannot find any distinguishing rational function.

Definition 6. Our encryption scheme is generically IND-CPA secure if the
CPA attacker cannot recover a {+,−,×, /}-circuit representing a (rational) func-
tion ϕ satisfying∣∣∣Pr(ϕ ◦ α(θ[1]n) = 0

)
− Pr

(
ϕ ◦ α(θ[0]n) = 0

)∣∣∣ > ε(λ) (4)

where ε(λ) is a non-negligible quantity.

This definition can be restricted to polynomials.

Proposition 6. Our encryption scheme is generically IND-CPA secure if the
CPA attacker cannot recover a (polynomial-size) {+,−,×}-circuit representing
a polynomial ϕ satisfying (4).

Proof. See Appendix H.1
�

To prove generic security, we will prove that the CPA attacker cannot output a

non-null polynomial ϕ such that ϕ ◦ α(θ[x]n) = 0 with non-negligible probability.
Without loss of generality, we will focus on the case x = 0. In this case, the
polynomial ϕ0 defined as follows plays a central role in our analysis.

14 with non-negligible probability
15 polynomial-size expanded representation. Note that degree-κ polynomials have an

exponential number of monomials (see Remark 1) provided κ = Θ(λ).

Definition 7. Let us consider the polynomials16 Lt(Y, V) =
∑2κ

k=1 St,k ·Vk with
V = (V1, . . . , V2κ). The polynomial ϕ0 ∈ Zn[Y, V] is defined by

ϕ0 =

κ∑
ℓ=1

L2ℓ−1
∏
ℓ′ ̸=ℓ

L2ℓ′

By construction, the polynomial ϕ0 satisfies ϕ0(θn,v) = Φ0(v). The following
proposition states that our scheme is generically IND-CPA secure if the CPA
attacker cannot represent any non-null multiple of ϕ0 from its knowledge. To
simplify notation, we redefine α by α(θn,v) = (α1(θn), . . . , αγ′(θn),v).

Proposition 7. Assuming the hardness of factoring, our scheme is generically
IND-CPA secure if and only if the CPA attacker cannot output17 a (polynomial-
size) {+,−,×}-circuit representing a polynomial ϕ s.t. ϕ◦α is a non-null multiple
of ϕ0 (see Definition 7).

Proof. See appendix H.2.
�

Consequently, generic IND-CPA security can be reduced to an algebraic prob-
lem. Indeed, it suffices to prove the non-existence of polynomials ϕ satisfying
requirements of Proposition 7. The proof is based on the ∆κ-symmetry of CPA
attacker’s knowledge (see Lemma 2).

Proposition 8. Our scheme is generically IND-CPA secure assuming the hard-
ness of factoring.

Proof. See Appendix H.3.
�

This result holds as long as Lemma 2 holds. It means in particular that IND-
CPA security is ensured even if other evaluations of ∆κ-symmetric polynomials
are given to the CPA attacker.

6 Perspectives

A first motivating perspective would consist of removing the factoring assump-
tion required to prove formal results (Theorem 1, Lemma 1 and Proposition
4). This assumption defeats the whole “post-quantum” purpose of multivariate
cryptography [Pat96]. While decrypting does not require the factorization of n,
this assumption allows us to prove some formal impossibility results. Random-
ness might be introduced in order to get a pure multivariate encryption scheme.
In our opinion, the additional randomness introduced to develop the multiplica-
tive operator (in the following of this section) could be sufficient to achieve this
(such randomness should also be introduced in Add).

16 Recall that Y = ((Xiℓ, Riℓ)i=0,...,t, (S2ℓ−1,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ .
17 with non-negligible probability over the choice of n

6.1 A naive/toy construction of Mult

We here consider the case κ = 2 where S is a 4×4 matrix. Let us consider the two
following quadratic operators O1,O2 defined by (see Section 4.3 for notation) :

O1 = T


L11

L22

L33

L44

 ; O2 = T


L13

L24

L31

L42


Given two encryptions c, c′ of x, x′, we have

O1(c, c
′) = T


r1r
′
1x1x

′
1

r1r
′
1

r2r
′
2x2x

′
2

r2r
′
2

 ; O2(c, c
′) = T


r1r
′
2x1x

′
2

r1r
′
2

r2r
′
1x2x

′
1

r2r
′
1


implying that c′′ = Mult(c, c′)

def
= Add(O1(c, c

′),O2(c, c
′)) is a valid encryption

of xx′. Indeed,

c′′ = T


r21r
′
1r
′
2(x1x

′
1 + x1x

′
2)

r21r
′
1r
′
2

r22r
′
1r
′
2(x2x

′
1 + x2x

′
2)

r22r
′
1r
′
2


and Decrypt(K, pp, c′′) = (x′1 + x′2)x1 + (x′1 + x′2)x2 = (x′1 + x′2)(x1 + x2) = xx′.

Roughly speaking, the κ2 = 4 products xix
′
j are stored in two intermediate

vectors output by O1,O2. While there are many others ways to define these
operators, let us assume that their description is public18 (or guessed by the
CPA attacker). This choice of O1,O2 leads to an attack by linearization more
efficient than the basic attack presented in Section 4.2.

Example of attack by linearization. Assume that c′ is an encryption of 0, i.e.
x′ = x′1 + x′2 = 0. In this case19,

Mult(c, c′) ∼ T


0
r21
0
r22


It follows that a linear combination of L1,L3 can be recovered by solving a small
linear system20 allowing the CPA attacker to distinguish the case x′ = 0 from the
case x′ ̸= 0. In order to remove such weaknesses, we will introduce randomness
in our construction, i.e. the coefficients τijk and the polynomials ρijk.

18 while the operators are public, their description could be not divulged.
19 ∼ meaning ”equal within a multiplicative constant”
20 smaller than the one involved in the basic attack.

6.2 Overview

A multiplicative operator Mult should be developed to get an FHE. Let c, c′ be
two encryptions of x, x′. The operator Mult developed in this section will output
an encryption c′′ = Mult(c, c′) satisfying

c′′ = T


R1(c, c

′) ·
∑

ij τij1xix
′
j

R1(c, c
′)

· · ·
Rκ(c, c

′) ·
∑

ij τijκxix
′
j

Rκ(c, c
′)


where τijk are randomly chosen over Zn s.t.

∑κ
k=1 τijk = 1 for any (i, j) ∈

{1, . . . , κ}2 and R1, . . . , Rκ are randomly chosen polynomials. Clearly,

Decrypt(K, pp, c′′) =
∑
k

∑
ij

τijkxix
′
j =

∑
ij

xix
′
j = xx′

Unfortunately, unlike Add, this operator Mult cannot be efficiently represented
with∆κ-symmetric values. We propose to represent it by using weaker symmetry
properties.

The implementation of Mult is less straightforward than the one of Add. It
cannot be achieved using only one quadratic operator. Indeed, it exploits the
equality xx′ =

∑κ
i=1

∑κ
j=1 xix

′
j and several operators are necessary to store all

the products xix
′
j in some intermediate vectors. The price to pay is to degrade

symmetry properties. Nevertheless, we propose a construction partially keeping
them.

6.3 Our proposal

Notation. Let Iκ = {1, . . . , κ} and let Γκ be the set of quadratic homogeneous
polynomials ρ ∈ Zn[X1, . . . , X2κ, Y1, . . . , Y2κ] s.t. ρ(X,Y) =

∑
i,j aijXiYj.

Given two permutations σ, σ′ ∈ ∆κ, a family of polynomials ρ ∈ Γκ and a
vector τ ∈ Zκ

n, the function OGen(S, σ, σ′, ρ, τ) outputs21 the degree-4 operator
O defined by

O = T


τ1 ρ1L2σ(1)−1,2σ′(1)−1
ρ1L2σ(1),2σ′(1)

· · ·
τκ ρκL2σ(κ)−1,2σ′(κ)−1
ρκL2σ(κ),2σ′(κ)


By construction,

Decrypt(sk,O(c, c′)) = τ1xσ(1)xσ′(1)′ + · · ·+ τκxσ(κ)xσ′(κ)′

21 the expanded representation of the 2κ degree-4 polynomials q1, . . . , q2κ satisfying
(q1(u,v), . . . , q2κ(u,v)) = O(u,v).

We note that Decrypt(sk,O(c, c′)) does not depend on the polynomials ρi. These
polynomials will be chosen at random in Mult. Roughly speaking, the vector
O(c, c′) stores κ (additive shares of) products xixj . By considering several such
operators (at least κ), all the products can be stored. It then suffices to homo-
morphically add these vectors (by using the operator Add) to get an encryption
of xx′. This is detailed below.

Mult. Let τ = (τijk)(i,j,k)∈I3
κ
be randomly chosen such that

∑κ
k=1 τijk = 1 for

any (i, j) ∈ I2κ. To build the operator Mult, it suffices to invoke κ2 times the
function OGen in order to generate and publicize

Oij ← OGen
(
S, σi, σj , ρij , (τσi(k),σj(k),k)k=1,...,κ

)
for any (i, j) ∈ I2κ where ρij is randomly chosen over Γκ and σi, σj ∈ 22Σκ.
To homomorphically multiply c and c′, it suffices to homomorphically add the
vectors Oij(c, c

′), i.e.

Mult(c, c′)
def
=

⊕
(i,j)∈I2

κ

Oij(c, c
′)

where ⊕ refers to the operator Add, i.e. u ⊕ v = Add(u,v). As evaluating
Oij(c, c

′) can be done in O(κ5), the running time of Mult is O(κ7).

Example. Description of the operators O11, O12, O12, O22 and Mult in the case
κ = 2.

O11(c, c
′) = T


ρ111(c, c

′)r1r
′
1τ111x1x

′
1

ρ111(c, c
′)r1r

′
1

ρ112(c, c
′)r2r

′
2τ222x2x

′
2

ρ112(c, c
′)r2r

′
2

 ; O12(c, c
′) = T


ρ121(c, c

′)r1r
′
2τ121x1x

′
2

ρ121(c, c
′)r1r

′
2

ρ122(c, c
′)r2r

′
1τ212x2x

′
1

ρ122(c, c
′)r2r

′
1



O21(c, c
′) = T


ρ211(c, c

′)r1r
′
2τ211x2x

′
1

ρ211(c, c
′)r1r

′
2

ρ212(c, c
′)r2r

′
1τ122x1x

′
2

ρ212(c, c
′)r2r

′
1

 ; O22(c, c
′) = T


ρ221(c, c

′)r2r
′
2τ221x2x

′
2

ρ221(c, c
′)r2r

′
2

ρ222(c, c
′)r1r

′
1τ112x1x

′
1

ρ222(c, c
′)r1r

′
1



Mult(c, c′) ∼ T


∏

(i,j)∈{1,2}2 ρij1(c, c
′)
∑

(i,j)∈{1,2}2 τij1xix
′
j∏

(i,j)∈{1,2}2 ρij1(c, c
′)∏

(i,j)∈{1,2}2 ρij2(c, c
′)
∑

(i,j)∈{1,2}2 τij2xix
′
j∏

(i,j)∈{1,2}2 ρij2(c, c
′)



22 Recall that σi ∈ Σκ refers to the permutation over {1, . . . , κ} defined by σi(1) =
i;σi(2) = i+ 1; . . . ;σi(κ) = i− 1.

6.4 Security analysis

Randomness θn (see Definition 4) can be easily adapted in order to integrate the
polynomials ρijk and the values τijk used in our construction. Each value known
by the CPA attacker can be still written as the evaluation of a polynomial αi (see
Definition 5) over θn. In this context, Proposition 7 remains true. Unfortunately,
Proposition 8 cannot be naturally extended because its proof is based on that
the polynomials αi are ∆κ-symmetric. Even if Lemma 2 is not true anymore, the
polynomials αi keep symmetry properties: they are just Σκ-symmetric instead
of being ∆κ-symmetric. Proposition 4 can be easily adapted.

Proposition 9. Let π be a non Σκ-symmetric polynomial chosen by the CPA
attacker A. Assuming the hardness of factoring, A cannot recover π(θn) with
non-negligible probability over the choice of θn, n.

Proof. In order to take into account (symmetric) constraints over the coefficients
τijk, a slight extension of Lemma 1, i.e. Lemma 6, should be used to prove this
result.

�

It follows that Corollary 1 still holds. However, the proof of Proposition 8 intrin-
sically exploits ∆κ-symmetry properties and cannot be easily adapted. While we
are convinced that the introduction of the polynomials ρijk and the coefficients
τijk protect our scheme against attacks by linearization, we did not manage to
formally prove it.

Assume nevertheless that the multiplicative operator Mult can be replaced by
an oracle O in the security analysis. In this case, the proof of Proposition 5 can
be easily adapted to show the non-existence of efficient attacks by linearization.

Mult can be replaced by an oracle O? We propose two (informal) rea-
sons/modifications suggesting this.

– The operators Oij play a symmetric role and there is no reason to publicize
the permutations σi, σj involved in these operators. We can speculate on
the fact that the CPA attacker cannot recover them or equivalently that it
cannot distinguish between Oij and Oi′j′ .

– The operators Oij output vectors relevant under the secret key S. However,
nothing justifies it and one can imagine that Oij output vectors relevant
under randomly chosen keys Sij . It suffices then to generate new operators
Add (adapted to these new keys) in order to (homomorphically) add these
vectors. Roughly speaking, the operators Oij and the (new) operators Add
involved in Mult become chained making non-specified uses irrelevant23.

23 This also could lead to significative improvements by replacing each degree-4 oper-
ators by two quadratic operators.

References

[AM09] Divesh Aggarwal and Ueli M. Maurer. Breaking RSA generically is equiv-
alent to factoring. In Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings,
pages 36–53, 2009.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) lwe. Cryptology ePrint Archive, Report
2011/344, 2011. http://eprint.iacr.org/.

[CGGI18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. IACR Cryptol-
ogy ePrint Archive, 2018:421, 2018.

[CL15] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from $$\mathsf {DDH}$$. In Topics in Cryptology - CT-RSA
2015, The Cryptographer’s Track at the RSA Conference 2015, San Fran-
cisco, CA, USA, April 20-24, 2015. Proceedings, pages 487–505, 2015.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key
compression and modulus switching for fully homomorphic encryption over
the integers. In EUROCRYPT, pages 446–464, 2012.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 617–640, 2015.

[Elg85] T. Elgamal. A public key cryptosystem and a signature sheme based on
discrete logarithms. In IEEE transactions on Information Theory, pages
31:469–472, 1985.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic en-
cryption with polylog overhead. In EUROCRYPT, pages 465–482, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the aes circuit. In CRYPTO, pages 850–867, 2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 75–92, 2013.

[JS09] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assump-
tions in the generic ring model. In Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, pages 399–416, 2009.

[KH12] Aviad Kipnis and Eliphaz Hibshoosh. Efficient methods for prac-
tical fully homomorphic symmetric-key encrypton, randomization and
verification. Cryptology ePrint Archive, Report 2012/637, 2012.
http://eprint.iacr.org/.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? IACR Cryptology ePrint Archive,
2011:405, 2011.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In EUROCRYPT, pages 223–238, 1999.

[Pat96] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of poly-
nomials (ip): Two new families of asymmetric algorithms. In EURO-
CRYPT, pages 33–48, 1996.

[Rot11] Ron Rothblum. Homomorphic Encryption: From Private-Key to Public-
Key, pages 219–234. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption.
In ASIACRYPT, pages 377–394, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In EUROCRYPT, pages
24–43, 2010.

[XBY12] Liangliang Xiao, Osbert Bastani, and I-Ling Yen. An efficient homomor-
phic encryption protocol for multi-user systems. IACR Cryptology ePrint
Archive, 2012:193, 2012.

A Implementation of Add in the case κ = 1

In this section, we provide an example of the implementation of the homomorphic
scheme for κ = 1. Let S = [sij] ∈ Z2×2

n and ∆ = s11s22 − s12s21.
The polynomial Add = (q1, q2)← AddGen(S) are defined by

∆ · q1(u,v) =(2s22s11s21 − s12s221)u1v1
+s222s11(u1v2 + u2v1)

+s12s
2
22u2v2

∆ · q2(u,v) =s11s221u1v1
−s221s12(u1v2 + u2v1)

+(s11s
2
22 − 2s21s12s22)u2v2

B Removing the factoring assumption?

We propose to implement the randomized operator Addrand considered in Section
2 (with σ = σ′ = Id). This operator can be implemented with degree-4 poly-
nomials (provided the polynomials ρi are quadratic). To improve efficiency, we
propose to split it into two quadratic operators Add′ and Rand, i.e.

Addrand(c, c′) = Rand(Add′(c, c′))

– Add’ exactly follows Add except that c′′ = Add′(c, c′) is not relevant under
S but relevant under a randomly chosen S′.

– Rand randomizes c′′ with polynomials ρi.

Let S′ ∈ Z2κ×2κ
n be a randomly chosen invertible matrix, T ′ = S′−1 its inverse

and L′i the linear application defined by L′i(u) = ⟨s′i,u⟩ where s′i is the i
th row

of S′.

Add’. It suffices now to define Add’ as Add except that T is replaced by T ′ in
Definition 3. In other words,

Add′(c, c′) = T ′ · S · Add(c, c′)

Rand. Let ρ1, . . . , ρκ be randomly chosen degree-1 polynomials.

Rand(u) = T


ρ1(u)L′1(u)
ρ1(u)L′2(u)
· · ·
ρκ(u)L′2κ−1(u)
ρκ(u)L′2κ(u)



It is straightforward to see that this new operator Addrand is correct

Security Analysis. As symmetry properties are preserved, all the results proved
previously still hold under the factoring assumption. Let us now assume that
n is a prime (instead of a RSA modulus). Note first that n should be a large
prime, i.e. n ≈ 2λ, to avoid that ρi(u) = 0 with non-negligible probability.
Clearly, the attack by linearization exhibited in Section 2 is not relevant anymore.
However, as the factorization of n is known, nonlinear univariate equations can be
solved. Hence, our construction becomes potentially vulnerable to attacks based
on Groëbner bases. We carry out some experiments on SageMath platform using
variable elimination algorithms. It appears that computational-time required by
these attacks is prohibitive even for very small values of κ, e.g κ = 2. We did
not exhibit any attack working faster than the basic attack (see Section 4.2).
Obviously further investigations should be done. In our opinion this is a nice
challenge whose formulation is relatively simple.

C Some algebraic lemmas

Lemma 3. Let t, r be positive integers such that r ≤ t and a ∈ Zn. Let ϕ ∈
Zn[X1, . . . , Xt] be a polynomial and let φ be the (t−1)-variate polynomial defined
by φ(X1, . . . , Xr−1, Xr+1, . . . , Xt) = ϕ(X1, . . . , Xr−1, a−(X1+· · ·+Xr−1), Xr+1, . . . , Xt).
The polynomial φ is null if and only if ϕ can be factored by (X1 + · · ·+Xr − a).

Proof. Without loss of generality, one proves the result for r = t. We can identify
Zn[X1, . . . , Xt] to R[Xt] with R = Zn[X1, . . . , Xt−1]. Let ϕ ∈ R[X]. To state our
result, it suffices to notice that ϕ can be factored by X − (a−X1 + · · ·+Xt−1)
if and only if ϕ(a− (X1 + · · ·+Xt−1)) = 0.

�

Lemma 4. There do not exist any polynomial q ∈ Zn[X1, . . . , Xt] and sym-
metric polynomials24 π1, . . . , πt ∈ Zn[X1, . . . , Xκ] satisfying deg πi < κ and
q(π1, . . . , πt) = X1 · · ·Xκ.

Proof. Let π1, . . . , πt ∈ Zn[X1, . . . , Xκ] be arbitrary symmetric polynomials s.t.
deg πi < κ. Let us consider the κ symmetric polynomials σk =

∑
1≤i1<...<ik<κXi1 · · ·Xik

and an arbitrary symmetric polynomial ϕ ∈ Zn[X1, . . . , Xκ]. The fundamental
theorem of symmetric polynomials says that there exists a unique polynomial
φ satisfying ϕ = φ(σ1, . . . , σκ). Thus, as deg πi < κ, π1, . . . , πt can be written
as polynomials φi defined over σ1, . . . , σκ−1 but σκ cannot. Thus, there is no
polynomial q ∈ Zn[X1, . . . , Xt] s.t. q(π1, . . . , πt) = σκ = X1 · · ·Xκ.

�

Lemma 5. Let φ ∈ Zn[X1, . . . , X2κ] be a polynomial. Assume that the polyno-
mial ϕ ∈ Zn[X1, . . . , X2κ] defined by

ϕ(X1, . . . , X2κ) = φ(X1X2, X2, . . . , X2κ−1X2κ, X2κ)

24 π1, . . . , πt ∈ S1.

can be factored by X1 +X3 + · · · +X2κ−1. It is ensured that φ can be factored
by ψ(X1, . . . , X2κ) =

∑
ℓ=1,...,κX2ℓ−1

∏
ℓ′ ̸=ℓX2ℓ′ .

Proof. (Sketch.) Clearly,

φ(X1X2, X2, . . . , X2κ−1X2κ, X2κ) ̸= φ′(X1X2, X2, . . . , X2κ−1X2κ, X2κ)

provided φ ̸= φ′.
By construction, each monomialXe1

1 X
e2
2 · · ·X

e2κ−1

2κ−1 X
e2κ
2κ of ϕ satisfies e2ℓ−1 <

e2ℓ. It follows that if ϕ is a multiple of X1 + X3 + . . . + X2κ−1 then ϕ can be
factored by X2X4 · · ·X2κ and thus by X2X4 · · ·X2κ(X1+X3+ . . .+X2κ−1), i.e.
there exists φ′ such that

ϕ(X1, . . . , X2κ)

=X2X4 · · ·X2κ(X1 +X3 + . . .+X2κ−1)φ
′(X1X2, X2, . . . , X2κ−1X2κ, X2κ)

We conclude by noticing that

ψ(X1X2, X2 . . . , X2κ−1X2κ, X2κ) = X2X4 · · ·X2κ(X1 +X3 + . . .+X2κ−1)

implying that φ = ψ · φ′.
�

D Proof of Proposition 1

This result can be shown by induction over r. By Lemma 1, the result is true
for r = 1. Let us assume the result true for any r < t and let us show it for
r = t. We can identify Zn[X1, . . . , Xt] to R[Xt] with R = Zn[X1, . . . , Xt−1]. Let
ϕ be a a non-null polynomial ϕ ∈ Zn[X1, . . . , Xt] output by a p.p.t. algorithm
A, i.e. ϕ ← A(n). ϕ can be identified by a non-null polynomial ϕ′ ∈ R[X1].
Thus, by fixing X2, . . . , Xt to randomly chosen values x2, . . . , xt ∈ Zn , the
polynomial ϕx2,...,xt

defined by ϕx2,...,xt
(x1) = ϕ(x1, . . . , xt) is not (identically)

null with overwhelming probability over the choice of n, x2, . . . , xt according to
the induction hypothesis. Moreover, provided ϕx2,...,xt

is not null, ϕx2,...,xt
(x1) =

0 with negligible probability other choice of n, x1 according to the induction
hypothesis. This proves ϕ(x1, . . . , xt) = 0 with negligible over the choice of
n, x1, . . . , xt.

�

E Proof of Lemma 1

E.1 The proof

Let D be the uniform probability distribution of over Zκt
n The proof consists of

building a polynomial factoring algorithm A by using a solver B of our problem
as subroutine25. Let us consider the following polynomial-time algorithm A:
25 B is assumed to solve our problem if it outputs π(y) with non-negligible probability

Input: n = pq

(s1, . . . , sm, π)← P(n)

Repeat

1. Let y = (y1, . . . , yκ)
$← D

2. Compute sj = sj(y) for all j = 1, . . . ,m.
3. Compute Π = π(y)
4. Apply B on the inputs s1, . . . , sm, i.e. ΠB ← B(s1, . . . , sm)

until gcd(Π −ΠB, n) ̸= 1

output gcd(Π −ΠB, n)

By construction, this algorithm is correct. Let us show that it terminates
in polynomial-time. First, each step of A can be computed in polynomial-time
implying that A is polynomial if the expectation of the number of steps of A is
polynomial (or equivalently, if the probability to get gcd(Π −ΠB, n) ̸= 1 is not
negligible).

As π is not Σ-symmetric, there exists σ∗ ∈ Σ s.t. π − πσ∗ is not null, where
πσ∗ is the polynomial defined by πσ∗(y) = π(yσ∗(1), . . . , yσ∗(κ)). Thus, according
to Proposition 1, π(y) ̸= πσ∗(y) with overwhelming probability. It follows that
π(y) ̸≡ πσ∗(y) mod p or π(y) ̸≡ πσ∗(y) mod q with overwhelming probability.
Without loss of generality, we assume that

π(y) ̸≡ πσ∗(y) mod q (5)

with overwhelming probability. Let us consider the function h : (Zt
n)

κ → (Zt
n)

κ

such that (y′1, . . . , y
′
κ) = h(y1, . . . , yκ) is defined by

– y′ℓi ≡ yℓi mod p for any (ℓ, i) ∈ {1, . . . , κ} × {1, . . . , t}
– y′ℓi ≡ yσ∗(ℓ),i mod q for any (ℓ, i) ∈ {1, . . . , κ} × {1, . . . , t}.

Obviously, y′ = (y′1, . . . , y
′
κ) are y have the same probability over D, i.e.

PrD(y) = PrD(y′)

Let Π ′ = π(y′). As the functions sj are Σ-symmetric polynomials, we get
sj(y

′) = sj(y) for all j = 1, . . . ,m. It follows that

PrD(ΠB = Π) = PrD(ΠB = Π ′)

As B is assumed to solve our problem, PrD(ΠB = Π) is non-negligible implying
that PrD(ΠB = Π ′) is non-negligible.

By construction Π ≡ Π ′ mod p. Since Π ′ ≡ πσ∗(y) mod q, Equation (5)
implies that Π ̸≡ Π ′ mod q with overwhelming probability. It follows that
p = gcd(n,Π −Π ′) with overwhelming probability. Consequently, A terminates
(when ΠB = Π ′) in polynomial-time.

�

E.2 Extension

We now propose to extend this result when y is drawn under symmetric con-
straints. Let assume that AS(n) outputs:

– Σ-symmetric polynomials s1, . . . , sm ∈ Zn[((Xij , Zij)j=1,...,t)i=1,...,κ]

– polynomials p1, . . . , pγ ∈ Zn[((Zij)j=1,...,t)i=1,...,κ]

– a non Σ-symmetric polynomial π ∈ Zn[((Xij)j=1,...,t)i=1,...,κ].

We consider the probability distribution Dp1,...,pγ ,Σ uniform over the set (as-
sumed to be not empty)

{((x1, z1), . . . , (xκ, zκ)) ∈ Z(t+r)κ
n |pi(zσ(1), . . . , zσ(κ)) = 0

for any (i, σ) ∈ {1, . . . , γ} ×Σ}

We will assume that Dp1,...,pγ ,Σ is sampleable meaning there exists a p.p.t. algo-
rithm D s.t. D(n) outputs a vector drawn according to a probability distribution
statistically close to Dp1,...,pγ ,Σ .

Lemma 6. Let (s1, . . . , sm, p1, . . . , pγ , π) ← AS(n). Assuming the hardness of
factoring, there is no p.p.t algorithm which outputs π(x1, . . . , xκ) given only26

s1(y), . . . , sm(y) with non-negligible probability over the choice of n, y = ((x1, z1), . . . , (xκ, zκ))←
Dp1,...,pγ ,Σ.

Proof. Exactly follows the proof of lemma 1.
�

F Proof of Lemma 2

Recall that we set T = det2 S · S−1 in order to ensure that value known by
the CPA attacker can be written as the evaluation of a polynomial over θ. It
remains to prove that these polynomials are ∆κ-symmetric. First, it should be
noticed that27 det2 S can be written as a ∆κ-symmetric polynomial defined over
s = (s1, . . . , s2κ) and thus θn = (θ1, . . . , θκ). The values xi = xi1 + · · ·+ xiκ are
also evaluations of ∆κ-polynomials.

By construction, each component of ci is the evaluation over θn of a ∆κ-
symmetric polynomial. Indeed, ci is the unique vector satisfying the following
system

for any ℓ = 1, . . . , κ

{
⟨s2ℓ−1, ci⟩ = (detS)2 · riℓxiℓ
⟨s2ℓ, ci⟩ = (detS)2 · riℓ

stable by permutating the tuples (θ1, . . . , θκ).

26 and an efficient representation of π, s1, . . . , sm.
27 but not detS.

Let (q1, . . . , q2κ)← AddGen(S). The coefficient of uivj in qk(u, v) is denoted by
akij . By construction, the vector aij = (a1ij , . . . , a2κ,ij) is the unique solution of
the following linear system (the variables being akij)

for any ℓ = 1, . . . , κ

{
⟨s2ℓ−1, aij⟩ = (detS)2 · s2ℓ−1,is2ℓ,j + s2ℓ,is2ℓ−1,j
⟨s2ℓ, aij⟩ = (detS)2 · s2ℓ,is2ℓ,j

stable by permutating the tuples (θ1, . . . , θκ). It follows that akij is the evaluation
over θn of a ∆κ-symmetric polynomial.

�

G Proof of Proposition 5

Lemma 7. Let ϕ ∈ Zn[X1, . . . , Xκ, Y1, . . . , Yκ] be a non-null polynomial such

that each monomial Xe1
1 · · ·Xeκ

κ Y
e′1
1 · · ·Y

e′κ
κ satisfies

– ∃i ∈ {1, . . . , κ}, ei = e′i = 0
– ∀i ∈ {1, . . . , κ}, ei = 0⇒ e′i = 0

For any α ∈ Zn, the polynomial ϕα = ϕ(X1, . . . , Xκ, Y1, . . . , Yκ−1, α−Y1− . . .−
Yκ−1) is not null.

Proof. Let ϕ =
∑ρ

i=1 aiMi where Mi = Xei1
1 · · ·X

ei,κ
κ Y

e′i1
1 · · ·Y e′i,κ

κ and ai ∈ Z∗n,
let m = maxi e

′
i,κ.

If m = 0 then the result is trivially true. Thus, one can assume that m > 0.

We have ϕα =
∑ρ

i=0 ai(α−Y1−. . .−Yκ−1)
e′i,κM ′i whereM

′
i = X

ei,1
1 · · ·Xei,κ

κ Y
e′i,1
1 · · ·Y e′i,κ−1

κ−1 .

Given an arbitrary monomial M = Xe1
1 · · ·Xeκ

κ Y
e′1
1 · · ·Y

e′κ
κ , the set {j ∈

{1, . . . , κ}|ej ̸= 0} is denoted by E(M). Let i0 s.t. e′i0,κ = m. As ∃j ∈ {1, . . . , κ}
s.t. eij = ei′j = 0, one can assume that 1 ̸∈ E(M ′i0). Let us show that the
monomial Y m

1 M ′i0 belongs to ϕα (implying that ϕα is not null). To achieve
this, it suffices to show that this monomial does not belong to any polynomial
(α− Y1 − . . .− Yκ−1)e

′
i,κM ′i with i ̸= i0.

Suppose that there exists i1 ̸= i0 s.t. Y m
1 M ′i0 belongs to (α − Y1 − . . . −

Yκ−1)
e′i1,κM ′i1 . Clearly, 1 ̸∈ E(M ′i0) implies that 1 ̸∈ E(M ′i1) and e′i1,κ ≥ m

(because the constraint ei = 0 ⇒ e′i = 0 implies that the exponent of Y1 in
M ′i1 is equal to 0). By definition of m, it follows that e′i1,κ = m implying that
M ′i0 ̸= M ′i1 (because Mi0 = Mi1 otherwise). Thus, Y m

1 M ′i0 does not belong to

(α− Y1 − . . .− Yκ−1)e
′
i1,κ=mM ′i1 . This concludes the proof.

�

Let us assume that the CPA attacker can recover a procedure GenVec and a poly-
nomial φ of Zn[X1, . . . , X2κr] such that degφ < κ satisfying the requirements of
the proposition. Let c∗1, . . . , c

∗
t be encryptions such that

|Prc0←Encrypt(pk,pp,1)(φ ◦ GenVec(c0, c∗1, . . . , c∗t) = 0)

− Prc0←Encrypt(pk,pp,0)(φ ◦ GenVec(c0, c∗1, . . . , c∗t) = 0)| > ε(λ)

It follows that the polynomial φ ◦ GenVec ∈ Zn[R1, . . . , Rκ, X1, . . . , Xκ] defined
by

φ ◦ GenVec(R1, . . . , Rκ, X1, . . . , Xκ) = φ ◦ GenVec(Y, c∗1, . . . , c∗t)

where28 Y = T (R1X1, R1, . . . , RκXκ, Rκ) is not null. By construction of GenVec,
each vector v output by φ ◦ GenVec(Y, c∗1, . . . , c∗t) is in the form

v = T (p1(R1X1, X1), p
′
1(R1X1, R1), . . . , pκ(RκXκ, Rκ), p

′
κ(RκXκ, Rκ))

where pi, p
′
i are polynomials.

Consequently, as degφ < κ, each monomialRe1
1 · · ·Reκ

κ X
e′1
1 · · ·X

e′κ
κ of φ ◦ GenVec

satisfies

– ∃i ∈ {1, . . . , κ} s.t. ei = e′i = 0
– ∀i ∈ {1, . . . , κ}, ei = 0⇒ e′i = 0.

Let x ∈ Zn be arbitrarily chosen. By fixing X1+· · ·+Xκ = x, we consider the
polynomial φ ◦ GenVecx ∈ Zn[R1, . . . , Rκ, X1, . . . , Xκ−1] equal to the polynomial
φ ◦ GenVec(R1, . . . , Rκ, X1, . . . , Xκ−1, x −Xκ−1 − . . . −X1). By Lemma 7, this
polynomial is not null. Hence, according to Proposition 1,

φ ◦ GenVecx(r1, . . . , rκ, x1, . . . , xκ−1) = 0

with negligible probability over the choice of r1, . . . , rκ ∈ Z∗n and x1, . . . , xκ−1 ∈
Zn assuming factoring is hard. Thus, for any x ∈ Zn,

Prc0←Encrypt(pk,pp,x)(φ ◦ GenVec(c0, c∗1, . . . , c∗t) = 0)

is negligible leading to a contradiction implying that degφ ≥ κ.
�

H Proofs of Section 5.4

H.1 Proof of Proposition 6

Given C be a polynomial-size {+,−,×, /}-circuit, we denote by ϕC the (rational)
function computing by C. In [AM09], by induction on the gates of C, it is shown
that there exists a p.p.t. algorithmA such thatA(C) outputs two polynomial-size
{+,−,×}-circuits C′, C′′ satisfying ϕC = ϕC′/ϕC′′ . Let us assume that ϕC satisfies

(4). According to Proposition 1, if ϕC′′ ◦ α(θ[x]n) is not null then it is equal to 0

with negligible probability. Firstly, ϕC′′ ◦α(θ[0]n) and ϕC′′ ◦α(θ[1]n) cannot be both

null because ϕC satisfies (4). If ϕC′′ ◦ α(θ[1]n) is null but not ϕC′′ ◦ α(θ[0]n) (or the

converse) then ϕC′′ satisfies (4). Finally, if ϕC′′ ◦α(θ[1]n) and ϕC′′ ◦α(θ[0]n) are both
not null then ϕC′ satisfies (4). This proves that the CPA attacker can recover a
polynomial satisfying (4).

�
28 T = det2 S · S−1

H.2 Proof of Proposition 7

Recall that θn = ((xiℓ, riℓ)i=1,...,r, s2ℓ−1, s2ℓ)ℓ=1,...,κ is drawn according to a
probability distribution statistically close to the uniform one over Zγ

n, with
γ = 4κ2 + 2(t+ 1)κ.

Consider the tuples of indeterminate S = (Sij)(i,j)∈{1,...,κ}2 , V = (Vi)i∈{1,...,2κ},
Y = ((Xiℓ, Riℓ)i=0,...,t, (S2ℓ−1,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ and Z = (Y, V). By con-
struction, Z has γ + 2κ components.

Let T = [tij] = (det2 S)S−1. The degree-(4κ − 1) polynomial computing tij
is (abusively) denoted by tij , i.e. tij(S) = tij . We also consider the degree-4κ
polynomial ∆ defined by ∆(Z) = det2(S) and the polynomials Ij defined by
Ij(Z1, . . . , Zγ+2κ) = Zj .

Let assume that the CPA attacker can recover a non-null polynomial Ψ ∈
Zn[X1, . . . , Xγ′+2κ] such that Ψ(α1(θn), . . . , αγ′(θn), c) = 0 with non-negligible
probability over θn, c← Encrypt(K, pp, 0). Let ψ, δ1, . . . , δ2κ, ε1, . . . , ε2κ, ν1, . . . , νκ
be polynomials defined by

– ψ(Z) = Ψ(α1(Y), . . . , αγ′(Y), V)

– δℓ(Z) =
∑2κ

j=1 SℓjVj

– εℓ(Z) =
∑2κ

j=1 tℓj(S)Vj
– νℓ(Y,X1, . . . , Xκ, R1, . . . , Rκ) = RℓXℓ

We consider the polynomial tuples :
- δ = (I1, . . . , Iγ , δ1, . . . , δ2κ)
- ε = (I1, . . . , Iγ , ε1, . . . , ε2κ)
- ν = (I1, . . . , Iγ ,∆ · ν1,∆ · Iγ+κ+1 . . . ,∆ · νκ,∆ · Iγ+2κ)

By construction,

ε ◦ δ def
= (ε1(δ), . . . , εγ+2κ(δ)) = (I1, . . . , Iγ ,∆ · Iγ+1, . . . ∆ · Iγ+2κ)

It follows that the CPA attacker can recover a polynomial29 ψ′ and t ∈ N
satisfying

∆t · ψ = ψ′ ◦ ε ◦ δ
By construction, given c = T (r1x1, r1, . . . , rκxκ, rκ) ← Encrypt(K, pp, 0), it is
ensured that

ν(θn, x1, . . . , xκ, r1, . . . , rκ)

=(θn,∆(θn, c) · (r1x1, r1, . . . , rκxκ, rκ)) = δ(θn, c)

As ∆t · ψ(θn, c) = ψ′ ◦ ε ◦ δ(θn, c) = ψ′ ◦ ε ◦ ν(θn, x1, . . . , xκ, r1, . . . , rκ),

ψ′ ◦ ε ◦ ν(θn, x1, . . . , xκ, r1, . . . , rκ) = 0

with non-negligible probability provided xκ = −x1−· · ·−xκ−1. Thus, according
to Proposition 1

ψ′ ◦ ε ◦ ν(Y,X1, . . . , Xκ−1,−(X1 + . . .+Xκ−1), R1, . . . , Rκ)

29 ψ′ = ψ if ψ is homogeneous.

is identically null. Consequently, according to Lemma 3, ψ′ ◦ε◦ν can be factored
by X1 + . . .+Xκ. Thus, according to Lemma 5, ψ′ ◦ ε can be factored by

φ(Z) =
∑

ℓ=1,...,κ

V2ℓ−1
∏
ℓ′ ̸=ℓ

V2ℓ′

By noticing that

φ ◦ δ = ϕ0

ψ′ ◦ε◦δ and thus ∆t ·ψ can be factored by ϕ0. As gcd(∆,ϕ0) = 1, ψ is a multiple
of ϕ0.

�

H.3 Proof of Proposition 8

Without loss of generality, we prove here that there does not exist any polynomial-
size {+,−,×}-circuit representing a polynomial ϕ satisfying ϕ ◦ α = ϕ0. The
extension to multiples of ϕ0 is not difficult (but not straightforward).

According to notation of Definition 7, we consider the tuples V = (V1, . . . , V2κ)
and Y = ((Xiℓ, Riℓ)i=1,...,t, (S2ℓ−1,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ. We enhance the power
of the attacker by letting it choose the ∆κ-symmetric polynomials α1, . . . , αγ′ .

As ϕ◦α(Y) = ϕ0(Y), the equality also holds by setting Xiℓ = Riℓ = 1 for any
i = 1, . . . , t and S2ℓ−1,i = S2ℓ,i for any i, ℓ. We then consider the polynomials
ν1, . . . , νγ and ψ defined over V, S = ((Sℓ,i)i=1,...,2κ)ℓ=1,...,κ by

νi(S) = αi

(
(1, . . . , 1, (S2ℓ,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ

)
ψ(S, V) =

1

κ
ϕ0

(
(1, . . . , 1, (S2ℓ,i, S2ℓ,i)i=1,...,2κ)ℓ=1,...,κ , V

)
=

∏
ℓ=1,...,κ

(
2κ∑
i=1

S2ℓ,iVi

)

Similarly to the definition of α, we consider the function

ν(S, V) = (ν1(S), . . . , νγ′(S), V)

To establish our result, it suffices to show that there does not exist any (polynomial-
size) polynomial ϕ such that ϕ◦ν = ψ. To achieve it, we first notice that that the
polynomials νi remain ∆κ-symmetric. Without loss of generality, we will assume
that the polynomials νi are homogeneous (otherwise we split them into homo-
geneous polynomials). Moreover, as degψ = κ, one can assume that deg νi ≤ κ.
Consider the two sets I1, I2 defined by

– I1 = {i ∈ {1, . . . , γ′}|deg νi < κ},
– I2 = {i ∈ {1, . . . , γ′}|deg νi = κ}

Let
Vκ

def
= {v ∈ {0, 1}2κ|v1 + · · ·+ v2κ = κ}

For a given v ∈ Z2κ
n , the polynomial ψv is defined by,

ψv=(v1,...,v2κ)(S) = ψ(S,v) = ·
∏

ℓ=1,...,κ

(
2κ∑
i=1

viS2ℓ,i

)

Lemma 8. Let v1, . . . ,vr ∈ Vκ and a1, . . . , ar ∈ Zn \ {0}. The polynomial
a1ψv1

+ . . .+ arψvr
cannot be written as a polynomial p((νi)i∈I1).

Proof. By Lemma 4, one can straightforwardly show that ψ(1,0,...,0) (ψ(1,0,...,0)(S) =
s2,1s4,1 · · · s2κ,1) cannot be written as a polynomial p((νi)i∈I1). Given τ ∈ Z2κ

n ,
we denote by ντ1 , . . . , ν

τ
γ′ the polynomials ν1, . . . , νγ′ where the variables s2ℓ,i are

substituted by τis2ℓ,1 for any 1 ≤ i ≤ 2κ and φi denotes the polynomial ψvi

by doing the same substitution. It is important to notice that ντ1 , . . . , ν
τ
γ′ are

symmetric polynomials defined over s2,1, s4,1, · · · , s2κ,1.
Moreover,

∑r
i=1 aiφi(s2,1, s4,1, · · · , s2κ,1) = q(τ)s2,1s4,1 · · · s2κ,1 where q is

a degree-κ polynomial. Clearly, q is not null because. Indeed, by definition of
Vκ, each φi contains at least one monomial which does not belong to the other
polynomials φj ̸=i.

Thus, according to the famous lemma of Schwartz and Lippel [Sch80], q(τ) =
0 with negligible probability over the choice of τ . Let τ∗ such that q(τ∗) ̸= 0.
The equality p((νi)i∈I1) = a1ψv1 + . . . + arψvr implies that p((ντ

∗

i)i∈I1) = C ·
s2,1 · · · s2κ,1 with C ̸= 0 contradicting Lemma 4.

�

The result is a direct consequence of this lemma. Given a polynomial ϕ, we
consider the polynomial ϕv defined by ϕv(ν1, . . . , νγ′) = ϕ ◦ ν. Let us assume
that ϕ ◦ ν = ψ implying that for each v ∈ Vκ, ψv = ϕv.

Because degψ = κ, we can write ϕv(ν1, . . . , νt) = ϕ′v(νi∈I1) + ϕ′′v(νi∈I2) with
deg ϕ′′v = 1. As |I2| ≤ γ′ is polynomial but not #Vκ, there exist v1, . . . ,vr ∈ Vκ
s.t. the linear functions ϕ′′v1

, . . . , ϕ′′vr
are linearly dependant. It follows that there

exist a1, . . . , ar ∈ Zn \ {0} such that

a1ϕ
′′
v1
(νi∈I2) + . . .+ arϕ

′′
vr
(νi∈I2) = 0

It implies that a1ϕ
′
v1
(νi∈I1) + · · · + arϕ

′
vr
(νi∈I1) = a1ψv1

+ . . . + arψvr
contra-

dicting Lemma 8.
�

