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Abstract. S-boxes are the only source of non-linearity in many symmet-
ric primitives. While they are often defined as being functions operating
on a small space, some recent designs propose the use of much larger ones
(e.g., 32 bits). In this context, an S-box is then defined as a subfunction
whose cryptographic properties can be estimated precisely.
In this paper, we present a 64-bit ARX-based S-box called Alzette, which
can be evaluated in constant time using only 12 instructions on modern
CPUs. Its parallel application can also leverage vector (SIMD) instruc-
tions. One iteration of Alzette has differential and linear properties com-
parable to those of the AES S-box, while two iterations are at least as
secure as the AES super S-box.
Since the state size is much larger than the typical 4 or 8 bits, the study
of the relevant cryptographic properties of Alzette is not trivial.

1 Introduction

Symmetric primitives need to be non-linear. It is common to rely on so-called
S-boxes to obtain this property. These are functions 𝑆 mapping F𝑛

2 to F𝑚
2 for a

value of 𝑛 small enough that it is possible to specify 𝑆 using its lookup table.
They are applied in parallel to the whole state as part of the round function of
the primitive.

This common definition of S-boxes is being challenged by the recent use of
larger S-boxes in some designs. First, the designers of the hash function WHIRL-
WIND [1] used a 16-bit S-box based on the multiplicative inverse in the finite
field F216 . In this case, the intention was not for implementers to use the 217-byte
lookup table of the permutation but instead to rewrite the permutation using
tower fields. More recently, large S-boxes have been proposed in Sparx [8] and
in the NIST lightweight candidate Saturnin [6]. In the latter case, a 16-bit
S-box is constructed using a classical Substitution-Permutation Network (SPN):
four 4-bit S-boxes are applied to a 16-bit word in parallel, followed by an MDS



matrix, and another application of the 4-bit S-box layer. While there is no closed
formula for the differential and linear properties of such a structure (unlike for
the multiplicative inverse used in WHIRLWIND), 16-bit remains small enough
that a direct computation is possible.

It is not the case for the 32-bit S-box of Sparx. In this cipher, the S-box
consists of an Addition, Rotation, XOR (ARX) network operating on two 16-bit
branches, and it is key-dependent. Furthermore, while the properties of the S-
box are usually sufficient5 to prove that the cipher meets some security criteria,
it is not the case for the ARX-box of Sparx. Indeed, in order to implement
the security argument designed by its authors (a long trail argument), it was
necessary to study several “S-boxes”, namely 𝐴, 𝐴 ∘𝐴, 𝐴 ∘𝐴 ∘𝐴, etc.

Another significant difference between the 32-bit ARX-box of Sparx and
16-bit S-boxes is the fact that it is not possible to evaluate its cryptographic
properties directly because the complexity of the algorithms involved is usually
proportional to 22𝑛, where 𝑛 is the block size. Thus, the authors of Sparx
instead considered their ARX-box like a small block cipher and used techniques
borrowed from block cipher analysis [5] to investigate their ARX-box.

Our Contribution. In this paper, we present a new 64-bit S-box called Alzette
(pronounced [alzEt]) that satisfies a similar scope statement to that of the Sparx
ARX-box: it is also an ARX-based S-box, and we analyse both 𝐴 and 𝐴 ∘ 𝐴.
Alzette is parameterized by a constant 𝑐 ∈ F32

2 and is defined for each such 𝑐 as
a permutation of F32

2 × F32
2 . The algorithm evaluating this permutation is given

in Algorithm 1 and depicted in Figure 1.

Algorithm 1 𝐴𝑐

Input/Output: (𝑥, 𝑦) ∈ F32
2 × F32

2

𝑥← 𝑥+ (𝑦 ≫ 31)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 24)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥+ (𝑦 ≫ 17)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 17)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥+ (𝑦 ≫ 0)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 31)
𝑥← 𝑥⊕ 𝑐
𝑥← 𝑥+ (𝑦 ≫ 24)
𝑦 ← 𝑦 ⊕ (𝑥 ≫ 16)
𝑥← 𝑥⊕ 𝑐
return (𝑥, 𝑦)
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Fig. 1: The Alzette instance 𝐴𝑐.

Despite their superficial resemblance, Alzette has many differences with the
Sparx ARX-box:
5 Along with some conditions on the linear layer, in particular its branching number.
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– it relies on 32- rather than 16-bit operations, meaning that it is suitable for
a larger number of architectures;

– it makes better use of barrel shift registers (when they are available) and has
more efficient rotation constants (for platforms on which they have different
costs);

– it uses different rotations in each of its 4 rounds;
– its differential and linear properties are superior to those of a scaled-up

Sparx ARX-box;
– our analysis takes more attacks into account, and is confirmed experimentally

whenever possible;
– Alzette is not key-dependent and we studied the influence the constant it

uses has on its properties.

Note that in some attack scenarios, the security of Alzette needs to be ana-
lyzed for the precise choice of round constants 𝑐 used in the actual primitive. In
this work, we provide this analysis for the round constants employed in the per-
mutation Sparkle, submitted to the NIST lightweight cryptography standard-
ization process [2]. However, our methods can easily be applied for an arbitrary
choice of round constants.

Large parts of the experimental analysis have been carried out on the UL
HPC cluster [21]. The source code for our experimental analysis can be found
at https://github.com/cryptolu/sparkle.

Outline. The design process that we used to construct Alzette is explained in
Section 2. In particular, we show that it offers resilience against many different
attacks. This analysis is confirmed experimentally in Section 3. We also discuss
the efficiency of Alzette in Section 4.

Notation. By F2, we denote the finite field with two elements and by F𝑛
2 the set

of bitstrings of length 𝑛. We denote the set {0, 1, . . . , 𝑛− 1} by Z𝑛. We use + to
denote the addition modulo 232 and ⊕ to denote the XOR of two bitstrings of
the same size. The symbol & denotes the bit-wise AND operation. Further, by
𝑥 ≫ 𝑟, we denote the cyclic rotation of the 32-bit word 𝑥 to the right by the
offset 𝑟.

2 The Design of Alzette

In this section, we present both the design process and the main properties of
Alzette. These are verified experimentally later in Section 3, and summarized in
Section 3.5.

2.1 Block and Word Sizes

Our S-box should be efficient on a wide variety of platforms, while allowing a
practical analysis of its relevant cryptographic properties. What would be the
best word and block sizes in this context?

3
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Word size. In Sparx, the S-box operates on 32 bits, which are split into two
16-bit words. This word size allows a computationally cheap analysis of its cryp-
tographic properties while facilitating efficient implementations on 8 and 16-bit
micro-controllers. However, 16-bit words hamper performance on 32-bit plat-
forms, simply because only half of their 32-bit registers and datapath can be
used. The same holds when 16-bit operations are executed on a 64-bit processor.
Furthermore, 16-bit operations can also incur a performance penalty on 8-bit
micro-controllers; for example, rotating two 16-bit operands by 𝑛 bits on an 8-
bit AVR device is usually slower than rotating a single 32-bit operand by 𝑛 bits
(see e.g. [7, Appendix A, B, C] for details).

While 16-bit words are sub-optimal because they are too small, it can also be
argued that 64-bit word are too large. To establish why, we have to separately
discuss the performance of 64-bit operations on 8/16/32-bit micro-controllers
and on 64-bit processors. We start with three arguments for why 64-bit opera-
tions may not be a good choice on small micro-controllers.

1. 32-bit ARM micro-controllers allow one to perform a rotation “for free” since
it can be executed together with another arithmetic/logical instruction.6

Still, a 32-bit ARM processor can only perform rotations of 32-bit operands
for free, but not rotations of 64-bit words.

2. As discussed later, we will use word-wise modular additions. Some 32-bit
architectures, most notably RISC-V and MIPS32, do not have an add-with-
carry instruction. Adding two 64-bit operands on these platforms requires to
first add the lower 32-bit parts of the operands and then compare the 32-bit
sum with any of the operands to find out whether an overflow happened
(i.e. to obtain a carry bit). Then, the two upper 32-bit words are added up
together with the carry bit. A 64-bit addition requires at least four instruc-
tions (i.e. four cycles) on these platforms, whereas two 32-bit additions take
only two instructions (i.e. two cycles).

3. Compilers for 8 and 16-bit micro-controllers are notoriously bad at handling
64-bit words, especially rotations of 64-bit words. The reason is simple: out-
side of cryptography, 64-bit words are of little to no use on an 8- or 16-bit
platform, and therefore compiler designers have no incentive to optimize
64-bit operations.

A word size of 64 bits is naturally a good choice for 64-bit processors. For
example, the authors of [10] established that SHA512 (which operates in 64-bit
words) reaches much higher throughput on 64-bit Intel processors than SHA256
(operating on 32-bit words). However, this does not necessarily imply that ARX
designs using 32-bit words are inferior to 64-bit variants on 64-bit processors.
This can be justified with the fact that the best way to implement an ARX
cipher on a 64-bit Intel or a 64-bit ARM processor is to use the vector (SIMD)
extensions they provide, e.g. Intel SSE, AVX or ARM NEON. Most high-end
64-bit processors have such vector instruction sets, and all of them can execute
additions, rotations and XORs on 32-bit words. The fact a 32-bit word size

6 We exploit this property to design Alzette, as explained in Section 2.2.
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allows peak performance on 64-bit processors was already used for instance by
the designers of Gimli [3].

As a consequence, we chose to design an S-box that operates on 32-bit words
as those offer the best performances across the board.

Block size. Our S-box could a priori operate on any block size that is a multiple
of 32. However, two criteria significantly narrow down the design space.

First, we need to be able to investigate the cryptographic properties of our S-
box. We are not aware of any efficient combination of simple operations (AND,
addition, rotation, XOR, etc.) on a single word that would allow us to give
strong bounds on the differential and linear probabilities. On the other hand,
computational technique that find such bounds tend to be less efficient if the
state size is large as it implies a greater number of potential branches to explore
in a tree. Our ability to find bounds thus imposes a number of words which is
at least equal to 2 and as small as possible.

Second, in order to use vector instruction sets to their fullest extent, it is
better to have a larger number of S-boxes that can be applied in parallel in each
call to the round function. On smaller micro-controllers, limiting the block size
makes it easier for implementers to keep one full S-box state (or maybe even
several full S-box states) in the register file, thereby reducing the number of
memory accesses. Finally, in order to build primitives with a small state size,
it is necessary that the S-box size is at most equal to said state size. However,
as mentioned before, it makes sense to aim for the smallest possible number of
branches (and, consequently, a large number of S-boxes) to leverage SIMD-style
parallelism.

Because of these requirements, we settled for the use of two words. Given
that our discussion above imposed a 32-bit word size, our S-box operates on 64
bits.

2.2 Round Structure and Number of Rounds

We decided to build an ARX-box out of the operations XOR of rotation and
ADD of rotation, i.e., 𝑥 ⊕ (𝑦 ≫ 𝑠) and 𝑥 + (𝑦 ≫ 𝑟), because they can be
executed in a single clock cycle on ARM processors and thus provide extremely
good diffusion per cycle. As the ARX-boxes could be implemented with their
rounds unrolled, we allowed the use of different rotations in every round. We
observed that one can obtain much better resistance against differential and
linear attacks in this case compared to having identical rounds.

In particular, we aimed for designing an ARX-box of the form depicted in
Figure 2, where each word is of size 32 bits and which iterates 𝑡 rounds. The
𝑖-th round is defined by the rotation amounts (𝑟𝑖, 𝑠𝑖) ∈ Z32×Z32 and the round
constant (𝛾𝐿

𝑖 , 𝛾
𝑅
𝑖 ) ∈ F32

2 × F32
2 .

In our final design, we decided to use 𝑡 = 4 rounds. The reason is that,
for 𝑟-round ARX-boxes, usable bounds from the long-trail strategy can be ob-
tained from the 2𝑟-round bounds of the ARX structure by concatenating two
ARX-boxes. The complexity of deriving upper bounds on the differential trail
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Fig. 2: The general structure of the ARX-box.

probability or absolute linear trail correlation depends on the number of rounds
considered. For 8 rounds, i.e., 2 times a 4-round ARX-box, it is feasible to com-
pute strong bounds in reasonable time (i.e., several days up to few weeks on
a single CPU). For 3-round ARX-boxes, the 6-round bounds of the best ARX-
boxes we found seem not strong enough to build a secure cipher with a small
number of iterations. Since we cannot arbitrarily reduce the number of round
iterations in a cryptographic function because of structural attacks, using ARX-
boxes with more than four rounds would lead to worse efficiency overall. In other
words, we think that four-round ARX-boxes provide the best balance between
the number of ARX-box layers needed and rounds per ARX-box in order to
build a secure primitive.

2.3 Criteria for Choosing the Rotation Amounts

We aimed for choosing the rotations (𝑟𝑖, 𝑠𝑖) in Alzette in a way that maximizes
security and efficiency. For efficiency reasons, we want to minimize the cost of the
rotations, where we use the cost metric as given in Table 7. While each rotation
has the same cost in 32-bit ARM processors, we further aimed for minimizing
the cost with regard to 8-bit and 16-bit architectures. Therefore, we restricted
ourselves to rotations from the set {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, as those
are the most efficient when implemented on 8 and 16-bit microcontrollers. We
define the cost of a collection of rotation amounts (that is needed to define all
the rounds of an ARX-box) as the sum of the costs of its contained rotations.
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Table 1: For each rotation in {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, the table shows
an estimation of the number of clock cycles needed to implement the rotation
on top of XOR, resp. ADD. We associate the mean of those values for the three
platforms to be the cost of a rotation.

rot (mod 32) 8-bit AVR 16-bit MSP 32-bit ARM cost

0 0 0 0 0.00

±1 5 3 0 2.66

±7 5 9 0 4.66

8 0 6 0 2.00

±9 5 9 0 4.66

±15 5 3 0 2.66

16 0 0 0 0.00

For security reasons, we aim to minimize the provable upper bound on the
expected differential trail probability (resp. expected absolute linear trail cor-
relation) of a differential (resp. linear) trail. More precisely, our target was to
obtain strong bounds, preferably at least as good as those of the round structure
of the 64-bit block cipher Speck, i.e., an 8-round differential bound of 2−29 and
an 8-round linear bound of 2−17. If possible, we aimed for improving upon those
bounds. Note that for 𝑟 > 4, the term 𝑟-round bound refers to the differential
(resp. linear) bound for 𝑟 rounds of an iterated ARX-box. As explained above,
at the same time we aimed for choosing an ARX-box with a low cost. In order
to reduce the search space, we relied on the following criteria as a heuristic for
selecting the final choice for Alzette:

– The candidate ARX-box must fulfill the differential bounds (− log2) of 0,
1, 2, 6, and 10 for 1, 2, 3, 4 and 5 rounds respectively, for all four possible
offsets. We conjecture that those bounds are optimal for up to 5 rounds.

– The candidate must fulfill a differential bound of at least 16 for 6 rounds,
also for all offsets.

– The 8-round linear bound (− log2) of the candidate ARX-box should be at
least 17.

By the term offset we refer to the round index of the starting round of
a differential trail. Note that we are considering all offsets for the differential
criteria because the bounds are computed using Matsui’s branch and bound
algorithm, which needs to use the 𝑟−1-round bound of the differential trail with
starting round index 2 in order to compute the 𝑟-round bound of the trail.

We tested all rotation sets with a cost below 12 for the above conditions.
None of those fulfilled the above criteria. For a cost below 15, we found the ARX-
box with the rotations as presented in Table 2. The first two lines correspond to
the final choice of Alzette.
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Table 2: Differential and linear bounds for our choice of rotation parameters with
all four offsets. For each offset, the first line shows the differential bound and
the second shows the linear one. The value set in parenthesis corresponds to the
maximum absolute correlation of the linear hull taking clustering into account
(see Section 3.2). The differential bounds [5] and linear bounds [9,12] for SPECK
are given for comparison.

(𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑠0, 𝑠1, 𝑠2, 𝑠3) 1 2 3 4 5 6 7 8 9 10 11 12

(31, 17, 0, 24, 24, 17, 31, 16) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 ≥ 46 ≥ 52
0 0 1 2 5 8 13 (11.64) 17 (15.79) – – – –

(17, 0, 24, 31, 17, 31, 16, 24) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 ≥ 41 ≥ 47 –
0 0 1 2 5 9 13 16 – – – –

(0, 24, 31, 17, 31, 16, 24, 17) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 – –
0 0 1 2 6 8 13 15 – – – –

(24, 31, 17, 0, 16, 24, 17, 31) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 – – –
0 0 1 2 5 9 12 16 – – – –

Speck64 0 1 3 6 10 15 21 29 ≥ 32 – – –
0 0 1 3 6 9 13 17 19 21 24 27

2.4 On the Differential Properties

We used Algorithm 1 of [5] and adapted it to our round structure to compute
the bounds on the maximum expected differential trail probabilities of the ARX-
boxes we considered. This algorithm is basically a refined variant of Matsui’s
well-known branch and bound algorithm [13]. While the latter has been originally
proposed for ciphers that have S-boxes (in particular the DES), the former is
targeted at ARX-based designs that use modular addition, rather than an S-box,
as a source of non-linearity.

Algorithm 1 [5] exploits the differential properties of modular addition to
efficiently search for characteristics in a bitwise manner. Upon termination, it
outputs a trail (characteristic) with the maximum expected differential trail
probability (MEDCP). For Alzette, we obtain such trails for up to six rounds,
where the 6-round bound is 2−18. We further collected all trails corresponding
to the maximum expected differential probability for 4 up to 6 round and exper-
imentally checked the actual probabilities of the differentials (for the constants
used in Sparkle), see Section 3.1.

Note that for 7 and 8 rounds, we could not get tight bounds due to the
high complexity of the search. In other words, the algorithm did not terminate
in reasonable time. However, the algorithm exhaustively searched the range up
to − log2(𝑝) = 24 and − log2(𝑝) = 32 for 7 and 8 rounds respectively, which
proves that there are no valid differential trails with an expected differential
trail probability greater than 2−24 and 2−32, respectively. We evaluated similar
bounds for up to 12 rounds.

2.5 On the Linear Properties

We used the Mixed-Integer Linear Programming approach described in [9] in
order to get bounds on the maximum expected absolute linear trail correlation.
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It was feasible to get tight bounds even for 8 rounds, where the 8-round bound
of our final choice for Alzette is 2−17. We were able to collect all linear trails
that correspond to the maximum expected absolute linear trail correlation for
4 up to to 8 rounds and experimentally checked the actual correlations of the
corresponding linear approximations (for the constants used in Sparkle), see
Section 3.2.

2.6 On the Round Constants

The purpose of round constant additions, i.e., the XORs with 𝛾𝐿
𝑖 , 𝛾

𝑅
𝑖 in the gen-

eral ARX-box structure, is to ensure some independence between the rounds.
They also break additive patterns that could arise on the left branch due to
the chain of modular addition it would have without said constant additions.
Furthermore, and perhaps even more importantly, they should ensure that the
Alzette instances called in parallel are different from one another to avoid sym-
metries.

For efficiency reasons, we decided to use the same round constant in every
round of the ARX-box, i.e., ∀𝑖 : 𝛾𝐿

𝑖 = 𝑐. As the rounds themselves are different
from one another, we do not rely on 𝛾𝐿

𝑖 or 𝛾𝑅
𝑖 to prevent slide-style patterns.

Thus, using the same constant in each round is not a problem. Moreover, we chose
𝛾𝑅
𝑖 = 0 for all 𝑖. It is important to note that the experimental verification of

the differential probabilities and absolute linear correlations we conducted (see
Sections 3.1 and 3.2 respectively) did not lead to significant differences when
changing to a more complex round constant schedule. In other words, even for
random choices of all 𝛾𝐿

𝑖 and 𝛾𝑅
𝑖 , we did not observe significantly different results

that would justify the use of a more complex constant schedule (which would of
course lead to worse efficiency in the implementation).

The analysis provided in the next three subsections is dependent on the
actual choice of round constants 𝑐 for Sparkle. Those constants are provided
in Table 3.

2.7 Invariant Subspaces

Invariant subspace attacks were considered in [11]. For the round constants used
in Sparkle, using a similar ”to and fro” method from [14,4], we searched for an
affine subspace that is mapped by an Alzette instance 𝐴𝑐𝑖 to a (possibly different)
affine subspace of the same dimension. We could not find any such subspace of
nontrivial dimension.

Note that the search is randomized so it does not result in a proof. As an
evidence of the correctness of the algorithm, we found many such subspace trails
for all 2-round reduced ARX-boxes, with dimensions from 56 up to 63. For
example, let 𝐴 denote the first two rounds of 𝐴𝑐0 . Then for all 𝑙, 𝑟, 𝑙′, 𝑟′ ∈ F32

2

such that 𝐴(𝑙, 𝑟) = (𝑙′, 𝑟′), it holds that

(𝑙29 + 𝑟21 + 𝑟30)(𝑙30 + 𝑟31)(𝑙31 + 𝑟0)(𝑟22)(𝑟23) =

(𝑙′4 + 𝑟′21)(𝑙′5 + 𝑟′22)(𝑙′6 + 𝑟′23)(𝑙′28 + 𝑙′30 + 𝑙′31 + 𝑟′13 + 1)(𝑙′29 + 𝑙′31 + 𝑟′14) ,
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where “+” denotes a XOR. This equation defines a subspace trail of constant
dimension 59.

2.8 Nonlinear Invariants

Nonlinear invariant attacks were considered recently in [19] to attack lightweight
primitives. For the round constants used in Sparkle, using linear algebra, we
experimentally verified that for any ARX-box 𝐴𝑐𝑖 and any non-constant Boolean
function 𝑓 of degree at most 2, the compositions 𝑓 ∘𝐴𝑐𝑖 and 𝑓 ∘𝐴−1

𝑐𝑖 have degree
at least 10:

∀𝑓 : F64
2 → F2, 1 ≤ deg(𝑓) ≤ 2, deg(𝑓 ∘𝐴𝑐𝑖) ≥ 10,deg(𝑓 ∘𝐴−1

𝑐𝑖 ) ≥ 10 ,

and for functions 𝑓 of degree at most 3, the compositions have degree at least 4:

∀𝑓 : F64
2 → F2, 1 ≤ deg(𝑓) ≤ 3, deg(𝑓 ∘𝐴𝑐𝑖) ≥ 4,deg(𝑓 ∘𝐴−1

𝑐𝑖 ) ≥ 4 .

In particular, any 𝐴𝑐𝑖 has no cubic invariants. Indeed, a cubic invariant 𝑓 would
imply that 𝑓 ∘ 𝐴𝑐𝑖 + 𝜀 = 𝑓 is cubic (for a constant 𝜀 ∈ F2). The same holds for
the inverse of any ARX-box 𝐴𝑐𝑖 .

By using the same method, we also verified that there are no quadratic
equations relating inputs and outputs of any 𝐴𝑐𝑖 . However, there are quadratic
equations relating inputs and outputs of 3-round reduced versions of each 𝐴𝑐𝑖 .

2.9 Linearization

In recent attack against Keccak instances [16,17], the S-box linearization tech-
nique is used. The idea is to find a subset of inputs (often an affine subspace),
such that the S-box acts linearly on this set. We attempted to linearize the
ARX-boxes by finding all inputs for which all four modular additions inflict no
carry bits and thus are equivalent to XOR. For the addition of two random in-
dependent 32-bit words, the probability of having all carry bits equal to zero is
equal to (3/4)31. Indeed, for each bit position, if no carry comes in, then the
outgoing carry will occur only if both input bits are equal to 1. Furthermore,
the carry bit from the most significant bits is ignored. Assuming independence
of the additions in the ARX-box, 264/(3/4)124 ≈ 212.5 inputs are expected to
satisfy the linearization.

In order to find all inputs, we have to solve a system of quadratic equations.
Indeed, for the first round, the condition is (𝑥&(𝑦 ≫ 31))≪ 1 = 0 (left shift by
one omits the most significant bit), which provides 31 quadratic bit equations.
Since this condition ensures that the output of the first round is linear, we
get similar quadratic equations for the second round, except that 𝑥 and 𝑦 are
replaced with corresponding linear functions. In total we obtain 124 quadratic
equations of the form 𝑙(𝑥, 𝑦) · 𝑟(𝑥, 𝑦) = 0, where 𝑙, 𝑟 : F64

2 → F2 are affine. We
solved this system by a guess-and-determine method with a few optimizations,
for all round constants used in Sparkle. The results are given in Table 3.
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Table 3: The number of inputs for Alzette inflicting no carries in all four rounds,
for different round constants. The constants 𝑐0 up to 𝑐7 are the round constants
used in Sparkle.

constant hexadecimal number of inputs

𝑐0 b7e15162 13
𝑐1 bf715880 11
𝑐2 38b4da56 18
𝑐3 324e7738 3
𝑐4 bb1185eb 10
𝑐5 4f7c7b57 340
𝑐6 cfbfa1c8 105
𝑐7 c2b3293d 76
0 00000000 8

The first interesting observation is that the number of solutions is much
smaller than 212.5 ≈ 5900 predicted under the round independence assumption.
For 5 out of 8 used constants, the number of solutions is less than 20, and the
maximum number of solutions is 340. The second observation is that, for the
zero constant, the number of solutions is also extremely low. We find it rather
counter-intuitive, since in absence of constants many low-weight vectors can
be expected to pass through the ARX-box without inflicting any carries. We
observed a similar behaviour and verified the correctness of our algorithm on
8-bit words, where we performed an exhaustive search over all inputs.

We suggest that the main reason behind the small number of solutions is the
strong diffusion provided by the structure of our ARX-box itself, in particular
the rotation amounts we used. Note however that other linearization methods
are possible, for example by fixing particular non-zero carry patterns.

3 Experimental Verifications

The following experimental verifications are done for the round constants used
in Sparkle, except those described in Section 3.4 which are independent of
the choice of the constants. However, those methods can easily be applied to
arbitrary choices of constants.

3.1 Experiments on the Fixed-Key Differential Probabilities

As in virtually all block cipher designs, the security arguments against differen-
tial attacks are only average results when averaging over all keys of the primitive.
When leveraging such arguments for a cryptographic permutation, i.e., a block
cipher with a fixed key, it might be possible in theory that the actual fixed-key
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maximum differential probability is higher than the expected maximum differ-
ential probability. In particular, the variance of the distribution of the maximum
fixed-key differential probabilities might be high.

For all of the 8 Alzette instances used in Sparkle (depending on the con-
stant 𝑐𝑖), we conducted experiments in order to see if the expected maximum
differential trail probabilities derived by Matsui’s search are close to the actual
differential probabilities of the fixed ARX-boxes. Our results are as follows.

By Matsui’s search we found 7 differential trails for Alzette7 that correspond
to the maximum expected differential trail probability of 2−6, see Table 4. For
any Alzette instance 𝐴𝑐𝑖 and any such trails with input difference 𝛼 and output
difference 𝛽, we experimentally computed the actual differential probability of
the differential 𝛼→ 𝛽 by

|{𝑥 ∈ 𝑆|𝐴𝑐𝑖(𝑥)⊕𝐴𝑐𝑖(𝑥⊕ 𝛼) = 𝛽}|
|𝑆| ,

where 𝑆 is a set of 224 inputs sampled uniformly at random. Our results show that
the expected differential trail probabilities approximate the actual differential
probabilities very well, i.e., all of the probabilities computed experimentally are
in the range [2−6 − 10−4, 2−6 + 10−4] for a sample size of 224.

For 5 rounds, i.e., one full Alzette instance and one additional first round of
Alzette, there is only one trail with maximum expected differential trail proba-
bility 𝑝 = 2−10. In the case of Sparkle, for all combinations of round constants
that can occur in 5 rounds (one Alzette instance plus one round) that do not go
into the addition of a step counter, i.e., corresponding to the twelve compositions

𝐴𝑐2 ∘𝐴𝑐0 𝐴𝑐3 ∘𝐴𝑐1 𝐴𝑐3 ∘𝐴𝑐0 𝐴𝑐4 ∘𝐴𝑐1 𝐴𝑐5 ∘𝐴𝑐2 𝐴𝑐4 ∘𝐴𝑐0

𝐴𝑐5 ∘𝐴𝑐1 𝐴𝑐6 ∘𝐴𝑐2 𝐴𝑐7 ∘𝐴𝑐3 𝐴𝑐2 ∘𝐴𝑐3 𝐴𝑐3 ∘𝐴𝑐4 𝐴𝑐2 ∘𝐴𝑐7 ,

we checked whether the actual differential probabilities are close to the maximum
expected differential trail probability. We found that all of the so computed
probabilities are in the range [2−10− 10−5, 2−10 + 10−5] for a sample size of 228.

3.2 Experiments on the Fixed-Key Linear Correlations

Similarly as for the case of differentials, for all of the 8 Alzette instances used
in Sparkle, we conducted experiments in order to see whether the maximum
expected absolute linear trail correlations derived by MILP and presented in
Table 2 are close to the actual absolute correlations of the linear approximations
over the fixed Alzette instances. Our results are as follows, and presented in
Table 8 in Appendix A.

For a full Alzette instance, there are 4 trails with a maximum expected ab-
solute trail correlation of 2−2. For all of the eight Alzette instances, the actual

7 Note that those are independent of the actual round constants as the probability
corresponds to the average probability over all keys when analyzing Alzette as a
block cipher where independent subkeys are used instead of round constants.
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Table 4: The input and output differences 𝛼, 𝛽 (in hex) of all differential trails
over Alzette corresponding to maximum expected differential trail probability
𝑝 = 2−6 and 𝑝 = 2−10 for four and five rounds, respectively.

rounds 𝛼 𝛽 − log2(𝑝)

4

8000010000000080 8040410041004041 6
8000010000000080 80c04100410040c1 6
0080400180400000 8000018081808001 6
0080400180400000 8000008080808001 6
a0008140000040a0 8000010001008001 6
8002010000010080 0101000000030101 6
8002010000010080 0301000000030301 6

5 a0008140000040a0 8201010200018283 10

absolute correlations are very close to the theoretical values and we did not
observe any clustering. For more than four rounds (i.e., one full instance plus
additional rounds), we again checked all combinations of ARX-boxes that do
not get a step counter in Sparkle. For five rounds, there are 16 trails with
a maximum expected absolute trail correlation of 2−5. In our experiments, we
can observe a slight clustering. The observed absolute correlations based on 224

samples can also be found in Table 8. The minimum and maximum refers to the
minimum, resp., maximum observed absolute correlations over all the combina-
tions of Alzette instances that do not get a step counter, similar as tested for
differentials. In fact, we chose the round constants 𝑐𝑖 of Sparkle such that, for
all combinations of Alzette that occur over the linear layer, the linear hull effect
is to our favor, i.e., the actual correlation tends to be lower than the theoretical
value.8

This tendency also holds for the correlations over six rounds. There are 48
trails with a maximum expected absolute linear trail correlation of 2−8. The
results of our experiments for 228 random samples are shown in Table 9 in
Appendix A.

For seven rounds, there are 2992 trails with a maximum expected absolute
linear trail correlation of 2−13. Over all the twelve combinations that do not
add a step counter and all of the 2992 approximations, the maximum absolute
correlation we observed was 2−11.64 using a sample size of 232 plaintexts chosen
uniformly at random.

For eight rounds, there are 3892 trails with a maximum expected absolute
linear trail correlation of 2−17. Over all the twelve combinations that do not
add a step counter and all of the 3892 approximations, the maximum absolute

8 The constants in Sparkle were derived from the fractional digits of 𝑒, excluding
some blocks. For the excluded blocks, the actual absolute correlations are slightly
higher than the theoretical bound, but all smaller than 2−8.
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correlation we observed was 2−15.79 using a sample size of 240 plaintexts chosen
uniformly at random.

Overall, our correlation estimates based on linear trails seem to closely ap-
proximate the actual correlations since our estimate is only 21.21 times lower
than the actual probability.

3.3 Experimental Algebraic Degree Lower Bound

The modular addition is the only non-linear operation in Alzette. Its algebraic
degree is 31 and thus, in each 4-round Alzette instance, there must exist some
output bits of algebraic degree at least 32.

We experimentally checked that, for each instance 𝐴𝑐𝑖 , the algebraic degree
of each output bit is at least 32. In particular, for each output bit we found a
monomial of degree 32 that occurs in its ANF. Note that for checking whether
the monomial

∏︀𝑚−1
𝑖=0 𝑥𝑖𝑚 occurs in the ANF of a Boolean function 𝑓 one has to

evaluate 𝑓 on 2𝑚 inputs.

3.4 Division Property of the ARX-box Structure

We performed a MILP-aided bit-based division property analysis [18,20] on the
structure of Alzette. The MILP encoding is rather straightforward. For the mod-
ular addition operation we used the following method.

Addition modulo 232. We encode it by encoding the carry propagation. For any
𝑎, 𝑏, 𝑐 ∈ F2, let 𝑐′ = Maj(𝑎, 𝑏, 𝑐) ∈ F2 and 𝑦 = 𝑎 ⊕ 𝑏 ∈ F2. Then, all possible
such 5-tuples (𝑎, 𝑏, 𝑐, 𝑐′, 𝑦) ∈ F5

2 can be characterized by the two following integer
inequalities: {︃

−𝑎− 𝑏− 𝑐 + 2𝑐′ + 𝑦 ≥ 0

𝑎 + 𝑏 + 𝑐− 2𝑐′ − 2𝑦 ≥ 1 .

For any bit position, summing the input bits 𝑎, 𝑏 with the input carry 𝑐 results in
the output bit 𝑦 and the new carry 𝑐′. In our experiments, these two inequalities
applied for each bit position generated precisely the correct division property
table of addition modulo 2𝑛 for 𝑛 up to 7. There were some redundant transitions
though, which do not affect the result.

First, we evaluated the general algebraic degree of the ARX-box structure
based on the division property. The 5𝑡ℎ and 6𝑡ℎ rounds rotation constants were
chosen as the 1𝑠𝑡 and 2𝑛𝑑 rounds rotation constants respectively, as this will
happen when two Alzette instances will be chained. The inverse ARX-box struc-
ture starts with 4𝑡ℎ round rotation constants, then 3𝑟𝑑, 2𝑛𝑑, 1𝑠𝑡, 4𝑡ℎ, etc. The
minimum and maximum degree among coordinates of the ARX-box structure
and its inverse are given in Table 5. Even though these are just upper bounds,
we expect that they are close to the actual values, as the division property was
shown to be rather precise [20]. Thus, the Alzette structure may have full degree
in all its coordinates, but the inverse of an Alzette instance has a coordinate of
degree 46.
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Table 5: The upper bounds on the minimum and maximum degree of the coor-
dinates of Alzette and its inverse.

ARX-box
rounds

1 2 3 4
ARX-box

inverse
rounds

1 2 3 4

min 1 10 42 63 min 1 2 32 46
max 32 62 63 63 max 32 62 63 63

The block-size level division property of Alzette is such that, for any 1 ≤ 𝑘 ≤
62, 𝒟64

𝑘 maps to 𝒟64
1 after two rounds, and 𝒟64

63 maps to 𝒟64
2 after two rounds and

to 𝒟64
1 after three rounds. The same holds for the inverse of an Alzette instance.

The longest integral characteristic found with bit-based division property is
for a 6-round ARX-box, where the input has 63 active bits and the inactive bit
is at the index 44 (i.e., there are 44 active bits from the left and 19 active bits
from the right), and in the output 16 bits are balanced:

input active bits:

11111111111111111111111111111111,11111111111101111111111111111111,

balanced bits after 6-round ARX-box:

????????????????????????BBBBBBBB,?????????BBBBBBBB???????????????.

The inactive bit can be moved to indexes 45, 46, 47, 48 as well, the balanced
property after 6 round stays the same. For the 7-round ARX-box we did not
find any integral distinguishers.

For the inverse ARX-box, the longest integral characteristic is for 5 rounds:

input active bits:

11111111111111111111111111101111,11111111111111111111111111111111,

balanced bits after 5-round ARX-box inverse:

???????????????????????????????B,???????BBBBBBBBB????????????????.

For the ARX-box inverse with 6-rounds we did not find any integral character-
istic.

As a conclusion, even though a single Alzette instance has integral character-
istics, for two chained Alzette instances there are no integral characteristics that
can be found using the state-of-the-art division property method.

3.5 Summary of the Properties of Alzette

Our experimental results validate our theoretical analysis of the properties of
Alzette: in practice, the differential and linear trail probabilities (resp., absolute
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correlations) are as predicted. In the case of differential probabilities, the clus-
tering is minimal. While it is not quite negligible in the linear case, our estimates
remain very close to the quantities we measured experimentally.

The diffusion is fast: all output bits depend on all input bits after a single
call of Alzette – though the dependency may be sometimes weak. After a double
call of Alzette, diffusion is of course complete. More formally, as evidenced by
our analysis of the division property, no integral distinguisher exist in this case.

While the two components have utterly different structures, Alzette has sim-
ilar properties to one round of AES and the double iteration of Alzette to the
AES super-S-box (see Table 6). The bounds for the (double) ARX-box come
from Table 2. For the AES, the bounds for a single rounds are derived from the
properties of its S-box, so its maximum differential probability is 4/256 = 2−6

and its maximum absolute linear correlation is 2−3. For two rounds, the differ-
ential trail bound is 2−30 and the linear one is 2−15: as the branching number of
the MixColumn operation is 5, we raise the quantities of the S-box to the power
5.

Table 6: A comparison of the properties of Alzette with those of the AES with a
fixed key. MEDCP denotes the maximum expected differential trail probability
and MELCC denotes the maximum expected absolute linear trail correlation.

MEDCP MELCC

Alzette 2−6 2−2

AES S-box layer 2−6 2−3

Double Alzette ≤ 2−32 2−17

AES super S-box layer 2−30 2−15

These experimental verifications were enabled by our use of a key-less struc-
ture. For a block cipher, we would need to look at all possible keys to reach the
same level of confidence.

4 Implementation Aspects

Although Alzette was designed to be efficient in software, we briefly describe the
implementation characteristics for both software and hardware implementations
in the following.

4.1 Software Implementations

Alzette was designed to provide good security bounds, but also efficient imple-
mentation. The rotation amounts have been carefully chosen to be a multiple
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of eight bits or one bit from it. On 8 or 16 bit architectures these rotations
can be efficiently implemented using move, swap, and 1-bit rotate instructions.
On ARM processors, operations of the form z ← x <op> (y ≪ n) can be exe-
cuted with a single instruction in a single clock cycle, irrespective of the rotation
distance.

Alzette itself operates over two 32-bit words of data, with an extra 32-bit
constant value. This allows the full computation to happen in-register in AVR,
MSP and ARM architectures, whereby the latter is able to hold at least 4 Alzette
instances entirely in registers. This in turn reduces load-store overheads and
contributes to the performance of a primitive calling Alzette.

The consistency of operations allows one to either focus on small code size
(by implementing the parallel Alzette instances in a substitution layer in a loop),
or on architectures with more registers, execute two or more instances to exploit
instruction pipelining. This consistency of operations also allows some degree of
parallelism, namely by using Single Instruction Multiple Data (SIMD) instruc-
tions. SIMD is a type of computational model that executes the same operation
on multiple operands. Due to the layout of Alzette, an SIMD implementation can
be created by packing 𝑥0 . . . 𝑥𝑛𝑏

, 𝑦0 . . . 𝑦𝑛𝑏
, and 𝑐0 . . . 𝑐𝑛𝑏

each in a vector register.
That allows 128-bit SIMD architectures such as NEON to execute four Alzette
instances in parallel, or even eight instances when using x86 AVX2 instructions.

Table 7: Execution time (in clock cycles) and codes size (in bytes) of Alzette on
an 8-bit AVR ATmega128 and a 32-bit ARM Cortex-M3 microcontroller.

Platform Execution time Code size

8-bit AVR 122 176

32-bit ARM 12 24

Table 7 summarizes the execution time and code size of Alzette on an 8-
bit AVR and a 32-bit ARM Cortex-M3 microcontroller. The assembler imple-
mentation of Alzette for the latter architecture consists of 12 instructions (see
Appendix B), which take 12 clock cycles to execute. The Cortex-M3 supports
Thumb2, which means the used instructions are only 16 bits long. Consequently,
the code size of Alzette is 24 bytes. Our ARM implementation assumes that the
two 32-bit branches of Alzette and the round constant are already in registers
and not in memory, which is a reasonable assumption since the register file of an
ARM Cortex-M3 processor is big enough to accommodate, for example, a full
384-bit state.

The situation is a bit different for 8-bit AVR. The arithmetic/logical opera-
tions of Alzette amount to 78 instructions altogether, each of which executes in
a single cycle, i.e. 78 clock cycles in total. Each of the used instructions has a
length of 2 bytes, which results in a code size of 156 bytes. However, in contrast
to ARM, we can not assume that the whole state fits into the register file of an
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AVR microcontroller (for example, a 384-bit state is too big for the register space
of AVR), which means the load and store operations should be considered when
evaluating the execution time. Loading a byte from RAM takes 2 cycles, while
loading a byte from Flash (e.g. for the round constants) requires 3 cycles. Storing
a byte in RAM takes also 2 cycles. Hence, loading a two 32-bit branches costs
16 cycles altogether, and writing them back to RAM costs another 16 cycles.
Loading a 32-bit round constant from Flash requires 12 cycles. Consequently,
when taking all loads/stores into account, the execution time increases from 78
to 122 cycles and the code size from 156 to 176 bytes.

4.2 Hardware Implementations

A 32-bit ALU is needed that is able to execute the following set of basic arith-
metic/logical operations: 32-bit XOR, addition of 32-bit words, and rotations of
a 32-bit word by four different amounts, namely 16, 17, 24, and 31 bits. Since
there are only four different rotation amounts, the rotations can be simply im-
plemented by a collection of 32 4-to-1 multiplexers. There exist a number of
different design approaches for a 32-bit adder; the simplest variant is a conven-
tional Ripple-Carry Adder (RCA) composed of 32 Full Adder (FA) cells. RCAs
are very efficient in terms of area requirements, but their delay increases linearly
with the bit-length of the adder. Alternatively, if an implementation requires
a short critical path, the adder can also take the form of a Carry-Lookahead
Adder (CLA) or Carry-Skip Adder (CSA), both of which have a delay that
grows logarithmically with the word size. On the other hand, when reaching
small silicon area is the main goal, one can “re-use” the adder for performing
XOR operations. Namely, an RCA can output the XOR of its two inputs by
simply suppressing the propagation of carries, which requires an ensemble of 32
AND gates. In summary, a minimalist ALU consists of 32 FA cells, 32 AND
gates (to suppress the carries if needed), and 32 4-to-1 multiplexers (for the ro-
tations). To minimize execution time, it makes sense to combine the addition
(resp. XOR) with a rotation into a single operation that can be executed in a
single clock cycle.

5 Conclusion

Alzette is a component of a new kind, a wide S-box operating on 64 bits that can
nevertheless be proven to provide strong security against many attacks. Because
of its reliance on ARX operations with carefully chosen rotations, a constant-
time implementation is both easy to write and very efficient on a wide class of
processors and microcontrollers.

The NIST LWC submission Sparkle [2] provides the first application of the
Alzette S-box. Other ciphers could easily be built. For example, we could directly
construct an Even-Mansour like 64-bit block cipher where round keys would be
added in the full state in-between calls to Alzette.
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4. Biryukov, A., De Canniére, C., Braeken, A., Preneel, B.: A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (May 2003)

5. Biryukov, A., Velichkov, V., Corre, Y.L.: Automatic search for the best trails in
ARX: Application to block cipher speck. In: Peyrin [15], pp. 289–310

6. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin,
T., Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms
for post-quantum security. NIST round 2 lightweight candidate, see also
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf (2019)
7. Dinu, D.: Efficient and Secure Implementations of Lightweight Symmetric Crypto-

graphic Primitives. Ph.D. thesis, University of Luxembourg (2017), available online
at https://orbilu.uni.lu/handle/10993/33803

8. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
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A Linear Trails in Alzette

Table 8: The input and output masks 𝛼, 𝛽 (in hex) of all linear trails over Alzette
corresponding to maximum expected absolute linear trail correlation 𝑐 = 2−2

and 𝑐 = 2−5 for four and five rounds, respectively. The column max{− log2(𝑐)}
represents the smallest observed correlations of the approximations taken over
all (combinations of) Alzette instances that can occur without a step counter
addition in Sparkle. Similarly, the column min{− log2(𝑐)} represents the largest
observed correlations of the approximations. In all of the experiments, the sample
size was 224.

rounds 𝛼 𝛽 − log2(|𝑐|) max{− log2(|𝑐|)} min{− log2(|𝑐|)}

4

0000030180020100 c001018101800001 2.00 2.00 2.00
0000030180020100 800101c101c00001 2.00 2.00 2.00
0000020180020180 800101c101c00001 2.00 2.00 2.00
0000020180020180 c001018101800001 2.00 2.00 2.00

5

0000020180020180 01c00181c1808081 5.00 5.62 5.49
0000030180020100 01c081c1c180c081 5.00 5.60 5.47
0000020180020180 01c081c1c180c081 5.00 5.59 5.51
0000030180020100 41c00101c18080c1 5.00 5.60 5.48
0000020180020180 41c00101c18080c1 5.00 5.60 5.48
0000020180020180 41c08141c180c0c1 5.00 5.61 5.48
0000020180020180 01e08141e180c0c1 5.00 5.59 5.49
0000030180020100 41c08141c180c0c1 5.00 5.61 5.49
0000030180020100 01e08141e180c0c1 5.00 5.60 5.47
0000020180020180 01e00101e18080c1 5.00 5.61 5.50
0000030180020100 41e00181e1808081 5.00 5.61 5.48
0000020180020180 41e081c1e180c081 5.00 5.61 5.49
0000030180020100 01e00101e18080c1 5.00 5.61 5.49
0000020180020180 41e00181e1808081 5.00 5.61 5.48
0000030180020100 41e081c1e180c081 5.00 5.61 5.50
0000030180020100 01c00181c1808081 5.00 5.61 5.49
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Table 9: The input and output masks 𝛼, 𝛽 (in hex) of all linear trails over Alzette
corresponding to maximum expected absolute linear trail correlation 𝑐 = 2−8 for
six rounds. The column max{− log2(𝑐)} represents the smallest observed correla-
tions of the approximations taken over all combinations of Alzette instances that
can occur without a step counter addition in Sparkle. Similarly, the column
min{− log2(𝑐)} represents the largest observed correlations of the approxima-
tions. In all of the experiments, the sample size was 228.

rounds 𝛼 𝛽 − log2(|𝑐|) max{− log2(|𝑐|)} min{− log2(|𝑐|)}

6

0000020180020180 05638604c3828201 8.00 9.61 8.50
0000030180020100 05638604c3828201 8.00 9.69 8.48
0000020180020180 05c38604c3828241 8.00 8.69 8.00
0000020180020180 04838604c3828281 8.00 9.20 8.22
0000020180020180 06038604c3828381 8.00 9.09 8.23
0000030180020100 05c38604c3828241 8.00 8.71 8.01
0000030180020100 04838604c3828281 8.00 9.08 8.25
0000030180020100 06038604c3828381 8.00 9.14 8.23
0000020180020180 05638484c2828201 8.00 9.69 8.48
0000020180020180 05c38484c2828241 8.00 8.69 8.01
0000020180020180 04838484c2828281 8.00 9.17 8.26
0000020180020180 06038484c2828381 8.00 9.10 8.21
0000020180020180 05c3c404e2828241 8.00 9.65 8.48
0000030180020100 07438604c3828301 8.00 9.12 8.24
0000020180020180 07438604c3828301 8.00 9.10 8.20
0000030180020100 05638484c2828201 8.00 9.59 8.49
0000030180020100 05c38484c2828241 8.00 8.74 8.03
0000030180020100 07e38484c2828301 8.00 9.69 8.47
0000030180020100 07438484c2828341 8.00 8.71 8.01
0000030180020100 04838484c2828281 8.00 9.08 8.23
0000030180020100 07438484c2828301 8.00 9.11 8.23
0000020180020180 07e38604c3828301 8.00 9.56 8.50
0000030180020100 05c3c404e2828241 8.00 9.74 8.48
0000020180020180 0563c404e2828201 8.00 8.70 8.02
0000030180020100 05c38484c2828201 8.00 9.05 8.25
0000030180020100 05c38604c3828201 8.00 9.12 8.25
0000030180020100 06038484c2828381 8.00 9.18 8.24
0000020180020180 05c3c684e3828241 8.00 9.67 8.51
0000030180020100 0743c404e2828341 8.00 9.63 8.50
0000030180020100 0563c404e2828201 8.00 8.73 8.02
0000030180020100 05c3c684e3828241 8.00 9.70 8.52
0000030180020100 07e38604c3828301 8.00 9.70 8.49
0000020180020180 07438484c2828341 8.00 8.69 8.03
0000020180020180 07438484c2828301 8.00 9.12 8.20
0000020180020180 05c38604c3828201 8.00 9.09 8.25
0000020180020180 0743c404e2828341 8.00 9.67 8.47
0000020180020180 07e3c404e2828301 8.00 8.72 8.01
0000030180020100 0743c684e3828341 8.00 9.54 8.51
0000030180020100 0563c684e3828201 8.00 8.76 8.01
0000030180020100 07e3c684e3828301 8.00 8.72 8.03
0000020180020180 07e38484c2828301 8.00 9.60 8.51
0000030180020100 07e3c404e2828301 8.00 8.68 8.01
0000020180020180 0743c684e3828341 8.00 9.61 8.47
0000020180020180 0563c684e3828201 8.00 8.74 8.02
0000020180020180 07438604c3828341 8.00 8.74 8.00
0000020180020180 05c38484c2828201 8.00 9.06 8.20
0000030180020100 07438604c3828341 8.00 8.65 8.00
0000020180020180 07e3c684e3828301 8.00 8.75 8.01
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B Assembly Implementation

The ARX BOX macro in ARM assembler is shown below. It uses only 12 instruc-
tions and all rotations are performed together with either an add or an eor (i.e.
exclusive or) instruction. Consequently, no explicit rotation instructions have to
be executed.

.macro ARX_BOX xi:req , yi:req , ci:req

add \xi , \xi , \yi , ror #31

eor \yi , \yi , \xi , ror #24

eor \xi , \xi , \ci

add \xi , \xi , \yi , ror #17

eor \yi , \yi , \xi , ror #17

eor \xi , \xi , \ci

add \xi , \xi , \yi

eor \yi , \yi , \xi , ror #31

eor \xi , \xi , \ci

add \xi , \xi , \yi , ror #24

eor \yi , \yi , \xi , ror #16

eor \xi , \xi , \ci

.endm
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