
Communication-Efficient Proactive Secret
Sharing for Dynamic Groups with Dishonest

Majorities

Karim Eldefrawy1, Tancrède Lepoint2, and Antonin Leroux3?

1 SRI International, karim.eldefrawy@sri.com
2 Google, tancrede@google.com

3 École Polytechnique, antonin.leroux@polytechnique.edu

Abstract. In standard Secret Sharing (SS), a dealer shares a secret s
among n parties such that an adversary corrupting no more than t par-
ties does not learn s, while any t + 1 parties can efficiently recover s.
Proactive Secret Sharing (PSS) retains confidentiality of s even when
a mobile adversary corrupts all parties over the lifetime of the secret,
but no more than a threshold t in each epoch (called a refresh period).
Withstanding such adversaries has become of increasing importance with
the emergence of settings where private (cryptographic) keys are secret
shared and used to sign cryptocurrency transactions, among other appli-
cations. Feasibility of single-secret PSS for static groups with dishonest
majorities was demonstrated but with a protocol that requires inefficient
communication of O(n4).

In this work, we improve over prior work in three directions: batching
without incurring a linear loss in corruption threshold, communication
efficiency, and handling dynamic groups. While each of properties we im-
prove upon appeared independently in the context of PSS and in other
previous work, handling them simultaneously (and efficiently) in a sin-
gle scheme faces non-trivial challenges. Some PSS protocols can handle
batching of ` ∼ n secrets, but all of them are for the honest majority set-
ting. Techniques typically used to accomplish such batching decrease the
tolerated corruption threshold bound by a linear factor in `, effectively
limiting the number of elements that can be batched with dishonest ma-
jority. We solve this problem by reducing the threshold decrease to

√
`

instead, allowing us to deal with the dishonest majority setting when
` ∼ n. This is accomplished based on new bivariate-polynomials-based
techniques for sharing, and refreshing and recovering of shares, that al-
low batching of up to n − 2 secrets in our PSS. To tackle the efficiency
bottleneck the constructed PSS protocol requires only O(n3/`) commu-
nication for ` secrets, i.e., an amortized communication complexity of
O(n2) when the maximum batch size is used. To handle dynamic groups
we develop three new sub-protocols to deal with parties joining and leav-
ing the group.

? Work was performed while the author was at SRI International.

1 Introduction

Secret sharing (SS) is a fundamental cryptographic primitive used to construct
secure distributed protocols and systems [10,27,22,11,1,18,19,20], and in par-
ticular secure multiparty computation (MPC) [26,5,12,33,31,14,4,13,6,28,2]. In
(linear) SS [35,7], a secret s is encoded in a distributed form among n parties such
that an adversary corrupting up to t parties cannot learn the secret s, while any
t+ 1 parties can efficiently recover s. In some settings, SS should guarantee con-
fidentiality of shared secrets and correctness of the computations performed on
the shares, even when the protocol is run for a long time [31]. Similarly, there are
settings where secret shared private keys are used sporadically over long period
of time, for example to (threshold) sign cryptocurrency transactions [25,8,24,29]
or in other financial applications and settings [30]. Requiring security for long
durations brings forward a new challenge, as it gives a mobile adversary the
chance to eventually corrupt all parties. Ensuring security against such (mobile)
adversaries has therefore recently become of increased practical importance. An
SS protocol that withstands such a strong adversary is called a Proactive Secret
Sharing (PSS) protocol [31,27].

In this work, we construct an efficient PSS protocol with three key proper-
ties: (i) batching, (ii) dynamic groups, and (iii) dishonest majorities. We achieve
this with new techniques based on bivariate sharing. Below, we summarize the
progression from standard SS for passive adversaries, to stronger (mixed) adver-
sary models, to PSS for dynamic groups with honest majorities, to PSS for static
groups with dishonest majorities. We explain why either the tolerated threshold
or the performance of existing protocols fall short in achieving the goals we strive
towards.

1.1 Prior Work

A secret sharing (SS) protocol [35,7] typically consists of two sub-protocols:
Share and Reconstruct. Share can be used by a dealer to share a secret s
among n parties such that an adversary corrupting no more than t parties does
not learn s, while any t + 1 parties can efficiently recover s via Reconstruct.
Initially, secret sharing schemes only considered (exclusively) passive or active
adversaries. In the malicious setting, we say that a SS scheme is verifiable if
some auxiliary information is exchanged that allows players to verify that the
shares are consistent; we call the resulting scheme verifiable secret sharing (VSS).
Perfectly secure or statistically secure secret sharing can only be obtained when
there is a majority of honest participants. Against dishonest majorities, it is only
possible to reach computationally secure protocols. Hence, all of our protocols
achieve computational security.

The mixed adversarial model and gradual secret sharing. In [28], Hirt, Maurer,
and Lucas introduced the concept of mixed adversaries in SS and multiparty
computation (MPC), to capture the trade-off between passive and active adver-
saries. In particular, they develop an MPC protocol using gradual VSS against

2

mixed adversaries that corrupt k parties actively out of less than n−k corrupted
parties total. One of the main benefits of gradual SS is to ensure fairness, i.e., if
corrupted parties can deny the output of a protocol to the set of honest parties,
then they cannot learn the secret themselves. The key idea is to additively share
the secret s (i.e., s =

∑d
i=1 si) and then linearly share each of the si to the

parties under polynomial of (gradually) increasing degrees i = 1 to i = d. In
the Reconstruct protocol, the parties open the shares gradually, from i = d to
i = 1 and incorrect parties cannot deviate without being detected.

Proactive secret sharing (PSS). It may be desirable to guarantee the security
of standard (and gradual) SS throughout the entire lifetime of the secret. The
notion of proactive security was first suggested by Ostrovsky and Yung [31], and
applied to SS in [27]. It protects against a mobile adversary that can change
the subset of corrupted parties over time. Such an adversary could eventually
gain control of all parties over a long enough period, but is limited to corrupting
no more than t parties during the same time period. In this work, we use the
definition of PSS from [28,17]: in addition to Share and Reconstruct, a PSS
scheme contains a Refresh and a Recover sub-protocols. Refresh produces new
shares of s from an initial set of shares. An adversary who controls a subset of
the parties before the refresh and the remaining subset of parties after, will
not be able to reconstruct the value of s. Recover is required when one of
the participant is rebooted to a clean initial state. In this case, the Recover

protocol is executed by all other parties to provide shares to the rebooted party.
Ideally such rebooting is performed sequentially for randomly chosen parties at
a predetermined rate – hence the “proactive” security idea. In addition, Recover
could be executed after an active corruption is detected.

Dynamic proactive secret sharing. PSS initially only considered static groups,
Dynamic Proactive Secret Sharing (DPSS) schemes are both proactively secure
and allow the set of parties to dynamically change over time [16,34,37,38,3].
In other words, DPSS handles the redistribution of shares when the number of
parties increases or decreases, respectively with the Increase and a Decrease

sub-protocols. The authors in [3] extended the PSS introduced in [2] with ideas
from [15,14,13] to produce a DPSS scheme for honest majorities. We will follow
a similar approach to extend our PSS to the dynamic setting.

1.2 Limitations of Prior Work

Our goal is to address limitations and open problems left by prior PSS work, as
shown in Table 1. First, the only PSS in the dishonest majority setting [17,21]
assumes a static group of parties, i.e., unchanged during the secret lifetime. In
this work, PSS protocol for dynamic groups with dishonest majorities. As for
any secret sharing against dishonest majorities, security is only computational.
Second, [17,21] do not explicitly handle batching of secrets [23], i.e., sharing,
refreshing, and recovering shares of several secrets in parallel. While the authors
in [17] mention a batched version of their PSS, the paper does not provide any

3

Table 1. Overview of features and limitations of current proactive secret sharing (PSS)
protocols. The communication complexity is amortized over the number of secrets
handled by the schemes. Note that batching is briefly mentioned in [17], but no technical
details are provided. A detailed comparison of complexity of involved sub-protocols and
tolerated corruption thresholds is provided in Table 2 and Appendix E.

PSS Batching Fairness Dynamic Dishonest Communication
Groups Majority (amortized)

[2] 3 3 7 7 7 O(1)
[3] 3 3 7 3 7 O(1)
[17,21] 3 7 3 7 3 O(n4)

This work 3 3 3 3 3 O(n2)

Table 2. Comparison of amortized communication complexity of sub-protocols in
this work and existing PSS schemes in the dishonest majority setting for ` secrets. The
complexities stated in the column “Dynamic” are the worst-case complexities of three
sub-protocols required to handle dynamic groups (see Section 5). We note that the
complexity of the Recover sub-protocol is per party, and this is the bottleneck since
it has to be repeated n times, once when each party is (eventually) rebooted. This
explaines the O(n4) overall complexity.

` PSS PSS PSS PSS Dynamic Overall
Share Reconstruct Refresh Recover Redistribute

[17,21] 1 O(n2) O(n2) O(n3) O(n3) – O(n4)
This work n− 2 O(n) O(n2) O(n) O(n) O(n2) O(n2)
This work 1 O(n) O(n3) O(n2) O(n2) O(n2) O(n3)

detail on the effect of batching on the communication complexity nor on the
security impact in the mixed adversary setting. In this work, we introduce a
notion of batched PSS scheme that retain fairness against mixed adversaries.
Third, [17,21] has a large communication complexity, O(n4), and leaves as an
open problem how to reduce the communication bottleneck in the PSS (due
to the Refresh and Recover sub-protocols) to O(n2) or O(n3). Moreover, the
fairness additional feature of [17] is costly in terms of communication and it is
not clear how this additional cost can be handled. We solve these open questions
by reducing the communication complexity to O(n2) in the batched setting, and
O(n3) in the single secret setting. In theses improvements, we obtain fairness
with no additional cost in asymptotic complexity.

1.3 Our Contributions

In this work, we develop a new efficient computationally-secure PSS protocol for
dynamic groups with dishonest majorities. To achieve this, we proceed in the
following steps.

4

(1) Batched proactive secret sharing (without linear reduction in the corruption
threshold). The main feature of this work is a new PSS scheme of O(n2) amor-
tized communication complexity, improving by a quadratic factor the complexity
of the best known construction for dishonest majority [17]. This improvement
is mainly obtained through a bivariate polynomials based batching, which de-
viates from how secret sharing is performed in all previous PSS schemes for
dishonest majorities. While bivariate polynomials have been used before for se-
cret sharing, we devise a new way to compute hiding bivariate polynomial (used
in Protocol 2) that will enable an improvement in the communication complex-
ity. It is well-known that linear secret sharing with threshold t can be extended
to share ` secrets s1, . . . , s` by sampling a random polynomial f of degree t such
that f(βi) = si for public values β1, . . . , β` and distributing shares f(αi) for
i = 1, . . . , n to the n parties. However, in order to learn no information about
(s1, . . . , s`) an adversary must learn at most t − ` + 1 evaluations of f , which
yields a secret sharing scheme with threshold t− `+ 1. To remove this linear de-
pendency, we revisit the idea of using secret sharing with bivariate polynomials
(e.g., [36]). Our new way to construct secret sharing from bivariate polynomials
preserves secrecy with a corruption threshold of t−

√
`+1 for any ` ≤ n−2. This

yields a batched PSS scheme with sublinear reduction in the corruption thresh-
old.4 Since gradual secret sharing consists of a ladder of polynomial shares, the
same linear dependency in the number of secrets being batched applies to the
mixed adversarial model considered in [28], which then becomes secure against
mixed adversaries that corrupt k parties actively out of less than n− k − ` cor-
rupted parties total. Similarly, we introduce the notion of Batched gradual VSS,
a batched generalization of gradual VSS [28] which is secure against adversaries
corrupting either t−b

√
`c parties passively, or (n− b

√
`c)/2−1 parties actively,

or k parties actively out of n − k − b
√
`c. The gradual Secret Sharing aims at

obtaining fairness during the reconstruction. We note that our gradual bacthed
PSS obtains this fairness property without any additional asymptotic cost.

(2) Accommodating dynamic groups. We extend the batched PSS scheme above
with a new Redistribute protocol. It is built from three new efficient protocols
to handle dynamic groups: Increase, Decrease, and DecreaseCorrupt. The
Increasek protocol addresses the case where the number of parties increases:
it efficiently transforms the shares for n parties held by P1, . . . , Pn to shares for
n + k parties distributed to P1, . . . , Pn+k, and has O(k(n + k)) communication
complexity per secret. Similarly, Decreasek produces shares for a sharing be-
tween n− k parties and has a complexity per secret of O(k(n− k)); however it
requires the k leaving parties to participate in the protocol. For the case where
some of the parties are leaving due to permanent corruption or physical destruc-
tion, we propose a third protocol DecreaseCorrupt. This protocol produces new

4 In Appendix C, we give a self-contained description of the special case of ` = 1 that
improves the communication complexity of the gradual VSS of [17] by O(n) without
any decrease in the corruption threshold.

5

shares for the remaining parties without interacting with the leaving party (in
this case we can handle only k = 1).

(3) Efficient communication. The techniques used in the previous techniques
were also carefully designed to limit the communication complexity. As shown
in Table 2, our (fully) batched PSS for dynamic groups with dishonest majorities
has an overall complexity5 of O(n2) per secret.

1.4 Intuition Behind New Techniques for the Proactive Setting

We summarize here the main intuition behind the techniques that enable our
performance and threshold improvements outlined in Section 1.3.

(1) Addressing the Recover Bottleneck in PSS. As mentioned above, the real
bottleneck of PSS is the Recover protocol. This protocol is costly in itself and
is performed regularly on each of the participants (adding a O(n) complexity
factor to the overall communication complexity). The main issue is the inabil-
ity to efficiently generate a set of blinding polynomials. We revisit the Recover

protocol to overcome this limitation by optimizing the number of blinding poly-
nomials generated. This improvement is made possible by the use of bivariate
polynomials. The Recover protocol is also a necessary building block for the
Refresh protocol and the “gradual” Reconstruct protocol (see item 3 below),
as it enables a subset of participants to generate random polynomials and share
them with the rest of the parties.

(2) Batching with Bivariate Polynomials: Batching O(n) secrets saves O(n) in
communication complexity, but usually reduces the threshold by a linear factor
proportional to the number of batched secrets. This severely limits the number
of elements one can batch. We use bivariate polynomials to perform sharing
(of a batch of secrets) instead of univariate polynomials. As mentioned above,
the real bottleneck in this protocol is the generation of blinding polynomials in
Recover that protects the secrets without changing their values. We develop a
new technique to generate these polynomials in O(n2) with the number of hiding
values being quadratic in n− tP . To have information theoretic security for the
batched secrets we need this term (n − tP)2 to be greater than `. This leads
to only a sub-linear

√
` reduction in the threshold, as opposed to linear in `.

Note that our generation of hiding bivariate polynomial is optimal. Indeed, this
hiding polynomial has degree d and the data size of a bivariate polynomial of
this degree is O(n2) when we take d = O(n) (in practice, we take d = n− 2 for
maximum security). Hence, our technique cannot yield a protocol with better
communication complexity than O(n2).

5 For simplicity of notation we often write complexity instead of amortized complexity.

6

(3) Gradual Property only Needed in Reconstruction. We also observe that, in
previous work, the “gradual” feature of the underlying secret sharing scheme
(to withstand dishonest majorities) is critically used during the Reconstruct

operation only. We will therefore work only with regular shares. To recreate a
gradual secret sharing, we develop a new (gradual technique at the core of the)
Reconstruct protocol that creates directly a ladder of blinding polynomials that
sums to 0, adds the shares of the first element of the ladder, and then gradually
reveals everything while preserving confidentiality of the secrets. At the bottom
layer, what is revealed is the actual secret because all the blinding polynomials
of the ladder add up to 0. This enables us to save an additional factor (after
batching) of O(n) in Reconstruct. This results in a final complexity of O(n2)
for the Reconstruct which was the bottleneck as shown in Table 2. This also
implies that we can obtain fairness during the reconstruction without increasing
the communication complexity.

(4) Dealing with Dynamic Groups. In linear sharing via polynomials, the de-
gree d is the main security parameter. This degree d can be computed from
the value of n. In the case of dishonest majority, the value d = n − 2 is close
to n. Any change in the number of participant implies the necessity to change
the degree of the sharing polynomials. The extension to dynamic groups with
the Redistribute protocol is achieved with two sub-protocols Increase and
Decrease that respectively increases and decreases the degree of the sharing
given as input without changing the value of the secret. To obtain efficient pro-
tocols, we will take polynomials of the correct degree as close as possible from
the input polynomials.

1.5 Outline

This paper is organized as follows: Section 2 overviews preliminaries required for
the rest of the paper. Section 3 gives the formal definition of batched dynamic
proactive secret sharing, i.e., multi-secret PSS for dynamic groups with dishonest
majorities. Section 4 proposes a concrete efficient instantiation of a batched
(static) proactive secret sharing using buivariate polynomials. Section 5 then
extends the above PSS scheme to deal with dynamic groups. Full correctness
and security proofs of the protocols are provided in the Supplementary Material.

2 Preliminaries

Throughout the paper, we consider a set of n parties P = {P1, ..., Pn}, connected
by pairwise synchronous secure channels and authenticated broadcast channels.
P want to share and proactively maintain a confidential secret s over a finite
field F = Zq for a prime q.

For integers a, b, we denote [a, b] = {k : a ≤ k ≤ b} and [b] = [1, b].6 We
denote by Pk the set of polynomials of degree k exactly over F. When a variable
v is drawn randomly from a set S, we denote v ← S.

6 In particular, if a > b, we have [a, b] = ∅.

7

2.1 Mixed Adversaries

We first recall the model of mixed adversaries from [28]; we consider a central
adversary A with polynomially bounded computation power who corrupts some
parties passively (i.e., A learns the view of a Pi) and actively (i.e., A makes a
Pi behave arbitrarily) during a stage σ. We denote by PP (resp. PA ⊆ PP) the
set of passively (resp. actively) corrupted parties and denote by tP (resp. tA)
its cardinality. A multi-threshold is a set of pairs of thresholds (t1, t2). We say
that (tP , tA) ≤ T for a multi-threshold T if there exists (t1, t2) ∈ T such that
tP ≤ t1 and tA ≤ t2. For two multi-thresholds Ta, Tb we say that Ta ≤ Tb if for
all (ta1, ta2) ∈ Ta, it holds that (ta1, ta2) ≤ Tb.

2.2 Security Properties

Throughout the paper, we study four security properties: correctness, secrecy,
robustness, and fairness. We denote the corresponding multi-thresholds Tc, Ts,
Tr, and Tf . Each property is considered guaranteed if (tP , tA) is smaller than
the corresponding multi-threshold. These properties are standard analytic tools
for protocols security. For a protocol Π:
– Correctness: Given the inputs from P1, .., Pn, each party engaged in Π either

obtains the correct output or obtains a special output ⊥.
– Secrecy : The adversary cannot learn more information on the other parties’

inputs and outputs than can be learned from its own inputs and outputs.
– Robustness: The adversary cannot deny their output to the honest parties.
– Fairness: Either every party obtains its output or nobody does.

We have Tr ≤ Tc and Tf ≤ Ts ≤ Tc since we cannot define secrecy, fairness or
robustness without correctness and secrecy is required by fairness. Note that all
the protocols in this work are not robust when there are more than a few (gener-
ally 1 or 2) active corruptions. Thus, we are not going to study the robustness of
our protocols as they will not provide it in most cases. As such, unless explicitly
specified, the robustness threshold is Tr = {(n, 1)}.

2.3 (V/P/DP) Secret Sharing Definitions

Verifiable Secret Sharing (VSS). A VSS scheme enables an (untrusted) dealer
to securely share a secret s among the parties in P, such that a set of honest
parties can reconstruct s if they reveal their shares to each other.

Definition 1 (Verifiable Secret Sharing [28]). A (Ts, Tr)-secure Verifiable
Secret Sharing (VSS) scheme is a pair of protocols Share and Reconstruct,
where Share takes inputs s from the dealer and Reconstruct outputs s to each
party, if the following conditions are fulfilled:
– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information

about s;
– Correctness: After Share, the dealer is bound to the values s′, where s′ = s

if the dealer is honest. In Reconstruct, either each honest party outputs s′

or all honest parties abort.

8

– Robustness: the adversary cannot abort Share, and cannot abort Reconstruct
if (tP , tA) ≤ Tr.

Proactive Secret Sharing (PSS). A PSS scheme is a VSS scheme secure against
a proactive adversary. We recall the definition of PSS from [17]. In particular,
a PSS scheme is a VSS scheme extended with two additional sub-protocols:
Refresh and Recover. An execution of PSS will be divided in phases. A refresh
phase (resp. recovery phase) is the period of time between two consecutive execu-
tions of Refresh (resp. Recover). Furthermore, the period of time between Share

and the first Refresh (resp. Recover) is a refresh phase (resp. recovery phase),
and similarly for the period of time between the last Refresh (resp. Recover)
and Reconstruct.

Definition 2 (Proactive Secret Sharing [17]). A Proactive Secret Shar-
ing (PSS) scheme consists of four protocols Share, Reconstruct, Refresh, and
Recover. Share takes inputs s from the dealer and Reconstruct outputs s′ to
each party. Refresh is executed between two consecutive phases σ and σ+ 1 and
generates new shares for phase σ + 1 that encode the same secrets as the shares
for phase σ. Recover allows parties that lost their shares to obtain new shares
encoding s with the help of the other honest parties. A (Ts, Tr, Tc)-secure PSS
scheme fulfills the following conditions:
– Termination: all honest parties complete each execution of Share, Refresh,

Recover, and Reconstruct.
– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information

about s. If (tP , tA) ≤ Ts in both phases σ and σ + 1, and if Refresh and
Recover are run between phases σ and σ + 1, then the adversary learns no
information about s.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s if
the dealer is honest. If (tP , tA) ≤ Tc, upon completing Refresh or Recover,
either the shares held by the parties encodes s or all honest parties abort. In
Reconstruct either each honest party outputs s′ or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort Refresh,
Recover, and Reconstruct if (tP , tA) ≤ Tr.

Dynamic Proactive Secret Sharing (DPSS). A DPSS scheme is a PSS scheme
extended by a Redistribute protocol that enables (secure distributed) transfer
of the secret s from one group of participants to another. Our DPSS definition is
inspired by a previous one in [3]. The only difference is that we do not combine
Refresh, Recover and Redistribute into one phase. We define a redistribute
phase analogously to the refresh and recover phases. The refresh phases are
denoted by σ, the redistribute phases by ω, n(ω) is the number of participants
at phase ω. The multi-thresholds Tr, Tc, Ts are considered as functions of n (the

number of participants). We denote T
(ω)
r , T

(ω)
c , T

(ω)
s the thresholds at phase ω

computed from n(ω).

Definition 3 (Dynamic Proactive Secret Sharing). A Dynamic Proactive
Secret Sharing (DPSS) scheme consists of a PSS constituted of four protocols

9

Share, Reconstruct, Refresh, Recover according to Definition 2 completed by
a Redistribute protocol. Redistribute is executed between consecutive redis-
tribute phases ω and ω + 1 and allows a set of n(ω) participants at phase ω
to transfer its shares to the set of n(ω+1) participants of phase ω + 1 . In the

following, when we denote (tP , tA) ≤ T
(ω)
s , it is implicit that this is true dur-

ing redistribute phase ω. A (Ts, Tr, Tc)-secure DPSS scheme fulfills the following
conditions:
– For any phase ω, Share, Reconstruct, Refresh and Recover is a (T

(ω)
s , T

(ω)
r , T

(ω)
c)-

secure PSS under Definition 2.
– Termination: all honest parties complete each execution Redistribute.

– Secrecy: if (tP , tA) ≤ T
(ω)
s and (tP , tA) ≤ T

(ω+1)
s , the adversary learns no

information about s during the execution of Redistribute between phases
ω and ω + 1.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s

if the dealer is honest. If (tP , tA) ≤ T
(ω)
c , upon completing Redistribute,

either the shares held by the parties encodes s or all honest parties abort.

– Robustness: the adversary cannot abort Redistribute if (tP , tA) ≤ T (ω)
r .

2.4 Homomorphic Commitments and VSS

To obtain security against a malicious adversary, we use an homomorphic com-
mitment scheme, e.g., Pedersen commitments [33]. We assume that all the values
(secrets, polynomial coefficients) are in Zq for a prime q and that a cyclic group
G of order q with two random generators g, h has been distributed to each party.
The commitment to a secret m is C(m, r) = gm · hr for a random value r. Fur-
ther explanations on Perdersen’s commitments are given in Appendix A.1. Due
to the use of the Pedersen commitment scheme, our protocols are computation-
ally secure under the Discrete Logarithm Problem (DLP) hardness assumption.

2.5 Bivariate Polynomials

We rely on bivariate polynomials as a building block in our design of a batched
secret sharing scheme for groups with dishonest majorities. We use polynomials
of degree d in both x and y variables. Such a polynomial g is uniquely defined
by (d+ 1)2 points g(x, y) with (x, y) ∈ X×Y and |X| = |Y | = d+ 1. Indeed, for
any (x0, y0), the value g(x0, y0) can be found by the interpolation of g(x, y0) for
all x ∈ X. The values g(x, y0) can be interpolated with g(x, y) for all y ∈ Y . In
the following, when we say that g is a bivariate polynomial of degree d, it means
that g is of degree d in both its variables.

3 Batched Proactive Secret Sharing for a Static Group
with a Dishonest Majority

In this section, we introduce the definition of (Dynamic) Batched Proactive
Secret Sharing (BPSS). In order to understand why the batched setting requires

10

new definitions, we first explain the issue arising when using batching in PSS
against mixed adversaries in Section 3.1. Then, we introduce the definition of a
`-Batch `′-Gradual Secret Sharing in Section 3.2, and the definition of (Dynamic)
Batched Proactive Secret Sharing in Section 3.3.

3.1 The Issue of Number of Secrets

Recall the naive version of Shamir’s (t, n)-secret sharing [35] for t < n: a secret
s ∈ F is stored in the constant coefficient f(0) := s of a polynomial f ∈ Pt.
Each party Pr for r ∈ [n] will receive f(αr) where the αj ’s are (public) distinct
nonzero elements and reconstruction is performed by interpolating of the value
in 0 using t+ 1 evaluations of f .

The extension the above secret sharing scheme to handle batching is a well-
known construction [23]: to share ` secrets s1, . . . , s`, sample a polynomial f ∈
Pt+`−1 such that f(i) = si and set αr /∈ [`]. However, now one must ensure that
t+ `− 1 < n so that (s1, . . . , s`) remains information-theoretically hidden given
up to t evaluations of f in the αr’s; i.e., there is a linear dependency between
the number of shared batched secrets and the bound on the tolerated corruption
threshold (with respect to n).

Now, let us recall the core idea from [28] to design a fair secret sharing scheme
against mixed adversaries. We consider Shamir’s secret sharing extended with
homomorphic commitments in order to provide verifiability [32]. Now, during
the reconstruction step, all correct parties broadcast their shares, and secrecy is
given up against all subsets at one. Therefore, the reconstruction protocol does
not achieve fairness (that is, every party obtains its output or nobody does). In
order to achieve fairness and handle mixed adversaries, Hirt et al. [28] propose
to first split the secret into additive summands, i.e.,

s = s(1) + · · ·+ s(d) ,

with d = n− 1 and then use Shamir’s (i, n)-secret sharing on s(i) = fi(0) for all
i ∈ [d]. Next, Pr for r ∈ [n] receives as share the tuple

(f1(αr), . . . , fd(αr)) .

Reconstruction then recovers each of the s(i) for i from d = n−1 to 1 sequentially.
If there is a violation of fairness at any step, i.e., an s(i) cannot be reconstructed,
the protocol aborts. A mixed adversary cannot abort before the degree i0 = tP
(for i < tP the adversary already knows all the values fi(0)). In this case, to
preserve fairness the honest parties need to be able to recover all the remaining
values fi(0). Thus we have i0+1 ≤ n−tA. By putting the two constraints together
we obtain the bound (tP , tA) ≤ (n − k − 1, k). Additionally, since tA ≤ tP , we
get k ≤ dn2 e − 1.

Now, assume we want to design a batched secret sharing scheme against
mixed adversaries. Combining the above arguments prevents a mixed adversary
from aborting before the degree i0 = tP + ` − 1 and therefore we obtain the
bound

(tP , tA) ≤ (n− k − `, k) .

11

In particular, this implies that as soon as one batches ` ≥ n/2 secrets, achieving
security with a dishonest majority is not attainable.

To overcome this issue, we introduce a notion of `-Batch `′-Gradual Secret
Sharing against mixed adversaries with bound (tP , tA) ≤ (n− k − `′, k) in Sec-
tion 3.2; and then similarly to [17], it is easy to extend the latter primitive to
define a Batched PSS against mixed adversaries. In Section 4, we will instanti-
ate such a primitive for ` ≤ n− 2 and `′ = b

√
`c by revisiting the idea of secret

sharing using bivariate polynomials (e.g., [36]).

3.2 Batched Gradual Secret Sharing Against Mixed Adversaries

We first recall the definition of Gradual Secret Sharing from [28].

Definition 4 (Gradual VSS [28]). A (Ts, Tr, Tc)-secure VSS scheme is grad-
ual if the following conditions are fulfilled: If Reconstruct aborts, each party
outputs a non-empty set B ⊂ PA and the adversary cannot obtain information
about the secret s if (tP , tA) ≤ Ts and tP ≤ n− |B| − 1.

In particular, this definition is equivalent to fairness when the adversary is
bounded by a multi-threshold Tf = {(n − k − 1, k) : k ∈ [0, dn2 e − 1] and (n −
k − 1, k) ≤ Ts}.

Batched Gradual VSS. We naturally extend Definition 1 (definition of a VSS)
and Definition 4 to batch ` secrets. A Batch VSS scheme enables a dealer to share
` secrets s1, . . . , s` among the parties in P, such that the parties can reconstruct
the secrets.

Definition 5 (`-Batch VSS). A (Ts, Tr)-secure `-Batch VSS scheme is a pair
of protocols Share and Reconstruct, where Share takes inputs s1, . . . , s` from
the dealer and Reconstruct outputs s′1, . . . , s

′
` to each party, if the following

conditions are fulfilled:
– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information

about s1, . . . , s`;
– Correctness: After Share, the dealer is bound to the values s′1, . . . , s

′
`, where

s′i = si if the dealer is honest. In Reconstruct, either each honest party
outputs s′1, . . . , s

′
` or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort Reconstruct
if (tP , tA) ≤ Tr.

Definition 6 (`-Batch `′-Gradual VSS). A (Ts, Tr, Tc)-secure `-Batch VSS
is `′-gradual if the following conditions are fulfilled: If Reconstruct aborts, each
party outputs a non-empty set B ⊂ PA and the adversary cannot obtain infor-
mation about the secret s if (tP , tA) ≤ Ts and tP ≤ n− |B| − `′.

Once again, this definition is equivalent to fairness when the adversary is bounded
by a multi-threshold Tf = {(n−k−`′, k) : k ∈ [0, dn−`

′

2 e−1] and (n−k−`′, k) ≤
Ts}.

12

3.3 Batched Dynamic Proactive Secret Sharing

We directly adapt Definition 3 to the batch setting.

Definition 7 (Batched Dynamic Proactive Secret Sharing). A Batched
Dynamic Proactive Secret Sharing (BDPSS) scheme consists of five protocols
Share, Reconstruct, Refresh, Recover and Redistribute, where Share takes
inputs s1, . . . , s` from the dealer and Reconstruct outputs s′1, . . . , s

′
` to each

party. Refresh is executed between two consecutive refresh phases σ and σ + 1
and generates new shares for phase σ + 1 that encode the same secrets as the
shares for phase σ. Recover allows parties that lost their shares to obtain new
shares encoding s with the help of the other honest parties. Redistribute is
executed between consecutive redistribute phases ω and ω+ 1 and allows a set of
n(ω) participants at phase ω to transfer its shares to the set of n(ω)+1 participants

of phase ω + 1 . In the following, when we denote (tP , tA) ≤ T (ω)
s , it is implicit

that this is true during redistribute phase ω. A (T
(ω)
s , T

(ω)
r , T

(ω)
c)-secure PSS

fulfills the following conditions:

– Termination: all honest parties complete each execution of Share, Refresh,
Recover, Redistribute and Reconstruct.

– Secrecy: if (tP , tA) ≤ T
(ω)
s , then in Share the adversary learns no infor-

mation about s1, . . . , s`. If (tP , tA) ≤ T
(ω)
s in both refresh phases σ and

σ + 1, and if Refresh and Recover are run between phases σ and σ + 1,

then the adversary learns no information about s1, . . . , s`. If (tP , tA) ≤ T (ω)
s

and (tP , tA) ≤ T
(ω+1)
s , the adversary learns no information about s1, . . . , s`

during the execution of Redistribute between phases ω and ω + 1.
– Correctness: After Share, the dealer is bound to the values s′1, . . . , s

′
`, where

s′i = si if the dealer is honest. If (tP , tA) ≤ T (ω)
c , upon completing Refresh,

Redistribute or Recover, either the shares held by the parties encodes
s1, . . . , s` or all honest parties abort. In Reconstruct either each honest
party outputs s′1, . . . , s

′
` or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort Refresh,

Recover, Redistribute and Reconstruct if (tP , tA) ≤ T (ω)
r .

4 Efficient Batched PSS using Bivariate Polynomials

We defer the ideal functionality definitions of the Share, Reconstruct, Refresh,
and Recover subprotocols, and their formal simulator-based security proofs, to
Appendix B. In this section, we introduce the protocols and prove in preliminary
lemmas the core elements of their security proofs.

In the protocols below, we highlight the critical steps using boxes , as the

full protocols includes (standard) use of commitments and openings to resist
against malicious/mixed adversaries.

13

4.1 The Share Protocol

We assume that α1, . . . , αn, β1, . . . , β` ∈ F are distinct public values. The num-
ber ` is assumed to be smaller than d, the degree of the bivariate polynomial
produced by the sharing. With d = n−2 in practice, we have the bound ` ≤ n−2
that we mentioned above.

Protocol 1. Share

INPUT: Secrets s1, . . . , s` held by a dealer PD.

OUTPUT: Each party Pr holds shares {g(αr, αr′)}r′∈[d+1] of the secrets
s1, . . . , s` (and the corresponding commitments).

1. For j ∈ [`], the dealer samples fj ← Pd such that fj(βj) = sj .

2. For r ∈ [d + 1], the dealer samples g(αr, ·)← Pd such that ∀j ∈ [`],

g(αr, βj) = fj(αr) .

(Note that this implicitly defines a bivariate polynomial g of degree d.)

3. The dealer interpolates g(x, y) and computes {g(αr, αr′)}r′∈[d+1] for

all r ∈ [n].
4. The dealer broadcasts (homomorphic) commitments of the g(αr, αr′)

for all r, r′ ∈ [d+ 1].
5. Each party Pr locally computes commitments for {g(αr, αr′)}r′∈[d+1]

(using the homomorphic property for r > d+1), and the dealer sends the
corresponding opening informations to party Pr. Each party broadcasts
a complaining bit indicating if an opening received from the dealer is
incorrect.

6. For each element g(αr, αr′) for which a complaint was broadcast, the
dealer broadcasts its opening. If the opening is correct, Pr accepts the
value, otherwise the dealer is disqualified.

Lemma 1. Let d ≤ n− 1. Share is correct and preserves the secrecy of a batch
of secrets s1, . . . , s` if (tP , tA) ≤

{
(d, d)

}
.

Proof. Correctness follows from the use of homomorphic commitments which
allow the parties to verify that the dealer distributed shares for a bivariate
polynomial g of degree d in both variables.

For secrecy, we show that the adversary cannot find the values s1, . . . , s`
when tP ≤ d. Without loss of generality, we assume that the adversary controls
passively {P1, . . . , PtP } and that the dealer is honest. Hence, the adversary knows
the values {g(αr, αr′)}r′∈[d+1] for r ∈ [tP]. It can interpolate g(αr, βj) = fj(αr)
for all r ∈ [tP] and j ∈ [`]. For every j, since tP ≤ d, fj(βj) = sj is information-
theoretically hidden. ut

Remark 1 (Communication Complexity). In Step 4, the dealer broadcasts (d +
1)2 commitments, and in Step 5, (d+ 1) · n messages are sent. With d = O(n),
we obtain an amortized communication complexity of O(n2)/`.

14

Remark 2 (Corruption Threshold). Lemma 1 claims security for up to d corrup-
tion when we mentioned several time already that our protocol is secure up to
d + 1 −

√
`. This is because the Share protocol in itself tolerates more corrup-

tions. The threshold d+ 1−
√
` is a consequence of the Recover protocol, as is

explained below.

4.2 The Recover Protocol

The Recover protocol enables a set of d + 1 parties {P1, . . . , Pd+1} to send to
a recovering party PrC its shares (g{αrC , αr′)}r′∈[d+1]. In [17], to perform the
recovery of one value f(αrC), each participant Pr generates one blinding polyno-
mial fr verifying f(αrC) = 0 and share it among the other participants so that
PrC can receive f(αr) +

∑n
u=1 fu(αr) for r ∈ [n] and interpolate f(αrC). This is

inefficient as each value f(αr) requires O(n) communication to be blinded. In our
secret sharing, each participant Pr have a polynomial g(αr, ·). Just like in [17],
our Recover protocol requires each Pr to generate one polynomial fr verifying
fr(αrC) = 0 and share it to the other. The number of blinding polynomials re-
mains the same, but the size of the sharing has been multiplied by a factor O(n),
it yields an optimal O(1) communication complexity per value. Yet, it will be
enough to blind the batch of ` secrets when the corruption threshold is decreased
to d+1−

√
`. Indeed, PrC is going tor receive the values g(αr, αr′)+fr′(αr) from

each of the Pr for r′ ∈ [d + 1]. When Pr′ and PrC are corrupted, the adversary
will be able to learn the values g(αr, αr′) for r ∈ [d + 1] that were unknown to
the adversary prior to Recover. However, when both Pr and Pr′ are honest, the
value g(αr, αr′) is blinded by fr′(αr). Therefor, the security of the ` secrets is
going to be protected by the (d+1− tP)2 values corresponding to pairs (Pr, Pr′)
of honest participants in P2. That yields the bound tP ≤ d+1−

√
`. The formal

security analysis of Recover is given in Appendix B.2.
Overall, our Recover protocol consists of the following steps:

(a) First, the set of parties jointly generate random univariate polynomials
f1, . . . , fd+1 of degree d that evaluates to 0 in αrC .

(b) Then, every party uses its shares of fr′ ’s to randomize its shares g(αr, αr′)
so that Prc can interpolate g(αrC , αr′) for r′ ∈ [d+ 1].

Protocol 2. Recover

INPUT: A set P = {P1, . . . , Pd+1} with respective shares {g(αr, αr′)}r′∈[d+1]

and a recovering party PrC .

OUTPUT: Each party Pr for r ∈ [d+ 1]∪{rC} obtains {g′(αr, αr′)}r′∈[d+1],
where g′(βj , βj) = g(βj , βj) for all j ∈ [`].

1. For r ∈ [d+ 1], Pr broadcasts the commitments to {g(αr, αr′)}r′∈[d+1].
Each broadcast commitment consistency is locally verified; if consis-
tency fails, Pr broadcasts a complaining bit and the protocol aborts.

15

2. For r ∈ [d + 1], Pr samples fr ← Pd such that fr(αrC) = 0 , then

broadcasts commitments of fr(αr′) for all r′ ∈ [d+ 1], and then sends

an opening to the commitment of fr(αr′) to each Pr′ .

3. Each party verifies that fr′(αrC) opens to 0 for every r′ ∈ [d+ 1]. When
the opening fails, Pr′ is disqualified and added to the set of corrupted
parties B, and the protocol aborts and each party outputs B.

4. For r ∈ [d + 1], Pr locally computes fr′(αr), r
′ ∈ [d+ 1] and broad-

casts a complaining bit indicating if the opening is correct. For each
share fr′(αr), for which an irregularity was reported, Pr′ broadcasts
the opening. If the opening is correct, Pr accepts the value, otherwise
Pr′ is disqualified and added to the set of corrupted parties B. The
protocols aborts and each party outputs B.

5. For r ∈ [d+ 1], Pr sends to PrC openings to the values

g(αr, αr′) + fr′(αr) for all r′ ∈ [d+1]. PrC is able to compute locally a

commitment to the values g(αr, αr′)+fr′(αr) and for each r′ broadcasts
a bit indicating if the opening was correct.

6. For each share g(αr, αr′) + fr′(αr), for which an irregularity was re-
ported, Pr broadcasts the opening. If the opening is correct, PrC accepts
the value, otherwise Pr is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

7. PrC locally interpolates g(αrC , αr′) for all r′ ∈ [d+ 1].

Remark 3 (Communication Complexity). In Step 1, (d + 1)2 commitments are
broadcast. In Step 2, (d+2)(d+1) openings are sent. In Step 5, (d+1)2 openings
are sent. With d = O(n), we obtain an amortized communication complexity of
O(n2)/`.

4.3 The Reconstruct Protocol

Recall that gradual verifiable secret sharing was introduced in [28] to capture
the notion of a mixed adversary by gradually reducing the number of corrupted
parties against which secrecy is guaranteed during reconstruction, and at the
same time increasing the number of corrupted parties against which robustness is
guaranteed. In particular, in [28] a secret s is split into summands s = s1+· · ·+sd
and each si is secret shared using a polynomial of degree i. During reconstruction,
the protocol aborts at step n−k only if strictly less than n−k+1 parties opened
their commitments correctly and therefore the number of active parties is lower
bounded by k. Now, if the total number of corruptions is less than n−k, then the
adversary learns nothing, which retains secrecy against adversaries controlling k
parties actively out of n− k compromised parties.

Now, let’s assume we instead have a sharing of 0 = e1 + · · · + ed (as poly-
nomials), where e1, . . . , ed−1 are bivariate polynomials of degrees 1, . . . , d − 1
respectively. Then the above protocol can be reproduced with si = ei(β) for

16

i < d and sd = s + ed(β); this is the core idea in the protocol below. The core
novelty of the protocol is in how to construct this ladder. We will show that by
using (i) some fixed public values λ1, . . . , λd such that

∑d
i=1 λi = 0 and (ii) the

Recover above to share freshly generated polynomials, gradually constructing
such a ladder is possible. The key idea is the following: at each step from i = d
to i = 2, the current bivariate polynomial of degree i is blinded by a random
bivariate polynomial of degree i− 1 generated by a subset of size i of the parties
and recovered with a i+ 1-th party using Recover. All the blinding polynomials
ei will be constructed so that

e1 + · · ·+ ed =
(d∑
k=1

λk

)
·Q ,

at the end of the protocol forQ a random bivariate polynomial, so that
∑d
k=1 λk =

0 can eventually be factored out. Note that it does not harm the security to take
public λi values. Indeed, the security requires that each of the si appears uni-
formly random (up to s1 that depends on s and the previous si). The way that
each gi is constructed from the Qi polynomials that are random polynomials
ensures this property.

The Reconstruct protocol is described in Protocol 3, and its correctness and
security proofs can be found in Appendix B.3.

Protocol 3. Reconstruct

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
A (public) set of nonzero values (λk)1≤k≤d such that λ1 + · · ·+ λd = 0 and
λ1 + . . .+ λi 6= 0 for all i < d.

OUTPUT: Values sj = g(βj , βj) for j ∈ [`] to all parties in P.

1. Initialization: Set B = ∅,i = d and the number of remaining parties as

N = n. Each party in P sets locally sj = 0 for all j ∈ [`] .

2. First step (i = d):
(a) Without loss of generality, assume P = {P1, . . . , PN}.

For r ∈ [d], Pr samples Qd−1(αr, ·)← Pd−1 and broadcast com-

mitments to {Qd−1(αr, αr′)}r′∈[d].
Note that this implicitly defines Qd−1 a random bivariate polynomial
of degree d− 1.

(b) Using Recover, P1, . . . , Pd reveal {Qd−1(αd+1, αr′)}r′∈[d+1] to Pd+1.

If Recover aborts with output B′, sets B = B ∪ B′, N = N − |B′|
and P = P \ B′. If N > d, go to step (a), otherwise the protocol
aborts and outputs B.

(c) Denote gd = g + λdQd−1 . For r ∈ [d + 1], Pr locally updates

their shares to {gd(αr, αr′)}r′∈[d+1] using the Qd−1(αr, αr′)’s, and

broadcasts commitments thereof.

17

3. Gradual Reconstruction: While i ≥ 2 :

(a) Wlog, assume P = {P1, . . . , PN}. For r ∈ [i + 1], Pr broadcasts

openings to {gi(αr, αr′)}r′∈[i+1] , and all parties locally verify the

openings. Let B′ denote the parties with incorrect openings. Each
party sets B = B ∪B′, N = N − |B′| and P = P \B′. If N > i, go
the step (b), otherwise the protocol aborts and outputs B.

(b) For r ∈ [i+ 1, N], Pr interpolates its shares {gi(αr, αr′)}r′∈[i+1].

Then, computes the values {Qi−1(αr, αr′)}r′∈[i].
Note that we have the invariant gi+· · ·+gd = g+(λd+· · ·+λi)Qi−1.

(c) All parties interpolate gi and update sj ← sj + gi(βj , βj) .

Set i← i− 1.

(d) If i = 1, sets Q0 = 0 and go to Step (f).

Else, for r ∈ [i], Pr samples Qi−1(αr, ·)← Pi−1 and broadcast

commitments to {Qi−1(αr, αr′)}r′∈[i+1].
Note that this implicitly defines Qi−1 a random bivariate polynomial
of degree i− 1.

(e) Using Recover , P1, . . . , Pi enable Pi+1 to obtain

evaluations of {Qi−1(αr, αr′)}r′∈[i+1] . If Recover aborts with out-

put B′, sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i,
go to step (d), otherwise the protocol aborts and outputs B.

(f) Denote gi = λiQi +
(∑i−1

k=1 λk
)
· (Qi −Qi−1) . For r ∈ [i + 1], Pr

locally updates its shares to {gi(αr, αr′)}r′∈[i+1] and broadcast

commitments to these values.
4. Last Step (i = 1):

Wlog, assume P = {P1, . . . , PN}. Each party Pr ∈ P broadcasts open-

ings to g1(αr, α1) and g1(αr, α2) . If there are at least 2 correct

set of openings, all parties compute g1(βj , βj) for all j ∈ [`] and set

sj ← sj + g1(βj , βj) ; otherwise the protocol aborts.

Remark 4. We reiterate that we have the invariant

d∑
k=i

gk = g +

(
d∑
k=i

λk

)
·Qi−1

for all i ≥ 2 that comes from the fact that
∑d
k=1 λk = 0. In particular since

Q0 = 0, it holds that
∑d
k=1 gk = g. Hence, Step 3 (b) and Step 4 yield

sj =

d∑
i=1

gi(βj , βj) = g(βj , βj) .

18

Remark 5 (Communication Complexity). The first thing to note is that the
Recover in Steps 2(b) and 3(e) are ran a maximum of d+ tA = O(n) times to-
tal, which yields a communication complexity of O(n3/`). Ignoring the Recover,
Step 2 requires O(n2) communication (broadcast of commitments for the new
polynomials and new shares). Then, each iteration of the loop is performed in
O(i2) = O(n2) with (i+ 1)2 openings in 3(a), (i− 1)2 commitments in 3(d) and
i2 commitments in 3(f). Overall, the communication complexity of Reconstruct
is O(n3/`) for ` secrets.

Theorem 1. The pair of protocol (Share,Reconstruct) is an (Ts, Tc)-secure7

`-Batch
√
`-Gradual VSS, as in Definition 6, for Ts = {(n−1−b

√
`c, n−1−b

√
`c)

and Tc = {(n, n− 1)}.

Proof. The ideal functionalities defined in Figs. 2 and 7 of Appendices B.1
and B.3 are taking into account the requirement of secrecy for Share and of
correctness for Reconstruct. The batched gradual property of Reconstruct is
also considered and Theorem 1 follows from Theorems 4 and 6. ut

4.4 The Refresh Protocol

Similarly to Reconstruct, the Refresh protocol uses a blinding polynomial Q
to guarantee privacy of the secrets. This blinding polynomial Q needs to ver-
ify Q(βj , βj) = 0 for j ∈ [`]. The easiest way to achieve this property is to
take Q(x, y) = (x − y)R(x, y) where R is a random bivariate polynomial of de-
gree d − 1. However, this polynomial Q is equal to zero on the entire diagonal
(x, x). To obtain the level of secrecy required for Refresh we also need to re-
fresh the shares g(x, x) for any x 6∈ {β1, . . . , β`}.To solve this issue, inspired
by the univariate blinding factor in Recover, we blind the other diagonal val-
ues by a univariate polynomial that evaluates to 0 in the βj . More precisely,
at the end of the protocol, we constructed g′ as g′(x, y) = g(x, y) + Q(x, y) =
g(x, y) + (x− y) · R(x, y) + h(x) ·

∏
j∈`(y − βj) where h is a random univariate

polynomial in Pd and R is a random bivariate polynomial.
Concretely, the Recover protocol is used to build and share the blinding poly-
nomial in the following manner:

(a) First, a set of d participants generates R a random bivariate polynomial of
degree d− 1 and uses Recover to share it with the remaining participants.

(b) Then, every party generates a random univariate polynomial hr and share
it among each other, so that every participant Pr can compute its value
h(αr) =

∑n
u=1 hu(αr)

(c) Finally, all parties compute g′(αr, αr′) = g(αr, αr′)+(αr−αr′) ·R(αr, αr′)+
h(αr) ·

∏
j∈`(αr′ − βj) from their blinded shares.

Refresh is described in Protocol 4 and its correctness and security proofs can
be found in Appendix B.4

7 Computational security under hardness of DLP.

19

Protocol 4. Refresh

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].

OUTPUT: Each party Pr ∈ P obtains {g′(αr, αr′)}r′∈[d+1], where g′(βj , βj) =
g(βj , βj) for all j ∈ [`].

1. For r ∈ [d], Pr samples R(αr, ·)← Pd−1 and broadcasts homomorphic

commitments to the values {R(αr, αr′)}r′∈[d].
Note that this implicitely defines a bivariate polynomial R(x, y) of degree
d− 1.

2. For i ∈ {d + 1, ..., n}, {Pi} ∪ {P1, ..., Pd} perform Recover to provide

Pi with the shares R(αi, αr′) for r′ ∈ [d] .

Note that the first step of Recover is unnecessary since each Pi already
knows the homomorphic commitments to R.

3. For r ∈ [n], Pr samples hr ← Pd , and broadcasts commitments to the

coefficients of hr(αr′) for all r′ ∈ [d + 1]. Pr sends to Pr′ an opening

of the commitment to hr(αr′) for all r′ ∈ [d+ 1].

4. For r ∈ [n], Pr locally verifies the commitments and for each r′ broad-
casts a bit indicating if the opening was correct. For every irregularity
on hr′(αr), Pr′ broadcasts the opening. If the opening is correct, Pr
accepts the value, otherwise Pr′ is disqualified and added to the set of
corrupted parties B. The protocols aborts and each party outputs B.

5. For r ∈ [n], Pr computes h(αr) =
∑n
r′=1 hr′(αr) .

6. For r ∈ [n], for all r′ ∈ [d+ 1], Pr computes

g′(αr, αr′) = g(αr, αr′) + (αr − αr′) ·R(αr, αr′) + h(αr) ·
∏
j∈[`](αr′ − βj) .

Remark 6 (Communication Complexity). The bottleneck of the communication
is during Step 2 when (n− d) Recover are performed. In the case of maximum
security (when n− d− 1 = O(1)), the communication complexity is O(n2)/` for
` secrets.

Theorem 2. The four protocols Share, Reconstruct, Refresh, Recover cre-
ates a Ts, Tc-secure 8 `-Batch PSS with multi-threshold Tc = {(n, n − 1)} and
Ts = {(n− 1− b

√
`c, n− 1− b

√
`c)} and ` = n− 2.

Proof. Theorem 2 follows directly from Theorems 4 to 7, proved in Appendix B.
ut

5 Handling Dynamic Groups

In this Section we extend our batched (static) PSS scheme to handle dynamic
groups. We introduce three new protocols: Increase (Protocol 5), Decrease

8 Computational security under hardness of DLP.

20

(Protocol 6) and DecreaseCorrupt (Protocol 7). These protocols address the
case of the Shamir sharing [35] where one secret s is encoded as f(β) for f
an univariate polynomial of degree d. This is a simpler case that can be easily
extended to the batched case as is explained in Section 5.4. The goal of these
protocols is to distribute the shared secret s to a new set of parties of size n+ k
(k ∈ Z). The 3 protocols all follow the same requirements in terms of security.
For correctness, we require that the new set of parties obtains a correct sharing
of the secret with an univariate polynomial of degree d + k. For secrecy, we
require that the adversary cannot recover the value of the secret during the
execution protocol (provided that the threshold of corrupted parties is respected
both before and after the protocol). These three protocols will be used in the
Redistribute protocol that extends our PSS to a DPSS.

Mixed Adversaries. To ease presentation, we present the three sub-protocols
in the semi-honest (honest-but-curious) model. As in previous protocols, active
corruptions are handled using homomorphic commitments. In the Increase,

Decrease, DecreaseCorrupt protocols all the operations are linear. The homo-
morphic property of the commitments can be used (as before) to verify that each
linear operation is correctly performed. After that, we implicitly assume that the
Increase, Decrease and DecreaseCorrupt protocols are extended against ac-
tive corruptions in the way we described. The Redistribute protocol is given
in the malicious setting.

5.1 Increase

In this case k ∈ N. The goal of Increase is to generate f+, a polynomial of
degree d + k with f+(β) = f(β), and to distribute the share f+(αr) to each
Pr ∈ {P1, . . . , Pn+k}. Without loss of generality we assume that Pn+1, . . . , Pn+k
are the new parties. For each Pr ∈ {P1, . . . , Pn}, Pr has the value f(αr).

Constructing a polynomial of higher degree. To efficiently generate the new f+

polynomial, it is important to rely on the information already given to P1, . . . , Pn.
For that we set

f+(x) = Q(x) +

k∏
i=1

x− αn+i
β − αn+i

f(x)

where Q a polynomial of degree d + k satisfying Q(β) = 0. This produces a
correct sharing of s while requiring low communication. With this expression
of f+, P1, . . . , Pn do not have to share information about f . The only required
communication is in the construction of Q. This step can be performed by the
new parties. Increase is explained in Protocol 5, we give the formal proof of
security in Appendix D.1.

Protocol 5. Increase (semi-honest)

21

INPUT: Pr holds a share f(αr) of a secret s shared among n parties P1, . . . , Pn.
k new parties Pn+1, . . . , Pn+k join the group.

OUTPUT: Each Pr ∈ {P1, . . . , Pn+k} holds a share f+(αr) of s for the n+k
parties.

1. For every Pr ∈ {Pn+1, . . . , Pn+k}, Pr samples one polynomial Qr ← Pd+k
verifying Qr(β) = 0 .

2. For r ∈ [n+1, n+k] and r′ ∈ [n+k], Pr sends to Pr′ the values Qr(αr′)

and all parties can compute their random share Q(αr′) =
∑n+k
u=n+1Qu(αr′) .

3. For Pr ∈ {P1, . . . , Pn}, Pr computes its new share of the secret as

f+(αr) =
∏k
i=1

αr−αn+i

β−αn+i
f(αr) +Q(αr) .

4. For all player Pr ∈ {Pn+1, . . . , Pn+k}, Pr sets its value f+(αr) = Q(αr)

Remark 7 (Communication Complexity). In Increase, all the communication
happens during Step 2. The number of message sent is k(n+ k).

5.2 Decrease

The Decrease protocol handles the case of a subset of the parties leaving the
exchange. If k is the size of the leaving subset, the goal is to build f− a polynomial
of degree d − k with s = f−(β) = f(β). The Decrease protocol requires to
communicate with the leaving parties. When the parties are leaving due to a
corruption or a failure of some sort, this protocol cannot be applied. That will
be the role of the DecreaseCorrupt protocol introduced in Section 5.3. Without
loss of generality, we consider that the set of leaving parties is {Pn−k+1, . . . , Pn}.

Constructing a polynomial of lower degree. Similar to Increase, the f− will be
constructed from f . The formula is a bit more complicated because for Decrease
the data structure (f) is compressed, which is more complicated than expending
the data structure as is done in Increase. The construction of f− relies on the
formula:

f(x) =

k−1∏
i=0

(x− αn−i)Q(x) +

k−1∑
i=0

(
f(αn−i)

k−1∏
m=0,m 6=i

x− αn−m
αn−i − αn−m

)
where Q is a polynomial of degree d− k. From that we obtain that Q is defined
by the following equation

Q(x) =
f(x)∏k−1

i=0 (x− αn−i)
−
k−1∑
i=0

(f(αn−i)

x− αn−i

k−1∏
m=0,m 6=i

1

αn−i − αn−m

)

22

We just have to modify Q to obtain h− of degree d − k with h−(β) = f(β).
Hence, we set

h−(x) =
(
Q(x) +

k−1∑
i=0

f(αn−i)

β − αn−i

k−1∏
m=0,m6=i

1

αn−i − αn−m

) k−1∏
i=1

(β − αn−i) =

f(x)

k−1∏
i=1

β − αn−i
x− αn−i

−
k−1∑
i=0

f(αn−i)
(x− β
x− αn−i

k−1∏
m=0,m6=i

β − αn−m
αn−i − αn−m

)
To simplify notations we write h−(x) = f(x)

∏k−1
i=1

β−αn−i

x−αn−i
−
∑k−1
i=0 Λi(x) with

Λi(x) = f(αn−i)
(

x−β
x−αn−i

∏k−1
m=0,m 6=i

β−αn−m

αn−i−αn−m

)
. To distribute the value h−(αr)

to Pr for all r ∈ [n − k], Pn−i has to send the value Λi(αr) to Pr for all
0 ≤ i ≤ k − 1. However, that would enable the adversary to compute the value
f(αn−i). To avoid that, Pn−i generates Qi a polynomial of degree d − k with
Qi(β) = 0 and send Λi(αr) +Qi(αr) to every party P ∈ {P1, . . . , Pn−k}. Then,

we can define f− = h−+
∑k−1
i=0 Qi. The Decrease protocol is given in Protocol 6

and the proof of security for this protocol can be found in Appendix D.1.

Protocol 6. Decrease (semi-honest)

INPUT: Each party Pr has the share f(αr) of a secret s for n parties. A
subset of size k, PLEAV E = {Pn−k−1, . . . , Pn} for the leaving parties.

OUTPUT: Each party Pr holds the share f−(αr) of s for the parties in
{P1, . . . , Pn−k}.

1. For Pr ∈ PLEAV E , Pr samples Qn−r ← Pd−k , with Qn−r(β) = 0

2. For Pr ∈ PLEAV E and ∀r′ ∈ [n − k], Pr send to Pr′ the values

Qn−r(αr′) + Λn−r(αr′)f(αr) .

3. For Pr ∈ {P1, . . . , Pn−k}, the party Pr compute its new share of the se-

cret as f−(αr) =
∏k−1
i=0

β−αn−i

αr−αn−i
f(αr) +

∑k−1
i=0 Qi(αr) + Λi(αr)f(αn−i) .

Remark 8 (Communication Complexity). The number of message sent during
step 2 of Decrease is k(n− k).

5.3 Decrease Corrupt

This section presents the DecreaseCorrupt protocol. It handles the case where
some parties are leaving without prior agreement and cannot communicate with
the rest of the parties. The remaining parties have to ignore the leaving parties. If
we take d = n−2 we can tolerate only one leaving party. The DecreaseCorrupt

protocol in Protocol 7 is addressing the case where Pn is leaving.

23

Decreasing the number of parties without prior agreement. The f− polynomial as
defined in Section 5.2 for k = 1 remains an efficient way to produce a polynomial
of degree d− 1 with the same evaluation as f in β. To construct f−, the parties
need the value f(αn), they will reconstruct this value using a process very similar
to the Recover protocol of [17]. Each party Pr reveals f(αr) + fn(αr) where fn
is a polynomial of degree d with fn(αn) = 0. With that, each participant is
able to construct the value f(αn). This is fine, as we consider that Pn is leaving
due to a heavy corruption and the adversary already knows the share of Pn. The
DecreaseCorrupt Protocol is explained in Protocol 7, the security proof is given
in Appendix D.1.

Protocol 7. DecreaseCorrupt (semi-honest)

INPUT: Each party Pr ∈ P = {P1, . . . , Pn−1} holds the value f(αr) for f a
polynomial of degree d.

OUTPUT: Each party Pr, 1 ≤ r ≤ n − 1 holds the value f−(αr) for f− a
polynomial of degree d− 1.

1. For r ∈ [n− 1], Pr samples fr ← Pd with fr(αn) = 0 .

2. For all pair of parties Pr, Pr′ ∈ P2, Pr sends to P ′r the value fr(αr′) .

3. Each Pr computes the value fn(αr) =
∑n−1
u=1 fu(αr) .

4. Each Pr broadcasts the value f(αr) + fn(αr) .

5. Each Pr interpolates the value f(αn) .

6. Each player Pr computes the value f−(αr) = f(αr)
β−αn

αr−αn
+ f(αn) β−αr

αr−αn
.

Remark 9 (Tolerating more leaving parties). In the case where d < n − 2 more
than one leaving party can be tolerated. The extension is quite straightforward.
If k is the number of leaving parties, we will set f− as it is done in Decrease.
Then, the remaining parties have to reconstruct the missing values. That can
be done in the same way it is done for f(αn) in Protocol 7. After that, each
participant can construct the correct evaluation of f− using the formula.

Remark 10 (Communication Complexity). (n − 1)2 messages are sent in step 2
and n− 1 values are broadcasted in step 3. Complexity of DecreaseCorrupt is
O(n2).

5.4 Dynamic Batching

To produce the Redistribute protocol, we need to extend the three protocols
Increase, Decrease, DecreaseCorrupt to batched secret sharing. This exten-
sion is briefly detailed in the next paragraph. The Redistribute will be decom-
posed in consecutive executions of Increase, Decrease and DecreaseCorrupt.
If we consider P as the set of participants before Redistribute and P ′ the set

24

of participants after, we can divide P as PL ∪ PLC
∪ P∩ and P ′ as PN ∪ P∩

with P∩ = P ∩P ′, PL the set of leaving parties and PLC
the set of participants

leaving due to corruption. Redistribute consists of three steps. First, PL ∪P∩
perform DecreaseCorrupt. Then, PL and P∩ perform Decrease. Finally, PN
and P∩ use Increase to share the secrets among every participant in P ′.

Obtaining Dynamic protocols for bivariate sharing. To reshare ` secrets from n
parties to n+ k parties (k ∈ Z), we need to produce gdyn a bivariate polynomial
of degree d + k with gdyn(βj , βj) = g(βj , βj) for all j ∈ [`]. We require the
additional bound ` ≤ d+k. In this paragraph, we briefly present a protocol doing
that. It uses a Dynamic sub-protocol, that will be either Increase, Decrease or
DecreaseCorrupt depending on the situation (here we consider the malicious
extension of the protocol in Protocols 5 to 7). For all j ∈ [`], we define fj(x) =
g(x, βj) a polynomial of degree d. The parties are going to perform the Dynamic

protocol with β = βj to produce fdynj for all j ∈ [`]. We define the polynomials

gdyn(x, βj) = fdynj (x) for all j. Each Pr ∈ {P1, . . . , Pd+k+1} complete its `

values (gdyn(αr, βj) for all j ∈ [`]) to obtain a polynomial gdyn(αr, y) of degree
d+ k. This defines one unique bivariate polynomial gdyn of degree d+ k. Then,
P1, . . . , Pd+k+1 perform a Recover protocol to give shares to each participant
Pd+k+2, . . . , Pn+k. This is correct as Recover only requires that P1, . . . , Pd+1

have valid shares.

Protocol 8. Redistribute

INPUT: A set P = {P1, ..., Pn(ω)} with respective shares {g(αr, αr′)}r′∈[d+1]

of degree d

OUTPUT: A set P ′ = {P1, ..., Pn(ω+1)} of parties with respective shares
{g′(αr, αr′)}r′∈[d′+1] of degree d′

1. For j ∈ [`] :

(a) Each Pr ∈ P sets fj(αr) = g(αr, βj) .

(b) If PLC
6= ∅: PL ∪ P∩ perform DecreaseCorrupt . The output is

evaluations of f1j a polynomial of degree d− 1.

(c) PL and P∩ uses Decrease to share f2j a polynomial of degree d−
|PL| − |PLC

| among the participants in P∩.

(d) P∩ and PN perform Increase to produce shares of f3j a polyno-

mial of degree d′ = d−|PL|− |PLC
|+ |PN | among every participant

in P ′.
2. Each Pr ∈ {P1, ..., Pd′+1} ⊂ P ′ samples g′(αr, .)← Pd′ such that

∀j ∈ [`], g′(αr, βj) = f3j (αr) and broadcasts the associated homomor-

phic commitments.
Note that this implicitly defines a bivariate polynomial g′ of degree d′.

25

3. Each Pr ∈ P ′ verifies that the commitments to g′ were constructed
consistently from the commitments to the f3j polynomials. For each
party r′, Pr broadcasts a bit indicating if the commitments are correct.
Each failing Pr′ is disqualified and added to the set of corrupted parties
B. The protocol aborts and each party outputs B.

4. {P1, ..., Pd′+1} uses Recover to share g′ to {Pd′+2, . . . , Pn(ω+1)} .

Remark 11 (Order of Operations). We perform DecreaseCorrupt, Decrease and
Increase in this order because it minimizes the communication complexity. The
only constraint is that DecreaseCorrupt must be done first. For instance, for
threshold reasons, it might be interesting to perform Increase before Decrease.
This does not change anything.

Remark 12 (Communication Complexity). The maximum complexity of Increase,
Decrease and DecreaseCorrupt is O(n2). Refresh’s complexity is O(n2) when
d = n − 2 and the overall complexity of Redistribute is O(`n2) and O(n2)
amortized per secret.

Theorem 3. The five protocols Share, Reconstruct, Refresh, Recover and

Redistribute creates a T
(ω)
s , T

(ω)
c -secure9 `-Batch DPSS, as in Definition 7,

with multi-threshold T
(ω)
c = {(n(ω), n(ω)−1)} and T

(ω)
s = {(n(ω)−1−b

√
`c, n(ω)−

1− b
√
`c)} and ` ≤ n(ω) − 2.

Proof. Theorem 3 follows from Theorems 2 and 11 (cf. Appendix D.2). ut

References

1. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA,
July 13-16, 2003. pp. 223–232 (2003). https://doi.org/10.1145/872035.872069,
http://doi.acm.org/10.1145/872035.872069

2. Baron, J., Eldefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: PODC. pp. 293–302. ACM (2014)

3. Baron, J., Eldefrawy, K., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: ACNS. LNCS, vol. 9092, pp. 23–
41. Springer (2015)

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure mpc with linear communication
complexity. In: Proceedings of the 5th Conference on Theory of Cryptography.
pp. 213–230. TCC’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dl.acm.
org/citation.cfm?id=1802614.1802632

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10. ACM (1988)

9 Computational security under hardness of DLP.

26

https://doi.org/10.1145/872035.872069
http://doi.acm.org/10.1145/872035.872069
http://dl.acm.org/citation.cfm?id=1802614.1802632
http://dl.acm.org/citation.cfm?id=1802614.1802632

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multi-
party computation with a dishonest minority. In: CRYPTO. LNCS, vol. 7417, pp.
663–680. Springer (2012)

7. Blakley, G.R.: Safeguarding cryptographic keys. Proc. of AFIPS National Com-
puter Conference 48, 313–317 (1979)

8. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to
improve threshold DSA signatures for Bitcoin wallet security. In: Latincrypt (2017)

9. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: ACM Conference on Computer
and Communications Security. pp. 88–97 (2002)

10. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: CRYPTO. pp. 425–438 (1994)

11. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

12. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally se-
cure protocols. In: Proceedings of the twentieth annual ACM sympo-
sium on Theory of computing. pp. 11–19. STOC ’88, ACM, New York,
NY, USA (1988). https://doi.org/10.1145/62212.62214, http://doi.acm.org/10.
1145/62212.62214

13. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: EUROCRYPT. LNCS, vol. 6110,
pp. 445–465. Springer (2010)

14. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty
computation with nearly optimal work and resilience. In: CRYPTO. pp. 241–261
(2008)

15. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO. LNCS, vol. 4622, pp. 572–590. Springer (2007)

16. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications (1997), technical Report ISSE TR-97-01, George Mason University

17. Dolev, S., Eldefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret
sharing with a dishonest majority. In: SCN. LNCS, vol. 9841, pp. 529–548. Springer
(2016)

18. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: Proceed-
ings of the 47th Annual Allerton Conference on Communication, Control, and
Computing. pp. 1438–1445. Allerton’09, IEEE Press, Piscataway, NJ, USA (2009),
http://dl.acm.org/citation.cfm?id=1793974.1794220

19. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V.: Secret sharing krohn-rhodes:
Private and perennial distributed computation. In: ICS (2011)

20. Dolev, S., Garay, J.A., Gilboa, N., andYelena Yuditsky, V.K.: Towards efficient
private distributed computation on unbounded input streams. J. Mathematical
Cryptology 9(2), 79–94 (2015). https://doi.org/10.1515/jmc-2013-0039, http://

dx.doi.org/10.1515/jmc-2013-0039
21. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty

computation with a dishonest majority. In: SCN. LNCS, vol. 11035, pp. 200–215.
Springer (2018)

22. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal re-
silience proactive public-key cryptosystems. In: 38th Annual Symposium
on Foundations of Computer Science, FOCS’97, Miami Beach, Florida,
USA, October 19-22, 1997. pp. 384–393. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646127, https://doi.org/10.1109/SFCS.

1997.646127

27

https://doi.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://dl.acm.org/citation.cfm?id=1793974.1794220
https://doi.org/10.1515/jmc-2013-0039
http://dx.doi.org/10.1515/jmc-2013-0039
http://dx.doi.org/10.1515/jmc-2013-0039
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1109/SFCS.1997.646127

23. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC. pp. 699–710 (1992)

24. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM Conference on Computer and Communications Security. pp. 1179–
1194. ACM (2018)

25. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: ACNS. LNCS, vol. 9696,
pp. 156–174. Springer (2016)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC.
pp. 218–229. ACM (1987)

27. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:
How to cope with perpetual leakage. In: CRYPTO. pp. 339–352 (1995)

28. Hirt, M., Lucas, C., Maurer, U.: A dynamic tradeoff between active and passive
corruptions in secure multi-party computation. In: CRYPTO (2). LNCS, vol. 8043,
pp. 203–219. Springer (2013)

29. Lindell, Y., Nof, A.: Fast secure multiparty ecdsa with practical distributed
key generation and applications to cryptocurrency custody. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1837–1854. CCS ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3243734.3243788, http://doi.acm.org/10.1145/
3243734.3243788

30. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM Conference on
Computer and Communications Security. pp. 1837–1854. ACM (2018)

31. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: PODC. pp. 51–59. ACM (1991)

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO. pp. 129–140 (1991)

33. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC. pp. 73–85. ACM (1989)

34. Schultz, D.: Mobile Proactive Secret Sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
36. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryp-

tology 22(2), 227–258 (2009)
37. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive sys-

tem. In: IEEE Security in Storage Workshop. pp. 94–106. IEEE Computer Society
(2002)

38. Zhou, L., Schneider, F.B., van Renesse, R.: Apss: proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

A Security Definitions

In this Section, we introduce several security definitions.

A.1 Homomorphic Commitment

The Gradual VSS from [28] is based on Shamir’s secret sharing scheme [35]. It
uses homomorphic commitments to make the secret sharing verifiable as was

28

https://doi.org/10.1145/3243734.3243788
http://doi.acm.org/10.1145/3243734.3243788
http://doi.acm.org/10.1145/3243734.3243788

done in [32] with Pedersen Commitment scheme. A commitment scheme is a
protocol that allows one player P to commit to a secret message m to some
other parties. This is done by sending to the other parties the commitment
to m under some randomness rand, that will be noted C(m, rand). Later, the
committing party P can reveal the values m, rand and all the witnessing parties
can verify that the commitment they had corresponded to the value C(m, rand).
It is required from a commitment scheme to be hiding and binding. The binding
property ensures that P cannot change its mind by finding a second set of values
m′, rand′ that opens correctly the commitment. The hiding property means that
the witness parties cannot find the value of m from the view of C(m, rand). An
Additively Homomorphic commitment C has the additional property that there
exists some operation ? over the commitments space such that C(m1, rand1) ?
C(m2, rand2) = C(m1 +m2, rand1 + rand2).

Perdersen VSS. In [32] one of the first VSS scheme was introduced using Ped-
ersen’s commitment. It takes advantage of the homomorphic property of the
exponentiation to produce an Homomorphic commitment. Assume that we have
a cyclic group G = 〈g〉 of order q. If we take g, h two random generators of G.
The commitment to a message m ∈ Zq under randomness r is C(m, r) = gmhr

is a Homomorphic Commitment to m. The homomorphic addition is the mul-
tiplication gm1hr1gm2hr2 = gm1+m2hr1+r2 and the constant multiplication is
the exponentiation (gmhr)λ = gλmhλr. Under the difficulty of the discrete loga-
rithm problem, this commitment scheme is perfectly hiding and computationally
binding.

A.2 Round and Corruption Model

In this Section, we outline the corruption model in the proactive setting. The pro-
tocol execution is divided into phases φ. There are two kinds of phases: operation
phases (the computation of a circuit’s layer with additions and multiplications)
and refresh phases. Refresh phases are necessary to prevent the adversary from
learning all the secrets. For simplicity of the corruption model, phases are re-
grouped in stages σ. A stage σ is constituted of 3 consecutive phases: a refresh
phase, an operation phase, a refresh phase. Two consecutive stages have a refresh
phase in common. If we denote `C the number of layer, there is one stage for
each layer, we will denote them σ1, . . . , σ`C . We can add the first stage σ0 that
is constituted of the execution of Share followed by one refresh phase and the
last stage σ`C+1 that is a refresh phase followed by Reconstruct.

If a party Pi is corrupted by the adversary A during an operation phase of
a stage σj , then A learns the view of Pi (all values known and received by Pi)
starting from its state at the beginning of stage σj . If the corruption is made
during a refresh phase between consecutive stages σj and σj+1, then A learns
Pi’s view starting from the beginning of stage σj . Moreover, in the case of a
corruption during a refresh phase, Pi is considered to be corrupt in both stages
σj and σj+1. If a party becomes ”decorrupted” before the resfresh phase of a
stage σj+1, it is considered not corrupted only after the refresh phase of σj+1. A

29

party that was only passively corrupted immediately joins the set of honest party
after a decorruption. A party that was actively corrupted will be restored to a
clean default state. The shares will be recovered at that time using a recovery
protocol. It is also important that the random tapes are overwritten with fresh
randomness.

A.3 Passive Security

We introduce the notion of security in the case of a passive adversary. The notion
of security in the case of MPC is always defined in regard to the security that
can be reached in the case of an ideal world, where a trusted ideal party take
the inputs from all parties compute the desired functionality and send back the
output to all parties.

We consider a secure multiparty computation protocol between n parties as
the computation of a function f on inputs x1, x2, . . . , xn. The function out-
puts yr to party Pr with (y1, y2, . . . , yn) = f(x1, . . . , xn). Given a protocol
π between n parties, we define the view of the r-th party during the execu-
tion of π as V IEWπ

r (x1, . . . , xn) = (xr, rand
r,mr

1, . . . ,m
r
v) randr is Pr’s in-

ternal random tape and mr
j is the j-th message received by Pr. We also define

outputπr (x1, . . . , xn) as the output of party Pr after the execution of the protocol
π.

Since the proactive adversary is not supposed to control more than t parties
during the execution of the given protocol we can use the definition of secu-
rity against static adversary controlling passively up to t parties. If we note
R={r1, . . . , rt} the subset corrupted parties, we can define

V IEWπ
R = (r, V IEWπ

r1 , . . . , V IEW
π
rt) ,

and using the same notation as the view, outputπR(x1, . . . , xn) is the set of out-
puts for all parties in R. In this case we will note fR(x1, . . . , xn) = (yr1 , . . . , yrt)

Definition 8. We say that a protocol π is privately computing f against any
adversary controlling a subset of size t of the parties, if there exists a probabilis-
tic polynomial-time algorithm, denoted S, such that for every R={r1, . . . , rt}, it
holds that{

m,S(R, (xr1 , . . . , xrt), fR(x1, .., xn))
}
m∈N,(x1,...,xn)∈

(
{0,1}∗

)n
C≡
{
m,V IEWπ

R(x1, . . . , xn), outputπR(x1, . . . , xn)
}
m∈N,(x1,...,xn)∈

(
{0,1}∗

)n
where

C≡ denotes the computational indistinguishability of two family of random
variables indexed by m. This assumes that the inputs are of length bounded by a
security parameter κ.

30

A.4 Active Security in the Mixed Adversaries Model

Here we define a definition of security against a malicious adversary in the mixed
model. First we are going to define a ”real world” execution of a protocol Π in
Fig. 1.

Figure 1. “Real-world” execution of the protocol Π

In this execution, the environment Z will provide the parties and an ideal
adversary A with inputs of its choice.

The “real-world” execution:
INITIALIZATION
1. Z invokes the adversary A with an auxiliary input z
2. Z invokes the parties Pr and their inputs xr.
3. The set of passively and actively corrupted parties PP , PA are initialized.
COMPUTATION
4. For each round of the protocol Π :

– 4.1 The honest and semi-honest parties prepare a message to send, as
dictated by Π.

– 4.2 The adversary prepares a message on behalf of the parties in PA.
– 4.3 All parties broadcast their prepared message.

Outputs: The honest parties outputs ⊥ if they have not received an output
value, and their outputs otherwise. The adversary outputs a value vA that
may be arbitrarily computed from the information he obtained during the
execution of the protocol. After observing the outputs of all parties and A
the environment outputs a bit bZ .

Let EXECΠA,Z(z) denote the distribution of the output bit bZ , and let

IDEALZ,S,F (z, Tc, Ts) denote the output distribution of Z during the execu-
tion of an ideal process defined from an ideal functionality F (e.g., see Fig. 2).
An adversary A is said to be T -bounded for a multi-threshold T if (tP , tA) ≤ T .

Definition 9. We say that the multiparty protocol Π is securely realizing
IDEALZ,S,F with multi-thresholds (Tc, Ts) if for all adversaries A attacking Π
there exists an ideal adversary S such that:

– for all T ∈
{
Tc, Ts

}
if A is T -bounded, then S is also T -bounded;

– for every environment Z it holds that{
IDEALZ,S,Fmixed(z, Tc, Ts)

}
z

C≡
{

EXECΠA,Z(z)
}
z

where
C≡ denotes the computational indistinguishability, where all inputs’

lengths are bounded by a security parameter κ.

31

B Formal Definitions and Proofs for the Batched
Proactive Secret Sharing Scheme

In this Section we introduce the 4 proofs of security for the Share, Reconstruct,
Recover and Refresh protocols that constitutes our Proactive Secret Sharing.

B.1 The Share protocol

First we define the ideal functionality for the Share protocol. The input is a
batch of secrets s1, . . . , s` held by a dealer PD. The output is a set of shares
{g(αr, αr′)}r′∈[d+1] for a set of parties {P1, . . . , Pn}. These shares are evaluations
of a bivariate polynomial of degree d verifying g(βj , βj) = sj for j ∈ [`].

Figure 2. Ideal Process for the Share protocol in the mixed adversary
model.

In this ideal process, the environment Z will provide the parties and an
ideal adversary S with inputs of its choice. Throughout the protocol the
parties will interact with an ideal functionality FShare that will play the role
of a trusted third party that will compute the sharing. Upon reception of
the dealer’s input that is the batch of secret s1, . . . , s`, the functionality will
output the shares for all the parties P1, . . . , Pn.

Parameters. Multi-thresholds Tc, Ts.

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties PA and PP .
2. Z invokes the parties Pr and their inputs xr.
3. S may change the input for the dealer if PD ∈ PA.
INPUTS
4. Each party sends his input to the ideal functionality.
CORRUPTION
5. If (tP , tA) � Ts: FShare sends all inputs to S.
COMPUTATION
6. FShare generates g a bivariate sharing as the output of the Share protocol
on inputs s1, . . . , s`.
OUTPUTS
7. FShare sends the shares g(αr, αr′) for the corrupted parties Pr ∈ PP to
S.
8. S sends either abort to FShare and FShare aborts and outputs ⊥ or
continue and the functionality proceeds to the next step.
9. If (tP , tA) � Tc and PD ∈ PA: S sends new shares to FShare instead of

32

the evaluations of g. FShare replaces the output.
10. FShare sends their shares to the honest parties.

Outputs. Each honest party outputs whatever they received from FShare.
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ

For the Share protocol there are two clear different cases: PD is actively
corrupted (Fig. 3) and we need to verify correctness, PD is honest and we need
to verify secrecy (Fig. 4). Given these two cases we give two different simulators
corresponding to these cases. The situation where PD is only passively corrupted
has no interest because the adversary knows the secret but cannot try to damage
the correctness of the protocol.

Figure 3. Simulator for the Share protocol when PD is honest or
semi-honest.

1. If (tP , tA) ≤ Ts or PD ∈ PP S receives the input of the dealer from
FShare, if not it generates s1, . . . , s` as a batch of random values.

2. The simulator computes the missing evaluations and generates random
polynomials fj of degree d with fj(βj) = sj for all 1 ≤ j ≤ β.

3. S generates a bivariate polynomial of degree d with g(αr, βj) = fj(αr)
for all j. All the values g(αr, αr′) for r, r′ ∈ [n]× [d+1] are interpolated.

4. S sends to A the commitments to g(αr, αr′) for r, r′ ∈ [d+ 1]2.
5. S sends to the adversary the opening to the commitments for the cor-

rupted parties, and waits to receive back the complaining bit. If one
bit indicates that the opening is not correct, S sends abort to Fshare,
otherwise it proceeds to the next step.

6. The simulators sends continue to the ideal functionality and outputs
whatever A outputs.

Figure 4. Simulator for the Share protocol when PD is actively corrupted.

1. S receives the input of the dealer from FShare.
2. S receives from A the commitments to the (d + 1)2 initial evaluations

of g and S computes locally the commitments to the shares of all the
honest parties. If not, S sends abort to the ideal functionality.

3. S receives from A the opening to these shares. For those that are incor-
rect, he sends back a complaining bit.

4. A broadcasts the opening to the non-correct commitments. If at least
one is still not correct, S sends abort to Fshare, otherwise it sends
continue.

5. The simulators outputs whatever A outputs.

33

Theorem 4. The Share protocol securely realizes IDEALZ,S,FShare

mixed (z, Tc, Ts) with

multi-threshold Tc = {(n, n− 1)} and Ts = {(n− 1− b
√
`c, n− 1− b

√
`c)}.

Proof. In the case where PD is honest or honest-but-curious we show that the
Simulator described in Fig. 3 produces an indistinguishable view from the real
execution of the protocol. We start by showing that the view of the adversary is
the same in both situations. First, when the secrecy threshold is violated or when
the dealer is passively corrupted, A knows the batch of secrets. In this case, S
knows it as well and produce a valid bivariate sharing of s1, . . . , s`. Otherwise,
the adversary obtains tP ·(d+1) evaluations of a bivariate polynomial g of degree
d that is defined by (d+1)2 points. If tP < d, he cannot compute directly the val-
ues g(βj , βj) for any j ∈ [`] and the whole tuple {g(β1, β1), . . . , g(β`, β`)} cannot
be distinguished from any random tuple {r1, . . . , r`} when ` ≤ (d+1)2−tP ·(d+1)
which is obtained when Ts is not violated if ` ≤ d + 1, tP < d and d = n − 1
(which is the maximum value we can take for d). This is under the assumption
that no information on the secrets is gathered from the view of the commit-
ments of g. The commitment is perfectly hiding and so this concludes the proof
of indistinguishability of the adversary’s view, which shows that the adversary’s
output will be indistinguishable in the real and ideal executions.
If the adversary decides to abort the protocol, he would do so with the same prob-
ability in both executions during step 4 of the Share protocol. When PD is not
actively corrupted the honest parties output is always correct when the protocol
goes through. In this case, we have proved Computational Indistinguishability
of the view.

In the case where PD is actively corrupted. From the (d+ 1)2 initial values,
it is computationally hard for the adversary to find a correct opening that is
not the evaluation of g for the honest parties. This is due to the fact that our
commitment is computationally binding. This ensures that the honest parties
outputs a correct evaluations of g or ⊥ when the protocol aborts. S behaves as
honest parties would and so the view of the adversary is similar in the real and
ideal executions. ut

B.2 The Recover protocol

In the case of Recover, the inputs are the shares and commitments of the d+ 1
parties P1, . . . , Pd+1 who still have their shares, and the identity of a recovering
party PrC . The output will be the set of new shares and commitments for the set
{P1, . . . , Pd+1, PrC}. Before providing the full simulator-based proof, we prove
the following lemma:

Lemma 2. Recover computes correctly the recovery of the shares of one par-
ticipant and preserves secrecy on the ` secrets when (tP , tA) ≤ {(d, d)}.

Proof. Correctness: To verify the correctness of Recover, we need to verify that
each participant Pr receives the values (g(αr, αr′))r′∈[d+1]. The first step, guaran-
tees that PrC obtains the correct commitments to all the evaluations of g. Then,

34

homomorphic commitments guarantees that fr(αrC) = 0 for all r ∈ [d+ 1]. The
same commitments ensures that PrC receives the correct values and with that,
PrC is able to compute the value g(αrC , αr′) for all r′. That concludes the sketch
of proof for correctness of Recover in Theorem 5.

Secrecy: The following proof justifies the threshold d+1−
√
` for the number

of passive corruptions. There are 2 cases depending on whether PrC is corrupted
or not. If PrC is honest, the adversary will only learn some values fr(αr′) for
honest parties Pr and corrupted parties Pr′ . No new information is gained on g
and on the secrets s1, . . . , s` and secrecy is preserved.
In the case PrC corrupted, without loss of generality we can assume that P1, . . . , PtP−1
are corrupted as well as PrC . After step 2, the adversary knows fr(αr′) when
either r ∈ [tP − 1] or r′ ∈ [tP − 1]. Then, after step 5, PrC sees the value
g(αr, αr′) + fr′(αr) for all (r, r′) ∈ [d + 1]2. From that and the knowledge on
(fr′)r′∈[d+1], the adversary is able to compute the value of g(αr, αr′) when ei-
ther r ∈ [tP − 1] or r′ ∈ [tP − 1]. The adversary still lacks the (d + 2 − tP)2

values g(αr, αr′) for r, r′ ∈ [tP , d+1]2 to hope interpolate the values g(βj , βj) for
any j. Similarly, the adversary lacks the (d+ 2− tP)2 random values fr(αr′) for
r, r′ ∈ [tP , d+1]2. From fr(αrC) = 0, the adversary obtains (d+2−tP) equations
on those (d+2−tP)2 unknown values. Combining those with g(αr, αr′)+fr′(αr)
for r, r′ ∈ [tP , d+1]2, the adversary obtains (d+2− tP)+(d+2− tP)2 equations
for 2(d+ 2− tP)2 unknown values. If the adversary wants to learn g(αr, αr′) for
r, r′ ∈ [tP , d + 1]2, it has no choice but to solve this system of equations to try
and find the missing evaluations of g. If we want information theoretic level of
security on the ` secrets we need to guarantee two things. First, the adversary
cannot gather information on the secrets with the evaluations of g discovered
during Recover. This gives a first bound:

` ≤ (d+ 2− tP)2

Second, we also need to verify that the adversary cannot use the overall informa-
tion received by PrC and the rest of corrupted parties. For that, the difference
between the total number of equations and unknown values needs to be higher
than `, giving the inequality:

` ≤ 2(d+ 2− tP)2 − (d+ 2− tP)2 − (d+ 2− tP) = (d+ 2− tP)(d+ 1− tP)

Both inequalities are verified and if we set the threshold

` ≤ (d+ 1− tP)2 ⇒ tP ≤ d+ 1−
√
`

For a maximum level of security we take d = n−2 and so we obtain the maximum
threshold of n−1−b

√
`c for the total number of passive corruptions. In this case,

we are guaranteed that the adversary cannot find the values s1, . . . , s` from the
informations seen in Recover, and this concludes the proof of Lemma 2. The
bound of tP ≤ n − 1 −

√
` is not the tightest possible for Recover, but it is

asymptotically optimal. Later, it will appear that this bound will be the tightest
possible for the overall PSS. ut

35

Figure 5. Ideal Process for the Recover protocol in the mixed adversary
model.

In this ideal process, the environment Z will provide the parties and an
ideal adversary S with inputs of its choice. Throughout the protocol the
parties will interact with an ideal functionality FRecover that will play the
role of a trusted third party. Upon reception of the parties’ inputs that are
the bivariate shares for a batch of secrets s1, . . . , s`, the functionality will
output new shares for all the parties P1, . . . , Pd+1 and PrC .

Parameters. Multi-thresholds Tc, Ts.

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties PA and PP .
2. Z invokes the parties Pr and their inputs xr.
3. S may change the input for the actively corrupted parties.
INPUTS
4. Each party sends his input to the ideal functionality.
CORRUPTION
5. If (tP , tA) � Ts: FRecover sends all inputs to S.
COMPUTATION
6. FRecover evaluates g to obtain the values s1, . . . , s` and compute a new
sharing g′ as the output of the Recover protocol, shares for PrC are included.
OUTPUTS
7. FRecover sends the shares g′(αr, αr′), verifying g(x, x) = g′(x, x) for all x,
for the corrupted parties Pr ∈ PP to S.
8. S sends either abort to FRecover and FRecover aborts and outputs ⊥ or
continue and the functionality proceeds to the next step.
9. If (tP , tA) � Tc: S sends new shares to FRecover instead of the evaluations
of g. FRecover replaces the output..
10. FRecover sends their shares to the honest parties.

Outputs. Each honest party outputs whatever they received from FRecover.
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ .

Figure 6. Simulator for the Recover protocol.

36

1. If (tP , tA) ≤ Ts S sets gS as g the bivariate sharing that is the input of
the parties. Otherwise, S generates a random gS verifying gS(αr, y) =
g(αr, y) for corrupted Pr.

2. S generates a new sets of commitments for the values of gS and initializes
the adversary with these new commitments.

3. S broadcasts the commitments to the values g(αr, αr′) for honest Pr
and r′ ∈ [d+ 1].

4. If A broadcasts incorrect commitments or if A sends a complaining bit
indicating that a honest parties has revealed the wrong commitments,
S sends abort to FRecover, otherwise proceeds to the next steps.

5. On behalf of the honest parties Pr ∈ {P1, . . . , Pd+1}, the simulator
generates a random polynomial fr verifying fr(αrC) = 0 and sends
commitments to its coefficients to the adversary.

6. S verifies that 0 is a correct opening for the values fu(αrC) of corrupted
parties Pu. If one is not correct or if A indicates that one of the poly-
nomial for honest parties is not correct, S sends abort to the ideal
functionality. Otherwise, proceeds to the next steps.

7. S sends to all corrupted parties Pr′ , the opening to the value fr(αr′) for
all honest Pr, the simulator receives the corresponding opening from A.

8. If any of the commitments is not correct or if S receives a complaining
bit, S sends abort to FRecover.

9. If PrC is honest, S receives fromA the opening for the values gS(αr, αr′)+
fr′(αr) for all r′ ∈ [d + 1] and all corrupted parties Pr. If one of the
opening is not correct, the simulator sends abort to FRecover.

10. If PrC is corrupted, S sends to A the opening for the values gS(αr, αr′)+
fr′(αr) for all r′ ∈ [d+ 1] and all honest parties Pr. If S receives a com-
plaining bit from the adversary, it sends abort to the ideal functionality.

11. The simulators outputs whatever A outputs.

Theorem 5. The Recover protocol securely realizes IDEALZ,S,FRecover

mixed (z, Tc, Ts)

with multi-threshold Tc = {(n, n− 1)} and Ts{(n− 1− b
√
`c, n− 1− b

√
`c)}.

Proof. First, let us recall that the perfectly hiding property of the commitment
guarantees that no information can be learned from the commitments. The com-
putationally binding and homomorphic properties ensures correctness of any
linear operation if we assume the hardness of the DLP problem. Let us prove
indistinguishability of the view for the adversary in the real and ideal situations.

Due to the commitments, the input distribution is the same in both cases
Then, S will generate the fu polynomials for honest Pu following the protocol
specifications. To any misbehavior of A it aborts. For the last steps of the Sim-
ulator described in Fig. 6, the situations depends on whether PrC is corrupted
or not. If PrC is honest, the adversary just sends the opening for the values
gS(αr, αr′)+fr′(αr) from all corrupted Pr and r′ ∈ [d+1]. If any misbehavior is
detected by the simulator it aborts, and the adversary do not get more informa-
tion than that. In this case, the adversary sees exactly what he would have seen
in a real execution. The case where PrC is corrupted is more problematic. In

37

this situations, the adversary sees the values gS(αr, αr′) + fr′(αr) for the honest
parties and r′ ∈ [d+ 1]. We need to show that this is indistinguishable from the
real execution when gS is really g the bivariate sharing for s1, . . . , s`. Since, g
is supposed to be a random bivariate sharing of the batch of secrets, the only
way for the adversary to distinguish between the two is to show that at least one
value gS(βj , βj) is different from g(βj , βj) for 1 ≤ j ≤ `. Due to Lemma 2, for the
adversary the ` values gS(β1, β1), . . . , gS(β`, β`) are perfectly random and two
distributions of evaluations in real and ideal execution cannot be distinguished.
This conclude the proof of indistinguishability for the adversary’s output. As
we mentioned, S aborts if and only if A misbehaves and is detected. With the
homomorphic commitments, any misbehavior is detected and so the protocol
aborts with the same probability in both cases. As the commitments ensure cor-
rectness or abortion, the output of the honest parties is also correct as it is in
the ideal execution. ut

B.3 Batched Gradual VSS and the Reconstruct Protocol

We are going to prove the security of the Reconstruct protocol. First, let us
prove the following lemma:

Lemma 3. The Reconstruct protocol is correct when (tP , tA) ≤ {(n, n − 1)}
and it provides information theoretic security on the ` secret when the fairness
property of Definition 6 is respected.

Proof. Correctness: With the homomorphic commitments, actively corrupted
participant trying to deviate from the protocol are immediately caught. The
parties obtains the correct output s1, . . . , s` in the end, because the g1, . . . , gd
bivariate polynomials are generated so that g(x, y) =

∑d
i=1 gi(x, y) for all x and

y. The correctness of Recover guarantees that the parties obtain evaluations
of polynomials with the desired degrees, and when some of the parties obtain
evaluations of a polynomial of degree i that they did not generated themselves,
it is always by a consistent interpolation with the (i+ 1)2 original values.

Fairness To prove Lemma 3, we need to verify the additional fairness property
(see the Definition of Batched Gradual VSS in Section 3). Before going for the
actual proof, let us recap what informations are seen by the adversary and what
amont of information A lacks before being able to reconstruct the secrets at any
point of Reconstruct. Let us denote Ui the number of unknown evaluations
required by the adversary to reconstruct the secrets s1, . . . , s` after the revelation
of gd, . . . , gi and Vi the total number of equations obtained on these unknown
values during all previous iteration of the loop and the revelation of gd, . . . , gi
in step 2.1. We also denote ui the number of missing values for the adversary
to interpolate the values Qi−1(βj , βj) for any j ∈ [`] and vi the number of
equations revealed during step 2.1 on the ui + ui+1 evaluations of Qi−1 and Qi
unknown to the adversary. With ud+1 the number of missing value about g, we

have Ui =
∑d
k=i τkuk + ud+1 and Vi =

∑d
k=i τkvk, where τk is the number of

time the loop is performed for a given value i = k due to incorrect opening in
step 2.1.

38

Using these notations, let us consider that the secrets are protected by ud+1 =
(d + 1 − tP)2 values g(αr, αr′) for honest parties Pr, Pr′ in a subset of size
d+ 1− tP among the honest parties in {P1, . . . , Pn} \ PP . Let us denote PiP =
{P1, . . . , Pi+1} ∩PP , tiP = |PiP | and δi = tiP − t

i−1
P indicates if Pi+1 is corrupted

for all i ∈ [d]. During the execution of Recover in step 1.3 for i = d or step 2.6,
the adversary will have tiP corrupted parties in the exchange. If δi = 0 and Pi+1

is not corrupted, there are at least ui = i(i− tiP) unknown evaluations of Qi−1
(see Appendix B.2 for more details about the amount of information exchanged
during Recover). During step 2.1 of the next iteration in the while loop, the
broadcast of gi’s evaluations from P1, . . . , Pi+1 will reveal vi = (i+ 1− tiP)2 new
equations on the unknown evaluations of Qi−1 and Qi (or Qd−1 and g if i = d).
If δi = 1, there are ui = 3(i+ 1− tiP)2 new unknown values, and the adversary
obtains (i+ 1− tiP)2 + 2(i+ 1− tiP) equations on them during Recover. Then,
during step 2.1, the adversary will obtain (i + 1 − tiP)2 new equations on the
unknown evaluations, with that we have vi = 2(i+ 1− tiP)2 + 2(i+ 1− tiP).

If Reconstruct aborts it is either during the execution Recover in step
1.3 or 2.6, or during the step 2.3. We are not going to consider the case of
abortion during Recover. Indeed, the recoveries are made on polynomial Q∗i−1
for 2 ≤ i ≤ d that are perfectly random and do not carry any information on
the secrets at the time of their generation. If the adversary aborts during the
recovery, it could have done so in the previous iteration of step 2.1 and obtain
the same amount of information on the secrets. We consider that the abortion
occurred after the revelation of the evaluations of gi0 for some 1 ≤ i0 ≤ d. At this
point, gd, . . . , gi0 have been revealed and the parties have been able to compute∑d
k=i0

gk(βj , βj) = sj − Λi0−1Qi0−1(βj , βj) for any j ∈ [`]. If the adversary
is able to compute the value Qi0−1(βj , βj), A can reconstruct the value of sj
for any j. If the protocol aborts and the parties output the set B of corrupted
parties, we have n−|B| < i0. We need to show that the adversary cannot recover
the secrets if tP ≤ n − |B| − b

√
`c < i0 − b

√
`c (see Definition 6 for Batched

Gradual Secret Sharing). If we have the bound tP < i0 − b
√
`c the adversary

cannot use the tP ∗ (i0 + 1) evaluations of Qi0−1 to directly interpolate the
missing values. The inequality ti0P < i0 − b

√
`c is also verified. We have showed

in the proof of secrecy for the Recover protocol, that this was sufficient to
grant information theoretic security on the ` values Qi0−1(βj , βj) for all j. This
shows that the adversary cannot find the random secrets stored in Qi0−1 using
only the information gained during the execution of Recover. If the adversary
attempts to combine all the equations obtained during the reconstruction, we
need to have ` ≤ Ui0 − Ei0 to guarantee the information theoretic security of
the ` secrets. Ui0 − Vi0 = ud+1 +

∑
k=i0

τk(uk − vk). Using the expressions of ui
and vi given previously it is easy to verify that uk − vk > 0 for all k ∈ [i0, d]
if tP < i0 − b

√
`c. We have also ` ≤ (i + 1 − tP)2(d + 1 − tp)2 ≤ ud+1 and so

the inequality ` ≤ Ui0 − Vi0 is verified. Very similarly we can verify that the
adversary was not able to reconstruct the secrets in any previous iterations with
i ≤ i0. This concludes the proof that the adversary cannot recover the secrets
s1, . . . , s` if tP ≤ n − |B| − b

√
`c and the proof of Lemma 3. Thus, our Secret

39

Sharing verifies Definition 6. The ideal functionality will contain the properties
we want to reach with that definition. ut

Figure 7. Ideal Process for the Reconstruct protocol in the mixed
adversary model.

In this ideal process, the environment Z will provide the parties and an ideal
adversary S with inputs of its choice. Throughout the protocol the parties
will interact with an ideal functionality FReconstruct that will play the role
of a trusted third party. Upon reception of the input that is a sharing of a
batch of secret s1, . . . , s`, the functionality will output the secrets s1, . . . , s`.

Parameters. Multi-thresholds Tc, Ts.

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties PA and PP .
2. Z invokes the parties Pr and their inputs xr.
3. S may change the input for the corrupted parties.
INPUTS
4. Each party sends his input to the ideal functionality.
CORRUPTION
5. If (tP , tA) � Ts: FReconstruct sends all inputs to S.
COMPUTATION
6. FReconstruct evaluates g to obtain the values s1, . . . , s`.
OUTPUTS
7. S sends either abort and a set B of the parties to FReconstruct and
FReconstruct aborts and outputs ⊥ or continue and the functionality pro-
ceeds to the next step.
8. If (tP , tA) 6≤ Ts and tP 6≤ n− |B| − b

√
`c: FReconstruct sends s1, . . . , s` to

S.
9. If (tP , tA) � Tc: S sends s1 + δ1, . . . , s` + δ` to FReconstruct and the func-
tionality replace the batch of secrets by the new values.
10. FReconstruct sends their outputs to the honest parties.

Outputs. Each honest party outputs whatever they received from FReconstruct.
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ .

In the simulator in Fig. 8 when we say that S performs the Reconstruct

protocol with the adversary given some input for all the parties, it means that
S follows exactly the protocol in Protocol 3 on behalf of the honest parties and
interact with A who performs the protocol on behalf of the corrupted parties.

40

Figure 8. Simulator for the Reconstruct protocol.

1. If (tP , tA) � Ts S sets gS as g the bivariate sharing that is the input of
the parties. Otherwise, S generates a random gS verifying gS(αr, y) =
g(αr, y) for corrupted Pr.

2. S generates a new sets of commitments for the values of gS and initializes
the adversary with these new commitments.

3. S performs the protocol Reconstruct with A.
4. If the protocol does not abort, S sends continue to the ideal function-

ality and proceed to the next steps. If the protocol aborts with a set
B of corrupted parties. S sends abort to the ideal functionality along
with B the set of parties. If tP 6≤ n− |B| − b

√
`c S proceeds to the next

step. Otherwise, S outputs whatever A outputs.
5. S receives from FReconstruct the values s1, . . . , s`.
6. S generates a random g′S with g′S(βj , βj) = sj for j ∈ [`] verifying
gS(αr, y) = g(αr, y) for corrupted Pr.

7. S generates a new sets of commitments for the values of g′S and initializes
the adversary with these new commitments.

8. S performs the protocol Reconstruct with A.
9. If (tP , TA) � TC , and the obtained values from the Reconstruct proto-

col are different from s1, . . . , s`, S sends the new outputs to FReconstruct.
10. The simulators outputs whatever A outputs.

Theorem 6. The Reconstruct protocol securely realizes

IDEALZ,S,FReconstruct

mixed (z, Tc, Ts)

with multi-threshold Tc = {(n, n− 1)} and Ts{(n− 1− b
√
`c, n− 1− b

√
`c)}.

Proof. The reconstruction protocol aims at revealing the values s1, . . . , s`, the
simulator cannot hope to generate an indistinguishable execution if it does not
know correct shares for honest parties. To construct those, S has no choice but
to obtain these values from the ideal functionality. However, due to the fairness
property that we want to verify, the simulator does not obtain the values for
the batch of secrets before indicating if the adversary aborts the protocol. Thus,
the simulator has to perform a first execution of the protocol with A to know if
it intends to abort. Even if this first simulation is not made on correct inputs,
we will show that it is indistinguishable from the real execution if the adversary
decides to abort. If not, the simulator has to run the protocol a second time with
the correct input in order to produce an indistinguishable output from the real
execution.

We look at the execution of the Reconstruct protocol when the inputs have
been modified in order to share a set of random values generated by S. We will
show that when the protocol aborts, the adversary’s view was indistinguishable
from the real execution. Let us consider that A aborts during step i0 of the
Reconstruct protocol, the set of misbehaving parties is B. Since the protocol

41

aborted we have that n − |B| < i0 + 1, otherwise the parties would have been
able to continue without the actively corrupted parties. In the case where tP ≤
n − tA − b

√
`c ≤ n − |B| − b

√
`c it was shown in Lemma 3 that the adversary

was not able to recover the values hidden in the sharing. For the same reason,
it is not possible to distinguish when the secrets s1, . . . , s` have been replaced
by completely random values and A’s output is indistinguishable from the real
adversary’s output. If we are not in this special case, either the adversary will not
abort or the gradual threshold is violated.In both cases, the adversary will know
that s1, . . . , s` have been replaced by random values. That is why the simulator
must do a second execution of Reconstruct wit A.

This second execution is necessarily indistinguishable from the real one in
the adversary’s point of view as the inputs are correct and S merely follows
the protocols. This ensures that the simulator outputs something that is always
indistinguishable from the adversary’s output in the real execution. If the cor-
rectness is ensured when (tP , tA) ≤ Tc, this is also true for the honest parties
output. The correctness of the Reconstruct follows from Lemma 3. ut

B.4 The Refresh protocol

In this Section, we present the simulator-based proof for the Refresh protocol.
Contrary to all the other protocols we cannot assume that the corruption is
static during the execution of the Refresh protocol. Thus, we assume that there
are three distinct sets of corrupted parties. Each of the sets are labelled PiA and
PiP for i ∈ {1, 2, 3}. This division is made according to our corruption model for
the Proactive adversary (see Appendix A.2). The first set is the set of parties
corrupted before the Refresh protocol but that are not corrupted during the
execution of Refresh, the adversary knows these participant’s input when they
enter the protocol. The second set refers to parties corrupted before, during and
after Refresh, the adversary knows everything they see before, during and after
the protocol. Finally, the third set corresponds to parties corrupted only after
the execution of the Refresh, the adversary knows the output of the Refresh

protocol for these parties. To ensure the security of the Refresh protocol, the
security threshold will need to be respected before, during and after the protocol.
We denote t1P = |P1

P | + |P2
P |, t2P = |P2

P |, t3P = |P2
P | + |P3

P |. In our model

P1
P ∩ P2

P = ∅, P2
P ∩ P3

P = ∅ and we have the bounds |P1
P ∪ P2

P | ≤ d+ 1− b
√
`c,

|P3
P ∪ P2

P | ≤ d+ 1− b
√
`c. We start by showing the following lemma:

Lemma 4. Refresh operates correctly to refresh the shares of a set P of parties
without revealing the ` secrets when the bound tP ≤ d+ 1−

√
` at all times.

Proof. Correctness: We just need to verify that Refresh operates correctly. R
is shared correctly because Recover is correct. h is generated properly because
of the homomorphic commitments. If R and h are computed correctly, it is easy
to see that g′(βj , βj) = g(βj , βj).

Secrecy: In the case of dishonest majority, we require from the Refresh pro-
tocol to provide secrecy against an adversary controlling a part of the parties

42

before the execution, and a part of the parties after the execution (the number
of corruption both before and after is limited with tP ≤ d+ 1−b

√
`c, each Pr is

corrupted either before or after, some of the parties might be corrupted during
the execution. We also denote PRP the set P2

P ∩ {Pd+1, . . . , Pn} and tRP = |PRP |
We assume that the adversary knows the values g(αr, αr′) when r′ ∈ [d+ 1]

and Pr ∈ P1
P ∪ P2

P . There are (d + 1 − t1P)2 unknown values g(αr, αr′) for
Pr, Pr′ ∈ {P1, . . . , Pn} \ (P1

P ∪ P2
P) about the bivariate sharing g. Next, we will

try to assess how much information can be gathered by the adversary on R
during the execution of Recover. We refer to Section B.2 for a more detailed
analysis of Recover. The adversary knows R(αr, αr′) for Pr ∈ P2

P \ PRP and
r′ ∈ [d] and is missing (d + tRP − t2P)2 evaluations to recover it entirely. During
the execution of Recover, A is able to gather (via participants Pi ∈ PRP) tRP ·(

(d+tRP −t2P)2+(d+tRP −t2P)
)

equations on the (d+tRP −t2P)2+tRP ·(d+tRP −t2P)2

unknown values. The tRP · (d + tRP − t2P)2 additional unknowns are the fr′(αr)
values for honest participants Pr, Pr′ ∈ {P1, ...Pn} \ P2

P generated during the
executions of Recover between {P1, . . . , Pd} and corrupted participants of PRP .
Additionally, the adversary is missing d + 1 − t2P values h(αr) for honest Pr.
Finally, when A corrupts the participants in P3

P , it sees the values g′(αr, α
′
r) for

r′ ∈ [d+ 1] and Pr ∈ P3
P . The adversary already knew the value g′(αr, αr′) with

Pr′ ∈ P2
P and so the adversary obtains |P3

P |(d+ 1− t2P) = (t3P − t2P)(d+ 1− t2P)
new equations. The total number of equations obtained by the adversary is

(t3P − t2P)(d + 1 − t2P) + tRP ·
(

(d + tRP − t2P)2 + (d + tRP − t2P)
)

. The number of

unknowns is (d + 1 − t1P)2 + (d + tRP − t2P)2 + tRP · (d + tRP − t2P)2 + d + 1 − t2P .
The difference between the two is

∆ = (d+ 1− t1P)2 + (d+ tRP − t2P)2 + tRP · (d+ tRP − t2P)2 + (d+ 1− t2P)−

(t3P − t2P) · (d+ 1− t2P)− tRP ·
(

(d+ tRP − t2P)2 + (d+ tRP − t2P)
)

∆ = (d+ 1− t1P)2 + (d+ tRP − t2P)(d− t2P) + d+ 1− t2P − (t3P − t2P)(d+ 1− tP)

∆ = (d+ 1− t1P)2 + (d+ 1− t2P)(d+ tRP − t3P)− (tRP − 1)

Thus, the bound tiP ≤ d+1−
√
` for all i ∈ {1, 2, 3} gives the inequality ` ≤ ∆ and

this proves that we have information theoretic security on the secrets s1, . . . , s`.
ut

In the next proof, unless stated otherwise, the set of corrupted participant is
P2
P , the set of parties corrupted before, during and after the Refresh protocol.

The simulator used in the proof of Theorem 7 relies on another simulator SRecover.
This Simulator is the one described in Figure 6.

Figure 9. Ideal Process for the Refresh protocol in the mixed adversary
model.

In this ideal process, the environment Z will provide the parties and an ideal
adversary S with inputs of its choice. Throughout the protocol the parties

43

will interact with an ideal functionality FRefresh that will play the role of
a trusted third party that will compute the refreshing of the shares. Upon
reception of the input that is a sharing of a batch of secret s1, . . . , s`, the
functionality will output a new sets of shares for the same batch of secrets.

Parameters. Multi-thresholds Tc, Ts.

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties divided in three subgroups PiA
and PiP for i ∈ {1, 2, 3}.
2. Z invokes the parties Pr and their inputs xr.
3. S receives the inputs for the parties in P1

P ∪P2
P and may change the input

for the corrupted parties among this set.
INPUTS
4. Each party sends his input to the ideal functionality.
CORRUPTION
5. If (t1P , t

1
A) � Ts: FRefresh sends all inputs to S.

COMPUTATION
6. FRefresh evaluates g to obtain the values s1, . . . , s`. And generate a new
bivariate sharing g′ for s1, . . . , s`.
OUTPUTS
7. FRefresh sends the shares g′(αr, αr′),for the corrupted parties Pr ∈ P2

P ∪
P3
P to S.

8. S sends either abort to FRefresh and FRefresh aborts and outputs ⊥ or
continue and the functionality proceeds to the next step.
9. If (t3P , t

3
A) 6≤ Ts FRefresh sends s1, . . . , s` to S.

10. If (t2P , t
2
A) � Tc: S sends new shares to FRefresh instead of the evaluations

of g′. FRefresh replaces the output.
11. FRefresht sends their outputs to the honest parties.

Outputs. Each honest party outputs whatever they received from FRefresh.
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ .

Figure 10. Simulator for the Refresh protocol.

1. If (t1P , t
1
A) � Ts S sets gS as g the bivariate sharing that is the input of

the parties. Otherwise, S generates a random gS verifying gS(αr, y) =
g(αr, y) for corrupted Pr in P1

P ∪ P2
P .

44

2. S generates a new sets of commitments for the values of gS and initializes
the adversary with these new commitments. After this step, the sets of
corrupted parties is P2

P and P2
A.

3. S generates for all the honest parties Pr in {P1, . . . , Pd} a random poly-
nomial Rr of degree d − 1, and sends to A the commitments to the
coefficients of Rr.

4. S uses the simulator SRecover to simulate the successive interaction of
Pi ∈ {Pd+1, . . . , Pn} with {P1, . . . , Pd} during Recover.

5. S generates hr a random univariate polynomial of degree d for all honest
Pr and sends to A the commitments to the coefficients. The simulator
receives the corresponding commitments from the adversary.

6. S exchanges with A the opening for the evaluations of all the hr poly-
nomials. If one error is detected on the opening of the adversary’s values
or if A sends a complaining bit, S sends abort to the ideal functionality.
Otherwise, proceeds to the next step.

7. S compute the evaluations of g′ for all the honest parties. If t2P , t
2
A � TC ,

S sends to FRefresh the new evaluations
8. S sends to A the evaluations of the polynomial g′ for the newly cor-

rupted parties in P3
P .

9. The simulators outputs whatever A outputs.

Theorem 7. The Refresh protocol securely realizes IDEAL
Z,S,FRefresh

mixed (z, Tc, Ts)

with multi-threshold Tc = {(n, n− 1)} and Ts{(n− 1− b
√
`c, n− 1− b

√
`c)}.

Proof. To prove the indistinguishability of output in the two situations we start
by showing indistinguishability of the view for the adversary. If t1P , t

1
A � Ts, the

simulator obtains the input values of the honest parties. If not, S generates his
own random polynomial gS that coincides with g on the evaluations of corrupted
parties. Due to the perfectly hiding property of the commitment scheme, in both
cases the input distribution is identical to the one in the real execution. The
simulator SRecover produces an indistinguishable view from the real execution for
all the interactions of step 2. Apart from that, it is easy to see that S behaves
exactly as the set of honest parties would during the execution of Refresh with
the evaluations of gS as inputs. In the next-to-the-last step of the Simulator,
S sends to A the shares for the newly corrupted parties in P3

P to emulate the
corruption phase happening after the Refresh phase. We showed in Lemma 4
that when the threshold for secrecy was respected by the 3 pairs (tiP , t

i
A) for

i ∈ {1, 2, 3}, there was information theoretic security on the values s1, ...s`. For
the same reasons, A cannot distinguish between a real execution with a bivariate
sharing of the batch of secrets and an execution with a random polynomial
gS . Whenever A attempts to abort the protocol, S sends abort to the ideal
functionality. When the correctness threshold is violated, S forward the values
obtainds from the adversary to FRefresh, in this case the honest parties is the same
that they would have obtained in the real execution. Otherwise, the protocol is
correct as was proved for Lemma 4 (due to the homomorphic commitments) and
the honest parties obtain a correct sharing for s1, . . . , s`. ut

45

C An Efficient PSS with Full Threshold

In Section 3, we introduced an Batched Gradual PSS scheme. We obtained an
overall improvement in communication complexity from O(n4) to O(n2) com-
pared to the work of [17]. This improvement was made with the batching of
` = O(n) secrets instead of one, and the idea to transform the classical Secret
Sharing into a Gradual one only before the reconstruction instead of performing
every protocol with the gradual sharing. The improvement with batching comes
at a cost, the maximum thresholds for corruptions are all reduced by a term
b
√
`c. However, the other O(n) improvement does not cost anything in terms

of threshold. In this section, we briefly outline a Gradual PSS with an overall
communication of O(n3) (instead of O(n4) in [17]) which avoids the threshold
loss.

In this PSS, the Share, Refresh and Recover are very similar to the protocols
presented in [17]. The only difference is that, each operation is made with one
polynomial f of degree d with f(0) = s instead of d polynomials f1, .., fd. The
major difference is in in the reconstruction protocol. To obtain the Gradual
property we need to transform the [35]’s sharing into the one from [28] so that
we can perform the reconstruction exactly as described in the Reconstruct

protocol in [28,17]. This is done in O(n3) with a ReshareGradual protocol that
is detailed in Protocol 9. This Reshare is directly inspired from the Refresh in
[17]. The aim is to generate d polynomials e1, . . . , ed of degree 1, . . . , d verifying∑d
i=1 ei(0) = 0. Then, we can set fi = ei for all 1 ≤ i ≤ d− 1 and fd = f + ed.

Protocol 9. Reshare

INPUT: Each party Pr ∈ P has the value f(αr) with f a polynomial of
degree d and f(0) = s for a secret s.

OUTPUT: Each party has the values (fi(αr))i∈[d] such that
∑d
i=1 fi(αr) = s.

1. For all r ∈ [n], Pr generates random polynomials (eri)i∈[d] of degree d

with
∑d
i=1 e

r
i (0) = 0. And broadcasts commitments to the coefficients

of eri for all i.
2. For all r, r′ ∈ [n]2 and i, Pr sends to Pr′ an opening to the commitment

of eri (αr′). Pr′ is able to compute locally a commitment to this value.
Pr broadcasts complaining bits indicating if the openings received from
Pr is a correct opening.

3. For each share eir(αr′), for which an irregularity was reported, Pr broad-
casts the opening. If the opening is correct, Pr′ accepts the value, oth-
erwise Pr is disqualified and added to the set B of corrupted parties.

4. Each participant Pr sets its value fi(αr) =
∑n
u=1 e

i
u(αr) for all i ∈

[d− 1], and fd(αr) = f(αr) +
∑n
u=1 e

d
u(αr).

The Secret Sharing that we briefly described above can easily be extended to a
DPSS using a Redistribute protocol very similar to Protocol 8. DecreaseCorrupt,

46

Decrease and Increase can be sequentially performed on the univariate shar-
ing f and this will perform the secret redistribution from one group of party to
another.

D Proofs for the Dynamic Groups Protocols

D.1 Proofs for the Dynamic groups protocol in the Semi Honest
model

In this appendix section, we prove the security of the three sub-protocols Increase,
Decrease and DecreaseCorrupt presented in Protocols 5 to 7. We only intro-
duced these three protocols in the Semi-Honest model as the extension to the ma-
licious adversary model is straight-forward with the homomorphic commitments.
We use the Passive security definition (Definition 8). We introduce three func-
tionalities FIncrease, FDecrease, FDecreaseCorrupt that are to be realized by our pro-
tocols. We will describe three simulators SIncrease, SDecrease and SDecreaseCorrupt
that will produce indistinguishable views from the adversary’s one using only
the inputs and outputs of the corrupted parties. In the three cases, the inputs
are the shares for a univariate polynomial f and the outputs are the shares for
a new polynomial that will be denoted either f+ or f− such that f(β) = f±(β)
for an either extended or reduced set of corrupted parties. The initial state of
corrupted participant is PP , and the new set is P±P . We write tP = |PP | and
t±P = |P±P |. The corruption threshold proposed in the next Theorems are not
always the tightest possible, but they grant secrecy in an unified manner.

Increase. The functionality FIncrease, takes the shares of the initial set of par-
ties P1, . . . , Pn}, and distributes new shares to the extended set of parties
{P1, . . . , Pn+k}.

Theorem 8. The protocol Increase privately computes the functionality FIncrease

against an adversary that is bounded by tP ≤ n− 3, t+P ≤ n+ k − 3.

Proof. During this protocol, the adversary’s view includes the Qr polynomials
for all corrupted parties in P±P \ PP , the values Qr(αr′) for honest Pr and Pr′ ∈
P±P . Thus, the simulator SIncrease works as follows. From the output f+(αr)
and the input f(αr) for Pr ∈ PP , the simulator computes Q(αr) = f+(αr) −∏k
i=1

αr−αn+i

β−αn+i
f(αr). For corrupted parties in {Pn+1, . . . , Pn+k}, Q(αr) is just

f+(αr). For all Pr ∈ P±P , SIncrease can generate the values Qu(αr) ∀u ∈ [n +

k] as random values verifying
∑n+k
u=1 Qu(αr) = Q(αr). When Pr ∈ P±P \ PP ,

the simulator generates the missing evaluations of the polynomial Qr so that
Qr(β) = 0.

In this case, the Simulator generates a view that has the same distribution
as the adversary’s view during a real execution. When the adversary is limited
by the thresholds in Theorem 8 for d = n− 2, the adversary has less than d+ 1
evaluations of f and less than d + k + 1 evaluations of f+ and Q (even when
counting the additional information Q(β) = 0). Thus, A cannot recover the
evaluations f(β) or f+(β). ut

47

Decrease. The functionality FDecrease, takes the shares of the initial set of parties
P1, . . . , Pn}, and distributes new shares to the reduced set of parties {P1, . . . , Pn−k}.

Theorem 9. The protocol Decrease privately computes the functionality FDecrease

against an adversary that is bounded by tP ≤ n− 3, t−P ≤ n− k − 3.

Proof. In this protocol, apart from the inputs and outputs, the adversary sees
the polynomials Qn−r when Pr ∈ P−P \ PP , and receives the values Qn−r(α

′
r) +

Πn−r(αr′)f(αr) when Pr is a honest leaving party and Pr′ ∈ P−P . Now we can
specify the action of SDecrease.

First, the simulator computes the sum
∑k−1
i=0 Qi(αr) + Πi(αr)f(αn−i) =

f−(αr) −
∏k−1
i=0

β−αn−i

αr−αn−i
f(αr) for all Pr ∈ P−P . Then, SDecrease generates fS

a random polynomial verifying f(αr) = fS(αr) for all corrupted Pr. After that,
the simulator can generate values Qi(αr) for all Pr ∈ P−P and i ∈ [0, k−1] as ran-
dom number that sum up to the desired value. Then, for Pu ∈ P−P \PP , SDecrease
generate the remaining part of the polynomials Qn−r so that Qn−r(β) = 0.

All the Qn−r polynomials for corrupted parties Pr are constructed from d
random values and the data Qn−r(β) = 0. Thus, the Qn−r polynomials are dis-
tributed as random polynomials of degree d that have β as a root. We need to
verify that the adversary has no way to distinguish between the Qn−r(αr′) +
Πn−r(αr′)f(αr) and Qn−r(αr′) + Πn−r(αr′)fS(αr) when Pr is honest and Pr′

corrupted. If there is a distinguisher between f and fS , then there is a distin-
guisher between f(β) and fS(β), as it is the only information conveyed by the
sharing. As such, it suffices to prove that there is information theoretic security
on the value f(β). Let us denote h the number of honest parties in PLEAV E . We
have the equation k = (tP −t−P)+h. As the evaluations of f− are just linear com-
bination of informations on f we are going to focus on how the adversary might
try to recover f(β) from his knowledge of the polynomial f . Before the exchange,
the adversary was missing d + 1 − tP values to interpolate f(β). The exchange
with honest leaving parties brings ht−P new equations on the d+ 1− tP unknown
values f(αr) for honest parties Pr. These new equations introduces h ∗ t−P new
unknown values Qn−r(αr′) for honest leaving parties Pr and Pr′ ∈ P−P . To that,
we can add h equations from the knowledge Qn−r(β) = 0 for all leaving Pr. The
difference between the number of unknown values in the system and the number
of equations is ∆d+ 1− tP + h ∗ t−P − h ∗ (tP + 1) = d+ 1− tP − h. To provide
information theoretic security on f(β) we need to have 1 ≤ d+ 1− tP −h. From
the equation on k, h, tP and t−P , this bound can be rewritten 1 ≤ (d−k)+1− t−P .
This is exactly the assumption we had on the value t−P . ut

DecreaseCorrupt. The functionality FDecreaseCorrupt, takes the shares of the re-
duced initial set of parties {P1, . . . , Pn−1}, and distributes new shares to the
reduced set of parties {P1, . . . , Pn−1}.

Theorem 10. The protocol DecreaseCorrupt privately computes the function-
ality FDecreaseCorrupt against an adversary that is bounded by tP ≤ n − 3, t−P ≤
n− 4.

48

Proof. In the decrease corrupt protocol, only one participant is leaving the group.
This participant is assumed to be permanently corrupted and cannot interact
with the other parties. We assume that Pn is the leaving participant. The value
f(αn) is part of the adversary’s view. Apart from that, the adversary knows the
polynomials fr and the values fr′(αr) for all corrupted Pr and honest Pr′ . Then,
the adversary sees f(αr) + fn(αr) for all the parties Pr.
To simulate that view, the simulator SDecreaseCorrupt can use the inputs and out-
puts to compute the value f(αn). Then, SDecreaseCorrupt generates a polynomial
fS of degree d with fS(αr) = f(αr) for all corrupted Pr including Pn. After
that, the simulator can generate n− 1 polynomials fu verifying fu(αn) = 0 and

compute the values fS(αr) +
∑n−1
u=1 fu(αr) for all 1 ≤ r ≤ n− 1.

The values for the fu polynomials are clearly generated genuinely. Just as we
did for the Decrease protocol, we just have to prove that there is information
theoretic security on the value f(β). The adversary misses d+ 1− tP evaluation
of f . The view of f(αr) + fn(αr) for the n− 1− tP honest parties provides the
adversary with n − 1 − t new equations. From the construction, it is clear that
we can assume that fn(αr) is an unknown random value for the adversary when
Pr is honest. Each of the n − 1 − tP evaluation of f are hidden by the same
amount of unknown random values. The additional property fn(αn) = 0 does
not profit the adversary. Indeed, since Pn is corrupted, n−1− tP = n− t+P . With
d = n − 2, the bound t−P ≤ n − 4 ensures information theoretic security on the
secret. Hence, no information is learned by the adversary on the secret that has
information theoretic security before the protocol, it remains this way. ut

Dynamic Batching. We give below an informal result of security for the proce-
dure outlined in Section 5.4 that we call DynamicBatching. Lemma 5 grasps the
important elements behind the full security of the Redistribute protocol. The
full proof of Redistribute is given below in Appendix D.2.

Lemma 5. Let us denote sign(k) the sign of k, T is = {(d+sign(k).i−b
√
`c, d−

sign(k).i − b
√
`c)} and tiP = |PP ∩ {P1, . . . , Pn+sign(k).i}| (same for tiA) for

0 ≤ i ≤ k − 1. The DynamicBatching protocol is correct and keeps the secrets
hidden when (t0P , t

0
A) ≤ T 0

s and (tkP , t
k
A) ≤ T ks .

Proof. The correctness follow directly from the correctness of the four protocols
Refresh, Increase, Decrease, and DecreaseCorrupt.

We propose a proof for the secrecy in the case where d = n− 2. The secrecy
threshold for the Dynamic sub-protocol (no matter which one is used) is a lot
higher than the threshold in Lemma 5, this guarantees that no information is
learned on any of the secrets by the adversary during the ` executions of Dynamic.
Then, the proof of Recover almost gives the result stated in Lemma 5. The only
difference is that Pn knows the ` values g(αn, βj) for all j ∈ [`]. In the case where
Pn is corrupted we can see that as ` new equations on the missing evaluations.
Thus, the bound given by ` ≤ ∆ with ∆ the difference between the number of
unknown values and the number of equations becomes

` ≤ 2(d+ k + 1− tP)(d+ k + 2− tP)− `

49

Fortunately, with tkP ≤ d+k−b
√
`c, the previous inequality is verified. We have

information theoretic security on the ` secrets and this concludes the proof. ut

D.2 Proofs for the Dynamic PSS

The simulator used in the proof of Theorem 11 relies on another simulator
SRefresh. This Simulator is the one described in Figure 10. It also relies on
simulators SIncrease,∫Decrease and SDecreaseCorrupt that are extensions to the ma-
licious setting fo the simulator presented in Appendix D.1 We adopt the ad-

ditional following notation : for k ∈ Z and a multi-threshold T
(ω)
x , T

(ω)
x,k =

{(y + k, z + k), (y, z) ∈ T (ω)
x }. In Fig. 11, the number of passive (resp. active)

corruptions in a set Px is denoted txP (resp. txA).

Figure 11. Ideal Process for the Redistibute protocol in the mixed
adversary model.

In this ideal process, the environment Z will provide the parties and an
ideal adversary S with inputs of its choice. Throughout the protocol the
parties will interact with an ideal functionality FRedistribute that will play
the role of a trusted third party that will compute the redistribution of the
shares. Upon reception of the input that is a sharing of a batch of secret
s1, . . . , s` for a set of size n(ω), the functionality will output a new sets of
shares for the same batch of secrets to the new set of participants of size
n(ω+1).

Parameters. Multi-thresholds T
(ω)
c , T

(ω)
s .

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties among the sets P(ω), P(ω+1) and
subsets P∩, PL, PLC

and PN .
2. Z invokes the parties Pr ∈ P(ω) and their inputs xr.
3. S receives the inputs for the corrupted parties in P(ω) and may change
the input for the corrupted parties among this set.
INPUTS
4. Each party sends his input to the ideal functionality.
CORRUPTION
5. If (t

(ω)
P , t

(ω)
A) � T

(ω)
s : FRedistribute sends all inputs to S.

COMPUTATION
6. FRedistribute evaluates g to obtain the values s1, . . . , s`. And generate a
new bivariate sharing g′ for s1, . . . , s` for the participants in P(ω+1).
OUTPUTS
7. FRedistribute sends the shares g′(αr, αr′),for the corrupted parties Pr ∈
P(ω) to S.

50

8. S sends either abort to FRedistribute and FRedistribute aborts and outputs
⊥ or continue and the functionality proceeds to the next step.

9. If (t
(ω+1)
P , t

(ω+1)
A) 6≤ T (ω+1)

s or (t∩P , t
∩
A) 6≤ T (ω)

s,−|PL∪PLC
|: FRedistribute sends

s1, . . . , s` to S.

10. If (t
(ω)
P , t

(ω)
A) 6≤ T

(ω)
c or (t∩P , t

∩
A) 6≤ T

(ω)
c,−|PL∪PLC

| or (t
(ω+1)
P , t

(ω+1)
A) 6≤

T
(ω+1)
c : S sends new shares to FRedistribute instead of the evaluations of g′.
FRedistribute replaces the output.
11. FRedistribute sends their outputs to the honest parties.

Outputs. Each honest party outputs whatever they received from FRedistribute.
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ .

Figure 12. Simulator for the Redistibute protocol.

1. If (t
(ω)
P , t

(ω)
A) � T

(ω)
s S sets gS as g the bivariate sharing that is the input

of the parties. Otherwise, S generates a random gS verifying gS(αr, y) =
g(αr, y) for corrupted Pr in P(ω).

2. S generates a new sets of commitments for the values of gS and initializes
the adversary with these new commitments.

3. S sets fj(αr) = g(αr, βj) for all the honest parties Pr in P(ω).
4. S simulates the ` executions of DecreaseCorrupt with SDecreaseCorrupt.
5. S simulates the ` executions of Decrease with SDecrease.
6. S simulates the ` executions of Increase with SIncrease.
7. On behalf of honest participants among the d(ω+1) + 1 first participants

of P(ω+1), S generates a random g′(αr, .) verifying g′(αr, βj) = f3j (αr)
for all j ∈ [`].

8. S exchanges the commitments to g′ with A. If one error is detected on
the opening of the adversary’s values or if A sends a complaining bit, S
sends abort to the ideal functionality. Otherwise, proceeds to the next
step.

9. S uses the simulator SRefresh to simulate the successive executions of
Recover.

10. S compute the evaluations of g′ for all the honest parties. If (t
(ω)
P , t

(ω)
A) 6≤

T
(ω)
c or (t∩P , t

∩
A) 6≤ T

(ω)
c,−|PL∪PLC

| or (t
(ω+1)
P , t

(ω+1)
A) 6≤ T

(ω+1)
c , S sends

to FRedistribute the new evaluations
11. The simulators outputs whatever A outputs.

Theorem 11. The Redistribute protocol securely realizes

IDEALZ,S,FRedistribute

mixed (z, T (ω)
c , T (ω)

s)

51

with multi-threshold T
(ω)
c = {(n(ω), n(ω) − 1)} and Ts{(n(ω) − 1 − b

√
`c, n(ω) −

1− b
√
`c)}.

Proof. The Theorem follows from the various results on Recover, Increase,
Decrease, and DecreaseCorrupt. Indeed, due to the simulators associated to
these protocols, S is able to produce a view indistinguishable from the real ex-
ecution. Furthermore, the input distribution is identical in any cases (due to
the perfectly hiding property of the commitments). Every step not involved in a
sub-protocol is done exactly as would the set of honest participant would. The
homomorphic commitments allows to ensure correctness when the thresholds are
respected. Lemma 5 justifies that the adversary cannot distinguish between the
real and ideal executions. ut

E Related Work

Proactive Secret Sharing (PSS). There are several PSS schemes in the litera-
ture and they can serve as a building block for proactive MPC (PMPC) pro-
tocols. Most PSS schemes (see Table 3) are insecure when a majority of the
parties are compromised, even if the compromise is only passive. Such schemes
[31,27,37,38,34,2,3] typically store the secret as the free term of a polynomial
of degree d < n

2 , thus only an adversary compromising d + 1 parties can re-
cover the secret (by interpolation). More Recently [17] developed the first PSS
scheme secure against a dishonest majority, it is based on the standard secret
sharing scheme from [28] which introduced the notion of gradual secret sharing.
The main purpose of gradual secret sharing scheme is to ensure fairness (if the
corrupted parties can deny the output of a protocol to the set of honest parties,
then they cannot learn the secret) in a mixed adversary model that allows simul-
taneously k active corruption and n−k−1 passive one with k ∈ {0, . . . , dn2 e−1}.
This scheme is used in [17] to build a PSS scheme that is secure against a dis-
honest majority and also retains this fairness property. The [17] PSS scheme is
secure against an adversary bounded by n − 3 passive only corruptions, n

2 − 1
active only corruptions, and a mix of k active and min(n− 3, n− k− 1) passive
corruptions for k ∈ {0, . . . , dn2 e − 1}.

Dynamic groups As we mentioned earlier, Dynamic Secret Sharing (DSS) han-
dles the redistribution of the secrets when the number of parties is evolving (ei-
ther increasing or decreasing). The authors in [3] extended the PSS introduced
in [2] with ideas from [15,14,13] to produce a Dynamic PSS scheme for honest
majorities; we are not aware of other DPSS schemes for dishonest majority.

52

P
ro

to
co

l
T

h
re

sh
.

(C
o
r+

S
ec

)
T

h
re

sh
.(

C
o
r+

S
ec

+
F

a
ir

)
S
ec

u
ri

ty
N

et
w

o
rk

C
o
m

m
u
n
ic

a
ti

o
n

D
y
n
a
m

ic
P

a
ss

iv
e

(A
ct

iv
e)

P
a
ss

iv
e

(A
ct

iv
e)

T
y
p

e
C

o
m

p
le

x
it

y
M

ix
e
d

[3
7
]

n 2
(
n 2

)
C

o
m

p
u
ta

ti
o
n
a
l

S
y
n
ch

ro
n
iz

ed
ex
p
(n

)
3

[3
8
]

n 3
(
n 3

)
C

o
m

p
u
ta

ti
o
n
a
l

A
sy

n
ch

ro
n
iz

ed
ex
p
(n

)
3

[9
]

n 3
(
n 3

)
C

o
m

p
u
ta

ti
o
n
a
l

A
sy

n
ch

ro
n
iz

ed
O

(n
4
)

7

[3
4
]

n 3
(
n 3

)
C

o
m

p
u
ta

ti
o
n
a
l

A
sy

n
ch

ro
n
iz

ed
O

(n
4
)

3

[2
7
]

n 2
(
n 2

)
C

o
m

p
u
ta

ti
o
n
a
l

S
y
n
ch

ro
n
iz

ed
O

(n
2
)

7

[2
]

n 3
−
ε

(
n 3
−
ε)

P
er

fe
ct

S
y
n
ch

ro
n
iz

ed
O

(1
)

(A
m

o
rt

iz
ed

)
7

[2
]

n 2
−
ε

(
n 2
−
ε)

S
ta

ti
st

ic
a
l

S
y
n
ch

ro
n
iz

ed
O

(1
)

(A
m

o
rt

iz
ed

)
7

[3
]

n 3
−
ε

(
n 3
−
ε)

P
er

fe
ct

S
y
n
ch

ro
n
iz

ed
O

(1
)

(A
m

o
rt

iz
ed

)
3

[3
]

n 2
−
ε

(
n 2
−
ε)

S
ta

ti
st

ic
a
l

S
y
n
ch

ro
n
iz

ed
O

(1
)

(A
m

o
rt

iz
ed

)
3

[1
7
]

n
−

3
(n
−

3
)

n
−

3
(
n 2
−

1
)

C
o
m

p
u
ta

ti
o
n
a
l

S
y
n
ch

ro
n
iz

ed
O

(n
4
)

7

(n
−

k
−

1
,
k
)

T
h
is

w
o
rk

n
−

1
−
b√
`c

(n
−

1
−
b√
`c

)
n
−

1
−
b√
`c

(
n
−
1
−
b√

`
c

2
−

1
)

C
o
m

p
u
ta

ti
o
n
a
l

S
y
n
ch

ro
n
iz

ed
O

(n
2
)

(A
m

o
rt

iz
ed

)
3

(`
=
n
−

2
se

cr
et

s)
(n
−

k
−
b√

`c
,
k
)

T
h
is

w
o
rk

n
−

3
(n
−

3
)

n
−

3
(
n 2
−

1
)

C
o
m

p
u
ta

ti
o
n
a
l

S
y
n
ch

ro
n
iz

ed
O

(n
3
)

3

(1
se

cr
et

)
(n
−

k
−

1
,
k
)

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

o
f

ex
is

ti
n
g

P
S
S

sc
h
em

es
.

C
o
r=

C
o
rr

ec
tn

es
s,

S
ec

=
S
ec

re
cy

,
F

a
ir

=
F

a
ir

n
es

s.

53

	Communication-Efficient Proactive Secret Sharing for Dynamic Groups with Dishonest Majorities

