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Abstract. The Lighting Network (LN) is a network of micropayment
channels that runs on top of Bitcoin. The balances of payment channels
are not broadcasted to the LN network to preserve the privacy of the
nodes participating in the network. A balance disclosure attack (BDA) has
been proven to be successful in determining the balance of large amount of
channels in the network. In this paper we propose an improved algorithm
for the BDA as well as a new type of attack that leverages the differences
between LN client software implementations. Our improved algorithm
extends the original BDA by performing payments from both sides of the
channel. The new attack uses malformed payments to shutdown payment
channels an adversary isn’t part of.
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1 Introduction

Bitcoin, the cryptocurrency with the largest market capitalization, has
inherently limited scalability. Bitcoin generates 1 block of transactions
every 10 minutes and the size of that block is limited to 1MB. With a
basic transaction taking up 250 bytes and an average transaction size
of 500 bytes the network has a maximum capacity of 4000 transactions
per block and an average capacity of 2000 transactions per block. This
boils down to 3-7 transactions per second. Increasing this capacity
by either increasing the block size or the rate at which blocks are
generated reduces the security of the Bitcoin network [1]. Increasing
scalability of Bitcoin without abandoning security remains desirable.
Firstly because if the amount of transactions being broadcasted
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exceeds the capacity of the network, the law of supply and demand
dictates that the transaction fees will increase [2] Secondly, if we
want to achieve a viable alternative to current centralized payment
networks we need to achieve comparable throughput which is in the
order of magnitude of several thousand transactions per second.

It was Satoshi Nakamoto, the mysterious pseudonymous person or
group of persons famous for developing Bitcoin, who suggested the
use of transaction replacement for something he called high frequency
trading [3]. In Nakamoto’s proposal a group of parties could keep
updating a transaction that had yet to be committed. The order of the
updates was kept by a sequence number. Only the last agreed upon
transaction needed to be broadcast. By doing so all the transactions
prior to the final transaction were kept off-chain. The proposed
solution depended on miners to commit the final transaction (the
transaction with the highest sequence number). Since there is no
incentive for miners to respect the sequence number [4], one of the
involved parties could collude with a miner to have a non-final version
committed, possibly stealing funds from the other parties. As such
the solution couldn’t operate in a trustless environment.

The scalability issues that face Bitcoin have renewed the interest in
some form of transaction replacement by using them in a payment
channel network (PCN). LN has emerged as the most prominent
PCN to date [5] and is currently the only PCN in production.

LN is a peer-to-peer (P2P) network of connected nodes that uses
Poon-Dryja [6] payment channels. Two connected nodes can open up
a payment channel between them. A transaction from node A to node
B can only happen if there is enough balance on the side of node A.
Likewise, a transaction from node B to node A can only happen if
there is enough balance on the side of node B. Both balances added
together define the capacity of the channel. To create a transaction
between two nodes that don’t have a payment channel between them,
multiple payment channels can be connected to form a route, as long
as the balances along that route allow for the payment. This is known
as a multi-hop payment. To participate in LN you have to run LN
client software. Each LN client follows the LN specifications, set out
in the Basis of Lightning Technology (BOLT) [7] documents.
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Balances on the other hand are kept private and are never broadcasted
on the network. The only balances known to a node are the balances of
the channels that node participates in. Because of this it is impossible
to know upfront whether a multi-hop payment will succeed, and there
is only one way to find out: executing the payment. By executing
multiple (fake) payments it is possible to probe the unknown balance
of a payment channel. Disclosing balances this way has been dubbed
the balance discovery attack (BDA) [8]. LN uses an onion routing [9]
scheme called Sphinx [10] for the routing of payments.

In this study we analyzed potential BDA algorithm improvements and
the role of LN client software in BDA. We propose an improvement
to the basic algorithm for BDA that achieves a two-fold increase of
the upper limit of balances that can be disclosed. Furthermore, we
found that in certain situations LN client software can be leveraged
to remove the upper limit of BDA completely. Finally we describe
a specific situation where the interplay between different LN client
software types leads to the permanent shutdown of a payment channel.
This new attack, dubbed Payment of Death (POD), makes it possible
to remotely shut down channels. We will show that POD is a threat
to integrity of LN, as it has the potential for a malicious party to
shutdown 17.5% of the network capacity.

2 Background

A formal analysis of privacy in the context of PCNs has been hindered
by a lack of a rigorous definition of the PCN protocols, the absence
of a threat model, and the ambivalent interpretations of the concept
of anonymity [5].

A threat model is necessary to perform a formal analysis of privacy in
the setting of trustless PCNs. Malavolta [5] describes a threat model
with four notions of interest:

– Balance security: participants don’t run the risk of losing coins to
a malevolent adversary.

– Serializability: executions of a PCN are serializable as understood
in concurrency control of transaction processing, i.e. for every
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concurrent processing of payments there exists an equivalent
sequential execution.

– (Off-path) value privacy: malicious participants in the network
cannot learn information about payments they aren’t part of.

– (On-path) relationship anonymity: given at least on honest inter-
mediary, corrupted intermediaries cannot determine the sender
and the receiver of a transaction better than just by guessing.

2.1 Balance Discovery Attack

In the basic scenario for channel balance discovery [8] it is assumed
that there is an open payment channel AB between Alice, A, and
Bob, B, with capacity CAB. The goal of the adversary, Mallory, M ,
is to discover the balances of each node in channel AB: balanceAB

and balanceBA. To do so Mallory opens up a channel with Alice (see
fig. 1).

M A B

Fig. 1. Basic BDA were the adversary Mallory tries to disclose the balance between
Alice and Bob

Mallory tries to to disclose balanceAB by routing invalid payments
through M ↔ A↔ B, using the basic BDA algorithm. The inputs
parameters for the algorithm are the target node B, the route to
the target node, the value range to search in, given by 0 and CAB,
and the required accuracy for the algorithm. The algorithm creates
invalid payments by using random, invalid payment hashes for each
payment. The value for each payment follows a binary search pattern
for which the initial lower and upper bounds are given by the value
range input.

Bob, the recipient of the payment, is the only one who can determine
that a payment from Mallory is invalid. Therefore, receiving an
error stating the payment hash is invalid, means that balanceAB was
sufficient to route the payment, because if it was not, Alice would
have returned an error stating insufficient funds and Bob would
never have known about the payment. This fact is leveraged by
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updating the lower bound of the binary search to the value of the
last payment. If however the failure message states insufficient funds,
the upper bound is updated with the value of the last payment. This
process repeats itself recursively until the difference between the
upper bound and the lower bound of the binary search is within the
threshold set by the accuracy input. The algorithm returns a tuple
that gives the range within which balanceAB sits. Since the capacity
of the channel CAB is known, the balanceBA can be calculated with
balanceBA = CBA − balanceAB.

By periodically executing a BDA, an adversary van monitor balances
over time. This allows for tracing transactions. Therefore, this type
of attack poses a threat for the value privacy as described in the
threat model above.

3 Method

In order to research the role of LN client software in BDA we must
first determine which LN clients are available. We used 1ML Light-
ning Network Search and Analysis Engine1 to estimate respective
proportions of each client in LN. 1ML is a website that publishes
the current state of the LN graph and allows for node owners to
self-report on a voluntary basis the type of client they use.

We chose the three LN clients with the largest network share to run a
local cluster of LN nodes, each node running one of three supported
clients. All LN nodes used Bitcoin Core’s Bitcoind implementation
as the Bitcoin backend. Bitcoind ran in regression testing mode,
known as regtest mode. This is a local test mode, making it possible
to almost instantly create blocks with no real world value. Using
regtest mode, the different implementations could be tested without
incurring transaction fees for the on-chain transactions and without
having to wait for blocks to be mined.

On this cluster we analyzed the basic and improved algorithm having
the LN nodes in each possible permutation of supported clients. This
helped us determine if the new algorithm was to be considered an
improvement and whether client differences could play a role in BDA.

1 https://1ml.com/
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3.1 Two-way channel probing

The original algorithm [8] is bound by an upper limit set by MAX_-
PAYMENT_ALLOWED. This limit makes it impossible to probe
balances that are higher than 232 − 1 msat. This paper proposes an
improved algorithm.

Consider a channel AB with capacity CAB. Since CAB = CBA =
balanceAB + balanceBA, the following holds

CAB < 233 =⇒ min {balanceAB, balanceBA} < 232

For all channels with a capacity CAB < 233 there’s always a balance
lower than 233

2 = 232 on one end of the channel. With this knowledge
we can extend the algorithm by letting it probe the channel from the
other side, once we assess that the balance is higher than MAX_-
PAYMENT_ALLOWED on the initial probing side. This setup
requires an optional second channel from the adversary Node M to
Node B, to be able to probe the channel between Node A and Node
B from the side of Node B. (See fig. 2)

M

A B

Fig. 2. Basic scenario with an optional second channel for two-way probing

Algorithm 1 describes BDA with optional two-way probing for chan-
nels with a capacity above MAX_PAYMENT_ALLOWED. Al-
gorithm 1 takes the same input parameters as the basic algorithm
and returns the same tuple.

If CAB is higher than than MAX_PAYMENT_ALLOWED, the
algorithm will try to send a fake payment with a size of exactly
MAX_PAYMENT_ALLOWED. If that payment is possible, we
have assessed that we are on the wrong end of the channel for probing
the balance. The algorithm now calls itself with the target node and
the final node of the route switched. The algorithm assumes that
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there’s a route from the adversary to this new target node. The return
value of that call is balanceBA, for calculating balanceAB we use the
following formula:

balanceAB = CBA − balanceBA

If CAB > MAX_PAY MENT_ALLOWED ∧ CAB < 2 ×
MAX_PAY MENT_ALLOWED, the value of the first payment
will not be exactly in the middle of the value range for the binary
search, since it will use the fixed value of MAX_PAYMENT_AL-
LOWED for the first payment. That makes this algorithm slightly
less computationally efficient then a perfect binary search, but it
minimizes the use of the optional second channel.

4 Results

We confirmed the improvements provided by the two-way probing
algorithm in two ways. Firstly we confirmed the feasibility of the
algorithm in our local testing cluster. Secondly we have analyzed the
LN running on top of Bitcoin mainnet, to estimate the number of
channels that can have their balances disclosed by this algorithm and
compare this to the earlier version of this attack.

4.1 Local Network Evaluation

We ran the Two-way Probing algorithm with every possible permu-
tation of clients. By analyzing the responses from the clients, and
analyzing the code of the respective clients on GitHub, we found that
not every client implemented the MAX_PAYMENT_ALLOWED
the same way.

On May 23rd, 2017 the BOLT specification was changed2 by Paul
“Rusty” Russel, who authored the majority of the BOLT documents.
The variable containing the payment amount, amount_msat, was
changed from a 32 bit unsigned integer to a 64 bit unsigned integer.
This meant that before that change it was impossible to create a
payment bigger than 232 − 1 whatsoever, but after that change in

2 https://github.com/lightningnetwork/lightning-rfc/commit/068b0bccf94e8cdaf5f298dade0fcc8cc8421ef6#diff-
3369c5aa1774fef2ff1e246979f223eaR590
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Algorithm 1 Two-way Probing
Data: route, target, maxFlow, minFlow, accuracy_treshold
Result: bwidth, an array of tuples that gives the range of bandwidth discovered for

each channel
1: missingT ests← T rue
2: bwidth.max← maxF low
3: bwidth.min← minF low
4: channelCapacity ← getInfo(target).capacity
5: while missingTests do
6: if bwidth.max− bwidth.min ≤ accuracy_threshold then
7: missingT ests← F alse
8: end if
9: if bwidth.max ≥ 232 then

10: flow ← 232 − 1
11: else
12: flow ← (bwidth.min + bwidth.max)/2
13: end if
14: h(x)← RandomV alue
15: response← sendF akeP ayment(route = [route, target], h(x), f low)
16: if response = UnknownP aymentHash then
17: if bwidth.min < flow then
18: bwidth.min← flow
19: end if
20: else if response = InsufficientF unds then
21: if bwidth.max > flow then
22: bwidth.max← flow
23: end if
24: end if
25: if bwidth.min = 232 − 1 then
26: newT arget← route.pop()
27: route← route.push(target)
28: bwidthBA← twowayP robing(route, newT arget, bwidth.min, 0, accuracy_treshold)
29: bwidth.min← channelCapacity − bwidthBA.max
30: bwidth.max← channelCapacity − bwidthBA.min
31: missingT ests← F alse
32: end if
33: end while
34: return bwidth
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theory it was possible to create bigger payments. Additional speci-
fications required the sending node to set the four most significant
bytes of amount_msat to 0. But those additional requirements aren’t
implemented equally by the three main clients.

C-lightning is the only client that fully adheres to the requirements.
Eclair has a limit of 5 · 109msat. LND doesn’t verify the for the each
RPC. By using the unverified RPC in our algorithm we could send
fake payments up to the maximal channel capacity. This meant that
we can disclose any balance between two LND Nodes, even if the
balance is above the upper limit of the two-way probing algorithm.
In the scenario’s where Alice is a LND node and Bob is an Eclair
node or both are Eclair nodes, balances up to 5 · 109msat can be
disclosed without making use of two-way probing.

In the case where Alice is a LND node and Bob is a C-lightning node,
we saw interesting behavior of the C-lightning node which turned out
to be a vulnerability of the current LN that can be exploited.

4.2 Payment of Death

If a C-lightning node is being requested to route a payment to
another node, or is the receiver of a payment, with an amount that
his higher than MAX_PAYMENT_ALLOWED, it decides to fail
the channel with the requesting node and close down that channel.
Since LN uses onion routing, the requesting node from the perspective
of the c-lightning node, is the one that comes just before it in the
route. But that isn’t necessarily the node from which the payment
originated.

Consider the basic scenario (see fig. 1), where Mallory and Alice
run LND, and Bob runs c-lightning. Both channels between Mallory
and Alice and between Alice and Bob have balances that allow for
payments bigger than the MAX_PAYMENT_ALLOWED limit.
If Mallory would create a fake payment with an amount above that
limit, Bob would close down it’s channel with Alice, without Alice
being able to mitigate this in any way. We coined the term Payment
of Death for this attack, after the infamous Ping of Death.
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We have notified the developers of the LN implementations by means
of a responsible disclosure.

4.3 Channels affected

The two-way probing algorithm works regardless of the client software.
So we can look at the channel capacity of all public channels in the
LN graph and determine the proportion of channels that are now
susceptible to this type of attack based on a snapshot of the network
taken on the 3rd of October, 2019 (see fig. 3).
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Fig. 3. Cumulative percentage graph of payment channels ordered by increasing capacity.
MAX_P AY MENT_ALLOW ED shows the percentage of channels with disclosable
balances using the basic BDA algorithm. 2×MAX_P AY MENT_ALLOW ED shows
the percentage of channels with disclosable balances using the two-way probing algo-
rithm.

To estimate the number of channels susceptible for Balance Disclosure
above the 233 limit set by the Two-way algorithm, we need to know
the type of client on either side of a channel. There’s no known way
of figuring out what kind of client is installed, but if you know the
proportion of each client type in the LN, it is possible to estimate
the amount of channels for each specific combination of clients.
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We queried 1ML for each node in our snapshot of the LN. We
identified the client type for 273 nodes out of 3608 and estimated
the proportion of nodes running different clients based on that data.
(See tbl. 1)

Table 1: Proportion of nodes running different Lightning clients

Client n Proportion (%) CI3 (%)

LND 220 80.59 (79.35-81.83)
c-lightning 40 14.65 (13.54-15.76)
Eclair 11 4.03 (3.41-4.65)
Other 2 0.73 (0.47-1.00)

The amount of channels that are susceptible to the Payment of Death,
can now be estimated with the following analysis.

The LN is a graph G, with the number of vertices n = |G(V )| and
the number of edges m = |G(E)|. Our analysis yielded the following
values for n and m:

n = 3608 m = 9438 with 1086 channels having a capacity greater
than 232 and 540 channels having a capacity greater than 233.

The client software defines the type of the vertex. typel for LND nodes,
typec for c-lightning nodes and typee for Eclair nodes. An edge is said
to be of type(l,c) if it connects a typel vertex and a typec vertex. The
graph is without self-loops and undirected, so edge type(l,c) ≡ type(c,l).
Since we know the proportions of the different vertex types we can
calculate the probability of an edge being of a specific type

– P (type(l,l)) = 0.80592

– P (type(c,c)) = 0.14652

– P (type(e,e)) = 0.04032

– P (type(l,c)) = 2× 0.8059× 0.1465
– P (type(l,e)) = 2× 0.8059× 0.0403
– P (type(c,e)) = 2× 0.1465× 0.0403

Assuming vertex type and channel capacity have a covariance of zero,
the number of edges of each edge type, having a capacity greater than
233 is calculated as follows: P (type([c,e,l],[c,e,l]))×540. We are interested

3 95% Confidence interval
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in the type(l,l) and type(l,e) channels, because the type(l,c) channels
are susceptible to the Payment of Death, which doesn’t allow for
discovering the balance. So the amount of channels with a capacity
above 232 is 540×P (type(l,l)) + 540×P (type(l,e)) = 386 channels. So
a total of 9438− 540 + 386 = 9284 channels have balances that can
be disclosed. This is 98.4% of all channels.

For the amount of channels affected by the POD we are interested in
all type(l,c) channels, with a balance above MAX_PAYMENT_-
ALLOWED. This is 1086×P (type(l,c)) = 256 channels, meaning that
2.7% of all channels can be shutdown by using malformed payments.

5 Discussion

Herrera-Joancomarti [8] reported that 89.10% of all channels could
have their balances exactly disclosed. Our research showed that we
can improve this to 98.37% of all channels, a 9.27 percentage point
increase (See tbl. 2). The basic BDA performed slightly less in our
snapshot of the LN network because in the period between the two
snapshots of the 8th of January, 2019 and the 3rd of October, 2019,
the percentage of channels with a capacity C of C > 232 slightly
increased.

Table 2: Percentage of channels susceptible for the basic BDA and the
two-way probing BDA

Disclosable channels basic BDA (%) two-way probing BDA (%)

C ≤ 232 89.10 88.49
C > 232 ∧ C ≤ 233 0 5.79
C ≤ 233 0 4.09
TOTAL 89.10 98.37

5.1 Impact of Payment of Death
The properties of the vulnerability make it so that the highly capi-
talized nodes are more vulnerable, since it are these nodes that have
channels with a balance above MAX_PAYMENT_ALLOWED
limit. The average capacity of those 1086 channels is 10196116 msat.
Using that average combined with the estimated proportions of af-
fected channels, 17.5% of the total capacity of the network could
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be taken down with an organized attack. These proportions align
with proportions earlier found through alternative methods [11]. It’s
reasonable to assume that these channels are responsible for routing a
disproportionate amount of the payments on the network. So such an
attack could have substantial impact on the ability to route payments
of the network as a whole.

The closing of channels comes at a cost to the victim nodes, since
you have to broadcast on-chain transactions for closing a channel
and again for reopening it. Those transactions have transaction fees
attached to it. Furthermore, channel age is used as heuristic for
determining the reliability of a node for routing payments, so routing
nodes have an incentive to keep channels open as long as possible.

5.2 Countermeasures

Clients should adhere to the BOLT specification, making it impossible
to create payments with a value higher than MAX_PAYMENT_-
ALLOWED and deny to consider payments with a value above the
MAX_PAYMENT_ALLOWED for routing. The latter would
make it impossible to disclose balances above 233 msat. Secondly,
clients shouldn’t consider a malformed payment a reason for perma-
nently closing down a channel. This would make it impossible to
mount a POD attack.

6 Conclusion

This paper presented an improvement to the algorithm of the origi-
nal BDA. We showed that by approaching a payment channel from
both sides instead of from one side, payment channels with a higher
capacity than in the original BDA are now also susceptible to this
attack. Since monitoring balances over time makes it possible to
detect payments, it can be used to learn information about payments
an adversary isn’t part of [5]. We exposed differences in the imple-
mentation of the BOLT specification by the main three clients. These
differences led us to develop new attack that closes down payment
channels where the attacker isn’t part of. We estimated the propor-
tions of each client in LN, by using self-reported information. Based
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on these proportions we estimated that this attack can be used to
take down an important part of LN’s entire network capacity.
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