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Abstract

Secure multiparty computation enables a set of parties to securely carry out a joint com-
putation on their private inputs without revealing anything but the output. A particularly
motivated setting is that of three parties with a single corruption (hereafter denoted 3PC). This
3PC setting is particularly appealing for two main reasons: (1) it admits more efficient MPC
protocols than in other standard settings; (2) it allows in principle to achieve full security (and
fairness).

Highly efficient protocols exist within this setting with security against a semi-honest ad-
versary; however, a significant gap remains between these and protocols with stronger security
against a malicious adversary.

In this paper, we narrow this gap within concretely efficient protocols. More explicitly, we
have the following contributions:

• Concretely Efficient Malicious 3PC. We present an optimized 3PC protocol for arith-
metic circuits over rings with (amortized) communication of 1 ring element per multiplication
gate per party, matching the best semi-honest protocols. The protocol applies also to Boolean
circuits, significantly improving over previous protocols even for small circuits.

Our protocol builds on recent techniques of Boneh et al. (Crypto 2019) for sublinear zero-
knowledge proofs on distributed data, together with an efficient semi-honest protocol based
on replicated secret sharing (Araki et al., CCS 2016).

We present a concrete analysis of communication and computation costs, including several
optimizations. For example, for 40-bit statistical security, and Boolean circuit with a million
(nonlinear) gates, the overhead on top of the semi-honest protocol can involve less than
0.5KB of communication for the entire circuit, while the computational overhead is dominated
by roughly 30 multiplications per gate in the field F247 . In addition, we implemented and
benchmarked the protocol for varied circuit sizes.

• Full Security. We augment the 3PC protocol to further provide full security (with guaran-
teed output delivery) while maintaining amortized 1 ring element communication per party
per multiplication gate, and with hardly any impact on concrete efficiency. This is contrasted
with the best previous 3PC protocols from the literature, which allow a corrupt party to
mount a denial-of-service attack without being detected.
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1 Introduction

Protocols for secure computation [Yao86, GMW87, BGW88, CCD88] enable a set of parties with
private inputs to compute a joint function of their inputs while revealing nothing but the output.
Secure computation provides a general-purpose method for computing across sensitive data items,
as well as for eliminating single points of failure. As a result, a major research effort has been
undertaken within the applied cryptography and security community in improving the concrete
efficiency of secure computation protocols.

Among the most studied settings for prospective practical applications is that of three-party
secure computation tolerating a single corrupt party (henceforth referred to as 3PC). This setting
is highly motivated by two significant features: As the minimal nontrivial setting with an honest
majority, it seems to have the greatest potential for admitting fast, simple protocols. Indeed, 3PC
protocols can make use of simple information-theoretic secret sharing, whereas two-party secure
computation protocols rely on more complex public-key primitives such as oblivious transfer or
homomorphic encryption that incur higher communication and computation costs. Further, it is
the minimal setting in which one can achieve full security, where honest parties are guaranteed to
learn the output at the conclusion of the protocol. This lies again in contrast to settings without
honest majority, where one can only hope to provide a weaker notion of security with abort, leaving
the protocol open to denial-of-service attacks from a corrupt party.

Within each setting, two classic adversary models are typically considered: semi-honest (where
the adversary follows the protocol specification but may try to learn more than allowed from the
protocol transcript) and malicious (where the adversary can run an arbitrary polynomial-time
attack strategy). Highly efficient protocols for 3PC have been obtained in the semi-honest model;
see [BLW08, AFL+16, CGH+18, CCPS19] and references therein. However, despite tremendous
progress, there is still a significant gap in concrete complexity costs between solutions in the semi-
honest and malicious settings, particularly for Boolean circuits.

Since concretely efficient 3PC protocols are computationally simple and only employ symmetric
cryptography, their overall cost is typically dominated by communication rather than computation.1

Consequently, the main efforts in this line focus on minimizing the ratio between the amortized
communication costs of malicious and semi-honest solutions (while maintaining reasonable com-
putation complexity). For the case of evaluating an arithmetic circuit over a ring, the best such
semi-honest protocols have an amortized communication cost of only 1 ring element per multi-
plication gate per party [AFL+16]. (In this work, the term “ring” refers to either a finite field
or a ring of the form Z2k ; the term “amortized communication cost” refers to the ratio between
the communication and the number of gates when the latter tends to infinity.) To date, the best
such malicious-secure protocols that have been optimized and implemented communicate 2 field
elements per multiplication gate per party over large fields (of size comparable to 2σ for statistical
security parameter σ) [CGH+18, NV18], or alternatively 7 bits per AND/OR gate per party for
Boolean circuits (where XOR/NOT gates are for free) [ABF+17].

1More broadly, in the context of parallelizable tasks, computation is generally considered a cheaper resource, since
buying more hardware is easier than improving bandwidth. For instance, quoting from the recent PSI implementation
work of [IKN+19]: “A rule of thumb we encountered is that doubling the communication cost of a solution is equivalent
to increasing the computational cost by a factor of 20× - 40×.”
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1.1 Our Contributions

In this paper, we present an optimized high-throughput protocol for the malicious 3PC setting of
three parties and an honest majority. Our protocol begins with the efficient semi-honest protocol
of [AFL+16] that relies on replicated secret-sharing.2 Then, building on the recent work of Boneh
et al. [BBC+19], compiles it to be maliciously secure by adding a single step at the end of the
protocol which verifies the correctness of behavior during the execution. Our protocol has very low
communication: it requires each party to send only one field/ring element per multiplication gate
(amortized over the circuit). This is exactly the amortized communication cost of the best known
semi-honest protocols (that do not employ public-key cryptography). We measured the concrete
efficiency of our protocol and report its practicality. Our findings indicate that the improved amor-
tized communication cost does not conflict with concrete efficiency: the communication advantage
over earlier protocols kicks in even for fairly small circuits, and the computational overhead is
reasonable.

As mentioned, our starting point towards achieving malicious security is the recent work by
Boneh et al. [BBC+19], which introduced the new notion of zero-knowledge proofs over distributed
data. Such proofs involve a single prover and multiple verifiers. The prover wishes to prove the
correctness of a statement over some data which is known entirely to the prover but is distributed
among the verifiers. The protocols from [BBC+19] have sublinear proof size when applied to simple
statements. The authors have also identified the potential of this tool for MPC in the presence
of malicious adversaries, as in such protocols the information is secret-shared between the parties,
and each party needs to prove that it behaved correctly to the other parties given that information.
This can be useful in particular in the setting of three parties with one corruption, since in this
case we are guaranteed that only the prover or one of the verifiers is corrupted, leading to much
more efficient protocols. However, the asymptotically efficient protocols presented in [BBC+19] use
several layers of abstraction, and were not optimized or even analyzed for concrete efficiency.

In this paper, we take a step forward and show how to turn the protocols from [BBC+19] into
efficient zero-knowledge protocols for verifying that all the messages sent in a concretely efficient
3PC protocol were correct. Moreover, adapting the protocol to a specific setting enables us to
introduce an optimized version and to prove that it securely computes an ideal functionality Fvrfy

that is used in the main protocol. The sublinear communication complexity of the zero-knowledge
protocol ensures that, amortized over the circuit, the communication cost of the final 3PC protocol
does not increase beyond the cost of the semi-honest baseline, and moreover the concrete overhead
is small. Our initial protocol works only over finite fields, but then we show how to extend it
to work also over the ring Z2k by using variants of techniques from [BBC+19]. This requires
working over a larger ring, which blows up the cost of the zero-knowledge proofs by a small factor.
However, since the proofs are still sublinear in the size of the circuit, this does not increase the
amortized communication cost. Finally, while the basic version of our protocol (as well as the
protocol from [BBC+19]) only achieves “security with abort,” we show how to achieve full security,
including fairness and guaranteed output delivery, at a minor additional cost.

We present a detailed concrete analysis of both the computational and the communication cost
of our protocol and discuss multiple optimizations that improve the overall efficiency. We also ran
experiments to measure the actual performance of our protocol. As the semi-honest protocol has
been shown to achieve very high throughput in different settings [AFL+16, ABF+17, CGH+18], we

2One could alternatively use other semi-honest 3PC protocols from the literature, such as the one from [KKW18].
See Remark 3.4 for discussion.
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focus only on the verification step, which anyway can be executed in parallel and independently of
the main semi-honest protocol. Our experiments demonstrate the computational effort (measured
by its running time) required by each party in the verification step. The experiment was run in an
AWS c5.9xlarge instance (Intel Xeon Platinum 8000 series with clock speed of up to 3.5 GHz) for
different sizes of arithmetic circuits over a 31-bit Mersenne field. (These fields enable particularly
fast multiplications and are big enough for most arithmetic computations.) In this setting, applying
the verification protocol to all 1 million gates simultaneously requires 2.3 seconds. However, when
splitting the gates into 8 groups of 216 gates, where each group is being verified separately, it is
possible to complete the verification of all the groups (without parallelizing the computation!) in
less than a second, while the communication overhead is only 0.04 field elements per gate on average
(thus adding less than 5% of the communication required by the semi-honest protocol). This shows
a promising potential for usefulness in real-world applications where bandwidth is a bottleneck.

Finally, we present additional efficiency improvements (at the expense of additional rounds
of interaction3) by optimizing and concretely analyzing a recursive proof composition technique
suggested in [BBC+19]. For 40 bits of statistical security, the communication complexity of the
recursive protocol for verifying m Boolean gates is roughly 4 logm field elements, for a field F2w

where w ≈ 42 + log logm. For example, for a Boolean circuit with a million (nonlinear) gates,
the verification protocol requires less than 0.5KB of communication for the entire circuit. The
computational complexity of this protocol is dominated by roughly 30 field multiplications per
gate. See Table 5 vs. Table 4 for comparing the concrete communication costs of the recursive vs.
non-recursive protocol for Boolean circuits.

1.2 Comparison to Previous Work

The problem of 3PC with one malicious party has drawn a lot of attention in recent years. As the
3PC setting gives rise to the simplest and most efficient protocols, this setting was considered par-
ticularly attractive for applications such as financial data analysis [BLW08, BNTW12], protecting
cryptographic keys [AFL+16], privacy-preserving machine learning [MR18], and more.

In this section, we compare the communication complexity and security of our protocol to the
best concretely efficient 3PC protocols and to protocols for four parties with a single corruption. We
restrict our attention to protocols that have been optimized for concrete efficiency and implemented,
thus excluding the recent work of Boneh et al. [BBC+19] on which we build. In Table 1 we
present a comparison between our results to other 3PC protocols for computing circuits that are
defined over different domains: the Boolean domain F2, the field F28 , which is commonly used in
secure evaluations of AES, large finite fields, which are used emulate numerical computations over
the integers or reals, and the ring Z2k , which is used for integer arithmetic in CPUs with k-bit
architectures, e.g. k = 32 or k = 64.

• The most efficient protocol for Boolean circuits, measured by total communication complexity, is
[ABF+17], which achieves its low communication (7 bits per AND gate per party) by an efficient
instantiation of the “cut–and–choose” method. The recent work of [CCPS19] has slightly higher
overall communication but focuses on minimizing the online (input-dependent) cost. Indeed, the
online communication cost of [CCPS19] per party is 4

3 bits per AND gate.

3Alternatively, one can eliminate this extra interaction by using the Fiat-Shamir heuristic. However, for multi-
round protocols such as ours, there are still gaps in our understanding of the soundness of this heuristic when analyzed
in the random oracle model [PS00, BCS16].
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• The protocol of [CGH+18] (and also [NV18], but with higher computational cost) is the most
efficient for “large” finite fields F, i.e. fields such that F| ≥ 2σ for a statistical security parameter
σ. For this field size, the protocol of [CGH+18] requires each party to send 2 field elements per
multiplication (i.e., doubling the communication cost of the semi-honest protocol). However, for
small fields (e.g, F2 or F28) or non-field rings, their protocol requires many repetitions, making
it inefficient.

• Recently, there has been considerable interest in MPC over the ring Z2k (see [CDE+18, CRFG19,
DOS18, GRW18, EOP+19, CCPS19] and references therein). In the setting of three parties with
honest majority, Eerikson et al. [EOP+19] present two protocols, one that mixes operations on
fields and on rings and one that relies on ring operations only. The latter protocol uses ideas
from [CDE+18], lifting each element to a larger ring Z2k+s , and resulting in statistical error 2−s.
Since each party is required to send 3(k+ s) bits per multiplication gate, then when k = 64, the
number of ring elements sent is roughly 5. However, when the ring is small (in particular, when
k = 1), the value of s is much larger than the bit-length of ring elements, since it determines the
statistical error. This significantly increases the number of ring elements sent per gate.

To compare the security of our protocol to other protocols in Table 1, we remark that all of these
protocols (including ours) use mild cryptographic assumptions, such as the existence of one-way
functions or collision-resistant hash functions, to achieve their best efficiency. In fact, our protocol
only makes a black-box use of any pseudorandom function (implemented in practice by a block
cipher).

Our protocol is the only one in the table that provides full security rather than security with
abort, which is a major qualitative advantage. It is well known that full security is achievable
in our 3PC setting, assuming the availability of broadcast channels4 or a PKI [RB89]. However,
to the best of our knowledge, no other concretely efficient protocol in our setting achieves this,
excluding protocols based on garbled circuits whose throughput is much worse than ours (see
detailed comparison below).

It is also instructive to compare our results to what was achieved in the setting of two-thirds
honest majority, i.e. the number of corrupt parties is less than a third of the total number of parties.
Very recently, [FL19] presented a protocol (an improvement of [BHKL18]) which works over fields
and requires each party to send 22

3 field elements per multiplication gate. The communication
complexity of this protocol is higher than ours and the protocol only works over fields. However,
the construction is applicable for any number of parties. Another low-communication protocol
was proposed by [GRW18]. Their protocol is designed for the specific setting of 4 parties and
one corruption and has communication cost of 1.5 ring elements per multiplication gate per party.
While [FL19] guarantees security with abort only, in [GRW18] it is also shown how to achieve
guaranteed output delivery but without concrete cost analysis. We stress that both of the above
protocols do not apply to the case of 3PC; a minimal number of 4 parties is required to begin with.

Finally, we remark that for the case of evaluating Boolean circuits using the garbled-circuit
approach [Yao86], and in the same setting of honest-majority 3PC, [IKKP15, MRZ15] have shown
that it is possible to achieve malicious security with abort with similar cost of semi-honest. This
was later extended to full security in [BJPR18]. In general, protocols using the garbled-circuit
approach have the advantage of being constant-round, but their throughput is worse than ours by

4As our protocol makes a minimal use of broadcast, any reasonable implementation of broadcast over PKI suffices
for making the cost of broadcast dominated by other costs.
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The
protocol

# of elements sent per party per multiplication gate
Full

security?
Boolean
Circuits

Circuits
over F28

Circuits over
the ring Z264

Circuits over
large finite fields

(|F| ≥ 240)

Araki et al.
[ABF+17]

7 7 7 7 No

Chaudhari et al.
[CCPS19]

7(offline)+4/3(online) - 7(offline)+4/3(online) - No

Chida et al.
[CGH+18]

41 6 41 2 No

Eerikson et al.
[EOP+19]

123 - 5 - No

This work 1 1 1 1 Yes

Table 1: Comparison between concretely efficient 3PC protocols. Statistical security for all proto-
cols in the table is 40-bit. The communication per gate, measured by number of elements sent by
each party, is amortized over a large circuit.

roughly two orders of magnitude. Moreover, protocols based on garbled circuits do not natively
extend to evaluating arithmetic circuits, which are useful for many applications.

2 Preliminaries

Notation. Let P1, P2, P3 denote the three parties participating in the computation. In this work,
we assume an honest majority, and thus one party may be corrupted. We denote by R a finite ring,
by F a finite field and by Z2k the ring of integers modulo 2k. Finally, [n] is used to denote the set
{1, . . . , n}.

2.1 Replicated Secret Sharing

In this section, we present the “replicated secret sharing” scheme used in our protocol and its
operations. Originally used for realizing general access structures [ISN89], replicated secret sharing
turned out to be useful for simple and concretely efficient MPC protocols with a small number of
parties [Mau06, CDI05, BLW08, AFL+16]. The description in this section is specialized to the 3PC
case and is based on [AFL+16, FLNW17].

To share an element v in a ring R, the dealer chooses three random elements v1, v2, v3 ∈ R
under the constraint that v1 + v2 + v3 = v. (This can be done by picking v1, v2 at random and
computing v3 = v − (v1 + v2).) Then, the dealer shares v so that P1’s share is (v1, v3), P2’s share
is (v2, v1) and P3’s share is (v3, v2). We use JvK to denote a sharing of v and denote Pi’s share by
(vi, vi−1).

The reconstruct(JvK, i) procedure. In this procedure, party Pi+1 and party Pi−1 send their shares
to Pi. Then Pi checks that the shares are consistent by checking that the same vi+1 was sent by
both parties. If this holds, then Pi computes v1 + v2 + v3 = v. Otherwise, Pi aborts.

The open(JvK) procedure. The parties run reconstruct(JvK, i) for each i.
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Local operators. Given two shared secrets JuK and JvK, the parties can compute locally the
sharing of u+ v, i.e., Ju+ vK. Whenever we write that the parties compute JuK + JvK (likewise for
subtraction), it means that each party Pi sets its share of u+ v to be (ui + vi, ui−1 + vi−1) where
(ui, ui−1) is its share of u and (vi, vi−1) is its share of v.

In addition, given a sharing JvK and an element σ ∈ R, we write that the parties compute σ · JvK
when each party Pi sets its share of σ · v to be (σ · vi, σ · vi−1), where (vi, vi−1) is its share of v.

Finally, given a sharing JvK and an element σ ∈ R, the parties can compute locally Jv + σK by
having party P1 set its new share to be (v1 + σ, v3), party P2 sets its share to be (v2, v1 + σ) and
the share of P3 remains the same.

2.1.1 The Semi-Honest Multiplication Protocol

We now show the protocol (as in [AFL+16]) for computing a sharing of v · u, given JvK and JuK.
Let (vi, vi−1) and (ui, ui−1) be the shares of v and u respectively held by Pi. We assume that the
parties P1, P2, P3 hold correlated randomness α1, α2, α3, respectively, picked uniformly at random
subject to α1 +α2 +α3 = 0. The parties compute

(
3
2

)
-shares (namely, 2-out-of-3 shares) of v1v2 as

follows:

1. Step 1 – compute
(

3
3

)
-sharing: Each party Pi computes zi = ui · vi + ui · vi−1 + ui−1 · vi +αi

and sends it to Pi+1. These messages are computed and sent in parallel.

2. Step 2 – compute
(

3
2

)
-sharing: Holding zi−1 and zi, each party Pi stores (zi, zi−1).

Generating correlated randomness. It is possible to securely generate correlated randomness
with perfect security by having each party Pi simply choose a random ρi ∈ R and send it to Pi+1

(where P3 sends to P1). Then, each party takes its random element to be its element subtracted
by the element it received: P1 computes α1 = ρ1 − ρ3, P2 computes α2 = ρ2 − ρ1 and P3 computes
α3 = ρ3 − ρ2. Observe that α1 + α2 + α3 = 0 as required. In addition, if P1 is corrupted, then it
knows nothing about α2 and α3 except that α1 = −α2 − α3.

As shown in [AFL+16] (following [GI99, CDI05]), there is a simple procedure for generating this
type of correlated randomness with computational security and without any interaction beyond a
short initial setup. Let κ be a computational security parameter and let F = {Fk | k ∈ {0, 1}κ, Fk :
{0, 1}κ → R} be a family of pseudo-random functions [GGM86]. To generate random elements
α1, α2, α3 ∈ R under the constraint that α1 + α2 + α3 = 0, the parties work as follows.

1. Setup step: each party Pi chooses a random key ki ∈ {0, 1}κ and sends it to Pi+1.

2. Computing the correlated randomness: Upon request, each party computes αi = Fki−1
(id)−

Fki(id) using the two keys it holds (where id is some public counter that was agreed upon and
is incremented each time).

This method allows the parties to generate all the correlated randomness needed at the cost of
one exchange of keys.

2.2 Security Definition

We use the standard definition of security based on the ideal/real model paradigm [Can00, Gol04].
When we say that a protocol securely computes an ideal functionality with abort, then we consider
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non-unanimous abort (sometimes referred to as “selective abort”). This means that the adversary
first receives the output, and then determines for each honest party whether they will receive abort
or receive their correct output.

2.3 Ideal Functionalities

In this section, we define the building blocks used by our protocol, formalized by ideal functionali-
ties. For simplicity, we only consider the case where exactly one party is malicious. The correctness
of the protocol in the case where no parties are corrupted is easy to verify directly.

2.3.1 Frand - Generating Random shares

We define the ideal functionality Frand to generate a sharing of a random value unknown to the par-
ties. A formal description appears in Functionality 2.1. The functionality lets the adversary choose
the corrupted parties’ shares, which together with the random secret chosen by the functionality,
are used to compute the shares of the honest parties.

FUNCTIONALITY 2.1 (Frand- Generating Random Shares)

Upon receiving ri, ri−1 from the ideal adversary S controlling Pi, the ideal functionality Frand

chooses a random r ∈ R, sets ri+1 = r − ri − ri+1 and hands each honest party Pj its share
(rj , rj−1).

To generate a sharing of a random value, the parties work similarly to generating correlated
randomness:

1. Setup step: each party Pi chooses an random key ki ∈ {0, 1}κ and sends it to Pi+1.

2. Computing the correlated randomness: Upon request, each party computes αi = Fki(id)
and αi−1 = Fki−1

(id) (where id is some public counter that was agreed upon and is incremented
each time). Then, it sets its share to be (αi, αi−1).

2.3.2 Fcoin - Generating Random Coins

Fcoin is an ideal functionality that chooses a random element from R and hands it to all parties.
A simple way to compute Fcoin is to use Frand to generate a random sharing and then open it.

2.3.3 Finput – Secure Sharing of Inputs

In this section, we present our protocol for secure sharing of the parties’ inputs. The protocol
works exactly as in [CGH+18]: for each input x belonging to a party Pj , the parties call Frand to
generate a random sharing JrK; denote the share held by Pi by ri. Then, r is reconstructed to Pj ,
who echo/broadcasts x − r to all parties. Finally, each Pi outputs the share Jr + (x − r)K = JxK.
This is secure since Frand guarantees that the sharing of r is correct, which in turn guarantees that
the sharing of x is correct (since adding x − r is a local operation only). In order to ensure that
Pj sends the same value x− r to all parties, a basic echo-broadcast is used. This is efficient since
all inputs can be shared in parallel, utilizing a single echo broadcast. The formal definition of the
ideal functionality for input sharing appears in Functionality 2.2.
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FUNCTIONALITY 2.2 (Finput- Sharing of Inputs)

Let S be the ideal world adversary and let Pi be the corrupted party controlled by S.

1. Functionality Finput receives inputs v1, . . . , vs ∈ R from the parties. For every j ∈ [s], Finput

also receives from S the share of the corrupted party (vj,i, vj,i−1) for the jth input.

2. For every i ∈ [M ], Finput computes vj,i+1 = vj − vj,i − vj,i−1.

3. Finput hands Pi−1 the shares {(vj,i−1, vj,i+1)}sj=1 and Pi+1 the shares {(vj,i+1, vj,i)}sj=1.

A formal description of the protocol appears in Protocol 2.3

PROTOCOL 2.3 (Secure Sharing of Inputs)

• Inputs: Let v1, . . . , vs ∈ Zq be the series of inputs; each vk is held by some Pj .

• The protocol:

1. The parties call Frand s times to obtain sharings Jr1K, . . . , JrsK.

2. For k ∈ [s], the parties run reconstruct(JriK, j) for Pj to receive rk, where Pj is the owner
of the kth input. If Pk receives ⊥, then it sends ⊥ to all parties, outputs abort and halts.

3. For k ∈ [s], party Pj sends wk = vk − rk to all parties.

4. All parties send ~w = (w1, . . . , ws), or a collision-resistant hash of the vector, to all other
parties. If any party receives a different vector to its own, then it outputs ⊥ and halts.

5. For each k ∈ [s], the parties compute JvkK = JrkK + wk.

• Outputs: The parties output Jv1K, . . . , JvsK.

For completeness, we now prove that Protocol 2.3 securely computes Finput specified in Func-
tionality 2.2.

Proposition 2.4 Protocol 2.3 securely computes Functionality 2.2 with abort in the presence of
one malicious party.

Proof: Let A be the real adversary. We construct a simulator S as follows:

1. S receives the shares (rk,i, rk,i−1) (for k = 1, . . . , s) that A sends to Frand in the protocol.

2. For every k ∈ [s], S follows the instructions of Frand to define a sharing JrkK.

3. S simulates the honest parties in all reconstruct executions. If an honest party Pj receives ⊥ in
the reconstruction, then S simulates it sending ⊥ to all parties. Then, S simulates all honest
parties aborting.

4. S simulates the remainder of the execution, obtaining all wk values from A associated with
corrupted parties’ inputs, and sending random wk values for inputs associated with honest
parties’ inputs.

5. For every k ∈ [s] for which the kth input is that of the corrupted party Pi, simulator S sends
the trusted party computing Finput the input value vk = wk+rk and the corrupted party’s share
of vk.
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6. S outputs whatever A outputs.

The only difference between the simulation by S and a real execution is that S sends random
values wj for inputs associated with honest parties’ inputs. However, by the perfect secrecy of
secret sharing, this is distributed identically to a real execution.

2.3.4 Fvrfy- Verifying Correctness of Messages in the Multiplication Protocol

We now define an ideal functionality to verify that the messages sent in the execution of the
multiplication protocol are the correct messages according to the protocol’s instructions, given
each party’s inputs. Recall that in our multiplication protocol, each party Pi sends one message zi
to Pi+1. Given Pi’s input shares (ui, ui−1) and (vi, vi−1) and its randomness αi, let

c(ui, ui−1, vi, vi−1, αi, zi) = ui · vi + ui · vi−1 + ui−1 · vi + αi − zi.

We need to ensure that
c(ui, ui−1, vi, vi−1, αi, zi) = 0. (1)

Observe that the input to c is distributed among Pi−1 and Pi+1. Specifically, ui, vi, zi are known
to Pi+1, ui−1, vi−1 are known to Pi−1 and ρi, αi−1, which are held by Pi+1 and Pi−1 respectively,
determine deterministically the value of αi, since αi = ρi−ρi−1 (see Section 2.1.1). We use this fact
to define the ideal functionality Fvrfy, which receives the shares on the input wires, the randomness
and the sent/received message from the honest parties, and checks that Eq. (1) holds. This is
formalized in Functionality 2.5.

FUNCTIONALITY 2.5 (Fvrfy- Verify Correctness of Messages)

Let S be the ideal world adversary and let Pi be the corrupted party controlled by S. Fvrfy receives
an index j and a parameter m ∈ Z from the honest parties. Then:

• If Pj is an honest party, then Fvrfy receives from Pj its input (uk,j , uk,j−1, vk,j , vk,j−1, αk,j , zk,j)
for each k ∈ [m].
If i = j + 1, then Fvrfy receives ρk,j−1 for each k ∈ [m] from the honest Pj−1 and hands S the
input of Pi, i.e., (uk,j , vk,j , αk,j + ρk,j+1, zk,j) for each k ∈ [m].
If i = j − 1, then Fvrfy receives ρk,j for each k ∈ [m] from the honest Pj+1 and hands S the
input of Pi, i.e., (uk,j−1, vk,j−1, ρk,j − αk,j) for each k ∈ [m].
Then, S sends Fvrfy the command abort or accept, which is handed by Fvrfy to the honest parties.

• If Pj is the corrupted party (i.e., i = j) then Fvrfy receives (uk,i, vk,i, zk,i, ρk,i) from Pi+1 and
(uk,i−1, vk,i−1, ρk,i−1) from Pi−1 for each k ∈ [m].
Then, Fvrfy checks for each k ∈ [m] that

c(uk,i, uk,i−1, vk,i, vk,i−1, αk,i, zk,i) = 0

where αk,i = ρk,i − ρk,i−1.
In addition, Fvrfy hands uk,i, uk,i−1, vk,i, vk,i−1, ρk,i, ρk,i−1, zk,i to S.
If the equality does not hold for each k ∈ [m], then Fvrfy sends abort to the parties. Otherwise,
upon receiving a command abort or accept from S, Fvrfy hands it to the honest parties and
halts.
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Observe that the functionality checks the correctness of many multiplications at the same time.
Concretely efficient protocols for this functionality, with sublinear communication in the number
of verified multiplications, will be presented in Sections 4 and 7.

3 The Main Protocol

In this section we present our framework to compute an arithmetic circuit over a finite ring R.
The protocol utilizes the ideal functionalities (Finput,Fvrfy) defined in the previous section and is
described in Protocol 3.2. (We will later instantiate Fvrfy for rings R that are either a finite field
F or integer rings of the form Z2k ; however, the general framework applies over any finite ring
R.) The protocol works naturally by having the parties run the semi-honest protocol and then,
before reconstructing the outputs, calling the Fvrfy functionality to detect any cheating during the
execution.

We state the security features of our protocol in the following two theorems.

Theorem 3.1 (Information theoretic-security) Let R be a finite ring and let f be a 3-party
functionality computed by an arithmetic circuit C over R. Suppose that the correlated random-
ness for the multiplication protocol (as specified in Section 2.1.1) is generated perfectly. Then,
Protocol 3.2 computes f with perfect security with abort in the (Finput,Fvrfy)-hybrid model in the
presence of one malicious party.

Proof: Let Pi be the corrupted party and let S be the ideal world adversary. The simulation
works as follows:

1. By playing the role of Finput in the first step, S extracts the inputs of Pi and receives the shares
of Pi on each input wire.

2. S simulates the circuit emulating step. For linear gates, it computes locally party Pi’s share on
the output wire. For multiplication gates, S runs the semi-honest multiplication protocol with
the corrupted Pi in the following way: first, it chooses a random message zi−1 ∈ R and plays
the role of Pi−1 sending zi−1 to Pi. Then, it receives the message zi sent by Pi to party Pi+1.
Note that S knows the shares held by Pi on each input wire and knows the randomness that Pi
should use in the execution (since its randomness αi is computed by taking ρi− ρi−1 where ρi is
sent to Pi+1 and ρi−1 is chosen by Pi−1 as described in Section 2.1.1). Thus, S knows whether
zi is the correct message or not and so S records whether cheating took place or not. Finally, S
defines (zi, zi−1) to be the Pi’s share on the output wire.

3. S simulates the verification step by following the instructions of Fvrfy. Specifically, for proving
the correctness of message sent by honest parties, S outputs abort/accept according to Pi’s
instructions. For proving correctness of messages sent by Pi, if S recorded that cheating took
place in the previous step, then it plays the role of Fvrfy outputing abort to the parties. Otherwise,
it outputs abort/accept according to Pi’s instructions.
In any case that Fvrfy outputted abort, S simulates the honest parties aborting in the real world
execution, outputs whatever Pi ouptuts and halts.

4. S sends Pi’s inputs to the trusted party computing f to receive back the output that Pi should
obtain.

11



PROTOCOL 3.2 (Computing an Arithmetic Circuit Over Finite Fields/Rings)

• Inputs: Each party Pj (j ∈ {1, 2, 3}) holds an input xj ∈ R`.

• Auxiliary Input: The parties hold a description of an arithmetic circuit C that computes f
on inputs of length ` · 3. Let m be the number of multiplication gates in C.

• Setup: If the correlated randomness for the multiplication protocol is generated using a pseu-
dorandom function Fk, then the parties run the setup step as specified in Section 2.1.1.

• The protocol:

(a) Sharing the inputs: For each input xk held by Party Pj , party Pj sends xk to Finput.
Each party records its vector of shares of all inputs as received from Finput. If any party
received ⊥ from Finput then it sends abort to the other parties and halts.

(b) Circuit emulation: Let G1, ..., GL be a predetermined topological ordering of the gates of
the circuit. For k = 1, ..., L the parties work as follows:

– If Gk is an addition gate: Given shares JuK and JvK on the input wires, the parties
locally compute Ju+ vK.

– If Gk is a multiplication-by-a-constant gate: Given share JuK on the input wire and a
public constant σ ∈ R, the parties locally compute Jσ · uK.

– If Gk is a multiplication gate: Given shares JuK and JvK on the input wires, the parties
run the semi-honest protocol from Section 2.1.1 on JuK and JvK, and define the result
as their share on the output wire.

(c) Verification stage: Before the secrets on the output wires are reconstructed, the parties
verify that all the multiplications were carried out correctly, as follows.
For each j ∈ {1, 2, 3}, the parties send j,m, the shares of Pj on the input wires, the
messages sent by Pj and its randomness for each multiplication gate to Fvrfy.
If a party received abort from Fvrfy, then it sends ⊥ to the other parties and outputs ⊥.

(d) If any party received ⊥ in any of the previous steps, then it outputs ⊥ and halts.

(e) Output reconstruction: For each output wire of the circuit, the parties run
reconstruct(JvK, j), where JvK is the sharing of the value on the output wire, and Pj is
the party whose output is on the wire.

(f) If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥ to the other
parties, outputs ⊥ and halts.

• Output: If a party did not output ⊥, then it outputs the values it received on its output wires.

5. S simulates the reconstruction of outputs: recall that S knows Pi’s shares on each output wire
and that reconstruction of secretes towards party Pj involves each party sending their shares to
Pj . Thus, for outputs that should be revealed to an honest party Pj , S receives the shares sent
by Pi in the reconstruction procedure, and if they don’t match the shares held by Pi, then it
sends abortj to the trusted party.
For outputs that should be obtained by Pi, let v be such an output (as received from the trusted
party in the previous step) and let (vi, vi−1) be the shares of v held by Pi. Then, S computes
vi+1 = v − vi − vi−1 and send it to Pi.

Observe that until and not including the output reconstruction step, the only difference between
the simulation and real execution is in Pi’s view in the multiplication protocol. Specifically, in the
simulation the message zi−1 sent to Pi is chosen uniformly over R, whereas in the real execution
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it is computed using Pi−1’s shares of the real values and its correlated randomness αi−1. However,
since αi−1 which is used as a masking is uniformly distributed over R, then so is zi−1, exactly
as in the simulation. It remains to show that the view of Pi in the output reconstruction step is
distributed identically in both executions. However, this follows directly from the perfect secrecy
of the secret sharing scheme. This complete the proof.

Theorem 3.3 (Computational security) Let R be a finite ring and let f be a 3-party function-
ality computed by an arithmetic circuit C over R. Suppose that the correlated randomness for the
multiplication protocol is generated using a pseudorandom function Fk as specified in Section 2.1.1.
Then, Protocol 3.2 computes f with computational security with abort in the (Finput,Fvrfy)-hybrid
model in the presence of one malicious party.

Proof: The proof is identical to the the proof of Theorem 3.1 with the only exception being that
the simulator runs first the initialization step for the correlated randomness generation protocol.
Then, S knows the keys used by Pi to generate its randomness αi in each multiplication gate
and thus can compute it by himself and proceed exactly as in the proof of Theorem 3.1. The
only difference between the simulation and the real world execution is the way the message zi−1

in each multiplication gate is computed. Specifically, in the simulation it is uniformly distributed
over R, whereas in the real execution zi−1 is masked using αi−1 which is computed by taking
Fki−1

(id) − Fki+1
(id) where ki+1 is unknown to Pi. However, if the corrupted Pi can distinguish

between its view in the two execution, then by a straight forward reduction we can show that it
is possible to distinguish between a pseudo-random function and a truly random function. This
completes the proof.

Remark 3.4 (On the choice of the protocol from [AFL+16]) Protocol 3.2 takes advantage
of the simplicity of the semi-honest 3PC protocol of Araki et al. [AFL+16], where the roles of the 3
parties are totally symmetric. This gives rise to an easy implementation that minimizes the overall
communication and computation costs. However, it is possible to apply a similar methodology to
other semi-honest 3PC protocols from the literature by adapting the implementation of Fvrfy to their
message structure. For instance, using the semi-honest 3PC protocol of Katz et al. [KKW18] as
the semi-honest baseline, one would get a protocol that has similar overall costs, is slightly more
complex to describe and implement, but has the advantage of better performance in an offline-online
setting (pushing roughly 1/3 of the communication and computation to an input-independent offline
phase).

4 Instantiating Fvrfy - Proving Honest Behavior

In this section, we show how to securely compute the Fvrfy ideal functionality, building on the
approach of Boneh et al. [BBC+19].

4.1 A Protocol for Any Finite Field F

Recall that the goal of each party Pi is to prove for each multiplication gate that Eq. (1) holds.
In our solution, we construct a “verification” circuit that contains m parallel copies of the small
circuit c (recall that m is the number of multiplication gates). A naive construction of such a
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circuit will take 6m inputs x1, . . . , x6m (recall that each c circuit receives 6 inputs) and output the
concatenation of the outputs of the small c circuits.

Our construction of the circuit is however slightly different. We first define a sub-circuit g that
contains L small c circuits and so it takes 6L inputs and outputs the random linear combination of
its c circuits’ outputs. Thus,

g(x1, . . . , x6L) =
L∑
k=1

θk · c(x(k−1)6+1, . . . , x(k−1)6+6).

Letting M = m/L, we define the verification circuit G which outputs a random linear combination
of the g circuits outputs. That is,

G(x1, . . . , x6m) =
M∑
k=1

βk · g(x(k−1)6L+1, . . . , x(k−1)6L+6L)

where θk and βk are uniformly distributed over F and will be randomly chosen jointly by the parties
as explained below. Observe that the multiplicative depth of G is constant, regardless of the depth
of the circuit being evaluated by the parties. The goal of a prover Pi is to prove that the output of
G over the shared input is 0.

Our protocol has three rounds. In the first round, the prover Pi defines 6L random polynomials
with degree M by setting M + 1 points of each polynomial fj in the following way: fj(0) is chosen
randomly whereas fj(`) for ` ∈ {1, . . . ,M} is assigned by the jth input to the `th g gate. Next,
the prover Pi defines a polynomial p(·) which is defined by taking g(f1, . . . , f6L). This means that
p(`) for ` ∈ {1, . . . ,M}, is the output of the `th g gate. Note that since the degree of each f is M
and the degree of the g circuit is 2, it follows that p is a polynomial of degree 2M . The proof sent
by Pi to the other 2 parties at the end of the first round is essentially an additive secret sharing
of f1(0), . . . , f6L(0) and the coefficients of p. This clearly does not reveal any information to the
other 2 parties.

In the second and third rounds, parties Pi+1 and Pi−1 use the proof sent by Pi to validate that
the circuit G indeed outputs 0 over the input that is shared between them. To be convinced, the
parties need to verify that two properties hold:

1. The output of the circuit is 0. This can be verified by computing
∑M

`=1 β` · p(`) where β` is
randomly chosen after the proof has been sent. If p is defined correctly, then this is indeed the
sum of the outputs of all g gates which yields the output of the circuit G. Note that each party
has an additive share of the coefficients of p, but since all the operations are linear, the two
parties can compute the random linear combination using their shares of the polynomial p and
then send the result to each other.

2. For the previous check to work, the parties need to verify that p was correctly defined. This is
done by sampling a random point r, and checking that p(r) = g(f1(r), . . . , f6L(r)), where the left
side is computed using the coefficients of p. For privacy to hold here, the point r must be sampled
from F \ {1, . . . ,M}. Otherwise, the parties will learn inputs to some g gate. If the prover Pi
cheated and p is not defined correctly, then q(x) = p(x) − g(x) is not the zero polynomial and

so the probability to choose a root is bounded by degree(q)
|F|−M = 2M

|F|−M . Note again that the two
parties hold an additive sharing of the points of the f polynomials and so by applying local
linear operations on their shares, they obtain an additive sharing of p(r) and f1(r), . . . , f6L(r),
which can be exchanged to complete the check.
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To reduce communication even further, we observe that since only one party is corrupted it
suffices for one verifier (party Pi+1 in Protocol 4.1) to perform the final check in Round 3 and
decide whether to accept or abort. This follows from the fact that if the prover is corrupted then
both verifiers are honest whereas if the deciding verifier (i.e., Pi+1) is the corrupted party, then all
it can do is cause the parties to abort (but not learn any sensitive information). All the above is
formalized in Protocol 4.1.

Setting the parameters and cost analysis. Observe that the proof sent by Pi at the end of
Round 1 consists of 6L+2M+1 field elements transmitted to both verifiers. However, observe that
instead of choosing f1(0), . . . , f6L(0) randomly and secret sharing them to the verifiers, it is possible
to first choose the shares of theses values and use them to compute the values of f1(0), . . . , f6L(0).
Then, to reduce communication, we can use the well-known trick of letting Pi choose these shares
pseudo-randomly and send only a seed to the verifiers. Similarly, Pi can also derive the shares of
the remaining 2M + 1 elements from a single seed, but here only for one of the verifies. Thus,
overall, Pi sends 2M + 1 elements in the first step.

In the second round, one verifier sends 6L + 2 field elements. As this proof is executed three
times (each time one of three parties acts as the prover and the other two as the verifiers), we
conclude that overall each party sends in the verification step roughly 6L+ 2M + 3 field elements.
By setting M = L =

√
m, this is translated to 8

√
m + 3 field elements per party. The amount of

communication in this step is thus sub-linear in the size of the circuit, and so when amortized over
its size, each party sends 8√

m
field elements per multiplication gate. The overall communication per

party for computing an arithmetic circuit of m multiplication gates is thus roughly 1 field element
per multiplication.

Security proof. We prove that our protocol securely realizes the ideal functionality Fvrfy in the
Theorem 4.2. For computing the statistical error, we take into consideration that the prover can
succeed in cheating, if the random coefficients cause the output of G to be 0 (which happens with
probability 1

|F|) or, as explained above, if the point r is the root of the polynomial q(x) (which

happens with probability 2M
|F|−M ). In the proof of Theorem 4.2, we show that the two events yield

an overall cheating probability bounded by 2M+1
|F|−M , as stated in the Theorem.
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PROTOCOL 4.1 (Securely Computing Fvrfy for Finite Fields)

• Inputs: Prover Pi holds the vector (xi1, . . . , x
i
6m) such that ∀k ∈ [m]:(

xi6(k−1)+1, x
i
6(k−1)+2, x

i
6(k−1)+3, x

i
6(k−1)+4, x

i
6(k−1)+5, x

i
6(k−1)+6

)
= (ui,k, ui−1,k, vi,k, vi−1,k, αi,k, zi,k)

Pi+1 holds the vector (xi+1
1 , . . . , xi+1

6m ) such that ∀k ∈ [m]:(
xi+1
6(k−1)+1, x

i+1
6(k−1)+2, x

i+1
6(k−1)+3, x

i+1
6(k−1)+4, x

i+1
6(k−1)+5, x

i+1
6(k−1)+6

)
= (ui,k, 0, vi,k, 0, ρi,k, zi,k)

Pi−1 holds the vector (xi−11 , . . . , xi−16m ) such that ∀k ∈ [m]:(
xi−16(k−1)+1, x

i−1
6(k−1)+2, x

i−1
6(k−1)+3, x

i−1
6(k−1)+4, x

i−1
6(k−1)+5, x

i−1
6(k−1)+6

)
= (0, ui−1,k, 0, vi−1,k,−ρi−1,k, 0)

where αi,k = ρi,k − ρi−1,k.

• Auxiliary Input: All parties hold public parameters L and M .

• The protocol:

1. Round 1:

(a) The parties call Fcoin to receive random θ1, . . . , θL ∈ F.

(b) Pi chooses random w1, . . . , w6L ∈ F.

(c) Pi defines 6L polynomials f1, . . . , f6L ∈ F[x] of degree M such that for each j ∈ [6L]:

fj(0) = wj and ∀` ∈ [M ] : fj(`) = xi6L(`−1)+j

(Note that fj(`) is the jth input to the `th g gate)

(d) Pi computes the coefficients of the 2M -degree polynomial p(x) ∈ F[x] defined by p =
g(f1, . . . , f6L) (where g is as described in the text). Let a0, . . . , a2M ∈ F be the obtained
coefficients.

(e) Pi defines ~π = (w1, . . . , w6L, a0, . . . , a2M ). Then, it chooses random ~πi+1 ∈ F6L+2M+1

and defines ~πi−1 = ~π − ~πi+1.

(f) Pi sends ~πi+1 to Pi+1 and πi−1 to Pi−1.

2. Round 2:

(a) The parties call Fcoin to receive random β1, . . . , βM ∈ F and r ∈ F \ {0, . . . ,M}.
(b) Each party Pt where t ∈ {i− 1, i+ 1} does the following:

i. Parse the message ~πt as (wt1, . . . , w
t
6L, a

t
0, . . . , a

t
2M ).

ii. Define 6L polynomials f t1, . . . , f
t
6L ∈ F[x] of degree M such that for each j ∈ [6L]:

f tj (0) = wtj and ∀` ∈ [M ] : f tj (`) = xt6L(`−1)+j

iii. Compute f tj (r) for each j ∈ [6L] and ptr =
∑2M
j=0 a

t
j · rj .

iv. Compute bt =
∑M
j=1 βj ·

(∑2M
k=0 a

t
k · jk

)
.

(c) Pi−1 sends f i−11 (r), . . . , f i−16L (r), pi−1r , bi−1 to Pi+1

3. Round 3:

(a) Upon receiving the message sent from Pi−1 in Round 2, Pi+1 computes:

∀j ∈ [6L] : f ′j(r) = f i+1
j (r) + f i−1j (r), pr = pi+1

r + pi−1r and b = bi+1 + bi−1

(b) Pi+1 checks that: (1) pr = g(f ′1(r), . . . , f ′6L(r)) and (2) b = 0.
If the two equalities did not hold, then it outputs abort. Otherwise, it outputs accept.
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Theorem 4.2 Protocol 4.1 securely computes Fvrfy with abort in the presence of one malicious
party, with statistical error 2M+1

|F|−M .

Proof: We construct an ideal world simulator S for two different cases.
Case 1: the prover Pi is corrupted. In this case, S receives the inputs of Pi from Fvrfy and

so S knows the inputs of the honest parties. Thus, S can simulate exactly the role of the honest
parties in the protocol. S invokes the real world adversary to receive the proof sent by Pi to the
two other parties. S simulates Fcoin handing the point r and random coefficients to the parties and
follows the instructions of two verifiers.

If Pi was acting honestly in the execution of the main protocol and the output of the circuit c
is 0 for every multiplication gate, then S sends Fvrfy the output of the verifiers. Note that in this
case, the simulation is perfect.

In contrast, if the output of the circuit c is not 0 for some multiplication gate (meaning that the
prover has cheated in the execution), then Fvrfy outputs abort to the parties. Thus, if the honest
parties simulated by S output accept, then S outputs fail and halts.

The only difference between the simulation and the real execution is the event that S output fail.
Observe that this happens if and only if one the following events happen: (1) the random coefficients
θ1, . . . , θL were chosen such that the output of the g gates is 0 or, (2) p(r) = g(f1(r), . . . , f6L(r)) but
p(x) 6= g(f1(x), . . . , f6L(x)), or (3) if the random linear combination using β1, . . . , βM yields that
the output of the circuit G is 0. In the first and third events, the check will pass with probability
of at most 1

|F| (as each random coefficient is uniformly distributed over F). In the second event, the

polynomial q(x) = p(x) − g(f1(x), . . . , f6L(x)) is not the zero polynomial. Recall that the degree
of p(x) is 2M and thus so is the degree of q(x). Since r is chosen uniformly from F \ {0, . . . ,M}
and there are at most 2M roots for q(x), the probability that the check passes and the fail event
occurs in this case is bounded by 2M

|F|−M .
Observe that the θ coefficients are known before the proof is sent, whereas the β coefficients are

being chosen only after the proof is sent. Thus, if the first event occurs, then the prover knows that
it succeeded in cheating before generating the proof, which means that it can act honestly from now
on. On the other hand, when the first event does not occur, the prover needs to decide whether
to cheat in the generation of the polynomial p or to hope that the third event will happen. Since

2M
|F|−M ≥

1
|F| , the prover will clearly prefer to cheat in the proof. Overall, we have that the success

cheating probability is bounded by 1
|F| + (1 − 1

|F|)
2M
|F|−M < 2M+1

|F|−M , which is exactly the statistical
error of the protocol .

Case 2: the prover Pi is honest. In this case, the simulator S receives the inputs known
to the corrupted verifier Pi but it needs to simulate the protocol execution without knowing the
prover and the other verifier’s inputs. Thus, S simulates Fcoin handing θ1, . . . , θL ∈ F to the
parties and then it chooses a random π′ ∈ F6L+2M+1 and hands it to the real world adversary
as the message sent by the prover Pi. Then, it simulate the ideal functionality Fcoin handing a
random point r ∈ F \ {0, . . . ,M} and coefficients β1, . . . , βM ∈ F to the parties. Since S knows the
corrupted party’s inputs, it can compute now the message that should be sent by the corrupted
party f ′1(r), . . . , f ′6L(r), p′r, b

′. If Pi−1 is the corrupted party and so it only sends its message at the
end of Round 2 to the honest Pi+1 who decides whether to accept or not, then upon receiving the
message, S can tell whether the honest Pi+1 will abort or accept by comparing it to the message
that should have been sent. We conclude that in this case the simulation is perfect.

Otherwise, Pi+1 is the corrupted party and thus S needs to simulate the message sent by
the honest verifier Pi−1. Thus, to compute the message sent by the Pi−1, it chooses random
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f ′′1 (r), . . . , f ′′6L(r) ∈ F, computes

gr = g
(
(f ′1(r) + f ′′1 (r)), . . . , (f ′6L(r) + f ′′6L(r))

)
and set p′′r = gr − p′r. Finally, it sets b′′ = −b′ and hands the message f ′′1 (r), . . . , f ′′6L(r), p′′r , b

′′

to adversary as the message sent by the honest verifier Pi−1. Then, it waits for the adversary
controlling Pi+1 to output accept or abort and hand its output to Fvrfy.

We claim that the view of the adversary in the simulation is distributed identically to its view in
the real execution. First, observe that this follows immediately for the message sent by the prover
at the end of Round 1 due to the perfect secrecy of additive secret sharing. Next, observe that
fk(r) for each k ∈ [6L] can be written using Lagrange coefficients λ0(r), . . . , λM (r) in the following
way:

fk(r) = λ0(r) · fk(0) +
M∑
`=1

λ`(r) · fk(`).

Now, since r /∈ {0, . . . ,M} it follows that λ0(r) 6= 0. Thus, using the fact that fk(0) is distributed
uniformly and independently over F, we obtain that fk(r) is also uniformly distributed over F.
Thus, the distribution of f ′′1 (r), . . . , f ′′6L(r) is exactly as in the real execution. Since gr is computed
as in a real execution on f ′1(r), . . . , f ′6L(r) and f ′′1 (r), . . . , f ′′6L(r), it is also distributed the same.

Finally, we claim that in both executions b′′ is uniformly distributed over F under the constraint
that b′ + b′′ = 0. This follows by definition for the simulation. In the real execution, recall that

b′′ =
∑M

j=1 βj ·
(∑2M

k=0 a
′′
k · jk

)
where all βjs are public random and all a′′ks are uniformly distributed

over F as they are random shares of the the polynomial p’s coefficients. Thus, the distribution is
again the same. We conclude that in this case, the simulation is perfect. This concludes the proof.

We remark that when using the optimization described above to reduce communication, where
the prover just sends random seeds from which pseudo-random shares are derived, we obtain com-
putational security. The proof is identical to the proof of Theorem 4.2, with an additional step
where it is shown by a reduction that if it is possible to distinguish between the transcript when
true randomness is used and the transcript when pseudo-randomness is used with non-negligible
probability, then this can be used to distinguish between random and pseudo-random functions
with the same probability.

Remark 4.3 (Recomputable verification) Note that Protocol 4.1 satisfies the following “re-
computable verification” property. For prover Pi, each verifier party Pt, t ∈ {i− 1, i+ 1}, sends a
single message in the protocol, which is computed as a deterministic function vt = VMsgt(πt, xt, pub)
of the messages πt sent from Pi to Pt, the input xt and values pub that are publicly known by
all parties. More explicitly, the message of Pt (described in Round 2 (c)) depends determinis-
tically on the prover’s message ~πt, its inputs to the protocol ~xt, and the public random coins
θ1, . . . , θL, β1, . . . , βM , r received from Fcoin. Since the inputs of each verifier are known to the
prover, this in particular means that the prover himself can recompute the expected message of each
verifier. This property (and the notations VMsgt, πt, xt, pub) will be leveraged later in Section 5,
when obtaining full security.
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4.2 Extending the Protocol to the Ring Z2k

In this section, we show how our protocol can work over the ring Z2k . This is of importance since
arithmetic in the hardware of modern computers is done modulo 2k unlike field operations.

The main problem of extending our protocol to rings is that elements may not have an in-
verse, preventing polynomial interpolation. The idea behind our solution is to work over the ring
Z2k [x]/f(x), i.e. the ring of all polynomials with coefficients in Z2k working modulo a polynomial
f that is of the right degree and irreducible over Z2. As we will see, this will enable us to define
enough points on our polynomials which allows interpolation.

Before proceeding we define some notations for this section. Given a polynomial g(x) ∈ Z2k [x],
we denote by g2 the polynomial obtained by reducing each coefficient of g modulo 2. We say that
an element a in a ring R is a zero divisor if there exists b ∈ R such that a · b = 0. In contrast, a is
called a unit if it has a multiplicative inverse. It is easy to see that in a finite ring any element is
either a zero divisor or a unit.5

In the following claim we prove a useful property of the ring Z2k [x]/f(x).

Claim 4.4 Let f(x) ∈ Z2k [x] be a polynomial of degree d such that f2(x) is irreducible over F2.
Then, any g(x) ∈ Z2k [x]/f(x) is a unit if and only if g2(x) 6= 0.

The proof appears in Appendix A.
Recall that in our protocol we need to interpolate a polynomial p(x) of degree 2M . This means

that we need to define 2M + 1 points (α0, p(α0)), . . . , (α2m+1, p(α2m+1)) satisfying the property
that for each i, j such that i 6= j it holds that αi − αj is a unit. From Claim 4.4 it follows that we
can choose the elements α0, . . . , α2M+1 from the set of polynomials over Z2k with each coefficient
being in {0, 1}. If 2d > 2M + 1, then we will have enough elements in this set. Note that each
αi − αj is a polynomial which when reduced modulo 2 is not 0 and so by Claim 4.4 is a unit and
has an inverse.

The protocol. The protocol works as in Protocol 4.1 with two differences. First, the parties
extend the input from elements in Z2k to a vector of coefficients in Z2k [x]/f(x). This can be done
by setting the input to be the free coefficient and adding random d elements. Recall that each
input is known by two of the three parties and thus they need to choose jointly these coefficients
(for example, by agreeing on a seed from which all the randomness will be derived). The second
difference is that the parties use the elements α0, . . . , α2M+1 as defined above instead of the set
{0, . . . , 2M + 1}.

Security (sketch). Security is proved exactly as in the proof of Theorem 4.2. The only difference
is that the cheating probability of the prover and hence the statistical error of the protocol is
computed differently, since the number of roots of a polynomial defined over a ring, may be larger
than its degree. To compute this we first prove the following claim.

Claim 4.5 Let f(x) be as in Claim 4.4. Then, the number of zero divisors in Z2k [x]/f(x) is at
most (2k−1)d.

The proof appears in Appendix A.
We next show a general claim about the number of roots of a polynomial over a ring based on

its number of zero divisors.
5if ab 6= 1 for any b then there exists two different elements x, y such that ax = ay and so a(x − y) = 0 which

means that a is a zero divisor
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Claim 4.6 Let R be a commutative ring with unity, such that there are z zero divisors in R and
let g(x) be a polynomial of degree δ over R. then, f(x) has at most zδ + 1 roots in R

The proof appears in Appendix A.
Combining Claim 4.5 and Claim 4.6 we obtain that the number of roots of a degree-δ polynomial

g(x) defined over Z2k [x]/f(x) is 2(k−1)dδ + 1.
We thus can say that the probability that a cheating prover Pi can cause the two other parties

to output accept is bounded by 2(k−1)d·2M+1
2kd−M (recall that the two verifiers can query all points in

Z2k [x]/f(x) except for the points (α0, . . . , αM )).
Our result in this section is summarized in the following theorem.

Theorem 4.7 Let d be such that 2d > 2M + 1. Then, our protocol (as described in the text
above) securely computes Fvrfy with abort in the presence of one malicious party with statistical

error 2(k−1)d·2M+2
2kd−M .

Setting the parameters and concrete cost. To achieve statistical error that is sufficiently
small, it is necessary that 2d will be much larger than 2M + 1. Let γ be the smallest number for
which 2γ ≥ 2M . Then, we can write

2(k−1)d · 2M + 1

2kd −M
≤ 2(k−1)d · 2γ + 1

2kd −M
≈ 2−(d−γ)

Recall that our protocol yields sub-linear communication when we set M =
√
m, where m is

the number of multiplication gates being verified together. This allows us to derive concrete values
for d based on m. For example, if we verify m = 220 multiplication gates using our protocol, then
M = 210 and γ = 11. Thus, to achieve statistical security of 40 bits, we can set d = 51.

In terms of communication, all we are doing in the protocol is lifting each element in Z2k to a
d-degree polynomial in Z2k [x]/f(x). Thus, communication is blown up by a factor of d and so the
number of bits sent in the protocol is (6L+ 2M + 3)k · d.

As in the protocol for fields, we can set L = M =
√
m. Since d grows logarithmically with m,

we obtain that communication is sub-linear also for rings.

Remark 4.8 As an alternative to the above, it is possible to use a constant d and repeat the protocol
multiply times to achieve the desired level of security. Reducing the degree of the extension ring has
the potential to improve computation complexity. On the negative side, this comes at the cost of
increasing communication. Specifically, if d is constant and σ is the statistical security parameter,
then the number of repetitions ` is the smallest integer that satisfied the condition ` ≥ σ

d−γ (since

it is required that 1
2(d−γ)`

≤ 1
2σ ). The resulted communication cost is (6L + 2M + 3)k · d` bits sent

by each party.

5 Achieving Full Security

In this section, we present an augmented version of the 3PC protocol from Section 3 that provides
full security against 1 corruption: boosting from security with abort to achieve guaranteed output
delivery and fairness, while maintaining (amortized) 1 ring element communication per party per
multiplication gate.
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Our protocol is in the (Fbc,Fcoin)-hybrid model: i.e., assuming access to a broadcast channel
and (fully secure) coin-toss functionality. We remark that use of a broadcast channel is necessary
to achieve full security within this setting, where broadcast is not possible without setup [PSL80].
Full security of both is achievable given PKI serup [RB89]. As our protocol makes minimal use of
these functionalities—few calls, with small input size, independent of the evaluated circuit size—
any reasonable implementations of Fbc and Fcoin over PKI will suffice for ensuring the cost of their
execution is dominated by other costs.

While player elimination techniques can often be used for upgrading from security with abort
to full security (see [IKP+16] for a general result along these lines), these techniques are inefficient
when applied to protocols for general circuits. An efficient general compiler was given in [DOS18]
that converts a rich class of protocols (including ours) from security with abort to the stronger
notion of fairness, where either all parties learn the output or none do. However, while the compiler
provides small concrete overhead, it does not provide a solution for full security; i.e., guaranteed
output delivery. This means that any single party can mount a denial-of-service attack without
being identified.

To bridge the gap from fairness to full security, there must in particular be means for identifying
an honest party in the case of premature abort. This is a not a straightforward task (even given
broadcast), as the identification must be done while preserving privacy. As we show, this is precisely
what our Fvrfy instantiation achieves.

In what follows, we present the fully secure protocol directly with respect to the particular
protocol Πf as in Protocol 3.2, and protocol Πvrfy implementing Fvrfy as in Section 4. However,
the blueprint can be extended to comparable building blocks, when the following properties are
satisfied:

• The protocol Πvrfy realizing Fvrfy satisfies recomputable verification: namely, each verifier sends a
single message, calculated as a deterministic function VMsgt(πt, pub) of messages from the prover
πt and public values pub. In particular, this means that the prover himself can recompute the
expected message of each verifier. As observed, this property holds for our protocol Πvrfy (see
Section 4.1, Remark “Recomputable verification.”)

• The protocol Πf for computing f with security with abort has the property that the final messages
in the protocol are robust, in the sense that each party Pi expects to receive identical messages
from Pi−1 and Pi+1. In particular, this means the final output can be reconstructed from just
the final message of one honest party.
Note that robustness holds for our Protocol 3.2, as the final-round messages are parallel executions
of the reconstruct(JwK, i) procedure on replicated secret shares, wherein parties Pj−1, Pj+1 send
their (identical) share values wj+1 to Pj (see Section 2.1).

High-level protocol description. Recall the challenge is in guaranteeing output delivery in
cases where adversarial behavior would cause an abort in the protocol Πf . As common, we devise
means for parties in the face of adversarial behavior to identify and agree upon a party who must
necessarily be honest (and thus can act as trusted party). In particular, our primary task is to
provide an arbitration procedure for the case when a party Pi’s proof is rejected by a verifier
Pi−1, Pi+1 in the verification procedure Πvrfy. Such rejection can be caused by an invalid proof
from corrupted Pi, or malicious acts of a corrupt verifier. Note that in the circuit-emulation phase
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no abort can occur; nevertheless, an abort during this phase could be resolved by jumping to this
verification step, requiring the parties to justify their behavior (in zero knowledge) up to this point.

We observe that the recomputable verification property of Πvrfy allows for a simple procedure
for an honest prover Pi to identify and accuse a malicious verifier. The verifiers now each broadcast
their respective message from Πvrfy; the prover Pi can then recompute and check whether each
message is as expected. The length of the messages that the verifier broadcasts is sublinear in the
circuit size, o(|C|), and one can further compress for concrete optimization via a few modifications
and collision-resistant hashing.

The final challenge is to reconstruct the output in the case that all 3 parties’ proofs are accepted
(if any is rejected we are in the case addressed above), but where a corrupt party withholds or sends
a malformed final message. Here we rely on the robustness of the final messages in Πf . Since each
honest party will send his final messages correctly, this guarantees that each party will in fact be
able to reconstruct the correct output; however, this may be indistinguishable from a malicious
output derived from a malicious final message. To identify which output is correct, we add a MAC
for each party, and run the underlying protocol on an augmented authenticated functionality f ′

that accepts the original party inputs xi as well as MAC keys si, and computes f as well as MACs
on the output value with respect to the 3 corresponding keys.

A complete description is given as Protocol 5.2. Leveraging pseudorandomness for share com-
pression as in Section 3, we obtain the following theorem.

Theorem 5.1 (Fully Secure 3PC) Let R be a finite field, or ring R = Z2k . Then, for any R-
arithmetic circuit C with o(|C|) output wires, there exists a 3-party protocol for computing C in the
(Fbc,Fcoin)-hybrid model, with the following features:

• The protocol makes black-box use of any pseudorandom generator.

• The protocol is computationally secure, with guaranteed output delivery against one malicious
party.

• The communication complexity is |C|+ o(|C|) elements of R per party, in addition to a constant
number of calls to Fcoin and Fbc on messages of length o(|C|), where |C| denotes the number of
multiplication gates in C.

A proof for the above theorem can be found in Appendix B.
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PROTOCOL 5.2 (Fully Secure 3PC)

• Inputs: Each party Pj (j ∈ {1, 2, 3}) holds an input xj ∈ R`.

• Auxiliary Input: The parties hold a description of an arithmetic circuit C that computes f
on inputs of length ` · 3.
Let MAC = (MAC.Gen,MAC.Tag,MAC.Verify) be an information theoretic one-time MAC.
We denote by Πf the underlying protocol with security with abort (Protocol 3.2) executed for
function f .

• The base protocol:

1. Input sharing & circuit emulation: Each party samples a random MAC key, si ←
MAC.Gen(1λ), for desired (statistical) security parameter λ. Execute as in Πf ′ , for the mod-
ified function f ′((x1, s1), (x2, s2), (x3, s3)) = (y := f(x1, x2, x3), (MAC.Tag(y, si))i∈{1,2,3),
where each party Pi uses input pair (xi, si). If at any point during this phase a party
Pi reaches abort, he instead broadcasts via Fbc “inconsistent,” and all parties skip to the
Verification stage.

2. Verification stage:

(a) Begin as in Πf ′ : For each prover j ∈ {1, 2, 3}, the parties execute protocol Πvrfy realizing
Fvrfy, with input j, the shares of Pj on the input wires, the messages sent by Pj and
its randomness for each multiplication gate.
For each prover j ∈ {1, 2, 3} and verifier t ∈ {j − 1, j + 1}, denote Pt’s verifier message
by vt,j (see notation from the text, or Remark 4.3), and Pt’s output bit by Acceptt,j
(indicating whether Pt accepted the proof of Pj).

(b) Each party Pt, t ∈ {1, 2, 3}, broadcasts the tuple (vt,t−1,Acceptt,t−1, vt,t+1,Acceptt,t+1).

• Determining outputs:

1. Output reconstruction, if ∃ rejection:
Let i ∈ {1, 2, 3} be the minimal rejected prover index, i.e. for which (Accepti−1,i ∧
Accepti+1,i) = 0.

(a) Pi accuses: Party Pi identifies whether a party acted maliciously during verification by
recomputing the expected verifier messages. If for t ∈ {i−1, i+1} the received message
vt,i is not equal to the expected value vt,i 6= VMsgt(πt, xt, pub) (see notation from the
text, or Remark 4.3) then Pi selects one such t and broadcasts “Accuse Pt.”

(b) Send inputs to honest party: Let j∗ ∈ {i− 1, i+ 1} be the minimal index that was not
accused in the previous step. (Note that all parties agree on j∗ since Pi’s accusation is
broadcast.) Each party Pj , j ∈ {1, 2, 3} sends his input xj directly to party Pj∗ .

(c) Honest party computes: Party j∗ evaluates f on the received inputs, and sends the
output y to all parties.

2. Output reconstruction, if 6 ∃ rejection:

(a) Each party sends the final reconstruction message as per Πf ′ . Denote the message from
Pi to Pj , for i 6= j ∈ {1, 2.3}, by msgi,j .

(b) Each Pi, i ∈ {1, 2, 3}: Perform the following to output.

– Reconstruct the final output values y′t for t ∈ {i − 1, i + 1}, induced by msgt,i
(by the assumed final-round robustness property of Πf ′ ; see text). Parse each as
y′t = (yt, σ

1
t , σ

2
t , σ

3
t ).

– Verify tag: For t ∈ {i− 1, i+ 1}, if 1 = Verify(yt, σ
i
t, si), then output yt.

Otherwise, output fail.
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Concrete complexity. Consider the sources of communication and computation overhead of the
fully secure protocol, with respect to the underlying protocol Πf for security with abort:

1. The overhead of computing authenticated f ′ in the place of f . For arithmetic circuits over a finite
field R = F, the information theoretic MAC can be instantiated by taking MAC.Tag(y, (a, b)) =
y ·a+ b over F, providing small soundness error |F|−1. In such case, the augmented functionality
f ′ requires 6 additional input gates (2 MAC key elements per party) and 3 additional multiplica-
tion gates over F per output gate. For arithmetic computations over a ring R = Z2k , this MAC
provides only soundness error 1/2, and thus must be amplified with a statistical security pa-
rameter many independent copies λ. This in turn increases communication by 3λ Z2k -elements
per party, accounting for the extra Z2k multiplications to be securely computed. However, we
emphasize that the MAC must be securely computed and communicated only once per party per
output wire, in contrast to prior approaches in this setting that require MAC values exchanged
for every multiplication (e.g., [CGH+18]). In particular, for circuits with small output size, the
amortized per-party communication per multiplication gate is not affected.

2. Broadcast of verifier messages vt,t′ within the Verification stage (as opposed to sending over
a private channel). We describe the protocol with this direct broadcast step for simplicity of
description and security analysis. (Since the size of vt,t′ is sublinear in |C|, this does not affect
the amortized communication cost.) In practice, however, one may replace the broadcast of vt,t′

with a collision-resistant hash h(vt,t′), and communicate the full vt,t′ only to the other verifier
via point-to-point channels (as in the underlying protocol Πf ). Arbitrating a dispute in this
case requires an additional step, wherein an honest verifier can accuse the other verifier of acting
maliciously. It will always be the case that (a) if a verifier party acts maliciously he will be
accused (either by prover or second verifier), and (b) if an accusation is made, either the accuser
or the accused must be corrupted.

3. In the case of prover rejection: An additional broadcast of “Accuse Pt” message, plus commu-
nication of parties’ inputs to the identified honest party Pj∗ . However, this communication is
minimal, and is in anyway in place of the final messages of Πf .

6 Performance Evaluation

In this section, we provide a full evaluation of our protocol, including benchmark results for the
computational effort in the verification step. For simplicity, we consider in this section only the
initial protocol, which is only secure with abort. Throughout the section we assume that M =
L =

√
m (where m is the number of multiplication gates in the circuit), in order to have minimal

communication overhead.
Recall that our protocol consists of two steps. First, the parties compute the circuit using a

semi-honest protocol and then the parties run the verification step.

Communication cost. In the circuit evaluation each party needs to send one ring/field element
per multiplication gate. Recall that the verification protocol is executed three times in parallel, each
with one of the parties being the prover. Thus, when computing a circuit with m multiplication
gates over a large field the overall communication per party is

m+ 8
√
m+ 3 field elements.
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In contrast, when the computation is carried out over the ring Z2k the overall communication per
party is

m · k + (8
√
m+ 3) · k · d bits

where d is the degree of each element in the extension ring, and is determined by the statistical
security required.

Thus, per one gate the amortized cost is roughly one ring/field element, exactly as in the
semi-honest protocol.

Computation cost. The semi-honest protocol requires only few simple operations per gate. As
shown in [AFL+16, ABF+17, CGH+18] it has the ability to process more than a million multipli-
cation gates per second (for Boolean circuits this increases to over one billion gates per second),
thus achieving a very high throughput. The main question is therefore how will the verification
step perform.

We now take a deeper look into the verification protocol. Recall that in the first step, the
proving party defines 6

√
m polynomials f1, . . . , f6

√
m of degree

√
m and then uses them to define

a polynomial p(x) of degree 2
√
m defined by taking p = g(f1, . . . , f6

√
m). We observe that only

interpolation of p is actually required. This follows from the fact that coefficients of p are then
sent to the other parties, whereas the f polynomials are only used to compute points on p. Since√
m+1 points on p are known (these include the points 1, . . . ,

√
m which correspond to the outputs

of the g gates in the verification circuit), it is required to compute
√
m additional points to enable

interpolation. This can be done by evaluating each fi on the points
√
m + 1, . . . , 2

√
m and then

computing directly p(x) = g(f1(x), . . . , f6
√
m(x)). Thus, we can use precomputed Lagrange coeffi-

cients to evaluate each fi on these points without actually interpolating it. Since we have
√
m+ 1

points on
√
m polynomials that are used to compute

√
m new points on these polynomials, this

computation is reduced to performing multiplication of two matrices, one that holds the known
points on the polynomials and one that consists of constant Lagrange coefficients, where both ma-
trices have roughly

√
m rows and

√
m columns. Clearly this is the main computational effort of

the prover in the first round, as the remaining work includes interpolation of one polynomial of
2
√
m+ 1 points and choosing an additive sharing of 2

√
m+ 1 elements.

From the two verifiers’ point of view in the second step, the main effort is evaluating each of
the f polynomials (which are “shared” between the verifiers) on a random point r. This again can
be done using Lagrange coefficients, by multiplying a vector of the known points with a vector of
Lagrange coefficients. The computational cost here is much lower than what was required in the
first round, as evaluation is done on one point only. The remaining task of each verifier includes
checking that the output of the circuit is 0, which is done by computing additive shares of the output
of each g gate and then taking a random linear combination of these. This again can be viewed as
multiplication of a vector of 2

√
m + 1 polynomial coefficients with the vector (1, x, x2, . . . , x2

√
m)

(which can be precomputed) for each x ∈ [
√
m].

The computational cost of the protocol is dominated by the number of multiplication operations,
and therefore, asymptotically, the cost is O(m

√
m) operations.

Benchmark results. To estimate the concrete efficiency of our protocol, we ran experiments
measuring the running time of each party in the verification protocol, for different numbers of
multiplication gates: 210, 211, . . . , 220. The field we used for our experiment was the 31-bit Mersenne
field, i.e. the finite field with 231−1 elements, and so we repeated the protocol twice to achieve more
than 40-bit security. The experiment was run in an AWS c5.9xlarge instance (Intel Xeon Platinum
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m 210 211 212 213 214 215 216 217 218 219 220

Time(msec) 1.0 1.4 2.6 4.8 9.8 20.7 46.4 110.1 303 809.3 2,352.1

Statistical security 2−50 2−49 2−48 2−47 2−46 2−45 2−44 2−43 2−42 2−41 2−40

Table 2: Computation time, measured in milliseconds, of the verification protocol for a single party
as a function of m - the number of multiplication gates being verified together. The field used is
31-bit Mersenne.

s
Time

(msec)
Overall Com.
(field elem.)

Com. per gate
(field elem.)

1024 1037.3 530,432 0.51

512 716.8 373,800 0.36

256 665.6 263,680 0.25

128 614.4 186,132 0.18

64 627.2 131,456 0.13

32 662.4 92,874 0.09

16 742.4 65,632 0.06

8 880.8 46,389 0.04

4 1,212 32,792 0.03

2 1,618.6 23,182 0.02

1 2,352.1 16,390 0.02

Table 3: Overall computation time and number of field elements sent when verifying m = 220 gates
for a single party, as a function of s - number of calls to the verification protocol. The field used is
31-bit Mersenne and the statistical security guaranteed is at least 40-bit.

8000 series with clock speed of up to 3.5 GHz). The results appear in Table 2. For each circuit size

we indicate the actual statistical security obtained, which is computed by taking
(

2
√
m

231

)2
.

Discussion. The verification protocol can be modified to allow a tradeoff between computation
and communication, which may be useful for large circuits. As an example, consider the circuit
with 220 gates in Table 2, for which the computation time of the verification protocol is more than
two seconds.

The idea is to split the circuit into several sub-circuits and verify each sub-circuit separately.
Specifically, assume that m gates are divided into s groups of the same size. Then, the number of
gates that are verified in each sub-circuit is m

s and so the overall communication cost of the proof
increases to

(8

√
m

s
+ 3) · s field elements,

but if the communication complexity of the whole protocol is dominated by the semi-honest part
then the larger proof may have a small impact on the overall communication. In contrast, the

computation time is reduced by a factor O(
√
s) to O(ms ·

√
m
s ) · s = O(m

√
m√
s

) operations.

To demonstrate the concrete effect of this idea, we provide a detailed analysis for a circuit
consisting of 220 gates in Table 3. In the table, we provide the overall computation time of a single
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s
Extension
Degree (d)

Overall Com.
(bits)

Com. per gate
(bits)

1024 46 12,199,936 11.63

512 47 8,784,291 8.38

256 47 6,196,480 5.91

128 48 4,467,163 4.26

64 48 3,154,944 3.01

32 49 2,275,411 2.17

16 49 1,607,984 1.53

8 50 1,159,724 1.11

4 50 819,800 0.78

2 51 591,153 0.56

1 51 417,945 0.4

Table 4: Number of bits sent when verifying m = 220 gates over a Boolean circuit for a single party,
as a function of s - number of calls to the verification protocol. The verification can be carried
out over the extension field F2d . The statistical security guaranteed is at least 40-bit. Assuming
that matrix multiplication over F2d is c times slower than matrix multiplication over Fp for a 31-bit
Mersenne prime p (or c < 1 if it is faster), the running time for each row of this table is roughly
c/2 times the running time in the corresponding row of Table 3.

party, overall communication (in field elements) and number of field elements per gate sent by each
party, for different sizes of s. As can be seen, we can verify a circuit of 220 gates in less than
a second by introducing an additional communication overhead of less than 5% of the cost when
considering only semi-honest security (this is achieved for example by dividing the gates into 8
groups, i.e., s = 8. In this case, computation time is 880.8msec and it requires sending 0.04 field
elements per multiplication gate, which is translated to 4% of the semi-honest cost). Observe that
the running times do not grow monotonically as one would expect. This is caused most likely since
running times of matrix/vector multiplication on modern processors do not scale as predicted, due
to cache misses and other architecture dependent issues. We remark that the best known result
for this setting is the protocol of [CGH+18] which requires adding 2 field elements beyond the one
field element required by the semi-honest protocol. Thus, our protocol outperforms that result even
when using this optimization.

We did not implement the version of our verification protocol for the ring Z2k . Nevertheless, we
examined the effect of doing group verification on the communication cost of the protocol. Recall
that in this protocol, each element is being lifted to an extension ring and so communication is blown
up by a factor which is the degree of the extension ring. In Table 4 we show the communication cost
measured by bits, when evaluating a Boolean circuit of 220 multiplication gates, as a function of the

parameter s. Since the statistical error of this protocol is
2
√
m/s

2d
where d is the extension degree,

we indicate in the second column the value of d for which exactly 40 bit of security is achieved.
As mentioned at the end of Section 4.2, as an alternative, it is possible to make d constant so
that all computation will be carried out on a smaller ring (for example, the field F232), and repeat
the execution several times to obtain the desired statistical security. We remark that the most
efficient protocol for Boolean circuits [ABF+17] requires sending 6 bits in addition to the one bit
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of the semi-honest protocol. As can be seen in Table 4, when dividing the gates into not-too-many
groups, our protocol stays more communication-efficient than [ABF+17] up to s = 256; this implies
a breakeven point of m/s ≈ 4, 000 gates. The question of finding the optimal balance between
computation time (which is determined by (1) the size of the batch of gates that is being verified
together and (2) the extension ring that was chosen to work with) and communication cost is highly
dependent on the underlying architecture. We thus do not attempt to give a general answer to this
question in this work.

Matrix Multiplication. As mentioned above, the main computational bottleneck is the matrix
multiplication operation performed by the prover in the first step. The size of the two matrices is
roughly

√
m/s ×

√
m/s. Thus, the largest matrix that we had to multiply in our experiment is

of size 1000 × 1000. We used a naive algorithm for this multiplication but while utilizing Intel’s
instructions for vectorization of operations to enhance efficiency. It is possible that more advanced
algorithms for matrix multiplication would further improve the results when considering large
matrices.

7 Optimizing Fvrfy through recursion

In Protocol 4.1 each party acts as a prover and sends its proof in a single round to the other
two parties who act as verifiers, and require an additional round of communication between them
to verify the proof. In this section we present a multiple-round verification protocol, which is
a fine-tuning of the recursive protocol of [BBC+19] and is more efficient in communication and
computation than the protocol of Section 4 (but requires more rounds).

Theorem 7.1 There is a protocol that securely computes Fvrfy with abort in the presence of one
malicious party, for any Boolean or arithmetic circuit over a finite field or a ring Z2k with m
multiplication gates, that for statistical error ε has logm communication rounds, requires 27 ring
multiplications for each gate in the circuit and

• in the case of Boolean circuits or circuits over a finite field, has communication complexity
1 + 4 logm field elements in a field F such that |F| ≥ 2 + 5 logm+1

ε .

• in the case of circuits over a ring Z2k , has communication complexity δ(1 + 4 logm) ring
elements for δ ≥ log

(
2 + 5 logm+1

ε

)
.

Proof: The proof of Protocol 4.1 consists of shares of a description of p and of the values of
fi(0) for all i. The verifiers then check that the output of the circuit is zero and that p(r) =
g(f1(r), . . . , fL(r)) for some random field element r.

The high level idea of the recursive proof is that the verifiers only check that the output of the
circuit is 0 and then outsource the test that p(r) = g(f1(r), . . . , fL(r)) to the prover . Therefore, in
the first round, the prover only transmits a description of p and the verifiers respond with a random
element r. In the next round, the prover proves that p(r)− g(f1(r), . . . , fL(r)) = 0. We show that
the statement that is proved in the second round has the same structure as the statement in the
first round, but the circuit in the second round has half the number of gates. Furthermore, the
verifiers hold additive sharing of the inputs to both circuits. These facts taken together allow the
proof system to continue recursively. The details follow.
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The proof is defined over a ring R which is sufficiently large to ensure soundness error ε. If the
original circuit is Boolean or over a finite field then R is a finite field F while if the original circuit
is over a ring Z2k then R = Z2k/f(x) for an irreducible polynomial f(x) of degree δ over Z2.

For the i-th multiplication gate in the circuit we defined a degree-2 relation c : R6 → R on the
six variables x6(i−1)+1, . . .,x6(i−1)+6 such that c(x6(i−1)+1, . . . , x6(i−1)+6) = 0 in an honest proof.
Define

G(x1, . . . , x6m) =
m∑
i=1

βic(x6(i−1)+1, . . . , x6(i−1)+6),

for random βi ∈ R that are derived from the shared random source of the two verifiers. If the prover
is honest then G(x1, . . . , x6m) = 0. If c(x6(i−1)+1, . . . , x6(i−1)+6) 6= 0 for some i then G(x1, . . . , x6m)
can be viewed as a (non-zero) degree-1 polynomial in the variable βi. The number of roots for such
a polynomial is at most 1 in F and 2(k−1)δ in Z2k/f(x) (Claim 4.5), and therefore the probability
that G(x1, . . . , x6m) 6= 0 is 1/|F| in the first case and 1/2δ in the second.

proving that G(x1, . . . , x6m) = 0 can be replaced by proving that

m∑
i=1

c(Ai(x1, . . . , x6m)) = A(x1, . . . , x6m)

for m+1 appropriate affine functions Ai : R6m → R6 and A : R6m → R (here A is simply identically
zero).

The prover proceeds by setting M = 2, L = 3m and by defining a gate g(x1, . . . , x3m) =∑m/2
i=1 c(Ai(x6(i−1)+1, . . . , x6(i−1)+6)). The statement to be proved can be viewed as a statement on

the sum of two g gates: g(x1, . . . , x3m) + g(x3m+1, . . . , x6m) = A(x1, . . . , x6m).
The prover constructs f1, . . . , fL by setting fi to be the lowest degree polynomial such that fi(`)

is the i− th input to the `− th g gate for ` = 1, 2. Therefore, the degree of all fi is 1. The prover
defines p = g(f1, . . . , fL) and sends additive shares of p as the proof to the other two parties.

The verifiers use shared randomness to send a random ring element r to the prover in response
to the proof. Since fi is of degree at most M − 1, computing fi(r) is possible given the M values
fi(`), ` = 1, . . . ,M . Furthermore, the computation is an affine mapping of fi(1), . . . , fi(M), with
coefficients that are only a function of r. Therefore, since the verifiers hold an additive sharing of
fi(`) for every `, and both know r, they can locally compute additive shares of fi(r) by mapping
their shares with the same affine mapping. The verifiers can similarly compute an additive sharing
of p(r).

At this point, the verifiers can check that p(M) = 0 by both parties computing a share of
p(M) and one of the parties sending its share to the other. The verifiers can optimize this step by
deferring the check to the last round. In the last round, each verifier has a sequence of logm shares:
α1, . . . , αlogm for the first and γ1, . . . , γlogm for the second, such that purportedly αj + γj = 0 for
every j. The verifiers can then use their shared randomness source to generate random r1, . . . , rlogm

and test that
∑logm

j=1 rj(αj + γj) = 0 by exchanging a single field element. If the sum of every pair
of shares is indeed zero then the test passes. If there exists a pair such that their sum is not zero
then the probability of the test passing is 1/|F| for R = F and 1/2δ for R = Z2k/f(x).

In the next round, the prover proves that g(f1(r), . . . , fL(r)) − p(r) = 0. Since the values
f1(r), . . . , fL(r), p(r) are affine functions of the inputs, this statement is exactly of the form

m/2∑
i=1

c(Bi(x1, . . . , x6m)) = B(x1, . . . , x6m)
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for appropriate affine functions B1, . . . , Bm/2, B. Therefore, the proof protocol of the first round
can be executed again, further compressing the circuit for the next round.

After logm rounds the circuit has a constant number of gates and the protocol of Section 4 is
executed completing the proof on the small circuit.

For R = F, in each round of the protocol, the soundness error is 2M+1
|F|−M due to the same argument

used to bound the soundness error of the non-recursive protocol. Taking into account the additive
1/|F| terms due to ensuring that p(M) = 0, the soundness error of the recursive protocol is at most
5 logm+1
|F|−2 . Therefore to ensure soundness error at most ε the field size must satisfy |F| ≥ 2+ 5 logm+1

ε .

For R = Z2k/f(x), in each round of the protocol the soundness error is 2M+1
2δ−M . Taking into

account the additive 1/2δ term, the soundness error of the recursive protocol is at most 5 logm+1
2δ−2

.

Therefore to ensure soundness error at most ε the polynomial degree δ must satisfy δ ≥ log
(
2 +

5 logm+1
ε

)
.

Communication cost. The verification protocol has logm rounds. In each round, the prover
Pi sends a sharing of the coefficients of the polynomial p to the two verifiers and they return a
random element r. Since the degree of p is equal to 2 in all the rounds, it can be represented by
three elements. One verifier sends another element at the end. Put together, there are 1 + 4 logm
elements sent in this implementation of Fvrfy.

Computation cost. We count the number of ring multiplications, which is the dominant factor
in the computation of both the prover and the verifier.

The main effort of the prover is to compute a new polynomial p in each round. Recall that
p is of degree 2 and that it is defined by taking p = g(f1, . . . , f6mj/2) (where mj is the number
of gates in round j). This can be carried out by evaluating each of the polynomials fi on one
more point, which requires only ring additions when the three points are carefully chosen. The
prover also computes the polynomial p, which requires evaluating g(f1, . . . , f3mj ). The gate g is
made up of mj/2 invocations of the circuit c, and each c has three multiplication gates. Therefore,
computing one point of p requires 3mj/2 multiplications, and computing the three points that
enable interpolation requires 9mj/2 multiplications. At the end of the round, the prover needs
also to evaluate each f on the challenge point r which requires one ring multiplication per fi and
3mj altogether. In total, the number of ring multiplications the server computes in the j-th round
is 15mj/2. Therefore, the prover computation across the logm rounds in which m0 = m and
mj = mj−1/2 is 15m multiplications.

For the two verifiers, the main effort in each round is to evaluate the “sharing” of each polynomial
fi on the challenge point r which requires 3mj ring multiplications. Across all rounds the verifier
computation is 6m ring multiplications.

Since in the protocol each party plays the role of the prover once and the role of the verifier
twice, the total number of ring multiplications is (2 · 6 + 15)m = 27m.

Remark 7.2 The recursive protocol as described is an interactive, multi-round protocol. The proof
can be heuristically reduced to a single round protocol via a variant of the Fiat-Shamir heuristic
[FS86] (see Section 6.2.3 of the full version of [BBC+19]). However, for protocols with logarith-
mically many rounds, there are still significant gaps in our understanding of the soundness of this
heuristic when analyzed in the random oracle model [PS00, BCS16].
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Circuit
size

Comm.
(Field el.)

Comm.
(bytes)

Comm.
(Ring ele.)

m 1 + 4 logm δ(1 + 4m)

215 61 360 2867

220 81 480 3807

225 101 600 4747

230 121 720 5808

Table 5: Overall communication for the recursion based implementation of Fvrfy as a function of
m, the number of multiplication gates in a given (Boolean or arithmetic) circuit. The statistical
security guaranteed is at least 40-bits, which requires a field of size 247 (or ring Z2k/f(x) with f(x)
of degree δ = 47) for a circuit with 215 − 225 multiplication gates and a field of size 248 (or ring
Z2k/f(x) with f(x) of degree δ = 48) for a circuit with 230 multiplication gates. Communication is
measured in field elements for arithmetic circuits over all finite fields, in ring elements for arithmetic
circuits over all rings Z2k and in bytes for Boolean circuits and arithmetic circuits over fields no
larger than 247.
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A Proofs for the Ring Protocol

In this section, we provide detailed proof for three claims presented in Section 4.2.

Claim A.1 (Claim 4.4 – restated) Let f(x) ∈ Z2k [x] be a polynomial of degree d such that
f2(x) is irreducible over F2. Then, any g(x) ∈ Z2k [x]/f(x) is a unit if and only if g2(x) 6= 0.

Proof: Assume that g2(x) 6= 0. Since f is irreducible modulo 2, there exists a(x), b(x) ∈ F2(x)
such that a(x)f2(x) + b(x)g2(x) = 1 over F2. Therefore, there exists a polynomial h(x) such that
a(x)f(x) + b(x)g(x) = 1 + 2h(x) over Z2k . Taking

A(x) = a(x)
k−1∑
j=0

(−2h(x))j and B(x) = b(x)
k−1∑
j=0

(−2h(x))j

we obtain that

A(x)f(x) +B(x)g(x) =
∑k−1

j=0(−2h(x))j(a(x)f(x) + b(x)g(x))

=
∑k−1

j=0(−2h(x))j − (−2h(x))j+1

= 1− (−2h(x))k ≡ 1 mod 2k

which means that g(x) is invertible in Z2k [x]/f(x) and so is a unit as required.
Next, assume that g2(x) = 0. Then, g(x) = 2h(x) for some polynomial h(x) and so clearly it is

a zero divisor and not a unit.

Claim A.2 (Claim 4.5 – restated) Let f(x) be as in Claim 4.4. Then, the number of zero
divisors in Z2k [x]/f(x) is at most (2k−1)d.

Proof: From Claim A.1, g(x) ∈ Z2k [x]/f(x) is a zero divisor if g2(x) = 0. This means that each
of the d coefficients of g(x) is a multiple of 2. Thus, there are at most (2k−1)d polynomials which
are zero divisors as required.

Claim A.3 (Claim 4.6 – restated) Let R be a commutative ring with unity, such that there are
z zero divisors in R and let g(x) be a polynomial of degree δ over R. then, f(x) has at most zδ
roots in R
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Proof: This is proved by induction. For δ = 1, let g(x) = a + bx and let u1, . . . un be the roots
of g(x). It follows that for each j = 2, . . . , n it holds that b(uj − u1) = 0 which means that uj − u1

is a zero divisor. Since there are z zero divisors in R, it implies that n ≤ z.
Next, assume that the claim holds δ − 1 and let g(x) a polynomial of degree δ over R. If all

the roots of g are zero divisors then the claim holds. Otherwise, there is a ring element r which
is not a zero divisor such that g(r) = 0. This implies that we can write g(x) = (x− r)h(x) where
h(x) is a polynomial of degree δ − 1. Thus, by the induction hypothesis it follows that h(x) has
z(δ−1) roots. Let u be a root of g(x) which is not a root of h(x). This means that 0 = (u− r)h(u)
and so u − r is a zero divisor. There are at most z roots which implies that g(x) has at most
z(δ − 1) + z = zδ as required.

B Proof for the Full Security Protocol

In this section, we sketch the proof of Theorem 5.1.
At a high level, simulation takes place exactly via the simulator Sf ′ of the underlying proto-

col Πf ′ , together with direct emulation of computation and communication steps of non-sensitive
information.

More formally, let Pi be the corrupted party and let S be the ideal world adversary. The
simulation works as follows:

1. S extracts the inputs of Pi (including MAC key si), and simulates the circuit emulating step,
and verification stage as in Sf ′ . (If the simulation leads to any party aborting during the circuit
emulation phase, S broadcasts “inconsistent” if relevant, and skips directly to the verification
stage on the truncated circuit.)

• For Pi prover: The messages vj,i and output bits Acceptj,i for honest verifiers j ∈ {i−1, i+ 1}
are directly computable given the proof information sent by Pi and public (already simulated)
information.

• For Pi verifier, Pj prover for some j ∈ {i−1, i+ 1}: The simulator Sf ′ produces (among other
things) messages vj′,j and output Acceptj′,j on behalf of the honest verifier party Pj′ (where
j′ ∈ {1, 2, 3} \ {i, j}), as sent to corrupt verifier Pi.

2. S simulates broadcasting all honest party values (vj,`,Acceptj,`), for each j ∈ {i− 1, i+ 1} and
` ∈ {1, 2, 3} \ {j}.

3. If any of the provers is rejected, simulate as follows.

• If Pi is the minimal rejected prover: S receives a message “Accuse Pt” for t ∈ {i − 1, i + 1},
and then receives a message x′i from Pi, directed to the third party P`.

• If Pj is the minimal rejected prover, for honest j ∈ {i − 1, i + 1}: S simulates broadcasting
“Accuse Pi,” and receives a message x′i from Pi directed to the third party P`.

S invokes the ideal f trusted party functionality on corrupt input x′i, and receives answer y. S
then simulates sending y to Pi on behalf of the selected third honest party.

4. If no prover was rejected, simulate as follows.
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• S invokes the ideal f trusted party functionality on the corrupt input xi extracted in Step 1,
and receives answer y (corresponding to the unauthenticated function output). S honestly
computes MACs on y: σi on behalf of corrupt Pi given the key si extracted in Step 1, and σj
using fresh key sj for each of j ∈ {i− 1, i+ 1}.

• Finally, S uses the output y′ = (y, σ1, σ2, σ3) together with the simulation procedure of Sf ′ to
simulate the final-message values msg′j,i of honest parties j ∈ {i− 1, i+ 1} sent to Pi.

Correctness of simulation up to the Determining Outputs phase follows directly. In the case
where no prover was rejected, correct simulation follows by robustness of the final messages in Πf ′

together with unforgeability of the MAC. For the case where a prover was rejected, it remains to
show that the party Pj∗ selected within the protocol will necessarily be an honest party. Let Pj be
the minimal-index rejected prover within the simulation.

• Case 1: Pj is corrupt (j = i). Then j∗ is honest, since the rejected prover is never selected as j∗.

• Case 2: Pj is honest (j 6= i). Then Pj ’s messages within the circuit emulation phase are honestly
consistent (i.e., he is proving a true statement), and he honestly generates and communicates
the proof to the two verifier parties. In order for such proof to be rejected, (by completeness)
the corrupt verifier must have sent an incorrect verifier message, which will be identified by the
prover Pj in the arbitration phase. In turn, the honest prover will Accuse Pi; thus, j∗ will be the
remaining party, who is necessarily honest.
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