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Abstract. The user of an imperfectly correct lattice-based public-key
encryption scheme leaks information about their secret key with each
decryption query that they answer—even if they answer all queries suc-
cessfully. Through a refinement of the D’Anvers–Guo–Johansson–Nilsson–
Vercauteren–Verbauwhede failure boosting attack, we show that an adver-
sary can use this information to improve his odds of finding a decryption
failure. We also propose a new definition of δ-correctness, and we re-
assess the correctness of several submissions to NIST’s post-quantum
standardization effort.
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1 Introduction

Imperfectly correct lattice-based encryption schemes carry risks that perfectly
correct schemes do not. Namely, whenever the decryption procedure fails it
indicates “some correlation between the secret key and the encryption randomness”
that reveals “information about the secret key” [21]. This is widely acknowledged.
And yet, if one notes that successful decryption indicates a lack of correlation in
precisely the same way, the consequence is startling: the user of an imperfectly
correct lattice-based encryption scheme leaks information about their secret key
with each decryption query that they answer. In this work, we show that an
adversary can use information from successful decryptions to improve his odds
of causing a decryption failure.

First, let us head off some objections. One might object that “[non-failing
ciphertexts] will contain negligible information about the secret” [9]. For many
schemes, we agree. However, even if a single ciphertext provides negligible infor-
mation, an adversary might submit many non-failing ciphertexts.

One might also object that the risk of imperfect correctness can be mitigated
using existing analyses. Indeed, when the Fujisaki–Okamoto transformation [13]
is applied to a δ-correct passively secure encryption scheme, the result is an
actively secure scheme with a failure probability of no more than C · δ relative to
an adversary who generates C ciphertexts [18, Theorem 3.1]. However, an overly
conservative correctness analysis can cause one to choose sub-optimal parameters.
Our analysis shows that some schemes avoid the factor C loss of correctness, and
this may lead to better parameters.



More on this final point. When selecting parameters for a lattice-based
encryption scheme, there are trade-offs between size, security, and correctness. In
NIST’s post-quantum standardization effort, we see many schemes with similar
size and security but different correctness [3]. An accurate and concrete assessment
of correctness will enable a fair comparison of the candidates.

Contributions. Our main contributions are: 1) a refinement of the D’Anvers–
Guo–Johansson–Nilsson–Vercauteren–Verbauwhede failure boosting attack [5];
and 2) a new definition of correctness that is tailored for de-randomized encryption
schemes. We also provide software1 to calculate the correctness of FrodoKEM [21],
Saber [6], Kyber [25], and (some parameter sets of) Round5 [14]. We partially
validate our calculations with experiments on FrodoKEM.

Our refinement of failure boosting. We focus on the Lindner–Peikert en-
cryption scheme [19], as it underlies all of the imperfectly correct lattice-based
public-key encryption schemes that have been submitted to the second round of
NIST’s post-quantum project. The correctness condition of these schemes can be
stated as

−t ≤ 〈s, e〉 ≤ t (1)

where s is a vector related to the secret key, e is a vector related to the ciphertext
randomness, and t is a system parameter.

A key observation is that if Equation (1) is satisfied for some e, then it is
likely to be satisfied for all e′ that are close to e. One can quantify the overlap
between queries and, in doing so, show that a sequence of queries that have small
overlap are more likely to cause a decryption failure than a sequence of queries
with large overlap. We depict this in Figure 1 and make it precise in Section 4.

When attacking a de-randomized encryption scheme, e.g. one that uses the
Fujisaki–Okamoto transformation, the adversary needs the help of a random
oracle to generate a valid ciphertext. The adversary does not have direct control
over the coefficients of e. In a failure boosting attack, the adversary improves
his odds of triggering a decryption failure by searching for values of e that are
“atypically large” [21] or of “above-average norm” [25].

More precisely, the failure boosting adversary generates ciphertexts c(i),
1 ≤ i ≤ C, with the help of the random oracle, and selects Q ≤ C ciphertexts to
query. Previous analyses of failure boosting [9, 16, 5] assume that the adversary
decides whether or not to query c(i) by looking only at a single c(i). In contrast, we
allow the adversary to condition his decision to query c(i) on the other ciphertexts
that he has submitted or that he intends to submit.

Our focus here is on finding one decryption failure. After observing a de-
cryption failure, the adversary should switch to a different strategy such as the
recently proposed directional failure boosting of D’Anvers, Rossi, and Virdia [7].
We will not discuss the process of estimating the secret from a collection of

1 https://jmschanck.info/code/20191202-decfail.tar.gz
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Fig. 1: A user who successfully decrypts ciphertexts c(1), . . . , c(7) reveals that their
secret, s, does not lie in the blue region. The ciphertext randomness determines
the points εi := e(i)/‖e(i)‖2. The cap angle θi is determined by ‖e(i)‖2 and ‖s‖2.
The probability that a further query, c(8), causes a decryption failure depends on
the extent to which the cap of angle θ8 about ε8 intersects the blue region.

failures. For further background on failure boosting, and reaction attacks on
lattice-based schemes more generally, see [8, 16, 5].

Correctness definition. We propose an alternative definition of δ-correctness
to the one by Hofheinz–Hövelmanns–Kiltz [18]. The correctness experiment in [18]
provides the adversary with the secret key. In contrast, our correctness experiment
provides the adversary only with the public key and a decryption oracle, and
can therefore be run inside an IND-CCA experiment. More importantly, our
definition allows a more fine-grained analysis of the impact of adaptive decryption
queries on de-randomized encryption schemes. We give our formal definition in
Section 3.

2 Preliminaries

Notation. For a finite set X we write x←$ X to say that x is sampled uniformly
from X . For a distribution χ on X , we write x ← χ to say that x is sampled
according to χ. We denote the joint distribution of x ← χ1 and y ← χ2 by
χ1×χ2. If χ1 and χ2 are distributions on an abelian group, and (x, y)← χ1×χ2,
then we denote the distribution of x + y by χ1 ∗ χ2 where (χ1 ∗ χ2)(z) =∑
w∈X χ1(w)χ2(z − w).

2.1 Lindner–Peikert encryption scheme

The Lindner–Peikert scheme [19] is a passively secure public-key encryption
scheme based on the learning with errors (LWE) problem [24]. It obtains smaller



keys and ciphertexts than earlier LWE encryption schemes [24, 15] by using the
LWE hardness assumption twice in its security reduction.

Parameters. The system parameters are (R, q, k, χs, χe, χe′) where R is the base
ring, q is the integer modulus, k is the R-module rank, χs and χe are probability
distributions supported on Rk, and χe′ is a probability distribution supported on
R. The base ring must have the additive structure of Zm for some positive integer
m. The Z-module rank, or dimension, of the system is n = km. We refer to χs
as the secret distribution, and to χe and χe′ as the error distributions. Another
important derived parameter is the error threshold t, cf. Section 4.

Rings. Commonly used base rings are R = Z and R = Z[x]/(xm + 1) with
m a power of two. In the latter case, we view elements of R as vectors in Rm
by expressing them over the power basis {1, x, x2, · · · , xm−1}, i.e. we use the
coefficient embedding. We identify the power basis with the standard basis of
Rm. For a ∈ R, we write ‖a‖1 =

∑
i

∣∣〈xi, a〉∣∣, ‖a‖2 =
√
〈a, a〉, and ‖a‖∞ =

maxi
∣∣〈xi, a〉∣∣. For elements a = (a1, . . . , ak) and b = (b1, . . . , bk) of a rank k

module over R we write 〈a, b〉 = 〈a1, b1〉+ · · ·+〈ak, bk〉. We write r̄ for the adjoint
of the “multiplication by r” map, i.e. 〈a, rb〉 = 〈r̄a, b〉. With R = Z we have r = r̄.
With R = Z[x]/(xm + 1) we have that r̄ is the image of r under x 7→ −xm−1.

Message encoding. The message space is a subset of R that is defined by maps
encode and decode. These maps must satisfy decode(encode(m)) = m for all bit
strings m in the domain of encode. A typical choice for a plain LWE system is
encode : {0, 1} → Z and decode : Z → {0, 1} with encode(m) = m · bq/2c and
decode(m) = {0 if |m mod q| ∈ [0, q/4); 1 otherwise}. We call this the standard
encoding. Observe that decode(encode(m) + δ) = m if |δ| < q/4, so we say that
the standard encoding has an error threshold of t = q/4. The standard b-bit
encoding is defined similarly: it divides [0, q/2) into 2b intervals and has an error
threshold of q/2b+1. Elements of {0, 1}b·m can be encoded into elements of R by
extending the standard b-bit encoding component wise on the power basis.

Algorithms. The key generation, encryption and decryption routines of the
passively secure encryption scheme are as follows.

– Keygen(): Sample a k×k matrix A with each coefficient chosen independently
from the uniform distribution on R/q. Sample k × 1 vectors s1 and s2
independently from χs. Compute b = (s1 − As2) mod q. The public key is
(A, b). The secret key is (s1, s2).

– Encr (m, (A, b)): Sample 1×k vectors e1 and e2 independently from χe. Sample
e3 from χe′ . Compute the ciphertext (c1, c2) with

c1 = (e1A+ e2) mod q, c2 = (e1b+ e3 + encode(m)) mod q.

– Decr ((c1, c2), (s1, s2)): To decrypt (c1, c2) using the secret key (s1, s2), let
v = (c1s2 + c2) mod q and output decode(v).



3 Correctness in an adaptive setting

The Hofheinz–Hövelmanns–Kiltz (HHK) definition of δ-correctness (Definition 2
in Appendix A.1) involves an expectation over keys and ciphertexts. Care must
be taken when the key is fixed (as in an IND-CCA setting) or when the ciphertext
is determined by the message (as in a de-randomized encryption scheme). For
de-randomized schemes that use a random oracle G during encryption, HHK
define a notion of δ(qG)-correctness which is stated in terms of the number of
queries qG that the adversary makes to G. They prove that a δ-correct scheme
that is de-randomized using their T transformation has a correctness error of
δ(qG) ≤ qG · δ [18, Theorem 3.1].

The loss of correctness caused by de-randomization is often ignored in practice.
For example, the authors of the FrodoKEM NIST submission correctly calculate
the one-shot correctness (the probability of decryption failure for a random key
and random ciphertext) of their IND-CPA PKE [21, Section 2.2.7]. They note
that the one-shot correctness is equal to the δ-correctness [21, Equation 2]. They
then apply the T transformation and claim that the correctness of the resulting
IND-CCA PKE is equal to the one-shot correctness of the underlying IND-CPA
PKE [21, Section 2.2.10]. This claim is not justified.

And yet, a full factor qG loss of correctness does not seem realistic. To address
this, we propose the following alternative to the δ(qG)-correctness. This definition
restricts the adversary’s time, t, and the number of decryption queries, qd, that
he makes.

Definition 1 (δ(qd, t)-correctness for PKEs). Let P be a de-randomized PKE
against a (classical or quantum) adversary A making at most qd (classical) queries
to its decryption oracle D and running in time t. We say that P is δ(qd, t)-correct
if

Pr[COR-adAPKE → 1] ≤ δ(qd, t),

where the correctness game COR-ad is defined in Figure 2.

In contrast to the HHK correctness experiment (COR in Figure 2), our
correctness experiment (COR-ad in Figure 2) does not provide the adversary
with the user’s secret key, and can be run as part of the IND-CCA security
experiment2 In this case we call it COR-ad-CCA.

It is important to note that running COR-ad-CCA inside the IND-CCA exper-
iment does not change the power of the IND-CCA adversary; in particular, the
number of decryption queries q′d in COR-ad-CCA is no more than the number of
decryption queries qd in IND-CCA. As such, one can obtain an upper bound on
the IND-CCA security of a scheme given the δ(qd, t)-correctness of a scheme and
an attack that violates IND-CCA security using decryption failures.

2 A slight modification is necessary, as the IND-CCA decryption oracle gives special
treatment to the challenge ciphertext.



ExptCOR
P (A):

1 (pk, sk)← Keygen()
2 m← A(sk, pk)
3 c← Encr(pk,m)
4 return [Dec(sk, c) = m]

ExptCOR-ad-CCA
P (A, c∗, qd, Ld, H):

1 (pk, sk)← Keygen()
2 m← AH,D(pk, c∗)
3 c← Encr(pk,m)
4 return [Decr(sk, c) = m]

ExptIND-CCA
P ((A1,A2)):

1 H
$← H

2 qd ← 0
3 Ld = {}
4 (pk, sk)← Keygen()
5 m0,m1 ← AH

1 (pk)

6 b
$← {0, 1}

7 c∗ ← Encr(pk,m∗b)
8 b′ ← AH,D

2 (pk, c∗)
9 return [b = b′]

Decryption oracle D(c):

1 qd ← qd + 1
2 if (c = c∗): r ←⊥, Ld = Ld ∪ (c, r)
3 else: r ← Decr(sk, c), Ld = Ld ∪ (c, r)
4 return r

Fig. 2: COR and IND-CCA experiment for any PKE P;COR-ad-CCA experiment
for a (de-randomized) PKE P.

4 Correctness of the Lindner–Peikert scheme

Suppose that (c1, c2) is an honest encryption of m to a user with public key (A, b)
and secret key s = (s1, s2). Let (e1, e2, e3) be the noise that was used to generate
(c1, c2), and let e = (e1, e2). Decryption will be successful, i.e., the decrypting
party will recover m exactly, as long as

‖e1s1 + e2s2 + e3‖∞ < t, (2)

where t is the error threshold. The exact one-shot probability of failure can be
calculated from Equation 2 (our software does this). However, we will use a
slightly weaker condition to analyze the the probability of failure in an adaptive
setting. First, an application of the triangle inequality gives

‖e1s1 + e2s2‖∞ < t− ‖e3‖∞. (3)

Then, by fixing some γ ≥ ‖e3‖∞ and using properties of the max-norm and inner
product that we discussed in Section 2.1, we have

‖e1s1 + e2s2‖∞ = max
0≤i<m

∣∣〈s̄, xie〉∣∣ < t− γ. (4)

A geometric interpretation. Let S be the unit sphere in Rd. We denote the
angular distance between points u and v in Rd by

θ(u, v) = arccos

(
〈u, v〉

‖u‖2 · ‖v‖2

)
, (5)

where arccos(x) ∈ [0, π]. The spherical cap of angle θ about u is

C(u, θ) = {v ∈ S : θ(u, v) ≤ θ}. (6)



Equation (4) tells us that each successful decryption reveals some geometric
information about s, as explained next. By restating the condition 〈s̄, e〉 < t− γ
(without the absolute value bars that appear in Equation (4)) in terms of the
angular distance,

θ(s̄, e) = arccos

(
〈s̄, e〉

‖s‖2 · ‖e‖2

)
> arccos

(
t− γ

‖s‖2 · ‖e‖2

)
= θ∗, (7)

we see that 〈s̄, e〉 < t− γ implies that s̄/‖s‖2 does not lie in the cap of angle θ∗

about e/‖e‖2. The full condition, |〈s̄, e〉| < t− γ, also says that s̄/‖s‖2 does not
lie in the cap of angle θ∗ about −e/‖e‖2. An adversary can use this information
to improve his odds of triggering a decryption failure.

A heuristic assumption. We measure the volume of subsets of S ⊂ Rd
using the (d− 1)-dimensional spherical probability measure, σ. This measure is
normalized such that σ(S) = 1. If u is a point on S and v is drawn uniformly
from S, then the probability that θ(u, v) ≤ θ is C(θ) = σ(C(u, θ)). It is important
to note that C(θ) does not depend on u. We assume the following heuristic in
our analysis.

Heuristic 1 (Spherical symmetry) For fixed s̄ and e← χe × χe, the proba-
bility that θ(s̄, e) ≤ ϕ, for any 0 < ϕ < π/2, is C(ϕ). Equivalently, e/‖e‖2 “looks
like” a uniformly random point on S.

If Heuristic 1 holds true, the probability that e causes a decryption failure is at
least 2C(θ∗). It may even be as large as 2mC(θ∗), due to the maximization over
i in Equation (4).

Remark 1. Previous analyses of failure boosting [5] have modeled the distribution
of χe × χe with a spherically symmetric Gaussian distribution. In contrast, our
software uses the exact distribution of χe × χe. Our experiments in Section 6
indicate that the spherical symmetry assumption is reasonable for Frodo640.
Further experiments are needed for other schemes.

4.1 The efficacy of a query set

Recall θ∗ of the previous section. We write θ*α(β; z) = arccos (z/αβ) with 0 ≤
θ*α(β; z) ≤ π

2 . We are primarily interested in the case α = ‖s‖2 and β = ‖e‖2. In

later sections we will take α to be an approximation to ‖s‖2. We write θ*α(e; z) in
place of the cumbersome notation θ*α(‖e‖2; z), and we suppress the dependence
on z when it is clear.

We refer to e = (e1, e2) as the “query”, rather than (c1, c2). We also ignore
both the absolute value bars and the maximization over i in Equation (4). This
way queries are one-to-one with spherical caps, and each query can be thought
of as “exploring” some cap; by querying e the adversary learns whether or not s̄
lies in C(θ*α(e)).



We define the efficacy of a set E of queries to be the fraction of the sphere
that the corresponding caps cover:

Effα(E) = σ

(⋃
e∈E
C
(
e, θ*α(e)

))
. (8)

Under the spherical symmetry heuristic, the probability that an adversary causes
a decryption failure is proportional to the efficacy of his queries. An intelligent
adversary will maximize the efficacy of his queries while minimizing the number
of queries that he makes. Adversaries are constrained both by their computational
power and by the need to collaborate with a random oracle.

In the notation of Definition 1, an instantiation of the Lindner–Peikert scheme
is δ(qd, t)-correct if

δ(qd, t) ≥ 2mEffα(E) (9)

for all E of size |E| ≤ qd that an adversary can produce in time t. It is important
to note that some instantiations exchange more than one element of R; for
instance, FrodoKEM exchanges 64 elements of Z. For such instantiations the
right hand side of Equation (9) should be 2`mEffα(E) where ` is the number
of coefficients exchanged. Assuming spherical symmetry, the actual correctness
error can be anywhere between 2 Effα(E) and 2`mEffα(E), as the failure events
may not be independent.

4.2 Approximating the efficacy

The efficacy of a query set may be difficult to compute exactly. Using the principle
of inclusion-exclusion, we can write a k-th order approximation to Effα(E) as

Eff(k)
α (E) =

∑
F⊂E

0<|F |≤k

(−1)
|F |+1 · σ

(⋂
e∈F
C
(
e, θ*α(e)

))
. (10)

Maximizing the second-order approximation,

Eff(2)
α (E) =

∑
e∈E

C(θ*α(e))−
∑

{e,e′}⊂E

σ
(
C(e, θ*α(e)) ∩ C(e′, θ*α(e′))

)
, (11)

already presents quite a challenge. We do not consider algorithms for approxi-
mating the efficacy here, but we note that techniques from the near-neighbor
search literature, e.g. [2], may be useful for producing high-efficacy query sets.

4.3 The efficacy of a random query set

A first-order approximation to the efficacy of a random query set, normalized by
the query set size N , is

Qα(χ1, χ2) = lim
N→∞

1

N
E
[
Eff(1)

α (V )
]

(12)



where the expectation is taken over sets V of N elements drawn independently
from χ1 × χ2. Equation (12) can also be written as the expected size of a cap
with respect to the 2-norm distribution of v drawn from χ1 × χ2,

Qα(χ1, χ2) =
∑
j>0

Pr [‖v‖2 = j] · C
(
θ*α(j)

)
. (13)

5 Heuristic analysis of NIST candidates

In this section we calculate first-order approximations to the efficacy of random
query sets drawn from distributions that come from concrete instantiations of
the Lindner–Peikert encryption scheme. It is important to note that a first-order
approximation to the efficacy ignores the overlap between queries; it thereby
overestimates efficacy and underestimate correctness. Since we are ignoring the
overlap, we expect our results to closely mirror those of D’Anvers, Guo, Johansson,
Nilsson, Vercauteren, and Verbauwhede from [5]. The calculations that we perform
are quite different, and serve as an independent check on their results.

We analyze Saber [6], the R5ND PKE 0d and R5N1 PKE 0d parameter
sets of Round5 [14], Frodo [21], and Kyber [25]; all of which are second round
candidates in NIST’s post-quantum standardization effort.

5.1 Overview

Here is a sketch of our analysis. We caution the reader that this sketch is
only accurate for Frodo. The treatment of the other schemes is described in
Appendix B.

Let χ be a distribution on R. We write ‖χ‖2 and |〈1, χ〉|, respectively, for the
distribution of ‖r‖2 and |〈1, r〉| when r ← χ. The top u-th quantile of ‖χ‖2 is the
largest β ∈ Z+ for which Prr←χ[‖r‖2 ≥ β] ≥ 1/u. If β is the top u-th quantile
of χ, we write χ(u) for the distribution of r ← χ conditioned on the event that
‖r‖2 ≥ β. Note that χ(1) = χ.

We assume that the user has drawn a secret key s from χs(v) × χs(v), for
some v ≥ 1. A random user does so with probability 1/v2. Unless otherwise
stated we take v = 2; i.e., we assume that the user has a key of above-median
length in both components. We evaluate correctness using Qα(·, ·) which depends
on the γ of Equation (4) through θ*α. We take α equal to the expected norm of s,
and we take γ equal to the top 100-th quantile3 of |〈1, χe′〉|. We account for the
absolute value bars in Equation (4) but ignore the maximization over 0 ≤ i < m.
By doing so, we are estimating the per-coordinate failure rate: the probability of
a failure in the first coordinate of the coefficient embedding.

To first order, an adversary who samples (e1, e2) from χe(u) × χe(u) and
who discards all ciphertexts with |〈1, e3〉| < γ can expect a query set of size
1/(2 Qα(χe(u), χe(u))) to include a query that causes a decryption failure (cf.
Equation (9)). A classical adversary expects to make approximately 100u2 queries

3 The constant 100 is arbitrary. Our software can produce an optimized value if needed.



to the random oracle per sample. A quantum adversary, using Grover’s algorithm,
expects to make approximately 10u superposition queries to the random oracle
per sample.

5.2 Comparison with one-shot failure rate

Before presenting the results of our analysis, we recall that the one-shot failure
probability is the probability that Equation (2) is violated for (s1, s2)← χs×χs,
(e1, e2)← χe×χe, and e3 ← χe′ . Theorem 3.1 of [18] states that a de-randomized
scheme with a one-shot failure rate of δ is δ1 ≤ qG · δ correct against an adversary
who generates qG ciphertexts. Table 1 lists the one-shot failure probabilities
for Kyber512, R5ND1PKE0d, Frodo640, R5N11PKE0d, and LightSaber4. Each
parameter set is advertised as meeting NIST’s level 1 security category, so it is
reasonable to assume that generating, say, qG = 2128 ciphertexts has lower cost
than breaking the scheme. The corresponding values of δ1 are all larger than
2−60. We find this concerning, as Section 3.3 (resp. Section 4.4 against quantum
adversaries) of [18] states potentially large integer multiple of δ1 in the upper
bound on the adversary’s success probability in the IND-CCA game.

5.3 Comparison of NIST candidates

The results of our analyses of Kyber512, R5ND1PKE0d, Frodo640, R5N11PKE0d,
and LightSaber are shown in Figure 3. There are subtleties to each analysis,
but one can largely imagine that the lines on the left and right of Figure 3 plot
u 7→ 1/(2 Qα(χe(u), χe(u))) and u 7→ 10u/(2 Qα(χe(u), χe(u))) respectively. We
give more details in Appendix B.

An adversary who is not constrained in the number of queries that he can
submit will minimize cost. As can be seen from Figure 3 and Table 1, after
minimizing the cost of the attack, the number of queries in an effective query set
ranges from 2106.7 for LightSaber to 2152.1 for Kyber512. The attacks differ in
cost per query. Of course, an honest user will not answer so many queries.

NIST suggests that “[f]or the purpose of estimating security strengths, it may
be assumed that the attacker has access to the decryptions of no more than 264

chosen ciphertexts” [22]. An adversary with this constraint will spend more time
per query to improve the efficacy of a smaller query set.

An attacker who can perform a total of 2128 quantum operations will per-
form roughly 264 operations per query and submit 264 queries. Let us briefly
assume that our first-order approximation to the efficacy is accurate. Our ex-
periment in the following section provides some indication that the overlap
between random queries may be negligible, and supports this assumption. The
attaker may then be thought of as randomly sampling from a query set of size

4 Note that our analysis should roughly coincide with the one-shot failure probability
when u = v = 1. We expect some discrepancy due to our treatment of e3 and the
fact that we fix an estimate, α, for the norm of the secret. In contrast, the one-shot
failure probabilities are averaged over all keys.
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Fig. 3: The predicted size of a query set of unit efficacy (a) and the quantum cost
of producing such a query set (b). Here “quantum cost” is based on Grover’s
algorithm and has units of “superposition queries to a random oracle”. Data:

, , , , .

1/(2 Qα(χe(2
64), χe(2

64))), which is the right-most point in Figure 3. Let us also
briefly assume that the elements of the adversary’s query set are equally likely to
cause a decryption failure. Under these assumptions, the δ(264, 2128)-correctness
of LightSaber is 264/284.7 = 2−20.7. This should be compared with the δ1 cor-
rectness of 2−0.4 that we alluded to in Section 5.2. The δ(264, 2128)-correctness
of the other schemes, under the same assumptions, is given in Table 1.

6 Experiments

Both the spherical symmetry heuristic and the accuracy of the first-order ap-
proximation to the efficacy need to be examined further. As a first step, we have
performed experiments with a variant of Frodo640. Since the decryption failure
rate of Frodo640 is too small for us to observe experimentally, we have used
q = 213 rather than q = 215. We have kept the rest of the parameters the same.
This variant has a one-shot failure rate of 2−11.7.

In the notation of Section 5.1, we take α to be the expected value of ‖s‖2
when s is drawn from χs(v) × χs(v). The “Predicted” row in Table 2 gives
1/(2 Qα(χ1(u), χ1(u))). The “Observed” row gives 1/f where f is the fraction of
failures that we observed.

Frodo640 replaces the k × 1 vectors s1, s2, e1 and e2 by k × 8 matrices. It
replaces the scalar e3 by an 8×8 matrix. The session key is split across 64 approx-
imately agreed upon scalars. In one run of the experiment, we generate 512 keys
and 64 key encapsulations per key. For each encapsulation, we draw 16 samples
from χs(v), 16 samples from χe(u), and 64 samples from χe′(100). We count


		0		 189.1		 189.1

		1		 187.1		 188.1

		2		 185.0		 187

		3		 183.0		 186

		4		 181.0		 185

		5		 179.1		 184.1

		6		 177.1		 183.1

		7		 175.3		 182.3

		8		 173.6		 181.6

		9		 172.0		 181

		10		 170.3		 180.3

		11		 168.7		 179.7

		12		 167.3		 179.3

		13		 165.8		 178.8

		14		 164.4		 178.4

		15		 163.1		 178.1

		16		 161.8		 177.8

		17		 160.7		 177.7

		18		 159.5		 177.5

		19		 158.4		 177.4

		20		 157.1		 177.1

		21		 156.1		 177.1

		22		 155.1		 177.1

		23		 154.1		 177.1

		24		 153.1		 177.1

		25		 152.1		 177.1

		26		 151.2		 177.2

		27		 150.3		 177.3

		28		 149.5		 177.5

		29		 148.6		 177.6

		30		 147.8		 177.8

		31		 147.0		 178

		32		 146.2		 178.2

		33		 145.4		 178.4

		34		 144.6		 178.6

		35		 143.9		 178.9

		36		 143.1		 179.1

		37		 142.4		 179.4

		38		 141.8		 179.8

		39		 141.1		 180.1

		40		 140.5		 180.5

		41		 139.8		 180.8

		42		 139.2		 181.2

		43		 138.5		 181.5

		44		 137.9		 181.9

		45		 137.3		 182.3

		46		 136.7		 182.7

		47		 136.1		 183.1

		48		 135.5		 183.5

		49		 135.0		 184

		50		 134.5		 184.5

		51		 133.9		 184.9

		52		 133.4		 185.4

		53		 132.9		 185.9

		54		 132.3		 186.3

		55		 131.8		 186.8

		56		 131.4		 187.4

		57		 130.8		 187.8

		58		 130.3		 188.3

		59		 129.8		 188.8

		60		 129.4		 189.4

		61		 128.9		 189.9

		62		 128.4		 190.4

		63		 128.0		 191

		64		 127.5		 191.5
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		0		 154.3		 154.3

		1		 152.5		 153.5

		2		 150.6		 152.6

		3		 149.0		 152

		4		 147.5		 151.5

		5		 146.2		 151.2

		6		 145.0		 151

		7		 143.8		 150.8

		8		 142.8		 150.8

		9		 141.8		 150.8

		10		 140.9		 150.9

		11		 140.0		 151

		12		 139.1		 151.1

		13		 138.4		 151.4

		14		 137.6		 151.6

		15		 136.9		 151.9

		16		 136.2		 152.2

		17		 135.5		 152.5

		18		 134.9		 152.9

		19		 134.2		 153.2

		20		 133.6		 153.6

		21		 133.0		 154

		22		 132.5		 154.5

		23		 131.9		 154.9

		24		 131.4		 155.4

		25		 130.9		 155.9

		26		 130.4		 156.4

		27		 129.9		 156.9

		28		 129.4		 157.4

		29		 128.9		 157.9

		30		 128.4		 158.4

		31		 128.0		 159

		32		 127.5		 159.5

		33		 127.1		 160.1

		34		 126.7		 160.7

		35		 126.2		 161.2

		36		 125.8		 161.8

		37		 125.4		 162.4

		38		 125.0		 163

		39		 124.6		 163.6

		40		 124.3		 164.3

		41		 123.9		 164.9

		42		 123.5		 165.5

		43		 123.2		 166.2

		44		 122.8		 166.8

		45		 122.4		 167.4

		46		 122.1		 168.1

		47		 121.8		 168.8

		48		 121.4		 169.4

		49		 121.1		 170.1

		50		 120.7		 170.7

		51		 120.4		 171.4

		52		 120.1		 172.1

		53		 119.8		 172.8

		54		 119.5		 173.5

		55		 119.2		 174.2

		56		 118.9		 174.9

		57		 118.6		 175.6

		58		 118.3		 176.3

		59		 118.0		 177

		60		 117.7		 177.7

		61		 117.4		 178.4

		62		 117.2		 179.2

		63		 116.8		 179.8

		64		 116.6		 180.6
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		0		 147.8		 147.8

		1		 145.8		 146.8

		2		 143.9		 145.9

		3		 142.0		 145

		4		 140.2		 144.2

		5		 138.5		 143.5

		6		 136.9		 142.9

		7		 135.4		 142.4

		8		 134.0		 142

		9		 132.6		 141.6

		10		 131.3		 141.3

		11		 130.1		 141.1

		12		 128.9		 140.9

		13		 127.8		 140.8

		14		 126.7		 140.7

		15		 125.7		 140.7

		16		 124.7		 140.7

		17		 123.8		 140.8

		18		 122.8		 140.8

		19		 122.0		 141

		20		 121.1		 141.1

		21		 120.3		 141.3

		22		 119.5		 141.5

		23		 118.7		 141.7

		24		 117.9		 141.9

		25		 117.2		 142.2

		26		 116.5		 142.5

		27		 115.8		 142.8

		28		 115.1		 143.1

		29		 114.5		 143.5

		30		 113.8		 143.8

		31		 113.2		 144.2

		32		 112.6		 144.6

		33		 112.0		 145

		34		 111.4		 145.4

		35		 110.8		 145.8

		36		 110.3		 146.3

		37		 109.7		 146.7

		38		 109.2		 147.2

		39		 108.7		 147.7

		40		 108.2		 148.2

		41		 107.7		 148.7

		42		 107.2		 149.2

		43		 106.7		 149.7

		44		 106.2		 150.2

		45		 105.7		 150.7

		46		 105.3		 151.3

		47		 104.8		 151.8

		48		 104.4		 152.4

		49		 103.9		 152.9

		50		 103.5		 153.5

		51		 103.1		 154.1

		52		 102.6		 154.6

		53		 102.2		 155.2

		54		 101.8		 155.8

		55		 101.4		 156.4

		56		 101.0		 157

		57		 100.6		 157.6

		58		 100.3		 158.3

		59		 99.9		 158.9

		60		 99.5		 159.5

		61		 99.1		 160.1

		62		 98.8		 160.8

		63		 98.4		 161.4

		64		 98.1		 162.1



Frodo640


		0		 140.3		 140.3

		0		 140.3		 140.3

		1		 138.5		 139.5

		1		 138.5		 139.5

		2		 137.1		 139.1

		2		 137.1		 139.1

		3		 135.9		 138.9

		3		 135.9		 138.9

		4		 134.8		 138.8

		4		 134.8		 138.8

		5		 133.9		 138.9

		5		 133.9		 138.9

		6		 133.0		 139

		6		 133.1		 139.1

		7		 132.2		 139.2

		7		 132.3		 139.3

		8		 131.5		 139.5

		8		 131.5		 139.5

		9		 130.8		 139.8

		9		 130.9		 139.9

		10		 130.2		 140.2

		10		 130.2		 140.2

		11		 129.5		 140.5

		11		 129.6		 140.6

		12		 129.0		 141

		12		 129.1		 141.1

		13		 128.4		 141.4

		13		 128.5		 141.5

		14		 127.9		 141.9

		14		 128.0		 142

		15		 127.4		 142.4

		15		 127.5		 142.5

		16		 126.9		 142.9

		16		 127.0		 143

		17		 126.5		 143.5

		17		 126.6		 143.6

		18		 126.0		 144

		18		 126.1		 144.1

		19		 125.6		 144.6

		19		 125.7		 144.7

		20		 125.2		 145.2

		20		 125.3		 145.3

		21		 124.8		 145.8

		21		 124.9		 145.9

		22		 124.4		 146.4

		22		 124.5		 146.5

		23		 124.0		 147

		23		 124.1		 147.1

		24		 123.6		 147.6

		24		 123.7		 147.7

		25		 123.2		 148.2

		25		 123.4		 148.4

		26		 122.9		 148.9

		26		 123.0		 149

		27		 122.5		 149.5

		27		 122.7		 149.7

		28		 122.2		 150.2

		28		 122.3		 150.3

		29		 121.9		 150.9

		29		 122.0		 151

		30		 121.5		 151.5

		30		 121.7		 151.7

		31		 121.2		 152.2

		31		 121.4		 152.4

		32		 120.9		 152.9

		32		 121.0		 153

		33		 120.6		 153.6

		33		 120.8		 153.8

		34		 120.3		 154.3

		34		 120.4		 154.4

		35		 120.0		 155

		35		 120.2		 155.2

		36		 119.7		 155.7

		36		 119.9		 155.9

		37		 119.4		 156.4

		37		 119.6		 156.6

		38		 119.2		 157.2

		38		 119.3		 157.3

		39		 118.9		 157.9

		39		 119.0		 158

		40		 118.6		 158.6

		40		 118.8		 158.8

		41		 118.4		 159.4

		41		 118.5		 159.5

		42		 118.1		 160.1

		42		 118.2		 160.2

		43		 117.8		 160.8

		43		 118.0		 161

		44		 117.6		 161.6

		44		 117.7		 161.7

		45		 117.3		 162.3

		45		 117.5		 162.5

		46		 117.1		 163.1

		46		 117.2		 163.2

		47		 116.9		 163.9

		47		 117.0		 164

		48		 116.6		 164.6

		48		 116.8		 164.8

		49		 116.4		 165.4

		49		 116.5		 165.5

		50		 116.1		 166.1

		50		 116.3		 166.3

		51		 115.9		 166.9

		51		 116.1		 167.1

		52		 115.7		 167.7

		52		 115.9		 167.9

		53		 115.5		 168.5

		53		 115.6		 168.6

		54		 115.3		 169.3

		54		 115.4		 169.4

		55		 115.0		 170

		55		 115.2		 170.2

		56		 114.8		 170.8

		56		 115.0		 171

		57		 114.6		 171.6

		57		 114.8		 171.8

		58		 114.4		 172.4

		58		 114.6		 172.6

		59		 114.2		 173.2

		59		 114.4		 173.4

		60		 114.0		 174

		60		 114.2		 174.2

		61		 113.8		 174.8

		61		 114.0		 175

		62		 113.6		 175.6

		62		 113.8		 175.8

		63		 113.4		 176.4

		63		 113.6		 176.6

		64		 113.2		 177.2

		64		 113.4		 177.4



R5N11PKE0d


		0		 127.3		 127.3

		1		 123.3		 124.3

		2		 120.8		 122.8

		3		 118.7		 121.7

		4		 116.9		 120.9

		5		 115.4		 120.4

		6		 114.0		 120

		7		 112.7		 119.7

		8		 111.5		 119.5

		9		 110.4		 119.4

		10		 109.4		 119.4

		11		 108.5		 119.5

		12		 107.6		 119.6

		13		 106.7		 119.7

		14		 105.9		 119.9

		15		 105.1		 120.1

		16		 104.4		 120.4

		17		 103.7		 120.7

		18		 103.0		 121

		19		 102.3		 121.3

		20		 101.7		 121.7

		21		 101.1		 122.1

		22		 100.5		 122.5

		23		 99.9		 122.9

		24		 99.3		 123.3

		25		 98.8		 123.8

		26		 98.3		 124.3

		27		 97.8		 124.8

		28		 97.3		 125.3

		29		 96.8		 125.8

		30		 96.3		 126.3

		31		 95.8		 126.8

		32		 95.4		 127.4

		33		 95.0		 128

		34		 94.5		 128.5

		35		 94.1		 129.1

		36		 93.7		 129.7

		37		 93.3		 130.3

		38		 92.9		 130.9

		39		 92.5		 131.5

		40		 92.1		 132.1

		41		 91.8		 132.8

		42		 91.4		 133.4

		43		 91.0		 134

		44		 90.7		 134.7

		45		 90.4		 135.4

		46		 90.0		 136

		47		 89.7		 136.7

		48		 89.3		 137.3

		49		 89.0		 138

		50		 88.7		 138.7

		51		 88.4		 139.4

		52		 88.1		 140.1

		53		 87.8		 140.8

		54		 87.5		 141.5

		55		 87.2		 142.2

		56		 86.9		 142.9

		57		 86.6		 143.6

		58		 86.3		 144.3

		59		 86.0		 145

		60		 85.8		 145.8

		61		 85.5		 146.5

		62		 85.2		 147.2

		63		 85.0		 148

		64		 84.7		 148.7
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the total number of coordinates with errors, not the number of encapsulations
that fail. In other words f is the fraction of errors observed in 512 · 64 · 64 = 221

coordinates.
If 1/(2 Qα(χ1(u), χ1(u))) is a good approximation to the size of an effective

query set, and each element of an effective query set is equally likely to cause
a failure, then we expect 1/f to tend to 1/(2 Qα(χ1(u), χ1(u))) as we average
over many keys and encapsulations. As can be seen in Table 2, we observed a
fraction of failures such that f/(2 Qα(χ1(u), χ1(u))) ≈ 2−0.4 in each case. This
provides some indication that our heuristics are reasonable for Frodo640. Further
experiments are needed for the other schemes.

7 Conclusion and future work

We have presented a decryption failure attack on the Lindner–Peikert scheme that
exploits dependencies between failure events. In contrast with previous attacks,
our attack leverages information from adaptive queries. The adversary improves
his odds of causing a decryption failure by choosing his next query as a function
of his past queries—even those queries that were answered successfully.

Our results do not necessarily call for a re-parametrization of the schemes that
we have analyzed. However, like previous analyses of failure boosting, they show
that the one-shot failure probability is not a reliable indicator of the difficulty
of causing decryption failures. We hope that our work stimulates discussion on
what an acceptable δ(qd, t)-correctness is for various security levels.

Future work. Both the spherical symmetry heuristic and the accuracy of the
first-order approximation need further confirmation, either experimentally or
theoretically. Beyond this, it is an interesting question to extend our approach
to schemes that use error-correction such as ThreeBears [17], NewHope [23],
LAC [20], and other parameter sets of Round5 [14]. In a more speculative
direction, we wonder whether the information revealed by successful decryptions
might be useful in other attacks. Perhaps the knowledge that the secret key does
not lie in a particular direction can help an adversary prune an enumeration tree.

The general message that successful queries can leak information about the
secret key may be applicable to other constructions as well. Drucker–Gueron–
Kostic [11] have already pointed out the risk of ignoring the factor qG loss of
tightness in de-randomizing the code-based scheme BIKE [1].
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Special thanks to Kathrin Hövelmanns for insights on the correctness definition
for PKEs, Jan-Pieter D’Anvers for helpful discussions and for providing us with
a copy of [7], and Steve Weiss for computer systems support. NB is supported by
NSERC Discovery Accelerator Supplement grant RGPIN-2016-05146. This work
was supported by IQC. IQC is supported in part by the Government of Canada
and the Province of Ontario



References

1. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Gueron, S., Guneysu, T., Aguilar Melchor, C., Misoczki, R., Persichetti,
E., Sendrier, N., Tillich, J.P., Zémor, G., Vasseur, V.: BIKE. Tech. rep., National
Institute of Standards and Technology (2019), available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions

2. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA.
pp. 10–24. ACM-SIAM (Jan 2016)

3. Bernstein, D.J.: Visualizing size-security tradeoffs for lattice-based encryption.
Cryptology ePrint Archive, Report 2019/655 (2019), https://eprint.iacr.org/
2019/655

4. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018), https://eprint.iacr.org/2018/526

5. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 565–598. Springer,
Heidelberg (Apr 2019)

6. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Tech. rep.,
National Institute of Standards and Technology (2019), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions

7. D’Anvers, J.P., Rossie, M., Virdia, F.: (One) failure is not an option–Bootstrapping
the search for failures in lattice-based encryption schemes. To be made publicly
available before February 2020 (2019)

8. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089 (2018), https://eprint.iacr.org/2018/1089

9. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: The impact of error dependencies
on ring/mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.) Post-
Quantum Cryptography - 10th International Conference, PQCrypto 2019. pp.
103–115. Springer, Heidelberg (2019)

10. Dent, A.W.: A designer’s guide to KEMs. Cryptology ePrint Archive, Report
2002/174 (2002), http://eprint.iacr.org/2002/174

11. Drucker, N., Gueron, S., Kostic, D.: On constant-time QC-MDPC decoding with
negligible failure rate. Cryptology ePrint Archive, Report 2019/1289 (2019), https:
//eprint.iacr.org/2019/1289

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013)

14. Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tol-
huizen, L., Torre-Arce, J.L., Baan, H., Saarinen, M.J.O., Fluhrer, S.,
Laarhoven, T., Player, R.: Round5. Tech. rep., National Institute of Stan-
dards and Technology (2019), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/655
https://eprint.iacr.org/2019/655
https://eprint.iacr.org/2018/526
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/1089
http://eprint.iacr.org/2002/174
https://eprint.iacr.org/2019/1289
https://eprint.iacr.org/2019/1289
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


16. Guo, Q., Johansson, T., Nilsson, A.: A generic attack on lattice-based schemes
using decryption errors with application to ss-ntru-pke. Cryptology ePrint Archive,
Report 2019/043 (2019), https://eprint.iacr.org/2019/043

17. Hamburg, M.: Three Bears. Tech. rep., National Institute of Stan-
dards and Technology (2019), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions
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A Preliminaries

A.1 Definition of PKEs and KEMs

A public-key encryption scheme P = (Keygen,Encr, Decr) is defined over a finite
message space M, a ciphertext space C, a secret key space SK and a public key
space PK. In particular, Keygen is a randomized algorithm returning sk ∈ SK
and pk ∈ PK; Encr is a randomized, or de-randomized, algorithm that takes as
input a public key pk and a message m ∈ M and outputs a ciphertext c ∈ C;
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Decr is a deterministic algorithm that takes as input sk ∈ SK and c ∈ C and
returns either a message m ∈M or a special symbol ⊥ /∈M indicating failure.

A KEM K = (Keygen,Encaps, Decaps) is defined over a ciphertext space C, the
secret key space SK, a public key space PK, and the key space K. In particular,
Keygen is a randomized algorithm that returns pk ∈ PK and sk ∈ SK; Encaps
is a randomized algorithm that takes as input pk ∈ PK and outputs c ∈ C and
k ∈ K; Decaps(sk, c) is a deterministic algorithm that upon input sk ∈ SK and
c ∈ C, returns κ ∈ K or a special symbol ⊥ /∈ K indicating that c is not a valid
ciphertext.

Fujisaki–Okamoto transform. The Fujisaki–Okamoto (FO) transform [12, 13,
10] can be used to construct an adaptively secure key encapsulation mechanism
(KEM) from passively secure public-key encryption (PKE). Hofheinz, Hövelmanns,
and Kiltz provide a decomposition of the FO transform into a sequence of
simpler transformations [18]; Bernstein and Persichetti provide a complementary
analysis [4]. These works emphasize that the FO transform performs three tasks:

– Derandomization: A probabilistic PKE is transformed into a deterministic
PKE by fixing the coins used in encryption to a hash of the message.

– Reencryption: A determinitic PKE is transformed into a rigid5 deterministic
PKE that returns an error symbol, ⊥, whenever the message obtained by
decrypting c does not reencrypt to c.

– Hashing: A rigid deterministic PKE is transformed into an IND-CCA KEM
that encrypts a random message and outputs a hash of this message as the
session key.

Hofheinz, Hövelmanns, and Kiltz handle the derandomization and reencryp-
tion with a single transformation called T. Suppose that P = (Keygen,Encr,Decr)
is a probabilistic PKE, that G : M → R and H : M × C → K are ran-
dom oracles, and that F : KF × C → K is a pseudorandom function fam-
ily. Then P1 = T[P, G] = (Keygen,Encr1,Decr) is a derandomized PKE with
Encr1(pk,m) := Encr(pk,m; G(m)).

Hofheinz, Hövelmanns, and Kiltz provide variants of the hashing step called
U 6⊥ and U 6⊥m. The U 6⊥ transformation is defined in Figure 4. The U 6⊥m transforma-
tion is defined similarly but with the encapsulation key equal to H(m) rather
than H(m, c).

δ-correctness. Hofheinz, Hövelmanns, and Kiltz [18, Section 2.1] define δ-
correctness for a PKE as follows.

Definition 2 (δ-correctness for PKEs). A public-key encryption scheme P =
(Keygen,Encr,Decr) is δ-correct if

E

[
max
m∈M

Pr[Decr(sk, c) 6= m|c← Encr(pk,m)]

]
≤ δ, (14)

5 The term “rigid” is due to Bernstein and Persichetti. See [4, Section 6].



Keygen():

1 (pk, sk1)← Keygen()
2 sk2 ←$ KF

3 sk← (sk1, sk2)
4 return (pk, sk)

Encaps(pk):

1 m←$ M
2 c← Encr1(pk,m)
3 K ← H(m, c)
4 return (K, c)

Decaps ((sk1, sk2), c):

1 m← Decr1(sk1, c)
2 if m = ⊥:
3 return F(sk2, c)
4 return H(m, c)

Fig. 4: The algorithms of the U 6⊥[P1, H,F] = (Keygen,Encaps,Decaps) KEM.

where the expectation is taken over (pk, sk)← Keygen(). Equivalently, δ-correctness
means that for all (possibly unbounded) adversaries A, Pr[CORAP ] ≤ δ, where the
correctness game COR is defined in Figure 2.

The definition is carefully crafted to obtain a security proof of the T transform—
the de-randomization step during the Fujisaki–Okamoto transformation [12, 13,
10] (cf. Appendix A.1). Moreover, Theorem 3.1 of [18] states (in part) that if P
is δ-correct, then T[P,G] is δ1-correct where δ1(qG) ≤ qG · δ and qG is the number
of queries that the adversary makes to G.

B Details of our analysis for each scheme

B.1 Secret and error distributions

We need several definitions before describing the schemes.

Definition 3 (Modulus switching function). The modulus switching func-
tion is defined by [[x]]

r
q = bx rq e mod r with bx rq e computed over R. It is also

extended component-wise to vectors and matrices.

Definition 4 (Compression artifact distribution). The compression arti-
fact distribution with parameters r and q is the distribution of y− [[z]]

q
r when y is

drawn uniformly from Z/q and z = [[y]]
r
q.

Definition 5 (Centered binomial distribution). The centered binomial dis-
tribution of parameter w assigns probability 1

22w

(
2w
x+w

)
to x ∈ Z.

Definition 6 (Fixed weight distribution). The fixed weight trinary distri-
bution of parameter w in dimension d is the uniform distribution on all 2w

(
d
w

)
vectors in Zd that have exactly dw/2e coefficients equal to +1, exactly bw/2c
coefficients equal to −1, and the remaining d− w coefficients equal to 0.

B.2 Compression and learning with rounding

Some variants of the Lindner–Peikert scheme have additional rounding parameters
r0, r1, and r2. They compress the public key to (A, [[b]]

r0
q ) and the ciphertext

to ([[c1]]
r1
q , [[c2]]

r2
q ). Note that if ri = q then no compression occurs in the cor-

responding component. If b′ = [[b]]
r0
q then there is some v1 ∈ Z/q such that



[[b′]]
q
r0

= (v1 − As2) mod q. Likewise, if c′1 = [[c1]]
r1
q then there is some v2 ∈ Z/q

such that [[c′1]]
q
r1

= (e1A + v2) mod q, and if c′2 = [[c2]]
r1
q then there is some

v3 ∈ Z/q such that [[c′2]]
q
r2

= (e1A+v3 +encode(m)) mod q. Variants that use well
chosen rounding parameters can omit the s1, e2, and e3 terms in key generation
and encryption; the compression artifacts v1, v2, and v3 take their place. Such
schemes are said to be based on the Learning With Rounding problem (LWR).
The difference between LWE and LWR is immaterial for our purposes; we simply
incorporate the compression artifact noise into the distributions of s1, e2, and
e3.

B.3 Frodo

Frodo is an instantiation of the Lindner–Peikert scheme with R = Z. The
FrodoKEM NIST submission [21] defines three parameter sets frodo640 (n = 670,
q = 215, t = 212), frodo976 (n = 976, q = 216, t = 212), and frodo1344 (n = 1344,
q = 216, t = 211). All three use the standard b-bit encoding, and therefore have
an error threshold of t = q/2b+1. Each parameter set takes χs = χe = χ×n where
χ is an approximation to a discrete Gaussian distribution on Z. We refer to [21,
Table 2] for the exact definition of χ. Our analysis is as described in Section 5.1.

B.4 Kyber (second round)

Kyber is an instantiation of the Lindner–Peikert scheme over R = Z[x]/(x256 +1).
The second round NIST submission [25] includes three parameter sets kyber512
(m = 256, k = 2, n = 512, q = 3329, r0 = q, r1 = 210, r2 = 23), kyber768
(m = 256, k = 3, n = 768, q = 3329, r0 = q, r1 = 210, r2 = 24), and kyber1024
(m = 256, k = 4, n = 1024, q = 3329, r0 = q, r1 = 211, r2 = 25). All three use
the standard 1-bit encoding. All three parameter sets sample s1, s2, e1, and e2
from η×n2 , where η2 is the centered binomial distribution of parameter 2.

We write ρr for the compression artifact distribution with parameters r and
q. We model e1 as being drawn from η×n2 ; we model e2 as being drawn from

(η2 ∗ ρr1)
×n

; and we model e3 as being drawn from (η2 ∗ ρr2)
×m

. Due to the
difference in size between the coefficients of e1 and e2, it seems unlikely that the
spherical symmetry heuristic is reasonable. We adapt our analysis as follows.

Let χ1×χ2 be the distribution from which the adversary draws e = (e1, e2). We
will assume that χ1 and χ2 (viewed as distributions on the coefficient embedding
of Rk) are invariant under permutations of the standard basis. Let z1 and
z2 be the expected values of ‖e1‖2 and ‖e2‖2 respectively. Let w =

√
z2/z1,

e∗ = (e1 · w, e2/w), s∗ = (s1/w, s2 · w), and observe that 〈s̄∗, e∗〉 = 〈s̄, e〉. We
apply the analysis of Section 5.1, but we take α to be the expected value of ‖s∗‖2
and we compute Qα with respect to the scaled distributions χ1 · w and χ2/w.
The expected values of ‖e1 · w‖2 and ‖e2/w‖2 are both

√
z1z2. By assumption

on χ1 and χ2, this implies that all 2n coefficients of e∗ have the same expected
size. While this does not imply that the distributions are spherically symmetric,
it does make the assumption of spherical symmetry more plausible.



B.5 Saber

Saber is a learning with rounding variant of the Lindner–Peikert scheme that uses
the base ring R = Z[x]/(x256 + 1). The submission proposes three parameter sets
lightsaber (m = 256, k = 2, q = 213, r0 = 210, r1 = 210, r2 = 23, w = 10), saber
(m = 256, k = 3, q = 213, r0 = 210, r1 = 210, r2 = 24, w = 8), and firesaber
(m = 256, k = 4, q = 213, r0 = 210, r1 = 210, r2 = 26). All three parameter sets
sample s2 and e1 from the centered binomial distribution of parameter µ, η×nµ ,
for the µ listed in [6, Table 1]. Recall that s1 = e2 = e3 = 0 for learning with
rounding variants.

We write ρr for the compression artifact distribution with parameters q
and r. The correctness condition can be rewritten as an inner product between
(v̄1, s̄2) and (e1, v2), where v1 is drawn from ρr0 and v2 is drawn from ρr1 . The
distributions of v1 and s2 are invariant under taking adjoints. Note that r0 = r1 for
all of the proposed parameter sets. The coefficients of (e1, v2) are not identically
distributed, so the spherical symmetry assumption is suspect. However, the inner
product is unchanged if we write s̄ = (v̄1, v̄2) and e = (e1, s2). Moreover, unlike
the original vectors, the coefficients of s and e are identically distributed. There
is still a slight complication: the adversary has control over one component of
s and one component of e. If the adversary chooses particularly large values of
e1 and v2, then the spherical symmetry assumption will again be violated. We
compensate for this by applying the same re-scaling trick from our analysis of
Kyber.

B.6 Round5 (R5N1∗PKE 0d)

Round5 is a collection of learning with rounding instantiations of the Lindner–
Peikert scheme. The R5N1 ∗ PKE 0d parameter sets of Round5 take R = Z.
The second round NIST submission includes three parameter sets [14, Table
13] r5n11pke0d (n = 636, q = 212, b = 2, r0 = 29, r1 = 29, r3 = 26, w = 114),
r5n13pke0d (n = 876, q = 215, b = 3, r0 = 211, r1 = 211, r3 = 27, w = 446), and
r5n15pke0d (n = 1217, q = 215, b = 4, r0 = 212, r1 = 212, r3 = 29, w = 462). All
three use fixed weight w vectors for e1 and s2. Since there are no large values of
e1, the adversary will invest all of his effort in finding large values of v2, As with
Saber, we swap components between vectors and apply the re-scaling trick from
our analysis of Kyber. The only difference is that we compute Qα with respect
the honest distribution of e1 and the u2-th quantile of ‖v2‖.

B.7 Round5 (R5ND∗0d)

The R5ND ∗ 0d parameter sets of Round5 take R = Z[x]/(1 +x+ · · ·+xm). The
specification includes three parameter sets [14, Table 11] r5nd1pke0d (m = 586,
q = 213, b = 1, r0 = 29, r1 = 29, r3 = 24, w = 182), r5nd3pke0d (m = 852,
q = 212, b = 1, r0 = 29, r1 = 29, r3 = 25, w = 212), and r5nd5pke0d (m = 1170,
q = 213, b = 1, r0 = 29, r1 = 29, r3 = 25, w = 222). We apply essentially the



same analysis as for R5N1 ∗ 0d. However, the choice of ring presents a slight
obstacle as the adjoint does not preserve spherical symmetry.

Multiplication by a fixed element of R, say a = a0 + a1x + a2x
2 + · · · +

am−1x
m−1, is a linear operation on the coefficient embedding. Specifically, it

corresponds to left multiplication by the m×m matrix [a]i,j = ai−j − a−(j+1)

where the index arithmetic is modulo m+1 and am = 0. It follows that the adjoint
of multiplication by a is multiplication by ā where ā = a0 + (am − am−1)x +
(am−1 − am−2)x2 + · · ·+ (a1 − a0)xm−1. Note that the x0 and x1 coefficients are
expected to be smaller than the rest. Since only two out of m coefficients are
affected, we simply ignore the issue. We re-write the correctness condition as an
inner product between (v1, v̄2) and (ē1, s2). Since e1 and v2 have i.i.d. coefficients,
we can easily compute the distributions of ē1 and v̄2.

C Figures and tables

kyber512 frodo640 r5nd1pke r5n11pke lightsaber

One-shot 2186.9 2144.8 2155.1 2126.9 2128.4

Above median 2187.1 2145.8 2152.5 2138.5 2123.3

Min-cost 2152.1 2124.7 2142.8 2133.9 2106.7

δ(264, 2128) 2−63.5 2−34.1 2−52.6 2−49.4 2−20.7

kyber768 frodo976 r5nd3pke r5n13pke saber

One-shot 2173.2 2205.6 2131.0 2143.9 2144.2

Above median 2169.0 2209.0 2145.3 2144.0 2139.1

Min-cost 2141.0 2185.3 2137.3 2139.9 2123.7

δ(264, 2128) 2−58 2−87.6 2−51.8 2−57.8 2−38.3

kyber1024 frodo1344 r5nd5pke r5n15pke firesaber

One-shot 2183.2 2258.7 2144.5 2127.3 2173.4

Above median 2178.1 2263.1 2141.6 2143.8 2170.3

Min-cost 2151.9 2238.1 2134.8 2140.2 2154.0

δ(264, 2128) 2−69.9 2−136.4 2−52.8 2−60.2 2−66.6

Table 1: Estimates of the number of queries that an adversary expects to
submit before causing a decryption failure. “One-shot” is the reciprocal of the
per-coefficient probability that Equation (2) is violated for random s and e.
“Above median” is 1/(2 Qα(χ1(2), χ2(2))). “Min-cost” is 1/(2 Qα(χ1(u), χ2(u)))
(1/(2 Qα(χ1(1), χ2(u2))) for Round5) for u that attains the local minimum
depicted in the right plot of Figure 3. See text for definitions of χ1 and χ2.
“δ(264, 2128)” is stated with respect to the assumptions of Section 5.3.
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Fig. 5: Data embedded in PDF.

‖χs‖ quantile 20 210 220

‖χe‖ quantile 20 210 220 20 210 220 20 210 220

Predicted 211.4 29.8 29.1 29.8 28.4 27.8 29.1 27.8 27.3

Observed 211.1 29.4 28.7 29.4 28.0 27.4 28.8 27.4 26.9

Table 2: Results of the experiment of Section 6. Note: at the time of writing we have
only generated ≈ 218 out of 221 coordinates for each of the runs with ‖χe‖ = 220.
The table will be updated with the final results when they are available.


		0		 171.1		 171.1

		1		 169.0		 170

		2		 167.0		 169

		3		 165.2		 168.2

		4		 163.4		 167.4

		5		 161.8		 166.8

		6		 160.2		 166.2

		7		 158.7		 165.7

		8		 157.3		 165.3

		9		 156.0		 165

		10		 154.7		 164.7

		11		 153.5		 164.5

		12		 152.4		 164.4

		13		 151.3		 164.3

		14		 150.2		 164.2

		15		 149.2		 164.2

		16		 148.3		 164.3

		17		 147.4		 164.4

		18		 146.5		 164.5

		19		 145.6		 164.6

		20		 144.8		 164.8

		21		 144.0		 165

		22		 143.2		 165.2

		23		 142.5		 165.5

		24		 141.7		 165.7

		25		 141.0		 166

		26		 140.4		 166.4

		27		 139.6		 166.6

		28		 139.0		 167

		29		 138.3		 167.3

		30		 137.7		 167.7

		31		 137.1		 168.1

		32		 136.5		 168.5

		33		 135.9		 168.9

		34		 135.3		 169.3

		35		 134.8		 169.8

		36		 134.2		 170.2

		37		 133.7		 170.7

		38		 133.1		 171.1

		39		 132.6		 171.6

		40		 132.1		 172.1

		41		 131.6		 172.6

		42		 131.1		 173.1

		43		 130.6		 173.6

		44		 130.1		 174.1

		45		 129.7		 174.7

		46		 129.2		 175.2

		47		 128.8		 175.8

		48		 128.4		 176.4

		49		 127.9		 176.9

		50		 127.5		 177.5

		51		 127.1		 178.1

		52		 126.6		 178.6

		53		 126.2		 179.2

		54		 125.8		 179.8

		55		 125.4		 180.4

		56		 125.1		 181.1

		57		 124.6		 181.6

		58		 124.2		 182.2

		59		 123.9		 182.9

		60		 123.5		 183.5

		61		 123.1		 184.1

		62		 122.8		 184.8

		63		 122.4		 185.4

		64		 122.0		 186



Kyber768


		0		 147.1		 147.1

		1		 145.3		 146.3

		2		 143.7		 145.7

		3		 142.3		 145.3

		4		 141.1		 145.1

		5		 140.0		 145

		6		 139.0		 145

		7		 138.1		 145.1

		8		 137.3		 145.3

		9		 136.5		 145.5

		10		 135.7		 145.7

		11		 135.0		 146

		12		 134.3		 146.3

		13		 133.7		 146.7

		14		 133.1		 147.1

		15		 132.5		 147.5

		16		 132.0		 148

		17		 131.4		 148.4

		18		 130.9		 148.9

		19		 130.4		 149.4

		20		 129.9		 149.9

		21		 129.4		 150.4

		22		 129.0		 151

		23		 128.5		 151.5

		24		 128.1		 152.1

		25		 127.6		 152.6

		26		 127.2		 153.2

		27		 126.8		 153.8

		28		 126.4		 154.4

		29		 126.0		 155

		30		 125.6		 155.6

		31		 125.3		 156.3

		32		 124.9		 156.9

		33		 124.5		 157.5

		34		 124.2		 158.2

		35		 123.8		 158.8

		36		 123.5		 159.5

		37		 123.1		 160.1

		38		 122.8		 160.8

		39		 122.5		 161.5

		40		 122.2		 162.2

		41		 121.9		 162.9

		42		 121.6		 163.6

		43		 121.3		 164.3

		44		 121.0		 165

		45		 120.7		 165.7

		46		 120.4		 166.4

		47		 120.1		 167.1

		48		 119.8		 167.8

		49		 119.5		 168.5

		50		 119.3		 169.3

		51		 119.0		 170

		52		 118.7		 170.7

		53		 118.5		 171.5

		54		 118.2		 172.2

		55		 117.9		 172.9

		56		 117.7		 173.7

		57		 117.4		 174.4

		58		 117.2		 175.2

		59		 116.9		 175.9

		60		 116.7		 176.7

		61		 116.5		 177.5

		62		 116.2		 178.2

		63		 116.0		 179

		64		 115.8		 179.8



R5ND3PKE0d


		0		 211.0		 211

		1		 209.0		 210

		2		 207.1		 209.1

		3		 205.1		 208.1

		4		 203.2		 207.2

		5		 201.4		 206.4

		6		 199.6		 205.6

		7		 197.9		 204.9

		8		 196.2		 204.2

		9		 194.6		 203.6

		10		 193.1		 203.1

		11		 191.7		 202.7

		12		 190.3		 202.3

		13		 189.0		 202

		14		 187.7		 201.7

		15		 186.5		 201.5

		16		 185.3		 201.3

		17		 184.1		 201.1

		18		 183.0		 201

		19		 181.9		 200.9

		20		 180.9		 200.9

		21		 179.9		 200.9

		22		 178.9		 200.9

		23		 177.9		 200.9

		24		 177.0		 201

		25		 176.1		 201.1

		26		 175.2		 201.2

		27		 174.3		 201.3

		28		 173.5		 201.5

		29		 172.6		 201.6

		30		 171.8		 201.8

		31		 171.0		 202

		32		 170.3		 202.3

		33		 169.5		 202.5

		34		 168.8		 202.8

		35		 168.1		 203.1

		36		 167.4		 203.4

		37		 166.7		 203.7

		38		 166.0		 204

		39		 165.3		 204.3

		40		 164.7		 204.7

		41		 164.0		 205

		42		 163.4		 205.4

		43		 162.8		 205.8

		44		 162.2		 206.2

		45		 161.5		 206.5

		46		 161.0		 207

		47		 160.4		 207.4

		48		 159.8		 207.8

		49		 159.2		 208.2

		50		 158.7		 208.7

		51		 158.1		 209.1

		52		 157.6		 209.6

		53		 157.1		 210.1

		54		 156.5		 210.5

		55		 156.0		 211

		56		 155.5		 211.5

		57		 155.0		 212

		58		 154.5		 212.5

		59		 154.0		 213

		60		 153.5		 213.5

		61		 153.1		 214.1

		62		 152.6		 214.6

		63		 152.1		 215.1

		64		 151.6		 215.6



Frodo976


		0		 145.6		 145.6

		1		 144.0		 145

		2		 142.7		 144.7

		3		 141.6		 144.6

		4		 140.7		 144.7

		5		 139.9		 144.9

		6		 139.1		 145.1

		7		 138.4		 145.4

		8		 137.8		 145.8

		9		 137.2		 146.2

		10		 136.7		 146.7

		11		 136.2		 147.2

		12		 135.7		 147.7

		13		 135.2		 148.2

		14		 134.7		 148.7

		15		 134.3		 149.3

		16		 133.9		 149.9

		17		 133.5		 150.5

		18		 133.1		 151.1

		19		 132.7		 151.7

		20		 132.3		 152.3

		21		 132.0		 153

		22		 131.6		 153.6

		23		 131.3		 154.3

		24		 131.0		 155

		25		 130.7		 155.7

		26		 130.3		 156.3

		27		 130.0		 157

		28		 129.7		 157.7

		29		 129.4		 158.4

		30		 129.2		 159.2

		31		 128.9		 159.9

		32		 128.6		 160.6

		33		 128.3		 161.3

		34		 128.1		 162.1

		35		 127.8		 162.8

		36		 127.6		 163.6

		37		 127.3		 164.3

		38		 127.1		 165.1

		39		 126.8		 165.8

		40		 126.6		 166.6

		41		 126.4		 167.4

		42		 126.1		 168.1

		43		 125.9		 168.9

		44		 125.7		 169.7

		45		 125.5		 170.5

		46		 125.2		 171.2

		47		 125.0		 172

		48		 124.8		 172.8

		49		 124.6		 173.6

		50		 124.4		 174.4

		51		 124.2		 175.2

		52		 124.0		 176

		53		 123.8		 176.8

		54		 123.6		 177.6

		55		 123.4		 178.4

		56		 123.2		 179.2

		57		 123.0		 180

		58		 122.9		 180.9

		59		 122.7		 181.7

		60		 122.5		 182.5

		61		 122.3		 183.3

		62		 122.1		 184.1

		63		 121.9		 184.9

		64		 121.8		 185.8



R5N13PKE0d


		0		 142.7		 142.7

		1		 139.1		 140.1

		2		 136.8		 138.8

		3		 134.8		 137.8

		4		 133.2		 137.2

		5		 131.8		 136.8

		6		 130.5		 136.5

		7		 129.3		 136.3

		8		 128.2		 136.2

		9		 127.2		 136.2

		10		 126.2		 136.2

		11		 125.3		 136.3

		12		 124.5		 136.5

		13		 123.7		 136.7

		14		 122.9		 136.9

		15		 122.2		 137.2

		16		 121.5		 137.5

		17		 120.8		 137.8

		18		 120.1		 138.1

		19		 119.5		 138.5

		20		 118.9		 138.9

		21		 118.3		 139.3

		22		 117.8		 139.8

		23		 117.2		 140.2

		24		 116.7		 140.7

		25		 116.1		 141.1

		26		 115.6		 141.6

		27		 115.1		 142.1

		28		 114.6		 142.6

		29		 114.2		 143.2

		30		 113.7		 143.7

		31		 113.3		 144.3

		32		 112.8		 144.8

		33		 112.4		 145.4

		34		 112.0		 146

		35		 111.6		 146.6

		36		 111.2		 147.2

		37		 110.8		 147.8

		38		 110.4		 148.4

		39		 110.0		 149

		40		 109.6		 149.6

		41		 109.3		 150.3

		42		 108.9		 150.9

		43		 108.6		 151.6

		44		 108.2		 152.2

		45		 107.9		 152.9

		46		 107.5		 153.5

		47		 107.2		 154.2

		48		 106.9		 154.9

		49		 106.6		 155.6

		50		 106.3		 156.3

		51		 105.9		 156.9

		52		 105.6		 157.6

		53		 105.3		 158.3

		54		 105.0		 159

		55		 104.7		 159.7

		56		 104.4		 160.4

		57		 104.2		 161.2

		58		 103.9		 161.9

		59		 103.6		 162.6

		60		 103.3		 163.3

		61		 103.0		 164

		62		 102.8		 164.8

		63		 102.5		 165.5

		64		 102.3		 166.3



Saber


		0		 180.2		 180.2

		1		 178.1		 179.1

		2		 176.2		 178.2

		3		 174.4		 177.4

		4		 172.7		 176.7

		5		 171.1		 176.1

		6		 169.7		 175.7

		7		 168.3		 175.3

		8		 167.0		 175

		9		 165.8		 174.8

		10		 164.6		 174.6

		11		 163.5		 174.5

		12		 162.5		 174.5

		13		 161.4		 174.4

		14		 160.5		 174.5

		15		 159.5		 174.5

		16		 158.6		 174.6

		17		 157.8		 174.8

		18		 157.0		 175

		19		 156.1		 175.1

		20		 155.4		 175.4

		21		 154.6		 175.6

		22		 153.9		 175.9

		23		 153.2		 176.2

		24		 152.5		 176.5

		25		 151.9		 176.9

		26		 151.2		 177.2

		27		 150.5		 177.5

		28		 149.9		 177.9

		29		 149.3		 178.3

		30		 148.7		 178.7

		31		 148.2		 179.2

		32		 147.6		 179.6

		33		 147.0		 180

		34		 146.5		 180.5

		35		 146.0		 181

		36		 145.4		 181.4

		37		 144.9		 181.9

		38		 144.4		 182.4

		39		 143.9		 182.9

		40		 143.5		 183.5

		41		 142.9		 183.9

		42		 142.5		 184.5

		43		 142.1		 185.1

		44		 141.6		 185.6

		45		 141.1		 186.1

		46		 140.7		 186.7

		47		 140.3		 187.3

		48		 139.8		 187.8

		49		 139.5		 188.5

		50		 139.1		 189.1

		51		 138.6		 189.6

		52		 138.2		 190.2

		53		 137.8		 190.8

		54		 137.5		 191.5

		55		 137.1		 192.1

		56		 136.7		 192.7

		57		 136.3		 193.3

		58		 136.0		 194

		59		 135.6		 194.6

		60		 135.3		 195.3

		61		 134.9		 195.9

		62		 134.5		 196.5

		63		 134.2		 197.2

		64		 133.9		 197.9



Kyber1024


		0		 143.3		 143.3

		1		 141.6		 142.6

		2		 140.2		 142.2

		3		 139.1		 142.1

		4		 138.0		 142

		5		 137.1		 142.1

		6		 136.3		 142.3

		7		 135.5		 142.5

		8		 134.8		 142.8

		9		 134.2		 143.2

		10		 133.6		 143.6

		11		 133.0		 144

		12		 132.4		 144.4

		13		 131.9		 144.9

		14		 131.4		 145.4

		15		 130.9		 145.9

		16		 130.4		 146.4

		17		 130.0		 147

		18		 129.6		 147.6

		19		 129.1		 148.1

		20		 128.7		 148.7

		21		 128.3		 149.3

		22		 127.9		 149.9

		23		 127.5		 150.5

		24		 127.2		 151.2

		25		 126.8		 151.8

		26		 126.4		 152.4

		27		 126.1		 153.1

		28		 125.8		 153.8

		29		 125.5		 154.5

		30		 125.1		 155.1

		31		 124.8		 155.8

		32		 124.5		 156.5

		33		 124.2		 157.2

		34		 123.9		 157.9

		35		 123.6		 158.6

		36		 123.4		 159.4

		37		 123.0		 160

		38		 122.8		 160.8

		39		 122.5		 161.5

		40		 122.2		 162.2

		41		 122.0		 163

		42		 121.7		 163.7

		43		 121.5		 164.5

		44		 121.2		 165.2

		45		 121.0		 166

		46		 120.7		 166.7

		47		 120.5		 167.5

		48		 120.2		 168.2

		49		 120.0		 169

		50		 119.8		 169.8

		51		 119.5		 170.5

		52		 119.3		 171.3

		53		 119.1		 172.1

		54		 118.9		 172.9

		55		 118.7		 173.7

		56		 118.4		 174.4

		57		 118.2		 175.2

		58		 118.0		 176

		59		 117.8		 176.8

		60		 117.6		 177.6

		61		 117.4		 178.4

		62		 117.2		 179.2

		63		 117.0		 180

		64		 116.8		 180.8



R5ND5PKE0d


		0		 265.1		 265.1

		1		 263.1		 264.1

		2		 261.1		 263.1

		3		 259.1		 262.1

		4		 257.2		 261.2

		5		 255.3		 260.3

		6		 253.4		 259.4

		7		 251.7		 258.7

		8		 249.9		 257.9

		9		 248.2		 257.2

		10		 246.6		 256.6

		11		 245.1		 256.1

		12		 243.6		 255.6

		13		 242.2		 255.2

		14		 240.7		 254.7

		15		 239.4		 254.4

		16		 238.1		 254.1

		17		 236.8		 253.8

		18		 235.6		 253.6

		19		 234.4		 253.4

		20		 233.3		 253.3

		21		 232.2		 253.2

		22		 231.1		 253.1

		23		 230.0		 253

		24		 229.0		 253

		25		 228.0		 253

		26		 227.0		 253

		27		 226.0		 253

		28		 225.1		 253.1

		29		 224.2		 253.2

		30		 223.3		 253.3

		31		 222.4		 253.4

		32		 221.5		 253.5

		33		 220.7		 253.7

		34		 219.9		 253.9

		35		 219.0		 254

		36		 218.2		 254.2

		37		 217.5		 254.5

		38		 216.7		 254.7

		39		 215.9		 254.9

		40		 215.2		 255.2

		41		 214.5		 255.5

		42		 213.8		 255.8

		43		 213.0		 256

		44		 212.4		 256.4

		45		 211.7		 256.7

		46		 211.0		 257

		47		 210.4		 257.4

		48		 209.7		 257.7

		49		 209.1		 258.1

		50		 208.4		 258.4

		51		 207.8		 258.8

		52		 207.2		 259.2

		53		 206.6		 259.6

		54		 206.0		 260

		55		 205.4		 260.4

		56		 204.8		 260.8

		57		 204.2		 261.2

		58		 203.7		 261.7

		59		 203.1		 262.1

		60		 202.5		 262.5

		61		 202.0		 263

		62		 201.5		 263.5

		63		 200.9		 263.9

		64		 200.4		 264.4



Frodo1344


		0		 145.4		 145.4

		0		 145.4		 145.4

		1		 143.8		 144.8

		1		 143.8		 144.8

		2		 142.7		 144.7

		2		 142.7		 144.7

		3		 141.7		 144.7

		3		 141.7		 144.7

		4		 140.9		 144.9

		4		 140.9		 144.9

		5		 140.2		 145.2

		5		 140.2		 145.2

		6		 139.6		 145.6

		6		 139.6		 145.6

		7		 138.9		 145.9

		7		 139.0		 146

		8		 138.4		 146.4

		8		 138.4		 146.4

		9		 137.9		 146.9

		9		 137.9		 146.9

		10		 137.4		 147.4

		10		 137.4		 147.4

		11		 136.9		 147.9

		11		 137.0		 148

		12		 136.5		 148.5

		12		 136.5		 148.5

		13		 136.1		 149.1

		13		 136.1		 149.1

		14		 135.7		 149.7

		14		 135.7		 149.7

		15		 135.3		 150.3

		15		 135.3		 150.3

		16		 134.9		 150.9

		16		 135.0		 151

		17		 134.6		 151.6

		17		 134.6		 151.6

		18		 134.2		 152.2

		18		 134.3		 152.3

		19		 133.9		 152.9

		19		 133.9		 152.9

		20		 133.6		 153.6

		20		 133.6		 153.6

		21		 133.2		 154.2

		21		 133.3		 154.3

		22		 132.9		 154.9

		22		 133.0		 155

		23		 132.6		 155.6

		23		 132.7		 155.7

		24		 132.3		 156.3

		24		 132.4		 156.4

		25		 132.1		 157.1

		25		 132.1		 157.1

		26		 131.8		 157.8

		26		 131.8		 157.8

		27		 131.5		 158.5

		27		 131.6		 158.6

		28		 131.2		 159.2

		28		 131.3		 159.3

		29		 131.0		 160

		29		 131.0		 160

		30		 130.7		 160.7

		30		 130.8		 160.8

		31		 130.5		 161.5

		31		 130.5		 161.5

		32		 130.2		 162.2

		32		 130.3		 162.3

		33		 130.0		 163

		33		 130.1		 163.1

		34		 129.8		 163.8

		34		 129.8		 163.8

		35		 129.5		 164.5

		35		 129.6		 164.6

		36		 129.3		 165.3

		36		 129.4		 165.4

		37		 129.1		 166.1

		37		 129.1		 166.1

		38		 128.9		 166.9

		38		 128.9		 166.9

		39		 128.7		 167.7

		39		 128.7		 167.7

		40		 128.4		 168.4

		40		 128.5		 168.5

		41		 128.2		 169.2

		41		 128.3		 169.3

		42		 128.0		 170

		42		 128.1		 170.1

		43		 127.8		 170.8

		43		 127.9		 170.9

		44		 127.6		 171.6

		44		 127.7		 171.7

		45		 127.4		 172.4

		45		 127.5		 172.5

		46		 127.2		 173.2

		46		 127.3		 173.3

		47		 127.0		 174

		47		 127.1		 174.1

		48		 126.8		 174.8

		48		 126.9		 174.9

		49		 126.7		 175.7

		49		 126.7		 175.7

		50		 126.5		 176.5

		50		 126.5		 176.5

		51		 126.3		 177.3

		51		 126.4		 177.4

		52		 126.1		 178.1

		52		 126.2		 178.2

		53		 125.9		 178.9

		53		 126.0		 179

		54		 125.7		 179.7

		54		 125.8		 179.8

		55		 125.6		 180.6

		55		 125.6		 180.6

		56		 125.4		 181.4

		56		 125.5		 181.5

		57		 125.2		 182.2

		57		 125.3		 182.3

		58		 125.1		 183.1

		58		 125.1		 183.1

		59		 124.9		 183.9

		59		 125.0		 184

		60		 124.7		 184.7

		60		 124.8		 184.8

		61		 124.6		 185.6

		61		 124.6		 185.6

		62		 124.4		 186.4

		62		 124.5		 186.5

		63		 124.3		 187.3

		63		 124.3		 187.3

		64		 124.1		 188.1

		64		 124.2		 188.2



R5N15PKE0d


		0		 174.0		 174

		1		 170.3		 171.3

		2		 167.9		 169.9

		3		 165.9		 168.9

		4		 164.2		 168.2

		5		 162.6		 167.6

		6		 161.3		 167.3

		7		 160.0		 167

		8		 158.8		 166.8

		9		 157.8		 166.8

		10		 156.7		 166.7

		11		 155.8		 166.8

		12		 154.9		 166.9

		13		 154.0		 167

		14		 153.2		 167.2

		15		 152.4		 167.4

		16		 151.7		 167.7

		17		 150.9		 167.9

		18		 150.2		 168.2

		19		 149.5		 168.5

		20		 148.9		 168.9

		21		 148.2		 169.2

		22		 147.6		 169.6

		23		 147.0		 170

		24		 146.4		 170.4

		25		 145.9		 170.9

		26		 145.3		 171.3

		27		 144.8		 171.8

		28		 144.3		 172.3

		29		 143.8		 172.8

		30		 143.3		 173.3

		31		 142.8		 173.8

		32		 142.3		 174.3

		33		 141.8		 174.8

		34		 141.4		 175.4

		35		 140.9		 175.9

		36		 140.5		 176.5

		37		 140.1		 177.1

		38		 139.6		 177.6

		39		 139.2		 178.2

		40		 138.8		 178.8

		41		 138.4		 179.4

		42		 138.0		 180

		43		 137.6		 180.6

		44		 137.2		 181.2

		45		 136.8		 181.8

		46		 136.5		 182.5

		47		 136.1		 183.1

		48		 135.8		 183.8

		49		 135.4		 184.4

		50		 135.1		 185.1

		51		 134.7		 185.7

		52		 134.4		 186.4

		53		 134.1		 187.1

		54		 133.7		 187.7

		55		 133.4		 188.4

		56		 133.1		 189.1

		57		 132.8		 189.8

		58		 132.4		 190.4

		59		 132.1		 191.1

		60		 131.8		 191.8

		61		 131.5		 192.5

		62		 131.2		 193.2

		63		 130.9		 193.9

		64		 130.6		 194.6
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