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Abstract. The inconsistency of Nash equilibrium of rational delegated
computation scheme in the UC framework will lead to the lack of stric-
t security proof of the protocols fundamentally. The consistency proof
of Nash equilibrium between the ideal world and the real world has al-
ways been a challenge in the research field. In this paper, we analyze
the Nash equilibrium according to the game model of rational delegated
computation, and the ideal functionality FRDC for rational delegation
of computation based on incentive-driven adversary is proposed, then
we construct a rational delegated computation protocol πRDC for UC-
realizing the ideal functionality FRDC . In a word, the proposed rational
delegated computing protocol πRDC based on incentive-driven adversary
has been proven to be secure in the universally composable framework,
furthermore, we effectively solve the inconsistency problem of Nash e-
quilibrium between the real world and the ideal world.

Keywords: Universally composable · Nash equilibrium · Rational del-
egation of computation

1 Introduction

Cloud computing is a newly-emerging business computing paradigm based on
distributed technology, which takes on-demand allocation as the business mod-
el and provides users with powerful remote computing and storage capabilities.
The emergence of cloud computing has brought the new flourish to delegated
computation, mainly due to the fact that mobile terminal devices such as smart
wearing devices, automobile internal sensors and so on used in the Internet of
Things and Smart City only have limited computing power and storage capacity.
Therefore, a feasible method is to upload data from these terminals to the cloud,
and delegate a cloud server for calculation. We further explore that the tradition-
al delegated computing scheme does not consider the situation that participants
are rational, but once the participants are regarded as rational, which will lead
to the inconsistency of Nash equilibrium between the real model and the ideal
model, thus bringing security risks to the designed protocol.

Delegated computation refers to a client with limited computing resources
delegates a computing task to an untrustworthy server with powerful computing



power, in which not only ensures the privacy of users’ data, but also guarantees
the correctness (i.e. verifiability) of the results returned by the computing party.
The existing delegated computing schemes can be strictly divided into tradi-
tional delegated computation and rational delegated computation. Cryptogra-
phy and computational complexity theory are the basic tools used to construct
traditional delegation computing schemes. Rational delegated computation,
however, combines game theory with traditional delegated computation and is
required to design appropriate incentive mechanisms to motivate participants
to act honestly, in which all participants are regarded as rational and make de-
cisions based on their own maximum utility. Although there have been some
research works [9,16,22,30] about the UC (Universally Composable) model [10]
of delegating quantum computation, participants are not viewed as rational in
these schemes. Furthermore, the previous rational delegated computation proto-
cols do not consider a security model in the UC framework. More importantly,
the existing cryptographic protocols have not solved the inconsistency problem
of equilibrium between the real world and the ideal world in the UC framework.
This problem makes the adversary be able to distinguish the execution of the
real world from the ideal world with non-negligible probability, which will lead
to the fundamental insecurity of rational cryptographic protocols.

According to the above analysis, we know that: 1. there is still a lack of
rational delegated computing UC model; 2. in other rational UC models (such
as [18]), there is a vital and unsolved security challenge of Nash equilibrium in-
consistency. Therefore, we construct a rational delegated computing model in the
UC framework, meanwhile, which effectively solves the problem of inconsistency
of Nash equilibrium between the real world and the ideal world.

Related Work. In recent years, research schemes on traditional delegated
computing have emerged in large numbers, which can be mainly divided into
the following aspects: (1) The schemes based on cryptography technology, in
which fully homomorphic encryption (FHE), homomorphic MACs and homo-
morphic signature are used as main tools. Gennaro et al. [19] firstly proposed
the delegating computation scheme by combining FHE and Yao’s garbled cir-
cuit [34]. In the same year, a FHE-based work that improved the efficiency of
delegated computation was presented in [12]. Gennaro and Wichs [20] formal-
ized the homomorphic MAC and designed a delegated computing protocol for
arbitrary functions, which has been futher optimized in [4, 17]. There are also
some schemes [4, 11, 24] based on homomorphic signature construction. (2) The
works based on computational complexity theory include [13, 27, 28] (based on
interactive proof [2, 21]), [3, 6, 7, 14, 25, 31, 33] (based on non-interactive proof)
and [8, 26, 32] (i.e. the PCP theory [1] and PCP-based constructions). More re-
cently, Zhao et al. [36] systematically reviewed a mass of researches of delegated
computation.

Rational delegated computing has gradually become a research hotspot re-
cently. Belenkiy et al. [5] proposed an incentive outsourcing computation scheme,
there is a reputation or credit system so that rational contractors can calculate

2



work correctly by setting incentives. Zhang et al. [35] also designed a reputation-
based incentive protocol in crowdsourcing applications by using a rigorous repet-
itive game framework. Kupcu [23] deemed that there is no fair payment in [35],
and could not resist irrational malicious contractors. Therefore, an outsourcing
computing scheme for incentivizing malicious contractors was constructed in [23].
Game theory and smart contracts were combined in [15], which constrained the
dishonest behavior of the computing party by setting up three different con-
tracts (sub-games) to motivate participants to behave honestly. Tian et al. [29]
combined the computation delegation and information theory to investigate the
attack and defense limitation of players in the delegated computation.

Our Contributions. In this paper, we have completed the following work to
solve the inconsistent problem of Nash equilibrium between the real world and
the ideal world in the UC framework.

1. We put forward a rational delegated computing model that can solve the
inconsistency of equilibrium between the ideal world and the real world in
the UC framework.

2. Based on the idea of [18], we further design a UC model based on incentive-
driven adversary and construct the first ideal functionality FRDC for ratio-
nal delegated computation based on the incentive-driven adversary, which
provides a fair security mechanism for rational delegation of computation
between the client and the computing party.

3. Besides, we design a secure protocol πRDC for rational delegated compu-
tation based on the incentive-driven adversary. There are three contracts
used to set reward and punishment mechanisms, so as to incentive partici-
pants to behave honestly. Homomorphic encryption is used to guarantee the
privacy of data, and Pedersen Commitment is combined with PCP-based
construction to ensure the correctness of the submitted results, respectively.

4. According to the composition theorem, we prove that the protocol πRDC
securely realize the ideal functionality FRDC in the UC framework, that
is, the proposed protocol πRDC can achieve the consistency while meeting
the requirements of UC security, which solves the security defects in the
UC model of rational delegated computation due to the inconsistency of
equilibrium.

Framework. Firstly, we propose three contracts, namely, delegation contract,
corruption contract and betrayal contract, to set up the incentive mechanism
for each participant in the scenario of rational delegated computation. Then we
design a three-party game model between the client, the computing party and
the external adversary. Based on the idea of [18], we transform the original
three-party game model into a two-party attack game GM between internal
participants and the external adversary. Then we obtain the Nash equilibrium
in the rational delegated computing game model through the game analysis.
On the basis of this Nash equilibrium, we present the first ideal functionality
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FRDC for rational delegated computation based on incentive-driven adversary.
Furthermore, we design the first rational delegation computing protocol πRDC
based on incentive-driven adversary. Finally, we realize the security proof of
the proposed protocol in the UC framework, that is, the protocol UC-securely
realizes the ideal functionality FRDC ; and the problem of inconsistency of Nash
equilibrium between the real world and the ideal world has been solved elegantly.

Organization. The remainder of this paper is organized as follows: In section
2, we briefly describe our system model and rational cryptographic protocol de-
sign method based on incentive-driven adversary as preliminaries. In Section
3, we introduce the model assumptions and three different contracts. Then we
formalize our game model and obtain Nash equilibrium through game analysis
in Section 4. According to the conclusion of last section, in Section 5, we con-
struct the ideal functionality FRDC for rational delegated computation based
on incentive-driven adversary. Then we design a rational delegated computing
protocol πRDC to realize ideal functionality in Section 6. In Section 7, we provide
the protocol analysis, which includes security proofs and comparison with other
schemes. The conclusion is given in Section 8.

2 Preliminaries

We briefly formalize our system model in Section 2.1. And we will review relevant
content in rational cryptographic protocol design method based on incentive-
driven adversaries mostly based on [18] in Section 2.2.

2.1 System Model

Our system model consists of four entities: the client, the computing party, the
external adversary, and the trusted third party (TTP) with computing power,
as shown in Fig. 1.

All participants except TTP in the model are rational that make decisions
based on the own maximum expected payoff. The client and the computing
party are regarded as internal participants who execute the protocol. While
the external adversary is to achieve the purpose of breaking the protocol by
corrupting one of the internal participants. TTP, a trusted third party with
computing power, is not only responsible for the receipt and dispatch of deposits
of internal participants, but also arbitrating in case of controversies between the
internal participants.

In the delegation phase, the client signs a delegation contract with the
computing party to ensure the honest implementation of the protocol between
them, in which the client obtains the correct result while the computing party
gains the corresponding delegation fees. The external adversary chooses whether
to corrupt the client or the computing party and signs a corruption contract
with the corrupted during the corruption phase to guarantee that the corrupted
will help the external adversary disrupt the normal execution of the protocol.
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1.Delegation Contract

3.Betrayal Contract

2.Corruption Contract 2.Corruption Contract

4.Arbitrate 4.Arbitrate

TTP
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Computing

Party
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Internal Participants

Fig. 1. System model

The corrupted internal participant may choose to sign a betrayal contract
with another honest party in the computation phase or the verification phase,
at this time, the person being corrupted is called a traitor. This contract en-
sures that the traitor’s breach of the corruption contract is risk-free, thereby
causing mistrust between the external adversary and the corrupted. The honest
internal participant will send a request for arbitration to TTP if the dishonest
internal participant is found in the verification stage, and the final penalty will
be imposed by TTP.

2.2 Cryptography Against Incentive-driven Adversaries

Garay et al. [18] defined the rational protocol design method based on incentive-
adversary in the following way.

Cryptographic Security as a Game. Firstly, the cryptographic security is
formalized into an attack game, and then the utility of each player in the game
model is defined.

(1) The Attack Game GM. The attack game in [18] is a two-party zero-sum
extensive game of perfect information with a horizon length 2. The protocol de-
signer D and the external attacker A are regarded as the leader and the follower,
respectively. D first chooses a probabilistic and polynomial-time computable pro-
tocol Π for computing the functionality F , which is described as Π ⊆ {0,1}∗.
Once receiving Π, the attacker A selects a polynomial time ITM A as its own s-
trategy to destroy the protocol. Let denote by GM the above attack game, where
the subscript M represents the attack model, which specifies all the public pa-
rameters of the game, including utilities, the functionality and description of
action.

Definition 1. Let GM be an attack game. A strategy profile (Π,A) is an –
subgame perfect equilibrium in GM if the following conditions hold: (a) for any
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Π′ ∈ ITMn, uD(Π′,A(Π′))≤uD(Π,A(Π)) + ε, and (b) for any A′ ∈ ITMn,
uA(Π,A′(Π))≤uA(Π,A(Π)) + ε, where uD and uA represent the utilities of the
protocol designer and the external attacker, respectively.

(2) Defining the Utilities. The method of defining adversary’s utility consists of
three steps in [18]:

1) The first step is to “relax” the ideal functionality F to a weaker ideal func-
tionality 〈F〉, which allows the attacks that the adversary wants to implement.

2) In the second step, the payoff of ideal adversary S is defined according to
the weaker ideal functionality 〈F〉 and an evaluation function v. The function v
is used to map the joint view of relaxed functionality 〈F〉 and environment Z to
a real-valued payoff. v〈F〉,S,Z as a random variable to describe the payoff of by
accessing functionality 〈F〉 directly. The ideal expected payoff of S with respect
to the environment Z is defined to be the expected value of v〈F〉,S,Z , i.e.,

U
〈F〉
I (S,Z) = E(v〈F〉,S,Z) (1)

3) The third step is to assign the “best” simulator for each adversarial strat-
egy for a certain protocol, so as to obtain the real expected payoff corresponding
to the adversarial strategy based on the above-mentioned ideal expected payoff.
For a functionality 〈F〉 and a protocol Π, denote the class of simulators that are
“good” for A by CA, i.e, CA = {S ∈ ITM|∀Z : EXECΠ,A,Z ≈ EXEC〈F〉,S,Z}.
Then the real expected payoff of the pair (A,Z) is defined as

UΠ,〈F〉 = inf
S∈CA

U
〈F〉
I (S,Z) (2)

UΠ,〈F〉 assigns a real number to each pair (A,Z) ∈ ITM× ITM, indicating the
expected payoff of A attacking protocol Π in environment Z.

Further define the maximum payoff of an adversarial strategy A based on the
real expected payoff that has been defined. At this point, the protocol needs to
be executed in the “preferred” environment of the adversary, which refers to the
environment that maximizes the utility of the external adversary who chooses
the attack strategy A. Thereby the maximal payoff of an adversary A attacking
protocol Π for realizing 〈F〉 with respect to a certain payoff function v is defined
as

ÛΠ,〈F〉(A) = sup
Z∈ITM

{ÛΠ,〈F〉(A,Z)} (3)

Finally, having defined the maximal payoff of any given adversarial strategy
A, the utility function uA of the external attacker A in the attack game GM can
be defined. Let (Π,A) terminal history in GM , i.e., A = A(Π). Then as follows

uA(Π,A) := ÛΠ,〈F〉(A) (4)

Since GM is a zero-sum game, the utility of the protocol designer D is uD(·) :=
−uA(·).
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The Attack Game as a Cryptographic (Maximization) Problem.

Definition 2. Let M = (F , 〈F〉, v) be an attack game and Π be a protocol that
realizes 〈F〉. We say that ITM A is a M - maximizing adversary for Π if

ÛΠ,〈F〉(A)
negl
≈ sup
A′∈ITM

ÛΠ,〈F〉(A) =: ÛΠ,〈F〉 (5)

Protocol Composition.

Definition 3. Let M = (F , 〈F〉, v) be an attack game and Π be a protocol that

realizes 〈F〉. Protocol Π is attack-payoff secure inM if ÛΠ,〈F〉
negl

≤ ÛΦ
F ,〈F〉,where

ΦF is the dummy F -hybrid protocol.

Theorem 1. Let M = (F , 〈F〉, v) be an attack game and Π be a H-hybrid pro-
tocol, and Ψ be a protocol that securely realizes H (in the traditional simulation-
based notion of security). Then replacing in Π calls to H by invocations of pro-
tocol Ψ does not (noticeably) increase the utility of a M-maximizing adversary.

3 Assumptions and Contracts

In section 3.1, we first introduce the assumptions required by the model, and
then in section 3.2, we present the three different contracts that form a restrictive
relationship among them, so as to incentivize the honest behavior of players.

3.1 Model Assumptions

The client, the computing party and the external adversary under this model are
all regarded as rational participants, in which the client benefits from receiving
the correct calculation results; the computing party obtains payoff if complet-
ing the client’s delegation tasks honestly; and the external adversary gains by
attacking the protocol successfully.

Unlike other schemes, we consider not only the correctness of the calculation
results, but also its privacy, namely, the calculated results should be hidden for
the client during the verification process, the client will not receive the real cal-
culation results until the verification information submitted by the computing
party is verified to be right by the client. The main reason for that is order
to prevent from an unallowed situation that even if the dishonest client’s mali-
cious behavior is eventually detected and required to pay a fine to the honest
computing party, he still gets the corresponding benefit for owning the correct
calculated result.

Due to the client and the computing party in the internal participants are
not responsible for the same work, as well as they are likely to deceive each other
for their own payoff, the scenario is modeled as a three-party dynamic game with
perfection information between the client, the computing part and the external

7



adversary, rather than a two-party game between the internal participants and
the external adversary. It is worth noting that since TTP only acts as an impar-
tial arbitration institution when needed and does not make different decisions
for own payoff, it is not considered as a participant in the game model in this
paper.

The conventions for the rational delegated computing scenario discussed in
this paper are as follows:

• Assume that the client is unable to complete the computing task due to limited
computing power, and can only verify the sub-tasks; while both the computing
party and TTP are entities with powerful computing power.

• It is assumed that the corruption is not free, and the external adversary can
choose to corrupt the client or the computing party, but not both. In order to
view internal participants as more fully rational, we suppose that even if the
external adversary chooses to corrupt an internal participant (the client or the
computing party), the internal participant can still choose whether to accept
the corruption or not. Even if the internal participant chooses to accept the
corruption at this time, he can still decide to perform honestly or dishonestly
in the subsequent implementation phase of the protocol.

• The client and the computing party will not conduct dishonest behavior on
their own initiative. Only when the external adversary chooses the strategy of
corruption may the client or the computing party deviate from the protocol.
Thus, there are no malicious rumors against the external adversary in the
betrayal contract.

• When the external adversary corrupts the client, which means that the client
will always verify the calculation result submitted by the computing party
as a failure and refuse to accept the calculated result in the final verification
stage. If the computing party is corrupted, he will send an incorrect verification
information to the client during the verification phase. Since the purpose of the
external adversary is to break the transaction and benefit from it, this paper
only considers the external adversary’s attack behavior that can directly lead
to the failure of the transaction rather than destroying the privacy of data
(guaranteed by homomorphic encryption).

• Suppose that the client will certainly be able to submit the correct calculation
results if he honestly calculates the delegated task, at this time, the honest
client can also correctly verify the results submitted by the computing party
regardless of the errors caused by the actual factors.

• We presume that the contracts have legal effect, either dishonest internal
participants or the malicious external adversary will certainly be punished.
What’s more, a dishonest internal participant will suffer a loss of reputation,
while this fee is not charged by TTP, but an indirect loss caused by the neg-
ative impact on future follow-up work.
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3.2 The Contracts

Monetary Variables. The monetary variables used in the three contracts are
specified in Table 1. The following variables are all non-negative.

Table 1. The monetary variables

variables the descriptions of variables

w the delegate fee paid by the client to the computing party.
c the computing party’s cost for calculating the task correctly.
s1 the client’s payoff after receiving the correct calculation results.
z TTP’s fee paid by the internal participants for arbitration.
d12 the deposit that the computing party is required to place at TTP in advance.
d21 the deposit that client needs to prestore at the TTP, note that d12 = d21.
x1 the client’s loss of credibility because of his dishonest behavior.
x2 the loss of reputation of the computing party for his dishonesty.
h31 the fee paid by the external adversary to corrupt the client.
h32 the fee paid by the external adversary to corrupt the computing party.
s3 the payoff that the external adversary successfully sabotages the transaction.
f31 the fine that the corrupted client pays to the adversary for his betrayal.
f32 the fine that the corrupted computing party pays to the adversary for his

betrayal.
l the sanction imposed by law on external adversary.

Note the loss of credibility xi represents the negative impact on the possible
future transactions because of the party’s dishonesty, and xi is an increasing
function of the delegation cost w, where i = 1, 2.

The Delegation Contract. The delegation contract shown in Fig. 2 is signed
between the client and the computing party in the delegation phase, which means
that the client chooses to delegate a computing task to others and the comput-
ing party also agrees to accept it. Briefly speaking, the client should pay the
delegation fee w to the computing party in return for completing the calculation
task correctly. In addition, the client and the computing party must pay a high
amount of deposit in advance, and if one party shows dishonesty, the deposit
will be acquired by the other party, so as to encourage both parties to carry out
the contract honestly. The details of the contract are presented below.

(1) The contract is signed by the client and the computing party at the dele-
gation stage. After signing the contract, the client must pre-store the delegation
fee w, deposit d21 and arbitration fee z at the TTP; as well as the computing
party should pre-store the deposit d12, the arbitration fee z at the TTP.

(2) The client sends the computing task f and input x∗ to the computing
party, where x∗ is the result of the homomorphic encryption of the real input by
the client, in order to ensure the privacy of the input.
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(3) The computing party is required to divide the task into several sub-tasks
logically and then performs the calculations. After computing commitments to
the sub-results respectively, the information of the commitments and the decom-
mitments are sent to the TTP, and the description of sub-task division is sent
to the client.

(4) The client judges whether the received description is logical or not and
interacts with TTP to verify the result of a sub-task is right or not, TTP also
attempts to open the commitments by the decommitment information to judge
whether the computing party is honest.

(5) The honest party can send a request for arbitration to TTP if there is a
dispute between the internal participants. After receiving the arbitration request,
TTP will require both parties to submit relevant information and recalculate it
to verify who is dishonest, and then settle the dispute as below:

- If the client is dishonest, then TTP will take the arbitration fee z paid
by the client, and return the deposit d12 and d21, arbitration fee z to the
computing party, and return the delegation fee w to the client.

- If the computing party is considered dishonest, TTP will take the arbitra-
tion fee z paid by the computing party, and refund the deposit d12 and d21,
arbitration fee z and delegation fee w the client.

(6) If both of the internal participants are honest during the execution of the
agreement, TTP will charge half of the arbitration fee from each of the them,
return the deposit d21 and arbitration fee 1

2z to the client, and refund the deposit
d12, arbitration fee 1

2z and delegation fee w to the computing party. Meanwhile,
TTP sends the encrypted result by opening the commitment to the client, thus
the client can obtain the final result by performs homomorphic decryption.

Delegation Contract

• The client and the computing party are required to pre-store the fee (w, z, d21) and (z, d12)
at TTP, respectively.

• The client sends the processed input x∗ and the objective function f to the computing party.
• After completing the calculation, the computing party submits the verification information to

the client, and the commitment and decommitment information about the calculated result
to TTP. Then the client interacts with TTP for verification.

• If there is a dispute between the client and the computing party, TTP will perform the
arbitration as follows.
- If the client is dishonest, TTP will take the fee z from he and refund the fee w to the client,

as well as refund the fee (z, d12, d21) to the computing party.
- If the computing party is dishonest, TTP will take the fee z from he and refund the fee

(w, z, d21, d12) to the client.
• If both of them are honest, TTP will refund the fee ( 1

2 z, d21) to the client and the fee

(w, 1
2 z, d12) to the computing party, then he will charge the half arbitration fee from the

two internal participants respectively. Meanwhile, the client obtains the processed result from
TTP.

Fig. 2. Delegation contract
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The Corruption Contract. During the corruption phase, if the external ad-
versary chooses to corrupt an internal participant, and the participant also ac-
cepts it, the parties will sign a corruption contract. The external adversary needs
to pay the corruption fee to the corrupted internal participant to achieve the pur-
pose of breaching the agreement. In order to ensure the interests of the external
adversary, it is stipulated that the corrupted party is required to pay a fine to
the external adversary if he betrays the corruption contract. The detailed de-
scription of the contract is as shown in Fig. 3.

Corruption Contract

• If the external adversary signs a corruption contract with the client, the external adversary
must pay the corruption fee h31 to the client, and requires the client not to pass the verification
at the verification stage to break the agreement. If the client breaches the corruption contract,
a fine f31 must be paid to the external adversary.

• If the external adversary signs a corruption contract with the computing party, the external
adversary shall pay the computing party a corruption fee h32 and ask the computing party to
submit a wrong calculation result. If the computing party violates the contract, he is required
to pay a fine f32 to the external adversary.

Fig. 3. Corruption contract

The Betrayal Contract. The betrayal contract shown in Fig. 4 is designed
to motivate the internal participants to behave honestly. The corrupted internal
participant called the traitor will sign a betrayal contract with another honest
party if he wants to violate the corruption contract. The traitor can actively
inform the honest party of the fact that he is in a collusion with the external
adversary, meanwhile, stay honest during the execution of the agreement. Ulti-
mately, the two parties jointly expose the evils of the external adversary, so that
the external adversary will be disciplined by the law.

If the traitor is the client, the betrayal contract will be signed during the
verification phase; while if the traitor is the computing party, the betrayal con-
tract will be signed during the ccomputation phase. Once the specified time is
exceeded, the betrayal contract is deemed invalid.

The existence of a betrayal contract guarantees that betrayal is risk-free.
Firstly, the traitor will be exempt from the high deposit because of the honest
implementation of the agreement. Secondly, the law will treat the fine in the
corruption contract as invalid, but only order the refund of the corruption fee
because the corruption contract is an invalid contract (see Article 52 of the Con-
tract Law of the Peoples Republic of China) once the traitor and another honest
party jointly expose the criminal of the external adversary. Moreover, since the
traitor eventually chooses to be honest, avoiding the serious loss of credibility
caused by the exposure of dishonest behavior. The betrayal contract sabotages
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a corruption contract by encouraging treachery. The fear to betrayal creates
distrust between the external adversary and the corrupted, thus preventing the
collusion between the external and the internal.

Betrayal Contract

• If the client is a traitor, the fine f31 stipulated in the corruption contract will be invalid, and
the client only needs to refund the corruption fee h31.

• Or If the computing party is a traitor, the fine f32 stipulated in the corruption contract will
be invalid, and the computing party will refund the corruption fee h31.

• The external adversary will be disciplined by the law which denoted as l once his malicious
corruption is exposed by the traitor.

Fig. 4. Betrayal contract

4 Game Model Analysis

4.1 Game Model

The complete game shown in Fig. 5 is specifically modeled as a three-party game
between the client P1, the computing party P2 and the external adversary P3,
and the set of participants is i.e., P = {P1, P2, P3}. It’s remarkable that because
of our assumption, the corrupted knows the strategy of the other party is honest,
meanwhile, even though the uncorrupted can not know whether the other party
is honest or not, his only choice is honest, hence the game model can still be
regarded as a game with perfect information.

P1

P2

P3

P1

P2

P1

P2

P2

P1 P1

P2

P1

P2

P1

(a8,b8,c8)

(a2,b2,c2) (a3,b3,c3) (a4,b4,c4) (a7,b7,c7)(a5,b5,c5) (a6,b6,c6)

P2

P1

(a1,b1,c1)

(a9,b9,c9)

P1

Fig. 5. Game model
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The game process of rational delegated computation is described as follows:
(1) Delegation phase

Step 1: P1 can choose to delegate a computing task to others or not, that is,
the strategy set at this time is S1,1 = {delegate,¬delegate}. If he chooses the
strategy of “delegate”, go to Step 2. Otherwise, the protocol ends.

Step 2: P2 can choose to accept the computing task or not, and his strategy
set at this time is S1,2 = {accept,¬accept}. If he chooses to accept it, both of
them sign the delegation contract and proceed to the next stage. Otherwise, the
protocol ends.
(2) Corruption phase

Step 1: The alternative strategies for P3 are S2,3 = {¬corrupt, corrupt −
P1, corrupt − P2}. When P3 chooses not to corrupt any internal participants,
the participants honestly execute the protocol and moves on to the next phase.
When choosing corrupt P1 or P2, move on to the next step.

Step 2: The strategy set of P1 or P2 at this time can be expressed as S2,1 =
S2,2 = {accept,¬accept}, the corrupted internal participant can choose whether
to accept the corruption or not. If the internal participant accepts it, then he
will sign the corruption contract with the P3 and enter the next phase.
(3) Computation phase

If P2 is not corrupted, then the delegated task will be calculated honestly by
P2 whose strategy set is S3,2 = {honest}.

But the strategy set of the corrupted P2 is S3,2 = {honest, dishonest}. P2 can
choose the strategy of “dishonest”, which means submitting the wrong calcula-
tion results so as to perform the corruption contract but abandon the delegation
contract. In addition, P2 can also choose to be honest, i.e., to execute the del-
egation contract rather than the corruption contract, which indicates that the
betrayal contract has been signed between P2 and P1.
(4) Verification phase

The the strategy set of the uncorrupted P1 is S4,1 = {honest}, that is, P1 will
only perform the verification on the calculation results honestly. The verification
result will be “TRUE” if P2 executes calculation honestly, otherwise, will be
“FALSE”.

The the strategy set of the uncorrupted P1 is S4,1 = {honest, dishonest}.
When P1 chooses to behaves honestly, namely signing a betrayal contract, which
the situation is the same as before. When P1 chooses to be dishonest, the result
of the verification is always “FALSE” regardless of any submitted calculations.

The Utilities of Players. In the game model, the utilities of players can be
defined as follows:

For the client, If he successfully delegates the computing task and the protocol
is correctly executed, which is defined as an event ED. When the event ED
occurs, he should pay the delegation fee w to the computing party, the arbitration
fee 1

2z to the TTP, and the payoff s1 can be obtained. Denote the client is
corrupted by Eh31

, when the event Eh31
occurs, the corruption fee h31 will be

obtained from the adversary. The client’s breach of the corruption contract is
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recorded as an event Ef31 , and the client is required to pay a fine f31 when the
event Ef31 occurs. The dishonesty of the computing party during the execution
of the agreement is defined as an event Ed12 . When the event Ed12 occurs, the
deposit d12 can be received from the computing party. The client’s dishonesty is
defined as an event Ed21 . When the event Ed21 occurs, the client should pay the
deposit d21 to the computing party, the arbitration fee z to TTP, and suffer a loss
of reputation x1. It is defined as an event Eb1 that the corrupted client becomes
a traitor. When the event Eb1 occurs, the corruption fee h31 shall be returned
to the external adversary, and the fine f31 is regarded as deemed invalid.

Let −→γ 1 = (−w, d12,−d21, s1, h31,−f31,−z,−h31, f31) denote a payoff vector
of the client, and the expected payoff of the client is computed according to our
definitions as:

U1 =(s1 − w −
1

2
z)Pr[ED] + d12Pr[Ed12 ]− (d21 + x1 + z)Pr[Ed21 ]

+ h31Pr[Eh31 ]− f31Pr[Ef31 ] + (f31 − h31)Pr[Eb1 ]
(6)

where Pr[Ed12Ed21 ] = 0, Pr[EDEd12 ] = 0, Pr[EDEd21 ] = 0, Pr[Eh31
Ed12 ] = 0,

Pr[Eb1Ed21 ] = 0, Pr[Ed21Ef31 ] = 0, Pr[Eb1 |Eh31Ef31 ] = 1. Ed21 or Ef31 may
happen only if Eh31 happens.

For the computing party, when the event ED occurs, the delegated fee can
be obtained from the client, while spending the cost c of honest calculation, and
the arbitration fee 1

2z shall be paid to the TTP. Record the computing party
is corrupted successfully as Eh32

, when the event Eh32
occurs, the computing

party will get the expense h32 from the adversary. The corrupted computing
party deviates from the adversary is defined as an event Ef32 , and he will pay
a fine f32 to the adversary when the event Ef32 occurs. When the event Ed12
occurs, he should pay deposit d12 to the client and the arbitration fee z to TTP,
respectively, as well as a loss of reputation x2 is incurred. When the event Ed21
occurs, the deposit d21 is received from the computing party, and the cost c
of calculating honestly may be lost. The corrupted computing party becomes
a traitor, which is defined as an event Eb2 . When the event Eb2 occurs, the
corruption fee h32 is refunded to the external adversary, as well as the fine f32

is deemed invalid.
Let −→γ 2 = (w,−d12, d21,−c, h32,−f32,−z,−h32, f32) denote a payoff vector

of the client, and the expected payoff of the client is computed according to our
definitions as:

U2 =(w − c− 1

2
z)Pr[ED]− (d12 + x2 + z)Pr[Ed12 ] + (d21 − c)Pr[Ed21 ]

+ h32Pr[Eh32
]− f32Pr[Ef32 ] + (f32 − h32)Pr[Eb2 ]

(7)

where Pr[Ed12Ed21 ] = 0, Pr[EDEd12 ] = 0, Pr[EDEd21 ] = 0, Pr[Eh32Ed21 ] = 0,
Pr[Eb2Ed12 ] = 0, Pr[Ed12Ef32 ] = 0, Pr[Eb2 |Eh32

Ef32 ] = 1. Ed12 or Ef32 may
happen only if Eh32

happens.
For the adversary, when the event Eh31

occurs, the expense of corrupting
the client h31 shall be paid; and he will receive a fine f31 from the client when
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the event Ef31 occurs. When the event Eh32
occurs, the expense of corrupting

the computing party h31 is required to pay; but when the event Ef32 occurs, he
will obtain a fine f32 from the computing party. Record the successful breach
of the agreement as Es3 , he will gain the payoff s3 when the event Es3 occurs.
Once Eb1 or Eb2 happens, which means the adversary will be subject to legal
sanctions denoted by l, as well as the corresponding corruption fee is refunded
and the specified fine is viewed as invalid.

Therefore, let −→γ 3 = (−h31,−h32,−l, f31, f32, s3, h31, h32,−f31,−f32) denote
a payoff vector of the external adversary. The expected payoff of the external
adversary is computed according to our definitions as:

U3 =− h31Pr[Eh31
]− h32Pr[Eh32

] + f31Pr[Ef31 ] + f32Pr[Ef32 ]

+ s3Pr[Es3 ]− (l + f31 − h31)Pr[Eb1 ]− (l + f32 − h32)Pr[Eb2 ]
(8)

where Pr[Eh31Eh32 ] = 0, Pr[Ef31Ef32 ] = 0, Pr[Eb1Eb2 ] = 0, Pr[Eh31Eb2 ] = 0,
Pr[Eh32

Eb1 ] = 0, Pr[Es3Eb1 ] = 0, Pr[Es3Eb2 ] = 0, Pr[Eb1 |Eh31
Ef31 ] = 1,

Pr[Eb2 |Eh32
Ef32 ] = 1, Pr[Eh31

|Ef31 ] = 1, Pr[Eh32
|Ef32 ] = 1. Ef31 may occur

only if Eh31
occurs. Ef32 may occur only if Eh32

occurs. Es3 may occur only if
Eh31 or Eh32 occurs.

Let ai, bi, ci denote the expected utilities of the client, the computing party
and the external adversary respectively when choosing the i-th strategy set.
According to the above definition, the utilities of players in various strategy sets
under the game model are as shown in Table 2.

Table 2. The utilities of players

ai bi ci
i = 1 s1 − w − 1

2
z w − c− 1

2
z 0

i = 2 s1 − w − 1
2
z w − c− 1

2
z −l

i = 3 h31 − d21 − x1 − z d21 − c s3 − h31

i = 4 s1 − w − 1
2
z w − c− 1

2
z 0

i = 5 s1 − w − 1
2
z w − c− 1

2
z −l

i = 6 d21 h32 − d12 − x2 − z s3 − h32

i = 7 s1 − w − 1
2
z w − c− 1

2
z 0

i = 8 0 0 0
i = 9 0 0 0

4.2 The Attack Game

With reference to [1], this game model is transformed into the attack game GM.
Since both the client and the computing party belong to the internal participants
who execute the protocol in the game model, while the objective of the external
adversary is to ultimately break the protocol by corrupting an the internal par-
ticipant. The model can be regarded as a two-party attack game between the
external adversary and the internal players.
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The two internal participants choose a polynomial time calculable protocol
in the delegation stage. Since the game is a dynamic as well as with perfect
information, the internal participants send the description Π1(P1,P2) ⊆ {0, 1}∗
of the protocol to the external adversary P3 in a specific way. Once receiving the
message, an ITM A with a polynomial time is selected as the attack strategy to
destroy the protocol and sent to the internal participants. The internal partic-
ipants then choose the protocol Π2(P1,P2) ⊆ {0, 1}∗ according to the received
attack strategy A.

Let (Π1,A,Π2) denote the strategy profile of the attack game GM, where A
is a function that maps an efficient protocol to a corresponding attack strategy,
and Π2 is a function that maps an attack strategy to another valid protocol.
The protocol in the internal participants can be expressed as Π ⊆ {Π1,Π2}. In
addition, we use u1(·), u2(·) and u3(·) to represent the utilities of the client, the
computing party and the external adversary, respectively.

Definition 4. Let GM be an attack game. A strategy profile (Π1,A,Π2) is an
ε-subgame perfect equilibrium in GM if the following conditions hold:
(a) for any Π1

′ ∈ ITMn

u1(Π1
′,A(Π1

′),Π2(A(Π1
′)))≤u1(Π1,A(Π1),Π2(A(Π1))) + ε.

u2(Π1
′,A(Π1

′),Π2(A(Π1
′)))≤u2(Π1,A(Π1),Π2(A(Π1))) + ε.

(b) for any A′ ∈ ITMn

u3(Π1,A
′(Π1),Π2(A′(Π1)))≤u3(Π1,A(Π1),Π2(A(Π1))) + ε.

(c) for any Π2
′ ∈ ITMn

u1(Π1,A(Π1),Π2
′(A(Π1)))≤u1(Π1,A(Π1),Π2(A(Π1))) + ε.

u2(Π1,A(Π1),Π2
′(A(Π1)))≤u2(Π1,A(Π1),Π2(A(Π1))) + ε.

4.3 The Game Analysis

Theorem 2. Let GM be an attack game, there is a Nash equilibrium in GM if
and only if s1−w− 1

2z > h31−d21−x1− z and w− c− 1
2z > h32−d12−x2− z.

Proof. Firstly, the client decides whether to delegate the computing task to the
computing party. Because of the limitation of the client’s computing power, it is
impossible to complete the computing task alone. If it is not delegated, which will
result in his own payoff of 0, such as strategy set S9 = {¬delegate}. Therefore,
the client will choose the strategy of “delegate”.

Then it is up to the computing party to choose whether to accept the task
or not, and if he chooses to not accept it, the computing party’s revenue will be
0, such as the strategy set S8 = {delegate,¬accept}. Therefore, the computing
party must choose the strategy of “accept”.

It is turn for the external adversary to choose a strategy. If one of the internal
players is chosen to corrupt, the internal player can decide whether to accept it or
not. If the internal participant chooses not to accept, the internal participant will
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carry out the agreement honestly, and the external adversary gains payoff 0, such
as strategy set S4 = {delegate, accept, corrupt − P1,¬accept, honest, honest}
and S7 = {delegate, accept, corrupt − P2,¬accept, honest, honest}. But once
the internal participant chooses to accept it at this time, and at the later
stage chooses to be honest, that is to say, signing a betrayal contract with
another honest internal participant, which will not lead to any negative im-
pact on the betrayer. And the utility of the traitor is greater than that of
helping the external attacker and same as the situation that choosing to not
accept, so the corrupted is more inclined to choose the strategy of “honest”
in the subsequent implementation of the agreement, even if he signs a cor-
ruption contract with the external attacker. But this is a disastrous choice
for the adversary, who will be sanctioned by the law because of the exposure
of the malicious corruption, with the lowest utility −l ultimately, such as s-
trategy set S2 = {delegate, accept, corrupt − P1, accept, honest, honest} and
S5 = {delegate, accept, corrupt − P2, accept, honest, honest}. Since the exis-
tence of a betrayal contract, which will cause mistrust between the external
adversary and the corrupted, the best strategy of the external adversary is
to choose not corrupt any parties, so there is a Nash equilibrium S∗ = S1 =
{delegate, accept,¬corrupt, honest, honest}, i.e., for all i = 1, 2, 3,

ui(s
∗
i , s−i) ≥ ui(s′i, s−i) ∀s′i 6= s∗i

5 Ideal Functionality FRDC for Rational Delegation of
Computation

In this section, we formalize the notion of a secure rational delegated compu-
tation by utilizing a functionality FRDC that demonstrates the secure require-
ments of rational delegation of computation. First of all, we express the basic
security requirements of traditional delegated computation, which includes four
algorithms e.g., Setup, Delegate, Compute and V erify. Then we discuss the
situation when there is an adversary who attempts to take an attack, namely
corrupting an internal participant. Furthermore, we explore the case of rational
delegation computing with incentive mechanisms. The functionality FRDC that
captures secure rational delegated computation is described in Fig. 6.

6 Protocol πRDC

The participants of the protocol include the client P1, the computing party P2,
the external adversary A, and the trusted third party TTP with computing pow-
er. The protocol contains five algorithms such as Delegate, Corrupt, Compute,
V erify, Expose, which is described as follows.
(1) Delegation phase
P1 chooses whether to delegate the computing task to others, and if not, the
protocol ends.
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Functionality FRDC

FRDC handles as follows, where P1 is the client, P2 is the computing party and
S is an ideal adversary, respectively.

Setup: Execute Setup(1k) → ((pk, sk), param = (g, h)), where (pk, sk) is a
pair of the homomorphic encryption keys, and param = (g, h) contains public
parameters of commitment.

Delegate: Upon receiving (Delegate, sid, task sid(x, f), P1, P2) from P1, per-
form homomorphic encryption on input x using the public key pk,
i.e., Epk(x) = x∗. Record (Delegate, sid, task sid(P1, P2, x, f)), and send
(Delegate, sid, task sid(x∗, f), P1) to P2.

Compute: Perform calculation on task and obtain y∗ = f(x∗). Then use
Pedersen Commitment to commit to the result y∗, i.e., Comy∗ , and record
(Compute, sid, y∗, Comy∗ , Dec). Send (Compute, sid, y∗, Comy∗) to P1.

Verify: Send (V erify, sid, V er = TRUE) to P1 and P2. Meanwhile, perform
homomorphic decryption on the result y∗ of the computing task using the private
key sk, i.e., Dsk(y∗) = y, then send (V erify, sid, y) to P1.

Corrupt: Upon receiving (Corrupt, sid, P1) from S, record (sid, Corrupted(P1))
and send (Corrupt, sid,⊥) to S. Upon receiving (Corrupt, sid, P2) from S, record
(sid, Corrupted(P2)) and send (Corrupt, sid,⊥) to S.

Incentive mechanisms:

• If there is a record (Delegate, sid, task sid(P1, P2, x, f)), then the message
(Delegate, sid,Deposit(w, d21, z), P1)) from P1 and (Delegate, sid,Deposit −
(d12, z), P2)) from P2 will be received. And then send (V erify, sid,Refund −
(d21,

1
2
z)) to P1, simultaneously, send (V erify, sid,Refund(d12,

1
2
z, w)) to P2.

• If there is a record (sid, Corrupted(P1)), it requires S to send (Corrupt, sid,
Deposit(h31)) and P1 to send (Corrupt, sid,Deposit(f31), P1). Afterwards,
send (Expose, sid,Refund(f31)) to P1, send (Expose, sid,Refund(h31)) to S,
and require S to send (Expose, sid, Law(l)).

• If there is a record (sid, Corrupted(P2)), it requires S to send (Corrupt, sid,
(h32)) and P2 to send (Corrupt, sid,Deposit(f32), P2). Then send (Expose, sid,
Refund(f32)) to P2, send (Expose, sid,Refund(h32)) to S, and require S to
send (Expose, sid, Law(l)).

Fig. 6. Functionality FRDC .
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Otherwise, P2 will choose whether to accept the task or not, and if not, the
protocol will end.

Otherwise, P1 and P2 sign the delegation contract, input (Delegate, sid, P1, P2,
TTP ), the algorithm Delegate is executed as following by TTP, P1 and P2 joint-
ly.

• P1 places the delegated fee w, the deposit d21, and the arbitration fee z at
TTP. Also, P2 must prestore the deposit d12 and the arbitration fee z at
TTP.

• P1 and P2 jointly execute the algorithm Setup: input (1k), where k is the
security parameter. Generate a public-private key pair (pk1, sk1) of P1,
where pk1 is used to implement homomorphic encryption of the input and
verify sub-results, and sk1 is used to implement homomorphic decryption
of the calculation result, meanwhile, pk1 is public, and sk1 is preserved by
P1. In addition, output the public parameters param = (g, h) that P2 uses
for commitment.

• P1 uses pk1 to conduct homomorphic encryption on the input x, and get
Epk1(x) = x∗. P1 sends (Delegate, sid, x∗, f, P1, P2) to P2 through the
secret channel, where f is the computing task and enters the next stage.

(2) Corruption phase
When inputing (Corrupt, sid, P1, P2,A), A runs the algorithm Corrupt with the
internal participants P1 and P2.

• A chooses whether to corrupt one of the internal participants or not, and if
not, goes directly to the next stage.
• If A chooses to corrupt P1, the corruption information is passed to P1

through the secret channel. If P1 accepts this corruption, he will send (Corrupt,
sid,⊥) to A secretly. And a corruption contract is signed between P1 and
A, in which A is required to pay the corruption fee h31 to P1 as a reward
for helping A break the agreement. Otherwise, proceed to the next stage.
• If A chooses to corrupt P2, the corruption information is passed to P2 se-

cretly. If P2 accepts it, he will send (Corrupt, sid,⊥) to A in secret. Then A
will sign a corruption contract with P2, at the same time, pay the corruption
fee h32 to P2, which is a remuneration to breach the protocol. Otherwise, go
to the next stage.

(3) Computation phase
When inputing (Compute, sid, P2), P2 runs the algorithm Compute.

If P2 chooses honesty (if P2 has signed a corruption contract with A at the
corruption stage, then signs a betrayal contract with P1 at this time, which is
called a traitor), then divides the computing task f into n sub-tasks according
to the computational logic, that is, f = {fi|i = 1, . . . , n}. P2 performs the
calculation and gets the results of each sub-task

y∗1 = f1(x∗), . . . , y∗n = fn(x∗), y∗ = (y∗1 , . . . , y
∗
n) (9)

Then P2 uses Pedersen Commitment to commit to each sub-result respective-
ly, i.e., Comy∗ = (Comy∗1

, . . . , Comy∗n), and sends (Compute, sid, Comy∗ =
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(Comy∗1
, . . . , Comy∗n

), Dec = (Dec1, . . . , Decn), P2, TTP ) to TTP, where Dec =
(Dec1, . . . , Decn) indicates the corresponding decommitment information. Send
(Compute, sid, Information(f, Comy∗), P2, P1) to P1, which contains a detailed
description of the computing task divided into n sub-tasks and the meaning of
each commitment vector corresponding to each sub-task.

If P2 chooses to be dishonest, P2 may submit the incorrect result in the
following ways.

- P2 erroneously divides the computational task into several sub-tasks, and
P1 will receive an illogical Informatin(f, Comy∗).

- Or P2 divides the computing task according to logic correctly, but excludes
the results of the operator task. In order to save computational resources,
P2 randomly selects the result and submits it to TTP, or even submits a
wrong commitment information instead of making a commitment.

(4) Verification phase
When inputing (V erify, sid, P1, P2, TTP ), P1, P2 and TTP run the algorithm
Compute together (if P1 has signed a corruption contract with A during the
corruption phase and chooses to be honest at this time, P1 will sign a betrayal
contract with P2 before the start of this phase and called a traitor).

1) P1 judges whether the received Informatin(f, Comy∗) is reasonable ac-
cording to the calculation task fi.

- If it is considered reasonable, P1 sends (V erify, sid, V er(Information) =
TRUE,P1, P2) to P2.

- If it is deemed to be unreasonable, P1 sends (V erify, sid, V er(Information)
= FALSE,P1, P2) to P2 in order to inform that the verification result is in-
correct and refuse to accept it. Then send (V erify, sid, V er(Information) =
FALSE, Information(f, Comy∗), f, P1, TTP ) to TTP for arbitration.

- If a malicious claim is made by P1 that the validation result is incorrect, up-
on receipt of the validation result of P1, P2 sends (V erify, sid, V er(Inform−
ation) = FALSE, Information(f, Comy∗), f, P2, TTP ) to TTP for an ar-
bitration request.

- If the TTP receives a request for arbitration from P1 or P2, the integrity
of P1 and P2 will be determined based on whether the sub-task division
of P2 is correct or not according to receiving the calculated task f and
Informatin(f, Comy∗).

2) TTP tries to open the commitment Comy∗ with the decryption informa-
tion Dec received from P2, and if it cannot be opened, P2 is deemed dishonest.
If it can be opened, go to the next step.

3) P1 performs sub-task verification as following.

- P1 sends (V erify, sid, V er(fi), P1, TTP ) to TTP, which indicates that P1

wants to verify the calculation result of the sub-task fi.
- TTP obtains the calculation result of P2 by opening the commitment, then

sends (V erify, sid, V er(fi) = y∗i , TTP, P1) to P1 immediately.
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- P1 calculates the corresponding sub-task according to fi, obtains y1i =
fi(x), and then uses his own public key to homomorphically encrypt the
calculation result to obtain Epk1(y1i) = y∗1i, and compares whether y∗i and
y∗1i are equal. If they are equal, (V erify, sid, V er(fi) = TRUE,P1, P2) will
be sent to P2 and (V erify, sid, V er(fi) = TRUE,P1, TTP ) will be sent to
TTP respectively, indicating that the verification is successful and the cal-
culation result will be received. If they are not equal, (V erify, sid, V er(fi) =
FALSE,P1, P2) will be sent to P2, and sends (V erify, sid, V er(fi) =
FALSE, Information(f, Comy∗), x

∗, f, fi, y
∗
1i, y

∗
i , P1, TTP ) to TTP.

- If the correct result is submitted by P2, while P1 is intentionally rejected
as a error result, upon receiving the incorrect validation message from P1,
P2 sends (V erify, sid, V er(fi) = FALSE, Information(f, Comy∗), x

∗, f,
fi, y

∗
i , P2, TTP ) to TTP.

4) TTP executes the arbitration as following.

- If TTP receives a message of the verification success from P1 instead of
receiving the arbitration request, which indicates that the internal partic-
ipants are honest, skip the following steps and go straight to 5).

- If TTP receives a request for arbitration from P1, then calculates the sub-
task fi based on the information received, obtains y∗ci = fi(x

∗), and com-
pares y∗ci with y∗1i and y∗i . If y∗ci 6= y∗i , P2 is regarded as dishonest; if
y∗ci 6= y∗1i, P1 is judged to be dishonest.

- If TTP receives a request for arbitration from P2, TTP first requests P1

to submit y∗1i, and if P1 fails to submit on time, P1 is dishonesty can be
judged. Otherwise, TTP will receive y∗1i from P1, and calculate according
to the above steps. TTP computes y∗ci = fi(x

∗), then y∗ci will be compared
with y∗i and y∗1i. If y∗ci 6= y∗i , P2 is regarded as dishonest; if y∗ci 6= y∗1i, P1 is
deemed to be dishonest.

5) TTP performs the penalty as following.

- If P1 is dishonest, TTP will take away the arbitration fee z paid by P1,
and return the deposit d12 and d21, the arbitration fee z to P2, as well as
refund the delegation fee w to P1.

- If P2 is dishonest, TTP will take away the arbitration fee z paid by P2, and
return the deposit d12 and d21, the arbitration fee z and the delegation fee
w to P1.

- If both P1 and P2 are honest in the execution of the agreement, TTP will
charge half of the arbitration fee from each party, refund the deposit d21 and
the arbitration fee 1

2z to P1, and refund the deposit d12, the arbitration fee
1
2z and the delegation fee w to P2. Meanwhile, TTP sends the result y∗ =
(y∗1 , . . . , y

∗
n) of task calculation to P1, and then P1 performs homomorphic

decryption with the private key sk1 to get the final result, i.e.,Dsk1(y∗) = y.

(5) Exposure phrase
When inputing (Expose, sid, P1, P2,A), P1, P2 and A run the algorithm Expose
together.
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• If P2 is a traitor who signs a betrayal contract during the computation
phase, at this time, P1 and P2 jointly will reveal the crime of A. Because
the corruption contract is invalid, the fine f32 in the contract is regarded as
invalid, but requires refund of the corruption fee h32 from P2, and A will be
subject to legal sanctions l.

• If P1 is a traitor who signs a betrayal contract during the verification phase,
meanwhile, P1 and P2 jointly will expose the evil corruption of A. Because
of the invalidity of the corruption contract, the fine f31 in the contract is
regarded as invalid, but requires refund of the corruption fee h31 from P1,
and A will be subject to legal sanctions l.

7 Protocol Analysis

7.1 Security Proof

We construct a simulator to analyze the security of πRDC in the UC framework
so that any environment has a negligible chance to distinguish between an ideal
world execution with the simulator and FRDC and a real world execution of an
adversary with πRDC . The security of πRDC is formally captured by the following
theorem:

Theorem 3. The protocol πRDC securely realizes the ideal functionality FRDC .
I.e., for every static malicious adversary A there is a simulator S such that for
all environment Z

EXECπRDC ,A,Z ≈ EXECFRDC ,S,Z

Proof. S runs an internal embedded copy of A denoted
∼
A, and reacts to the

various events that happen during the execution in the following way.
Case 1: P1 is corrupted.
(1) Delegation phase

(a) The ideal functionality sends (Delegate, sid,Assign(task sid), P1) to P2

and then sends (Delegate, sid,Assigned(task sid), P2) to P1.
(b) Then FRDC will receive the message (Delegate, sid,Deposit(w, d21, z), P1)

from P1 and (Delegate, sid,Deposit(d12, z), P2) from P2.
(c) Afterwards, the ideal functionality is executed as FRDC .Setup and FRDC .D−

elegate.
(2) Corruption phase

Receive (Corrupt, sid, P1) from
∼
A, and forward this message to FRDC .

(a) If FRDC records (sid, corrupted(P1)) and sends (Corrupt, sid,⊥) to S,
then S sends (Corrupt, sid,Deposit(h31)) to FRDC and P1 sends (Corrupt, sid,
Deposit(f31, P1)) to FRDC , respectively.

(b) Otherwise, ignore this message and proceed the next phase.
(3) Computation phase

Because of P2
,s honesty, (Compute, sid, Information(f, Comy∗), Comy∗ =

(Comy∗1
, . . . , Comy∗n

)) will be received from FRDC and forward this message to
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∼
A.
(4) Verification phase

(a) If (V erify, sid, V er(Information) = FALSE) is received from
∼
A, for-

ward it to FRDC . Otherwise, receive (V erify, sid, V er(fi)) from
∼
A, and send

(V erify, sid, V er(fi), P1, P2) to FRDC from P1
,s interface. If (V erify, sid, V er(fi)

= FALSE) is received from
∼
A, forward it to FRDC .

(b) If there is a record (V erify, sid, T raitor(P1)), regardless of any message
received from S, FRDC does the following:

- Send (V erify, sid, V er(Information) = TRUE) to P1 and P2.
- Send (V erify, sid, V er(Comy∗) = TRUE) to P1 and P2.
- Send (V erify, sid, V er(fi) = TRUE) to P1 and P2.
- Send (V erify, sid,Refund(d21,

1
2z)) to P1 and (V erify, sid,Refund(d12,

1
2z, w)) to P2. Meanwhile, send (V erify, sid, y)) to P1.

(c) If there is no record (V erify, sid, T raitor(P1)), FRDC does as follows:
upon receiving any message from S, FRDC will forward the messages to P1

and P2. In addition, the arbitration fee z paid by P1 is taken away, and send
(V erify, sid,Refund(w, h31, f31)) to P1 and (V erify, sid,Refund(d12, d21, z))
to P2.
(5) Exposure phase
If there is a record (Compute, sid, T raitor(P1)).
FRDC sends (Expose, sid,Refund(f31)) to P1 and (Expose, sid,Refund(h31))

to S, as well as requires S to send (Expose, sid, Law(l)).

Case 2: P2 is corrupted.
(1) Delegation phase

The situation is the same as the delegation phase in case 1.
(2) Corruption phase

Receive (Corrupt, sid, P2) from
∼
A, and forward this message to FRDC .

(a) If FRDC records (sid, corrupted(P2)) and sends (Corrupt, sid,⊥) to S,
then S sends (Corrupt, sid,Deposit(h32)) to FRDC and P2 sends (Corrupt, sid,
Deposit(f32), P2) to FRDC , respectively.

(b) Otherwise, ignore this message and proceed the next phase.
(3) Computation phase

(a) If receiving (Compute, sid, Information′) from
∼
A, and then forward it

to FRDC .

(b) If receiving (Compute, sid, y∗′, Com′y∗′ , Dec
′) from

∼
A, then forward it to

FRDC .
(c) If there is a record (Compute, sid, T raitor(P2)), FRDC sends (Compute, sid,

Information(f, Comy∗), Comy∗) to P1. Otherwise, FRDC sends (Compute, sid,
Information′, Com′y∗′) to P1.
(4) Verification phase
If there is a record (Compute, sid, T raitor(P2)), regardless of any message re-
ceived from S, FRDC proceeds as follows:
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- Send (V erify, sid, V er(Information) = TRUE) to P1 and P2.
- Send (V erify, sid, V er(Comy∗) = TRUE) to P1 and P2.
- Send (V erify, sid, V er(fi) = TRUE) to P1 and P2.
- Send (V erify, sid,Refund(d21,

1
2z)) to P1 and (V erify, sid,Refund(d12,

1
2z, w)) to P2. Meanwhile, send (V erify, sid, y)) to P1.

If there is no record (V erify, sid, T raitor(P2)), FRDC does as follows:

- If (Compute, sid, Information′) is received from S, send (V erify, sid,
V er(Information′) = FALSE) to P1 and P2.

- Upon (Compute, sid, y∗′, Com′y∗′ , Dec
′) is received from S. If the commit-

ment can not be opened, send (V erify, sid, V er(Com′y∗′) = FALSE) to
P1 and P2. If the commitment information Com′y∗′ can be opened by us-
ing Dec′, send (V erify, sid, V er(Com′y∗′) = TRUE) to P1 and P2. Then
(V erify, sid, V er(fi)) will be received from P1, and send (V erify, sid, V er−
(fi) = FALSE) to P1 and P2.

- Take the arbitration fee z paid by P2, and send (V erify, sid,Refund(d12,
d21, z, w)) to P1 and (V erify, sid,Refund(h32, f32)) to P2.

(5) Exposure phase
If there is a record (Compute, sid, T raitor(P2)):
FRDC sends (Expose, sid,Refund(f32)) to P2 and (Expose, sid,Refund(h32))

to S, as well as requires S to send (Expose, sid, Law(l)).

Case 3: both P1 and P2 are honest.
The ideal functionality FRDC executes normally without algorithm Corrupt.

Case 4: both P1 and P2 are corrupted.
This situation does not occur because the scenario assumes that the external

adversary cannot corrupt two internal participants simultaneously.

S is a good simulator. In case 1, S simulates the real adversary’s corruption s-

trategy by running
∼
A. Once the corruption succeeds, the output of P1 can be con-

trolled, that is, (V erify, sid, V er(Information) = FALSE) or (V erify, sid,
V er(fi) = FALSE), which simulates the situation that P1 is corrupted in the
real world, then P1 and P2 will be arbitrated. For any environment Z, the view
of the real world interacting with the protocol πRDC and the real adversary A
is indistinguishable from the view of the ideal world interacting with the ideal
functionality FRDC and the ideal adversary S.

In case 2, S simulates the real adversary’s corruption strategy by running
∼
A.

Once the corruption succeeds, S controls the output of P2, that is, (Compute, sid,
Information′) or (Compute, sid, y∗′, Com′y∗′ , Dec

′). Since Information′ repre-
sents the incorrect information division of the computing task, this message can
be any incorrect sub-task partition information with randomness. y∗′, Com′y∗′ ,
Dec′ indicate respectively the erroneous calculation outcome, the commitment
to the wrong result or the wrong commitment result, and the decommitment in-
formation corresponding to the wrong commitment or the wrong decommitment
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information. In order to save own storage and computing resources, the corrupt-
ed P1 often chooses a random value as the calculation result, and may submit the
wrong commitment information and decommitment information, which all are
the results of random sampling. Because of the definition of the model, we know
that the distribution of these random messages such as y∗′, Com′y∗′ , Dec

′ is the
same in the real world as in the ideal world. In addition, those who are not cor-
rupted will honestly output the verification results during the verification stage,
and eventually be arbitrated. For any environment Z, the view of the real world
interacting with the protocol πRDC and the real adversary A is indistinguishable
from the view of the ideal world interacting with the ideal functionality FRDC
and the ideal adversary S.

In case 3, the strategy of the real-world adversary that not corrupting any
participant is simulated, and no messages are sent in subsequent phases. Again,
for any environment Z, the view of the real world is indistinguishable from the
view of the ideal world. As a result of the above analysis, it can be proved that
there is an simulator S for every static malicious adversary, and for any envi-
ronment Z, EXECπRDC ,A,Z ≈ EXECFRDC ,S,Z , to prove the protocol πRDC
UC-securely realizes functionality FRDC .

Theorem 4. The Nash Equilibrium between the ideal world and the real world
is indistinguishable in our game model.

Proof. According to analyzing the game model: from Theorem 2, the client is
more inclined to choose to delegate the task, meanwhile the computing party is
more inclined to accept this task. In the ideal world, if the adversary chooses to
corrupt one of the internal participants by visiting the weaker ideal functionality
〈F〉, it is stipulated in the corruption contract that if the internal participant
who is corrupted breaks the corruption contract, he will pay a fine to the ad-
versary. However, the betrayal contract indicates that if the corrupted internal
participant chooses honest behavior, that is, violating the corruption contract,
which will be risk-free, namely, the corruption fee is required to return to the ad-
versary only, and because of the invalidity of the corruption contract, the penalty
clause requiring the traitor to pay a fine to the adversary will also be deemed
invalid. Furthermore, the corrupted internal participant will be exempted from
the loss of reputation caused by dishonest implementation of the agreement by
choosing to betray the corruption contract. Also, there is a situation in which
the internal participant refuse the corruption and his ultimate utility is the same
as that of becoming a traitor. Hence, even if the adversary chooses corruption,
the internal participant may choose to accept or not accept, and the internal
participant who is corrupted is more inclined to choose to become a traitor
based on rational considerations. This betrayal will result in punishment for the
adversary, that is, the adversary will be sanctioned by law with minimum pay-
off once the traitor and another internal participant expose the corruption of
the adversary, which will lead to the mistrust between the adversary and the
corrupted. Therefore, the best decision for the adversary is not to corrupt any
internal participant, utility of which is zero. Since it is stipulated that internal
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participants are honest in the natural state, the strategy of both the client and
the computing party is to choose honesty. The Nash Equilibrium in the ideal
world is S∗ideal = S1 = {delegate, accept,¬corrupt, honest, honest}.

The protocol πRDC UC-securely realizes the functionality FRDC because
of theorem 3, and then according to Theorem 1: replacing calls to FRDC by
invocations of protocol πRDC does not (obviously) increase the utility of a M-
maximizing adversary. Hence the maximum utility of the adversary in the real
world will not exceed zero, which means the best strategy for the adversary
in the real world is also to choose not to corrupt any internal participants.
Similarly, the strategy of internal participants is same as that in the ideal
world to choose honesty. Therefore, the Nash equilibrium in the real world is
S∗real = S1 = {delegate, accept,¬corrupt, honest, honest}, thus proving the con-
sistency of Nash equilibrium between the ideal world and the real world in the
UC framework, i.e., S∗ideal ≈ S∗real.

7.2 Comparison with Other Schemes

In this section, we compare our scheme with other schemes as shown in Table 3
and Table 4.

Table 3. Comparison with other schemes (part I)

Schemes Type The participants (number/type)
The adversary
(number/type)

[15] rational delegated
computation

the client
(1/honest)

the computing party
(2/rational)

internal
(1/rational)

[18] rational secure function
evaluation

the designer
(1/rational)

parties
(n/non-rational but honest)

external
(1/rational)

our scheme rational delegated
computation

the client
(1/rational)

the computing party
(1/rational)

external
(1/rational)

Table 4. Comparison with other schemes (part II)

Schemes Key technologies Correctness Privacy UC model Consistency

[15] blockchain, hash function, commitment,
NIZK

Yes Yes No No

[18] signature, commitment, linear secret sharing Yes Yes Yes No

our scheme homomorphic encryption, commitment,
PCP-based construction

Yes Yes Yes Yes
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The scheme in [15] is still based on the hypothesis that the client is honest,
does not take into account the situation that all of the participants are rational.
Besides, unlike us: the adversary of the scheme is internal, that is, the cloud
with delegated task. Moreover, the scheme does not provide UC model, let alone
consider the consistency of Nash equilibrium between the ideal world and the
real world. The scheme in [18] defines the game between the protocol designer
and the rational adversary, but the parties are non-rational while honest. Al-
though the scheme considers the UC security model, there is still no research on
the consistency problem of Nash equilibrium under the UC framework. In our
scheme, both the internal participants and the external adversary are regard-
ed as fully rational. To consider some more realistic situations, we claim that
the internal participant still has the right to choose whether to accept it or not
when the adversary attempts to corrupt an internal participant, different from
the previous schemes that the adversary can directly success in corrupting the
parties without any ask. In addition, even if internal participant accepts this
corruption, he can still choose to betray the adversary later, rather than helping
the adversary break the agreement after the corruption is successful. It turns
out that our scheme is more realistic and feasible. More importantly, we pro-
pose a UC security model for rational delegated computation and achieve the
consistency of Nash equilibrium which is difficult to solve.

8 Conclusion

In this paper, we are committed to solving the major problem of inconsistency
of equilibrium between the ideal world and the real world under the UC frame-
work. Firstly, we define three contracts to set up the respective utility of each
participant in the rational delegated computation scenario, so as to encourage
players to stay honest to obtain their greatest payoff, in which both the inter-
nal participants and the external adversary is fully rational rather than based
on the assumption of honesty. Then, according to Nash equilibrium obtained
from game analysis, we formalize an ideal functionality FRDC that represents
the security requirements of rational delegation of computation, and construct
a rational delegated computing protocol πRDC which securely realizes the ideal
functionality. Finally, we use the composition theorem to prove that the protocol
UC-securely realizes the ideal functionality, that is, it satisfies the UC security
as well as realizes the consistency of Nash equilibrium between the ideal world
and the real world, which effectively solving this significant challenge.
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