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Abstract—We introduce an efficient transformation from uni-
variate polynomial commitment based zk-SNARKS to their fully
transparent counterparts. The transformation is achieved with
the help of a new IOP primitive which we call a list polynomial
commitment. This primitive is applicable for preprocessing zk-
SNARKS over both prime and binary fields. We present the prim-
itive itself along with a soundness analysis of the transformation
and instantiate it with an existing universal proof system. We
also present benchmarks for a proof of concept implementation
alongside a comparison with a non-transparent alternative based
on Kate commitments. Our results show competitive efficiency
both in terms of proof size and generation times at large security
levels.

Index Terms—polynomial commitments,
proofs, proximity testing, verifiable computation

zero-knowledge

I. INTRODUCTION

Zero-knowledge proofs [1]] have recently received increased
amounts of attention for providing efficient verification while
maintaining small proof sizes, even in the case of complex
predicates. Initially limited to theoretical considerations, such
proof systems have lately come to encompass the underlying
technology in a wide variety of practical and industrial appli-
cations with delicate trade-offs between privacy and system se-
curity [2] [3]] [4]. In this work, we are interested in applications
for which there is limited space availability in the underlying
system, and thus for which minimal proof size is an important
property. Moreover, we ideally want to focus on applications
for which there exist no trusted parties at any point of the
computation, and thus hope to achieve proof size minimization
without compromising the trust model of the system.

The trade-off above is most closely associated with appli-
cations of zero-knowledge proofs to cryptocurrency systems,
such as Ethereum [5]] or ZCash [6], in which participants have
to verify state (or transaction) validity to ensure system sound-
ness but for which there is limited space available in which
to do so. Bridging the gap between these two requirements
will allow for not only efficient but also trustless verification
of state transition in such systems. This has the potential for
scaling improvements, such as increased transaction through-
put or better privacy guarantees.

The most widely used proof systems for such an application
are preprocessing Succinct Non-interactive ARguments of
Knowledge (zk-SNARKS) [7] [8] [9], for which proof size
and verification time are polylogarithmic in the size of the

circuit being verified. ‘Pre-processing’ here denotes that such
systems rely on a one-time (often expensive) setup procedure
to produce a proving/verification key-pair (pk,vk) (known
as a Structured Reference String or SRS) that is used in all
subsequent computation. The most efficient such construction
is due to Groth [[7] and achieves constant proof size consist-
ing of 3 group elements, with state-of-the-art proving time.
However, this construction (along with most in the literature,
see [10], [11], [12]]) relies on a trusted setup, or a trusted
third-party actor to generate certain parameters (known as the
‘toxic waste’) that should be destroyed in order for the system
to retain its security guarantees.

Such a security lapse would be grave for all aforementioned
applications. For example, in a cryptocurrency system such
as ZCash an adversary possessing such waste would be
able to spend non-existent tokens without being found. An
adopted approach to mitigating this issue involves Multi-Party
Computation, in which a single participant needs to destroy
their parameters for security to hold [13]. However, scaling
such an approach to many participants comes with its own
challenges, and can never reach the completely trustless threat
model desired by such systems.

The trust issue inherent in the above approach stems from
the requirements for the generation of the SRS of the proof at
the preprocessing stage. This is done once at the beginning
of the protocol, encoding information that is used in the
subsequent proof generation of any input arguments. More
specifically, in most pairing-based SNARKSs (such as [14])
the trusted part of SRS generation stems from the usage of a
polynomial commitment scheme that needs to sample (secret)
randomness in order to provide commitments to some low-
degree polynomial that in turn encodes the circuit in question.
That information is then used by the prover to efficiently
convince the verifier that a given value is indeed the evaluation
of this polynomial, thus proving knowledge of the statement.
Such systems use the polynomial commitment scheme of [[15]],
from which the above trust model is derived. This will be
further discussed in the following sections.

In attempting to retain a trustless (or ‘transparent’) threat
model, the main design challenge lies in the efficiency of
the underlying protocol. Various threads of work in this
domain have achieved different efficiency trade-offs. The work
of [16] produces proofs with size scaling as O(dlogT),



while the proofs in [17] scale with O(dlogG) where T, d
and G the size, depth and width of the circuit respectively.
Succinct Transparent ARguments of Knowledge (zk-STARKS)
[18]] achieve O(log2 T') proof sizes for uniform computations.
However, with respect to proving and verification times, such
proof systems suffer from significant performance overhead
with respect to pre-processing SNARK constructions such as
[7] either in proof size or proof generation time. Since we
are interested in verifier succinctness, transparent approaches
such as [[19] do not suffice here due to the linear dependence
between verification time and predicate size.

Below we informally describe the properties that an ’ideal’
proof system should possess for satisfiability of a given circuit
C, where |C| denotes its size. The first three properties define
what is known as a ‘fully succinct’ zk-SNARK construction:

o Verifier Succinctness: Verification time is polylogarithmic

in |C],

o Prover Efficiency: Proving time is quasi-linear in |C|,

e Proof Succinctness: Proof size is poly-logarithmic in |C|,

e Transparent: No trust assumptions are required for secu-

rity to hold,

o Plausibly Quantum Resistant: The system is not be based

on assumptions known to be false in a quantum setting.

A. Prior & Concurrent Work

1) Transparent zk-SNARK Constructions: A new approach
to the above problem relies on creating a ‘universal’ SRS at
the preprocessing phase, which can then be used in tandem
with any possible predicate (or circuit). This has been the
focus of many recent contributions (see [14], [20]], [21]) and
most recently [22] that are also fully succinct zk-SNARKSs in
the above sense. The approach in such schemes relies on two
main ingredients: (1) encoding the circuit satisfaction problem
of the predicate in question as a property of some (low-
degree) polynomial f, and then (2) committing to f using a
polynomial commitment scheme. In all the above approaches,
the polynomial commitment scheme in [[15] is used due to
its constant size complexity and efficient implementation.
However, this is the only part in the protocol that introduces
the trusted setup, as the setup phase in the scheme requires a
trusted actor to create (and then destroy) a secret value that is
only used in generating commitments.

2) Polynomial Commitment Schemes: At a high level, poly-
nomial commitment schemes allow for the efficient verifi-
cation of the evaluations of f at an arbitrary point in its
domain. Given the above contributions, it is immediate that
a polynomial commitment scheme that is both transparent
and efficiently computable would yield transparent SNARK
constructions that have the potential to satisfy all of the
requirements of a fully succinct, transparent and plausibly
quantum resistant zk-SNARK. Since the introduction of poly-
nomial commitment schemes in [|15]], the first transparent such
scheme was introduced in [17] for multivariate polynomials,
with O(v/d) commitment size and verification complexity.
Subsequent work in [23] introduces a scheme with O(ulog d)
size and verification complexity, where p the number of

variables of the polynomial in question and d the polynomial’s
degree. Although the asymptotics of the approach in [23]]
suffice for the above motivation, the practical implementation
of their system relies on cryptographic operations that are
substantially more resource-heavy than previous approaches.
This stems from the reliance of their system’s security on class
groups of unknown order. Although the proof sizes achieved
are sufficiently succinct, this dependence could make practical
deployment difficult at reasonable security levels when proof
generation time needs to also be substantially efficient. More-
over, the assumptions on which their construction rests are
known to not be quantum-resistant.

3) Preprocessing zk-SNARK Compilation Frameworks: Re-
cent work has also explored general frameworks for convert-
ing Interactive Oracle Proofs (IOPs) [24] into preprocessing
SNARKS. This approach was introduced in [25]], with an
equivalent formalization appearing in [23]. At a high level,
both of these contributions formalize the idea that preprocess-
ing zk-SNARKSs can be constructed from IOPs through oracle
access to a low-degree polynomial.

B. Our Contributions

In this work, we provide the following contributions:

1) List Polynomial Commitments: The works of [26] and
[27] introducing the Fast Reed Solomon IOP of Proximity
(FRI IOPP) implicitly define a transparent polynomial commit-
ment scheme, which provides commitments of size O(log? d)
for polynomials of degree d. However, the soundness error
on such schemes implies that high-security deployments still
suffer from large proof sizes. In this work, we leverage
the proof system threat model to ‘relax’ the requirements
on transparent polynomial commitment schemes while still
retaining all necessary security properties for compilation into
zk-SNARKSs. We introduce a new cryptographic primitive for
fast verification of polynomial evaluations we call a list com-
mitment scheme. At a high level, this scheme provides the nec-
essary security guarantees inherent in polynomial commitment
schemes that are required for polynomial-based proof systems
such as [22]] and [14]. In the language of IOP formalization,
this primitive can be thought of as an alternative compiler for
public-coin IOP protocols.

2) Compilation of IOPs with List Commitments: We pro-
vide a general framework that demonstrates how the polyno-
mial list commitment can be used to compile any polynomial
IOP into a preprocessing zk-SNARK. As previously men-
tioned, this approach is similar in spirit to [25] and [23]] with
the main difference being that we do not require a polynomial
commitment scheme in their (more restrictive) sense.

3) REDSHIFT: A transparent zk-SNARK Construction: We
demonstrate the security and practicality of this approach
by compiling [22] using the framework above. By fitting an
implementation of the list commitment scheme on [22] with
suitable adaptations and optimizations, we remove all trusted
computation while retaining efficiency in both proof size and
generation time. We call this new proof system REDSHIFT,
and provide:



1) formal proofs of correctness and security for the proposed
system, demonstrating that this protocol is a zk-SNARK,

2) a proof-of-concept implementation, along with bench-
marks establishing feasibility.

Benchmarks and proof sizes are provided in Section
Overall, REDSHIFT is an efficient instantiation of a post-
quantum transparent preprocessing zk-SNARK suitable for
practical deployment at high security levels.

II. OVERVIEW

The proof system in [22]] (known as PLONK) is based
on polynomial commitment schemes. The role of polynomial
commitments in PLONK is the following: a secret prover’s
witness is encoded as a set of univariate polynomials, while
the verifier wishes to ensure that such an encoding satisfies
some polynomial relations. The prover commits to her secret
witness and later the verifier queries the values of witness
polynomials at a set of randomly selected points, checking if
all relations are indeed satisfied at those points. As the points
were sampled uniformly randomly, it is highly likely that the
given polynomial relations are identically satisfied.

The state-of-the-art polynomial commitment scheme used
in the construction of ZK-protocols is the KATE commitment
( [15]]), which is based on pairings of points of elliptic curves.
The security of this scheme reduces to the Discrete Log
assumption while in the case of a perfectly hiding commitment
a strengthened version known as the ¢-Strong Diffie Hellman
assumption is required. The main drawback of [15] lies in
the requirement that some secret value needs to be sampled
as part of the parameter generation process. For security to
hold, this value should never be revealed to the prover nor the
verifier. Such a requirement is very strong, as it means that
every proof system using KATE commitment (and PLONK
is among them) as a sub-protocol will inevitably require a
‘trusted’ setup ceremony. We denote proof systems without
this requirement as transparent.

In fact, the only reason PLONK requires a trusted setup
ceremony is due to the KATE sub-protocol. This means that
once we replace such a polynomial commitment scheme by
any transparent equivalent, we will not have to conduct a
trusted setup ceremony. Given this, this work aims to find a
suitable replacement for KATE, turning PLONK (and similar
systems) into a zero-knowledge, succinct transparent argument
of knowledge, i.e. a zk-STARK.

To do so, we utilize the FRI protocol, which is a key
component of STARK [[18]] and AURORA [28]]. FRI is focused
on solving the following proximity problem: The verifier is
given oracle access to an evaluation of some function f on
a fixed domain D C F. The prover wants to convince the
verifier that this function f is close in some metric to a
polynomial of some predefined degree d. The simplest solution
would be for verifier to query all the values of f on the
domain and then compute interpolation polynomial herself and
check that its degree is indeed bounded above by d. However
this straightforward approach requires large communication
complexity (as the verifier queries all the values) and carries

a large computational burden. FRI solves this problem by

requiring only a polylogarithmic number of queries in d.
The naive approach to build a (transparent) polynomial

commitment scheme on the top of FRI would be the following:

1) The prover commits to f providing an oracle to all
evaluations of f on some predefined domain D.

2) The prover and verifier engage in the FRI protocol for a
function f w.r.t to some degree d. If the prover passes
the check the verifier is then convinced that the function
f is actually close to a polynomial of degree less than d

3) The verifier wants to retrieve the value of f at point i ¢
D. The prover sends the corresponding opening z = f (i)
and prover and verifier then conduct another instance of
FRI, this time w.r.t to a quotient function g(x) = %

and degree < d — 1. Note that the verifier has oracle

access to ¢(x) via oracle access to f and known ¢ and z.

If the prover passes the last instance of FRI then ¢(z) is

in fact a polynomial function of degree < d — 1 (a priori

we only know it is a rational function) which implies

f(@) = z. This follows from Bezout’s theorem, stating

that h(x) has value y at point ¢ iff h(x) — y is divisible

by = — ¢ in the ring Fx].

In reality this simplified protocol doesn’t suffice. There are
several reasons for that, among which are the following:

1) FRI has a sensitivity bound - it is incapable of distinguish-
ing between precise polynomials and functions which
are not polynomials but sufficiently close to them in
some predefined metric (which in our case is the relative
Hamming distance).

2) For implementation coherency, we want the same domain
for both FRI instances. However, FRI has an interdepen-
dence between the degree d and the size of the domain
|D| measured in terms of its rate p = %. The divide-
and-conquer nature of FRI requires the rate to be “2-
adic”, that is of the form 2% for some R in N. However,
this property cannot hold simultaneously for two adjacent
degrees d and d — 1 without extra protocol modification.

The first mentioned problem means that the scheme needs to
correctly process the case when the function is not a polyno-
mial, but close to one - a property not naturally supported
by existing commitment schemes. Even more so, allowing
the oracle f to not be strictly polynomial and to take as the
prover’s commitment the polynomial f’ lying in a small ¢-
ball around f (where 0 is taken according to sensitivity of
FRI) then a priori we cannot guarantee this polynomial 7 is
unique in the chosen neighborhood of f. We call the set of
polynomials {f1, f5,..., f/} lying in the §-neighborhood of
f to be the §-list of f and denote it by Ls = Ls(f). For small
values of § the list Ls contains precisely one polynomial: in
this case we say that ¢ lies in the unique-decoding radius. The
problem is that such values of § require larger proof sizes to
achieve adequate soundness guarantees. Thus, we would need
to increase J to reduce proof sizes, which in turn would lead
to the size L; be greater than 1.



To solve this, we consider a relaxed treatment of commit-
ment schemes, where the commitment opens to a polynomial
in the d-list Ls. When the prover is asked for an evaluation at
point i, they respond with some value f’(), where f’ € L;.
In subsequent sections we show that this scheme is sufficient
for the construction of a transparent PLONK instance.

During the execution of PLONK both the prover and verifier
need to evaluate a set of ‘constraint’ (or setup) polynomials
¢;(x) which encode the constraint system itself and which are
known by both parties from the very beginning. In order to
achieve succinctness, the verifier never calculates the value
c;(t) at point ¢ by herself. To resolve this polynomial evalu-
ation problem, PLONK instead relies on the Kate scheme:
the prover and verifier run the commitment protocol with
the commitment to ¢ and value ¢ as inputs. By the security
of Kate, the verifier is convinced that the prover actually
sends the evaluation ¢(7) of the polynomial ¢(x) in question.
Since our relaxation commits to a whole neighborhood Ls(c)
of ¢(z) instead of only c(z) itself, we lose this uniqueness
property. This means we can’t use such a ‘relaxed’ scheme as
is. However, we show that with minor changes, our list com-
mitment can be turned into a polynomial evaluation scheme.
This transformation constitutes the second key sub-protocol of
the paper.

With the list commitment and evaluation schemes, we can
modify PLONK to achieve full transparency. We call the
modified version RedShift and prove its correctness in the
IOP model. A large portion of our approach remains the same
as in [22]]: our modification doesn’t touch the completeness
property of the system. However, the FRI-based protocol
doesn’t possess the hiding capabilities of Kate. This means
that we need to take additional measures to achieve zero-
knowledge for our system. We also need to change the security
model - the original PLONK protocol was proven secure in the
algebraic group model. Our approach is highly dependent on
FRI - an IOPP protocol. This means that we need to conduct
our security analysis in the IOP-model as well. Changing the
threat model affects the soundness proof as well as the proof
of knowledge approaches.

A. Roadmap

« In Section we provide general definitions, notations
and terms used throughout the paper. We also explain the
properties of the threat model used throughout this paper.

o Section [[V| provides a detailed overview of the FRI algo-
rithm. We do not consider FRI as a black-box protocol
for solving the proximity problem, as the knowledge of
FRI’s inner functionality will be required in the proof of
zero-knowledge.

« In Section[V]we describe the key component of RedShift
- the ‘list polynomial commitment’ scheme, and prove
that it meets all the requirements.

¢ In Section we present the evaluation scheme that is
used for ‘constraint’ polynomials.

o At this point we have all the components required for
the transformation of PLONK into RedShift, which is
conducted in Section [VIIl

« In Section [VIII| we will discuss various optimizations and
variants for the final protocol.

o In section we discuss the particular choice of setup
parameters leading to the most effective instantiation of
RedShift.

« In Section [X] we measure the running time of our protocol
as compared to the original PLONK construction over
various pairing-friendly curves.

III. DEFINITIONS

In this section, we lay out the building blocks that are
necessary to describe our constructions.

A. Notation

Through this paper we use the following notations:

e IF, is a prime field with modulus ¢

e D C F is an evaluation domain for Reed Solomon code
words

e f|p is a restriction of function f to domain D

« For function pair f, g, the relative Hamming distance with
respect to some domain D is given by:

A9 = HEED IO £ o)

B. Preliminaries on Reed-Solomon codes

Most of the information covered in this section can be
found in any standard textbook on algebraic codes(e.g. [29]).

Definition 1 (Reed-Solomon Codes): For some subset D of
a given field F and a rate parameter p € (0, 1], we denote
by RS[F, D, p] the set of all functions f : D — F that are
polynomials of degree d < p|D|. A binary additive RS code
family is a code family RS[F, D, p] for which F = Fam, m €
N. Moreover, the set D is required to be an additive coset
which is an additive shift of some Fs-linear space in Fom. A
prime field RS code family is a code family RS[F, D, p] for
which F = F,, for prime q. In this case D is a multiplicative
subgroup of 7.

Definition 2 (List Decoding): Let V. = RS[F, D, p| C F?
be an RS code family. Set a distance parameter ¢ € [0, 1]. For
u € FP, we define L(u,V,§) to be the set of elements in V'
that are at most d-far from w in relative Hamming distance. The
code V is said to be (d, NV)-list-decodable if |L(u,V,d)| < N
for all u € ]F?. Let Ls = L(F, D,d, ) be the maximum size
of L(u,V,6) taken over all u € FP for V = RS[F,D,p =
d/|D].

Theorem 1 (List Decoding Johnson bound [27|]): Fix p €
(0,1). Then for RS[F, D, p] list size |L]| is

Jp,e = max(l - \/ﬁ* €, ﬁ)

for every € € (0,1 — \/p).



The natural question arising in this context is the following:
for which distance parameters 6 do we get unique decodability
(ie. Ls <1)?

Definition 3: We call 0y unique decoding radius if for all
0 < dg list size Ls < 1. We call such § < dg to lie in the
unique decoding radius.

The following theorem is a well-known fact on unique
decodability for Reed-Solomon facts.

Theorem 2: ¢ = 1;—”
RS[F, D, )

The decoding problem for Reed-Solomon code V =
RSIF, D, p] is the problem of finding a codeword u € V
that is within a distance of ¢ (with respect to Hamming
distance) from a “received” word € FP. There are two famous
polynomial-time solutions for decoding problem. The first is
the classical Berlekamp-Messy [30] [31] algorithm which can
be applied only in the unique decoding radius setting. It’s
extension for distance parameters outside the unique-decoding
bound is Guruswami-Sudan [32] algorithm. As the result of
the latter algorithm we will get all codewords lying in J-ball
of a “received” word.

is the unique decoding radius for

Theorem 3 (Berlekamp-Messy algorithm): For every § < dg
the decoding problem for V' = RS[F, D, p| can be solved in
O(|DJ?) steps.

Theorem 4 (Guruswami-Sudan algorithm): For all § < 1 —
/P Reed-Solomon code V' = RS|[F, D, p| can be list-decoded
in time O(|D[*?). When § < 1 — \/p then the decoding time
reduces to O(|D[?).

C. Interactive Oracle Proofs and IOPs of Proximity

For user convenience we will start with a remainder of
properties of ZK-schemes and of threat model we are going to
use. Given a relation R C S x T, we denote by L(R) C S the
set of s € S such that there exists ¢t € T with (s,t) € R; for
s €S, wedenoteby R|s C T theset {t € T : (s,t) € R}. For
pairs (¢, w) € R we call ¢ the statement and w the witness.

The security analysis in this section will be conducted
in Interactive Oracle Proof (I0OP) model [24] which is
a simultaneous generalization of Interactive Proofs and
Probabilistically Checkable Proofs. The input of the verifier
is ¢ € S, and the input of the prover is (z,w) € R for some
string w € T. The number of interactive rounds, denoted
r(x), is called the round complexity of the system. During a
single round the prover P sends a message 7; (which may
depend on prior interaction) to which the verifier V' is given
oracle access, and the verifier responds with message m; to
the prover. The output of V' after interacting with P is either
accept or reject and we denote the result of this interaction
by (P(z,w) <> V(z)) The proof length, denoted I(x), is the
sum of lengths of all messages sent by the prover. The query
complexity of the protocol, denoted ¢(z), is the total number
of entries read by V' across various prover oracles.

A cryptographically secure IOP protocol should have the
following properties.

Perfect completeness: This says that, given any true state-
ment, an honest prover should be able to convince an honest
verifier. For all (¢, w) € R:

Pr{(P(¢,w) < V(¢)) = acc|(p,w) € R| =1

Soundness: This says that malicious prover has negligible
chance to convince verifier in the wrong witness. For every
instance « ¢ L£(R) and unbounded malicious prover P*:

Pr{P(¢,w) < V(¢)) = acc (¢, w) ¢ R] < e(x)

with e(z) — 0 when |z| — oco.

Knowledge soundness: Strengthening the notion of sound-
ness, we say the IOP has knowledge soundness if every prover
who is capable of convincing the verifier that + € L(R)
actually knows some witness w € R/|,.. In other words IOP is
knowledge sound if for all adversaries A there exists a non-
uniform polynomial time extractor £(.A) which gets full access
to the adversary’s state, including any random coins and with
high probability computes a witness whenever the adversary
produces a valid argument. Formally written:

(A(¢) < V(¢)) = acc
w <+ E(A)

where €(x) has the same properties as above.

The definition of zero knowledge property that we use for
IOPs first requires the notion of a view, which we take them
from [24]).

Definition 4: Let A, B be algorithms and z,y strings.

We denote by View(B(y), A(z)) the view (or transcript) of
A(z) in an interactive oracle protocol with B(y), i.e., the
random variable(x, 7, ay, ..., a,) where x is A’s input, r is A’s
randomness, and aq,--- ,a, are the answers to A’s queries
into B’s messages.
Zero knowledge: (P, V) has the zero knowledge property if
there exists a probabilistic polynomial time algorithm S (the
simulator) such that, for every (¢,w) € R and unbounded
distinguisher D the following probabilities are equal:

PriD(View(P(¢,w),V())) = 1] = Pr[D(5(¢)) = 1].

pr| w R,

< e(x)

Remark: In subsequent sections we will use the words view
and franscript interchangeably.

An important subclass of IOP protocols is given by the
following definition:

IOPP. An Interactive Oracle Proof of Proximity (IOPP) is
an r-round interactive IOP for the following problem: given
afield F, d € N, § > 0 and domain D C T, the prover
is provided with the representation of some function f and
the verifier is given oracle access to its evaluation on domain
D (i.e. an oracle f(x) to f(z)|p). The prover then needs to



convince the verifier that f|p is in fact evaluations of some
degree d-polynomial on this domain, namely that f € C,
where C' = RS[F, D, p = d/|D|]. An IOPP of proximity must
have the following properties:

1) First message format: the first prover message, denoted
f°, is a purported codeword (evaluation of f(z) on the
domain D)

2) Completeness:

Pr[(P > V) = accept |A(f,C) =0] =1

3) Soundness error is a function err(d) such that the follow-
ing equation holds: For any P*,

Pr[(P* <+ V') = accept |A(f,C) > 6] < err ().
IV. FRI

As a particular instance of an IOPP protocol, we use
FRI [26], [33] which is state-of-the-art to the best of our
knowledge. Here we provide an overview of its properties.
Fix RS code family RS[F, D, p] for which |D| = n = 2*and
rate p = 278 (k, R € N). This implies that degree bound d
is 2°=F_ Fix r € [1,logd = k — R] (number of FRI inner
rounds). With such a choice of parameters the FRI IOPP has
the following properties:

1) Prover Complexity: O(n) arithmetic operations over F.

2) Verifier Complexity: O(logn) arithmetic operations

over F.

3) Completeness: If f € RSJF, D, p|] and the prover is

honest, then the verifier always accepts.

4) Soundness: For every € € (0,1], let J. : [0,1] — [0,1]

be the function

Je(x) =1—+/1—2z(1—¢).

Suppose that A(f,RS) = 6 > 0, then soundness error
err(d) of FRI is bounded above by (again for any e €
(0,1]):

216(;g|1!‘m + (1 - min{5o, Je(Je(1 - p))} +elog ‘D‘)T

Remark 1: In the context of this paper we always assume that
FRI is fully unrolled: i.e. 7 = logy n.

Remark 2: Later this soundness bound was improved in [27]]
using sampling out of the domain techniques.

V. LI1ST POLYNOMIAL COMMITMENT (LPC) SCHEME

We are now ready to introduce the main ingredient under-
lying the transparency of our proving system, which we call
a list commitment scheme. This cryptographic primitive most
resembles a polynomial commitment scheme, with the main
difference being that the commitment is to an e-ball around
some polynomial f (in some predefined metric A), rather than
specifically to f itself. As we are working in the IOP model we
prefer not to dissect the protocol as a tuple of (commit, open,
verify) sub-protocols, as it is commonly done in commitment
schemes’ literature and simply describe our relaxed scheme
as a subclass of IOP protocol with specific semantics and
structure. As before, we denote Ls(f) as the d-list of f(z)
or the set of all g(x) € RS[F, D, p] such that A(f,g) < 4.

1) LPC protocol semantics.:

1) Setup: The prover and verifier agree on the following
parameters: field F, domain D C FF, § > 0 (error-bound),
d € N (bound for degree of polynomial) and k (the
number of points to open).

2) First message format: The first prover message is an
oracle ¢ to the evaluation of f(X) on the domain D. This
is analogous to the Commit method in KATE notation.

3) Second message format: The verifier chooses and sends
to the prover a set of k points: {i;}*_,.

4) Third message format: The prover responds with val-

ues {z;}%_,, which are the purported openings for the
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5) Subéequent interaction: The prover and verifier engage
in a sub-protocol MultiEval(P, V) in which the prover
aims to convince the verifier of the validity of statement
RO (PP = (¢, {i;}j=1, {2j}}=1, d)), defined by:

Jg(x) e Fylz], A(f,9) <e¢
Rf(pm:( g(gj()):zjv?[e}{l,(...%)k} )

2) LPC Instantiation: We provide an implementation of the
MultiEval(P, V') sub-protocol for the case when d = 2" +
k,k << d, (n is any integer € N) and D - any FRI-friendly
domain C F.

1) Both the prover and verifier compute an interpolation
polynomial U (z) of degree less than k such that U (4;) =
z for | € [k]. Note that since the verifier needs to
evaluate U (x) themselves, we require k£ = O(log d). This
means verifier can construct and evaluate U (x) efficiently
without any help from the prover.

2) The prover and verifier engage in an IOPP (here instan-
tiated by FRI) protocol w.r.t to the quotient function:

_ f@) - U@)
[Ty (@ —ip)

with degree d’ = d — k, rate p = IdT;I and error-bound
0. Note that due to our convention d' = 2", so that ’2-
adicity’ constraint of the FRI protocol is satisfied. The
verifier has access to ¢(z) via oracle access to f(x) and
their knowledge of all (i;, 2;) pairs. If the prover passes
the FRI protocol, the verifier accepts, rejecting otherwise.

q(z)

3) LPC Scheme Security: Below we provide an outline of
the security of the above scheme.
Completeness: If the prover starts with some g € R[X] within
the 0 radius from the exact polynomial f of degree less than
d + k, then by the completeness of the FRI protocol he would
definitely pass the FRI check and the MultiEval method would
verify for prover responses with g(i;) = z;.
Soundness: We claim that the only source of soundness error
comes from the FRI protocol, which is inherent to the scheme.
We concern ourselves with the situation when ¢(x) passes the
FRI check and the verifier is convinced that ¢(x) is d-close to
some polynomial h(z) with deg (h) < d. This implies that on
D:
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= h(z), except for d-fraction of points,

f(x) =U(z)+h(z) | | (x—1i;), except for d-fraction of pts.

.
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Note that t(z) = U(z)+h(x )HJ 1(z—1;) is a polynomial
of degree less than d + k. From the second equation we get
that this polynomial is d-close to f(x) or that A(f,t) < ¢
where A denotes Hamming distance. Moreover, we have that
Vj € k, t(i;) = U(ij) = z; by the definition of U(i;). This
means t(z) satisfies all the requirements for R%(F, D, p, k)
stated above.

Remark 1: The prover may efficiently decode every list
element (and hence ¢(z) from above) from representation of
f(x) using the Sudan-Guruswami list Decoding Algorithm
(32]].

Remark 2: Unlike [15]], we do not require the scheme to be
hiding. We say that a commitment scheme has the perfectly
hiding property if an opening at any point doesn’t give the
verifier any additional information about that polynomial apart
from its value at the opening. Certainly, if the verifier has
collected I > deg(¢(zx)) openings to ¢(z) then the polynomial
is completely specified and can be constructed via Lagrange
interpolation. The reason we do not insist on hiding property
for our scheme is that it is not necessary in subsequent
sections. We will achieve zero-knowledge on the application
level rather that at the level of polynomial commitments.

VI. POLYNOMIAL EVALUATION SCHEME

The list commitment scheme introduced above works fine
when dealing with “witness” polynomials, since we are not
concerned with the uniqueness property of our scheme, i.e.
we are not interested in the exact polynomial g taken from
o-list of f, evaluations of which are opened during MultiEval.
However, extra care should be taken outside of this regime,
when we work with sefup polynomials c(x) encoding the
constraint system itself. In this case we want to be sure that
the openings provided by prover are indeed the evaluations of
the polynomial ¢(x) itself and not of any random polynomial
from Ls(c).

The simplest approach would be to abolish the use of our
commitment scheme for setup polynomials and let the verifier
to evaluate setup polynomials on behalf of herself. However,
for zk-scheme to be truly succinct, we ideally want the verifier
to avoid this task and to simply receive the evaluations of
constraint polynomials from the prover (possibly with some
short signature of correctness).

With the above in mind, we propose the following
workaround. We leverage the fact that for a given setup
polynomial c¢(z) the list Ls(c) is theoretically known at the
setup phase by both prover and verifier. They can hence find a
distinguisher point ¢ in which the evaluation of setup polyno-
mial is different from the evaluations of all other polynomials

in the list. This can be naively achieved by running a list-
decoding algorithm once at the beginning to find all g € L;
and then start picking such a point ¢ at random (and checking
that (i) # g(i) V g € Ls) until we find a suitable candidate.
This, however, comes with significant (polynomial in |D|)
overhead.

The key to our approach is that the procedure of enumerat-
ing all such elements and picking a suitable candidate is (1)
fully transparent, and (2) executed and verified only once for
every circuit. We thus add an offline phase that is executed
only once at the beginning of the protocol. The task of offline
phase is to search for aforementioned distinguisher point 4.
This allows us to strengthen the proof of knowledge guarantee
for the list commitment scheme to imply that all evaluations
come from the specific polynomial c¢(x). This permits us to
use the list commitment construction with constraint polyno-
mials as well (with minor changes). This preprocess phase in
completely analogous to the work of indexer in terms of [34].

1) Polynomial Evaluation Scheme Semantics:

1) Setup: The prover and verifier agree on the following
parameters: field F, domain D C F, § > 0 (error-bound),
d € N (degree of polynomial) and & (the number of points
to open).

2) Preprocess phase: Prover and verifier agree on a setup
polynomial ¢(x), separation point i € F and value z =
¢(7) with the following properties:

Vg(x) € Ls(c) : (i) # (i)

3) First message format: The verifier chooses and sends to

the prover a set of k points: {i;}* i1
4) Second message format: The prover responds with
values {z;}*_,, which are the purported openings for the
{1 }§:1

5) Subsequent interaction: The following interaction is
completely analogous to MultiEval interactive oracle
protocol defined in the previous section except for the
fact that we explicitly add the pair (i,z) to our point-
values pairs (i.e. MultiEval is now played w.r.t the sets
{4,41,...,ix} and {z,21,...,2K}.)

2) Soundness: We provide soundness analysis for FRI-
based instantiation of evaluation scheme and MultiEval proto-
col.

We begin in a familiar setting: the protocol accepts only if
g passes the FRI check and the verifier is convinced that ¢(x)
is d-close to some polynomial h(x) with deg(h) < d. This
implies that on D, except for a d-fraction of points:

j=1

c(z) = U(x)
(¢ =) [Tj_ (& — ij)

k
.’IJ—Z HLU—’LJ

Note that (z) = U(z) + h(z)(z — i) [I}_,(x — ;) is
polynomial of degree less than d + k + 1. From the second

= h(z),

o(r) =Ulx) +



equation we get that this polynomial is d-close to ¢(x) or that
Afe,t) < 6 where A denotes Hamming distance. We have
that Vj € k, t(i;) = U(i;) = z; by the definition of U (i;).
Moreover, the same holds for ¢(i) = U(i¢) = z. This implies
that ¢ = ¢ since A(c,t) < 0 (so t € Ls(c)) and c(i) = t(4)
where ¢ is our separation point.

VII. REDSHIFT
A. Constraint system

We start with a description of the constraint system used
in PLONK [22] which is then used to design REDSHIFT.
We then describe an equivalent encoding of this system in
polynomial form.

Constraint system version 1:

The constraint system £ = (), Q) with n gates and m wires

is defined as follows:

o Vis of the form V = (a, b, ¢), where a, b, c € [m]

e We call qr,qr,q0,amM,qc “selector” vectors (left,
right, output, multiplication and constant respectively),
and set:

Q = (quqRJ q0,9M;, QC) S F™.
We say x € F™ satisfies £ if for each i € [n],

(dL)i - Xa; + (AR)i - Xb; + (d0)i - Xes+
+(am)i - (XaiXb;) + (qc)i = 0.

To define a relation based on £, we extend it to include a
positive integer I < m, and subset I C [m] of “public inputs”.
Without loss of generality, we assume that I =1,... 1.

Define the relation R as the set of pairs (z,w) with = €
F!,w € F™~! such that x := (7, w) satisfies £. We say L is
prepared for [ public inputs if for i € [I]

aj =1, (qu)i = 1, (am): = (qr)i = (9o)i = (ac)i = 0.

From here on, we assume the constraint system is in prepared
form.
Constraint system version 2:

In order to reformulate this constraint system in polynomial
terms we need a bunch of additional definitions. Let g € F*
be an element of order n+1. Let H = {e = ¢", 9,¢%,...,9"}
be a cyclic subgroup of F* generated by g. Let H* = H/{e}.
For i € [n+1] we denote by L;(X) the element of F<,,1[X]
with L;(¢") = 1 and L;(a) = 0 for a € H different from g,
i.e. L;(x) for i € [n+1] form a Lagrange basis for H. Define
Z(x) = [lsen-(X — a) be a domain polynomial for H*,
which is zero on all points a € H* (and only on them).

Definition 5: permutation across several polynomials
over domain H*. Suppose we have multiple polynomials
fi,..., fr € F[X] and a permutation o : [kn] — [kn].
For (hi,...,hx) € (F[X])k, we say that (hi,..., h;) =
o(fi,..., fr) if the following holds. Define the sequences
(fays -5 Fem))s (hays - -+ hmy) € F5™ by

fiG=1ym+iy = [i(9")s hG—1ymti) = hi(g"),

for each j € [k],7 € [n]. Then we should have hqy = fi,a))
for each [ € [kn].

Definition 6: Let T = Ti,...,T, be a partition of
[kn], k,n € N into disjoint blocks. We say that fy,..., fx €
F[X] copy-satisfy T if, when defining (f(1),..., fkn)) € Fkn
as above, we have f;) = f(;;) whenever [,I’ belong to the
same block of 7.

Define a permutation o(7") on [kn] such that for each block
T; of T, o(T) contains a cycle going over all elements of
T; and only over them. There are several possible choices of
such a permutation (for example, we can rearrange elements
in the cycles corresponding to T;), o(7T) can be taken arbitrary
from the set of all allowed permutations. It is simple to check
that (f1,..., fx) copy-satisfy T if and only if (f1,..., fx) =
U(fh'"afk)'

The constraint system £ = (qr,qr,q0,49M,dc, o) for
domain H* of size n is defined as follows:

1) qr,qr;90,9Mm;qc € F[X] - selector polynomials.

2) o -permutation in [3n] elements.

We define the relation R. as the set (z,w) =
(PI(x), {(fL(z), fr (z),fo(z))) € (F[X])* with the following
properties:

1) fr(z),fr(z), fo(x) copy-satisfy o.
2) Va € H* : qu(z) - fL(z) + qr(z) - fr(z) + qo(z) -
fo(z) + am () - fu(z) - fr(2) + (ac(z) + PI(z)) = 0.
PI(z) is called public input polynomial and encodes public
data, fr,(2),fr(z),fo(x) are called left, right and output
wires polynomial respectively and encode prover-only private
data.

Conversion between constraint systems:

Here we show a polynomial time transition from the first
constraint system to the second. It is easy to check that such
a transition can be reversed. Hence, it is enough to construct
a proof system for the second relation only.

Suppose V = (a, b, c); think of V as a vector in [m]>". For
i € [m], let T; C [3n] be the set of indices j € [3n] such that
Vj = i. Now define T := {T}};c[m) - partition of [3n] into
non-intersecting chunks. Define a permutation o(7) on [3n]
in the following way: for each block T; of T, o(7T) contains
a cycle going over all elements of 7;. For simplicity we write
o=0(Tr)

Overloading notation, set the selector polynomials
dL,dRr, 490, 9M, dc € F[X] defined for each i € [n] by

av(g’) := (av)i» ar(g’) := (ar)i,q0(9") := (q0):,
am(g’) := (am)i, ac(g’) = (ac);.

If (z,w) is a relation £ prepared for [ public inputs, then
(2'w’) is a relation for £ computed in the following way:
D PI(X) =3, —i - Li(X)
2) fr,fr,fo € F[X] are defined by the following condition:
Vi € [n]

fL(i) = Xai, fR(i) = Xbj; fo(i) = Xcj-



Remark 1: Note that calculation of 2’ requires only the access
to statement = and no access to secret witness w.

Remark 2: Note that permutation o was chosen in such a way
that w is a valid witness for L], iff f1,, fr, fo constructed as
described before from a valid witness for £'|,.

Remark 3: Note, that "true” degree of polynomials f,, fr, fc
is n — 1 where n is number of gates in £. However in
REDSHIFT we will allow them to be of some degree n’ > n,
where the particular choice of n’ will be described later.

B. Protocol

Preprocessing: Let £' =
straint system in question.

Take k1 = e, ko, k3 € F* to be representatives of different
cosets in F* /H*. Let 7 be the bijection between the sets P, =
[3n] and Py = H* U ko H* U ks H* defined by:

Tin-(j —1)+1i] = kjg', i € [n],5 € [3].

Recall that o is a permutation on P; hence ¢/ = Toc o7~
is a permutation on Ps.

(9L, dr,90,9M, qc, o) be con-

1

Define Sidl (X)v Sid2 (X)v Sids (X)a SUl (X)7 502 (X)v Sﬂs (X)
€ F.,[X] - “permutation” polynomials by the following
rules:

1) Sidj (X) = ]{IJX for ] € [3]

2) So,(9") =o' (kjg') i € [n),j € [3].

Let {L;}icnt1) be a Lagrange basis for H, ie. a set of
n + 1 polynomials € F,,41[X] with L;(¢") = 1,L;(a) =0
for a € H different from g°.

Remark: Selectors qr,, qr, 90, qMm, dc, permutation poly-
nomials Siq,, Sidys Sids» Sovs Sy, S, and Langrange-
basis polynomials {L;};c[,+1] play the role of “constraint”
polynomials in terms of previous section.

Setup: Fix FRI parameters and degree d for FRI games
(that is, the degree of all quotient polynomials). The prover is
given an explicit representation of all constraint polynomials
and the verifier is given oracle access to them alongside the
“distinguishing” point z (which in general is different for each
constraint polynomial). The verifier is given PI(x) - the public
inputs polynomial and the honest prover is additionally given
fL, fr, fo, the witness-wire polynomials.

All commitments mean FRI-commitments in this section.
Protocol:

1) Prover chooses masking polynomials

hi(x),ha(x), hs(x) € Foplr] where the choice of
k will be described later. Prover defines new witness
polynomials fi(z) = fu(x) + hi(2)Z(x), fola) =
fr(x) + ha(z)Z(2), f3(z) = fo(x) + hs(z)Z(x).

2) Prover sends commitments to polynomials fi, fo, f3 to
verifier.

3) Verifier chooses random 3,7 € F and sends them to
prover.

4) For j € [3] prover computes p; := f; + 3 - Siq, + 7
and q; = f; + 3-S5, + . He then defines p’(X) and
q/(X) € IF<3n[‘X] by

'(X)= 1] ¢(x

= [[ mi(x
Jjel3] Jel3]

Prover computes polynomial P(z),Q(z) € Fepiq1[X]
such that P(g) = Q(g9) =1 and fori € {2,...,n+ 1}:

Py =[] ¥

1<j<i
II <)
1<j<i

Prover sends commitments to P and Q).
5) Verifier sends random ay, ..., ag € F to Prover.
6) Define the following polynomials:

) Fi(z) = L (2)(P(z) - 1)

b) Fy(x) = L (2)(Q(x) — 1)

¢) Fy(z) = P(x)p'(x) — P(zg)

d) Fy(z) = ( )¢ (x) = Q(xg)

e) F5(x) = Ln(z)(P (1’9) — Q(zg))

f) Fa(w) qu(z) - fr(2) + ar(z) - fr(2) + do(z) -

folx )+qM( ) - fr(@) - fr(2) + (ac(x) + PI(x))

Later we show that for honest provers all of {F;(z)} are
identically zero on domain H*. This means that all of
{F;(x)} are divisible by Z(z) in the ring F[z], hence
so is their linear combination F'(z) = Z?:1 a; F;(x).
Prover computes T'(z) = ;Eg
commitment to T'(x).
Remark: Due to the restrictions on the degrees it may
be necessary to split T'(x) into separate polynomials
To(z), T1(x),...,T3(x) and commit to them indepen-
dently.

7) Verifier uniformly random chooses point y € F/H and
queries openings for all setup and witness polynomials
at this point. Note that we use the evaluation scheme of
section to open constraint polynomials and the list
version of commit-reveal algorithm of section [V]to open
witness polynomials. By using queried values verifier is
able to compute {F;(y)}icje) and T'(y).

Remark: We deprecate sampling y inside domain H
in order to achieve perfect-zero knowledge instead of
statistical.

8) Verifier checks the identity:

Z ain(y)

If this equation holds he accepts the proof and rejects
otherwise.

and sends the verifier a

=Z(y)T(y) (*)

For brevity, we defer a full analysis of the security and
zero-knowledge properties of the above scheme to the
appendix.

Remark 1: Polynomials F;(x);c; are responsible for
checking copy-satisfiability of witness polynomials.

Remark 2: Here we explain the intuition behind S;q,,, Sy,
Sid, is only required to map H to disjoint sets Pr, Py, P5. Sy,
should then map to the same set P = P, U P, U P3 but in a
“permuted” fashion. We construct a map 7 in order to transfer



permutation o from domain [n] to P. The simplest way to
define S;q, is to map [n] to [1..n],[n + 1..2n],[2n + 1, 3n]
respectively, in this case there is no need to apply the map
7 as then there is no need of domain translation (P = [n]).
The problem is that all of the S;4, polynomials will be of
degree n in general. We construct S;4, in such a way to be
of minimal possible degree - 1, so it is easy to verifier to
calculate evaluations of those polynomials by himself and we
get rid of “polynomial evaluation protocols” in this case.

Remark 4: Although by described construction fy,, fgr, fo can
be taken to be in F,[X], the concrete degrees of them are not
important: the only required property is the relation between
these values on domain H*. This freedom in degree choice
helps achieve zero-knowledge.

VIII. OPTIMIZATIONS AND VARIANTS

In this section we are going to describe various additional
techniques to achieve better concrete efficiency of the RedShift
protocol.

A. Batched FRI

Recall that all polynomial commitments and evaluations
in our protocol are reduced via FRI to the following check:
whether particular functions fi, ..., fi represented as oracles
are close to the space of degree d polynomials. The intuitive
approach is to replace all those separate and independent
FRI queries by exactly one instance of FRI w.rt a linear
combination of functions f;, where the coefficients of linear
dependence are provided by the verifier. This can in fact be
done, with rigorous justification based on the following lemma
found in [26]].

Definition 7: JF(\) = J.(J.(-- -
k iterations of the function .J..

Definition 8: The relative hamming distance of set S C F"

(Je(X)))), where there are

is
A(S) = min{A(w, wo)|w, wo € S, w # wo}.

Theorem 5: Let V. C F™ be a linear space over a finite field
F with A(V) = A. Let u* € F" and let € > 0 satisfy § <
JE[Hl]()\). For uy,ug,...,u; € F* let A = {a € F*/|A(u* +
auy + a?ug + -+ oluy, V) < 6} If |A] > 1 - (%)HQ, then
there exist v*, vy, va,...,v; € V such that

i € [0 | (uf = of) A((wr)i = (v1)i) A A((u)i = (0))}

is > (1 — ¢ — e)n. In particular, A(u*,v*) < J + € and Vi €
m : A(ul,vl) <d+e

Specifying this theorem for V' = RS[F, D, p], for which
A= A(V) =1— p. We use the contrapositive to get the
following corollary:

Corollary 1: Let V = RSJF, D, p] be the family of RS-
codes. Let ¢ € (0,1),6 > 0 are chosen is such a way that
o< Je[l](l —p). Let { > 2 € N and uq,us,...,u; € F", such
that there exists ¢ € [/] for which A(u;, V) > § + €. Then
A< @-1)(2)"

We have the following protocol for a batched FRI, the
correctness of which is a trivial consequence of the previous
corollary.

Batched FRI protocol:

1) Prover publishes oracles to fi,..., fk.

2) Verifier selects random o € F* and send it to prover.

3) Prover and Verifier are engaged into FRI-protocol w.r.t
f= Ele o'~ f;. Verifier’s output is acc if prover has
passed FRI check and rej otherwise.

B. Remarks on the Setup Phase

Recall that as part of the setup for RedShift, for every
constraint polynomial ¢ we are required to find a specific
point ¢ € F which separates ¢ from all polynomials taken
the from corresponding d-list Ls(c). As we have noted in
previous sections, decoding the whole list can be conducted in
a polynomial number of steps (through the Sudan decoding-
algorithm) and such a point ¢ can be quickly found by brute-
force. Despite the fact that all these preliminary actions should
be done only once per circuit and the resultant ¢ can be
subsequently used in all created proofs, such a setup can
be a significant amount of work. A possible workaround
for this problem is to forgo decoding algorithms altogether
and randomly sample point ¢, e.g. as a hash of the circuit
using techniques similar to Fiat-Shamir heuristics. Due to the
Schwartz-Zippel lemma, there is a high chance that ¢ will
indeed separate ¢ from the corresponding d-list. If 7 is taken in
a way that polynomials are indistinguishable (so some other
polynomial from the list Ls(c) has the same value at the
point ¢ and polynomial c) then the malicious prover will be
able to conduct proof forgery. As a result we have a trade-off
between speed, efficiency and security of the whole protocol.
We calculate the extra soundness penalty due to this below.

If at the setup step the choice of ¢+ € F was random, the
probability that any two degree d polynomials g1, g2 € Ls(c)
satisfy g1(i) = g2(¢) is small. To see this, by the Schwartz-
Zippel lemma we have that Vg € Ls(c):

i) gl < Qe () X)) _ d
PL,I"[Q(Z) (i) =0] < IF| = |F|

Enumerating over all g; € Ls(c)\{c} where j € |Ls(c)],
from a union bound we get that:

a
||

1) Improving soundness with multiple samples: One issue
with the above lies in the size of |Ls|. In cases where this is
too large, one random sample might not be enough to achieve
the desired soundness bound.

We show that the straightforward approach of sampling
multiple random points yields substantial soundness improve-
ments. In this case the verifier samples k£ random points
{i;}%_, computed the corresponding values {c(i;)}4_, at the
setup phase. The prover then performs an opening at the point

Pr| U gl —el)=0| <

JE|Ls|—1

(ILs[ = 1)



1 € IF by performing an IOPP for membership of the following
function in RS[F,, D, d/|D||:

o(X)-U(X)
. k .
(X —1) Hj:l(X —ij)
where U(X) interpolates between the target opening point
(4,2) and all other points (i;, c(7;)).
Given that the i; € F are randomly sampled, then the

probability that some g € Ls(f) agrees with ¢ on all k points
is actually substantially smaller:

h(X) =

From the union bound, we get the total soundness error to be
equal to |Ls(c)] - (d/|F|)".

Limitations on £: It is immediate that £ < d. Indeed, the
case where & = d fully specifies the polynomial since f is
of degree d. Sampling and evaluation procedure is O(kd) in
terms of computation complexity and has to be done only
once.

C. Binary fields

Recall that Kate-based PLONK is restricted to prime fields
only. The reason for this is that the Kate commitment requires
embedding a field [F into a group of points on some pairing-
friendly elliptic curve. Such an embedding is known for
prime fields F only. In [26] there is a version of the FRI
protocol for binary fields which is similar to the one used
here but which exploits additive and vector space structure
of the underlying field instead of the multiplicative one. All
other parts of PLONK are completely field agnostic. This
means that RedShift can be instantiated for binary fields as
well as prime fields and all constructions and proofs follow
through: simply replace the multiplicative domain |D| by an
affine subspace. The binary variant of PLONK is especially
effective for computations that require a lot of XOR’s and bit
manipulations, which are naturally encoded in a binary version
of the system.

D. Recursion

One can express a verification subroutine of RedShift as
another circuit, where the dominating subroutine will be
verification of Merkle paths (if the IOP is instantiated with
Merkle trees), or inclusion proofs in some other cryptographic
accumulator (e.g. RSA-based). All the remaining arithmetic
operations are performed over the same field that the original
circuit (for which verifier is expressed) is defined, so there is
no requirement for cycles over pairing friendly elliptic curves
as in previous work. We should also note that one can use a
hybrid approach to perform the last step of recursion using a
pairing-based PLONK, e.g. the BLS12-381 curve has a main

subgroup of order |G| such that 232 | (|G| — 1). This allows
us to instantiate RedShift.

E. Application to other proof systems

One can apply the list polynomial commitment scheme and
evaluation scheme to other proof systems such as SONIC
[14] and Marlin [34] that were also originally instantiated
using univariate polynomial commitments. We leave such
transformation for an interested reader and will only suggest
that one will have to pay more attention to proximity testing
parameters e.g. testing inclusion in RS[F,, D, (d — 1)/|D]|],
where d = 2% in the case of Marlin. [28]] contains a description
of such a subroutine.

We should also note that the DEEP-ALI protocol from [27]
uses a construction that is equivalent to the list commitment
scheme in their application to the STARK [18] proof system.
In this case, all the setup polynomials, constraints and checked
relations are known to the verifier and are checked naively dur-
ing the verification procedure. We expect that our polynomial
evaluation scheme can also be adapted for this case and allow
one to express more complex STARK circuits.

F. Strict commitment scheme

An interested reader may have noticed that all the logic
about list commitment schemes can be combined with a
requirement that the FRI § parameter is in the unique decod-
ing radius. This provides a standard polynomial commitment
scheme. Introducing the limitation of unique decoding also
lifts the requirement for a separate evaluation scheme. Such a
primitive was already described in [35]] and as mentioned in
the introduction it comes at the cost of larger proof sizes.

IX. SYSTEM INSTANTIATION

Now, we have constructed and proved RedShift from several
components based on various independent parameters: p, €, 9,
n. In this section we want to come to common base and give
a concrete example how one can instantiate all the parameters
of the system.

First we focus on the contribution A’ = L2 |]F4’}3|, for
which the full soundness analysis can be found in Appendix [B}
Following theorem [I| we choose ¢ = |F|~/20, This provides
a list size of O(F1/2%), and for any reasonable problem size
n we have to = 8 witness polynomials (enumerated later in
section EI) and A’ ~ 1/+/F. For a typical field size of ~ 256
bits, the error contribution due to A’ is on the order of 27128,

Now we focus on how such choice of € # 0 will affect the
formula of FRI soundness from section We choose p =
1/16 and are interested in the part of the formula involving

p= (1 - min{éo, Je(Je(1 — p))} + elog |D|>

A smaller value of p allows one to have fewer queries to
achieve the same FRI soundness error. In the case of ¢ = 0,
we have pg = 1/2 for our choice of p. For ¢ = F~1/20 and
domain size |D| = 232 this is equivalent to n + 1 = 2%% and
we have that p ~ 0.504.




If we instead use p = 1/32, then for the same choice of the
other parameters py ~ 0.421 and p ~ 0.425. In all the cases
d = Je(Je(1 = p)) is below the Johnson bound 1 — /p.

X. BENCHMARKS

For benchmarks, we instantiate RedShift with ¢ = r- 2192+
1, r = 576460752303423505 which is a Proth prime, and use
p = 1/16. Oracles were instantiated as Merkle trees using the
Blake2s hashing algorithm. The setup phase was performed
using an approach from section [VIII| where a random point was
sampled using Fiat-Shamir heuristics by placing all individual
root hashes of oracles to the setup polynomials into the
transcript. For comparison, we have also implemented the
PLONK prover using Kate commitments and used two curves:
BN254 and BLS12-381, that are expected to provide ~ 80 bits
and ~ 120 bits security levels respectively.

Circuit sizes were chosen in a way to set the n + 1 value
for PLONK and RedShift to [2'8,2'9, ... 22%]. In the case of
RedShift, the degree bound for FRI checks is d =n + 1. We
used a cloud “memory optimized” instance from DigitalOcean
with 16 (virtual) cores. Results are presented in Fig. [T] with
execution time measured in seconds.

All the implementations use a certain degree of precom-
putation: we precompute low degree extensions of setup
polynomials (for both RedShift and PLONK) and Merkle trees
of the setup polynomial oracles (RedShift only) before proof
generation.

We also separately provide expected proof sizes for Red-
Shift for different sets of parameters, taking into the account
that in total there are 17 polynomials with degree bound d:

« Selectors qr., qr; 90, qm, 4Cs

o Permutation polynomials S;q, , So,, Sey; Sos

« Witness polynomials fr,, fr, fo

o Grand product polynomials P, )

o Polynomials Tjow, Timid, Thigh such that T'(z) =
22 Thi0n(2) + 28T ia(2) + Tiow ()

We have also calculated an expected numbers of queries
for the FRI protocol and approximate proof sizes for different
security levels that are displayed on table

There’s a specific interplay between the system parameters,
running time and proof sizes. As soon as field [F and parameter
¢ are fixed, this also fixes the list size L and soundness error
Agy = Lt “If/—"m + % of RedShift (as analyzed in appendix
and the contribution from the randomized setup in
if one is applied. Another component of the soundness
error is due to the FRI error Ay that depends on the number
of queries. This does not change the proof generation time and
only affects the proof size. As shown in section we target
contribution Agz ~ 1/4/]F| ~ 27120 and then pick a number
of queries that achieves a specific FRI soundness level. The
final soundness error would then be Agz + Argy, but in some
cases one contribution clearly dominates in this sum. This is
reflected in table [I| where we separately state what would be
final order of the Arpg; contribution.

TABLE I: Proof sizes for various setup parameters.

Target security Rat Problem Number of  Expected FRI Proof
level, bits ate size queries security level, bits size
80 /16 2% 4 ~ 96 80 KB
80 /16 2% 3 ~ 84 70 KB
80 /16 2% 3 ~ 96 80 KB
80 132 2% 3 ~ 90 68 KB
80 132 2% 3 ~ 108 76 KB
80 132 2% 2 ~ 80 54 KB
120 /16 2% 5 ~ 120 100 KB
120 /16 2% 5 ~ 140 116 KB
120 /16 2% 4 ~ 128 108 KB
o RedShift
e PLONK BN254 Py
,,,,, o PLONK BLS12-381 :
° ',,
-g 102 o
5
°
o e
Q »
(0]
m - »
(o]
QL- - L
10t
218 219 220 221 222 223

Problem size

Fig. 1: Benchmark data for settings as described in section
Execution time measured in seconds.

XI. FURTHER WORK

An important follow-up would be to investigate how the
FRI improvement described in [27] affects proving time and
final proof sizes. Such a question requires an efficient imple-
mentation of the DEEP-FRI protocol.

As described in section [X] the PLONK proof system ini-
tially has 17 different polynomials. The latest updates allow
one to reduce this number by one or two, which would also
lead to smaller proof sizes and faster proof generation. It is
also important to see if an application of RedShift to other
existing proof systems would result in even smaller proof sizes
for similar circuit sizes or faster proof generation.

Another important comparison is against current state-of-
the-art proof systems such as Grothl6 [7] with respect to
proof generation time. This requires an efficient compiler
to transform the RICS based problem representation to the
PLONK arithmetization.

Perhaps a more important question is whether one has to
use a described polynomial evaluation scheme for “constraint”
polynomials or if there exist other approaches for how to



guarantee the opening of a particular polynomial without the
unique decoding radius requirement for FRI.
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APPENDIX A
FRI OVERVIEW

Here we provide an overview of the FRI protocol, as seen
in [26].

Definition 9: For a function f : S — T, let interpolantf
be the unique degree < |S| polynomial that satisfies
interpolant/ (s) = f(s) for all s € S. This polynomial can be
constructed by Lagrange interpolation.

Setup phase. In the setup phase, the prover and verifier agree
on the following parameters
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o A prime field F.

o A positive integer R € Z~ and the rate p = 2.

o A multiplicative domain D = D = {w,w?, ... w"}
generated by an element w = wy € F* of order n = 2%
for some k € N. For chosen p = 27 % and n = 2* the FRI
protocol will check whether f is of degree < pn = 28— F,

o The prover and verifier agree on a number of rounds
r < k— R € N and a sequence of sub-domains
DO DM DR DO constructed inductively as
follows. Suppose D) was already defined and generated
(as a cyclic group) by w;. Let g(x) : F — F be
the map defined by the rule: q(z) = 2. Then define
DUFD = ¢(D®). Note that DU+ is cychc subgroup
of F* generated by w;41 = w?. Note that always
D] = 221 and for all i € 0,1,...,r — 1 D@ can

H where H® is the kernel of

be split into cosets U;s;;
the homomorphism ¢(z)|p) : D — DG+ Note that

all cosets have equal size LD = 2 and the number of

\
[DGFD)]|
DD
cosets j = ST

When we say that prover commits to function f on domain
D this means prover sends an oracle containing f|p i.e. all
evaluations of function f on domain D.

Commit phase. In the commitment phase, the prover in-
ductively constructs and commits to a sequence of functions
FO . f=1 and a sequence of coefficients ao, . . . , ag with
which the verifier will construct the final function f(").
o Input: a purported low degree polynomial f(©) := f €
RS[F, D(®), p]. The prover commits to f(®) on D),
o For 0 < i < r, given that f(V) was already defined (and

committed to), the prover constructs f(i+1) : DU+ 5 |
in the following way:

o The verifier sends a random z(*) € FF.

e For y € DU+ et S, = {z € D : g(z) = y} be

the coset of D(*) mapped to .
« Using interpolation, the prover construct the polyno-
mial

P (x) = interpolant’ 154 (*),

and defines
41 7 7

o If i < 7 —1, the prover commits to the values of f(+1)
on DY If j = r—1 then f(") is a purported polynomial
of degree < p|D()|, in which case the prover commits
to its coefficients ag, ..., aq.

Query phase. In the query phase, the verifier (probabilisti-
cally) validates the proof sent by the prover.

o Input: a sequence of oracles (O, ..., f"=1 and co-
efficients ag,...,aq, with which the verifier constructs

f(r)’ by

F (2 Zakx e RS[F, D™ pl.
k=0

o Verifier generates a random (%) € D and for all 0 <
1 <7 lets
1) sttD .= q(s(i))

2) S be the coset of H in D containing s(*).

o For 0 < ¢ < r — 1 the verifier checks that given
@ the function f(+1) was constructed according to
the protocol:

« She queries £ on all of S, and
o computes p(*) = interpolantf(z)'sﬂi) ,
« performs “round consistency” check:
f(i+1)(3(i+1)) = p® (x(i)).
Note that in the last check, the function considered is
f) which is in RS[F, D), p] by construction. If all
tests pass, the verifier accepts the proof. Otherwise, she
rejects.
Remark: Instead of taking a family of nested sub-domains to
be multiplicative subgroups it is also possible to take the cosets
of them. To be more precise, consider any shift g € F*/D.
There is a modification to FRI protocol operating over the
domains D" = ¢gD© pW" = ¢gp® D" = gD
The function mapping D@’ to DUV is ¢/(z) = ¢ a2
The modified version of FRI has the same security guarantees
as the original one. The possibility to operate in cosets will
be later exploited to achieve zero-knowledge property of
transparent PLONK.

and

APPENDIX B
REDSHIFT SECURITY ANALYSIS

Here we provide the complete security analysis and zero
knowledge proof for RedShift.

A. Security analysis

Completeness: Assume prover posses a valid witness con-
sisting of polynomials fy,, fr, fo. which copy-satisfy 7. Note
that addition of masking polynomials doesn’t change the
values of fy,,fr,fo on H, and only the values are checked
in the protocol. It is straightforward to check that Fg(x)
will be identically zero on H* by the definition of witness
polynomials, Fi(x), Fa(z), F5(x), Fy(x) will be zero on H*
by construction of P(x) and Q(z). To prove completeness of
the protocol it is then enough to check Fi(z) is identically zero
on H*. Using the properties of Lagrange-basis it is equivalent
for P(g"*') = Q(g™™*). Using the definition of P(z) and
Q(z) the last equation is equivalent to:

I1T1 (46"

i=1j=1

: )+ 8- kig' —i—v)

I (50

Using the definition of 7 and 0/ = Togo7!
this as following:

Y480 (kg +7).

we can rewrite
n

H ﬁ (f(jfl)nﬂ' +B8-7((j —Dn+1i) + 7)

i=1j=1



n 3
= H H (f(jfl)nﬂ +B-7 00((]’ — 1)n+i) +7)
i=1j=1

Now we use the fact f; = fr,, fo = fg and f3 = fy copy-
satisfy 7~ which means:

JG-vmti = fo((G—1)nt4)

After renumerating the products on both sides would be
completely equal which proves completeness.

B. Soundness and argument of knowledge.

It is enough to prove argument of knowledge property as
soundness is an easy corollary of this.

In order to conduct the proof we need three auxiliary
statements (the first two are proved in PLONK paper, the last
is classic).

Lemma 1: Let k € N. Fix F1,...,F, € F[X]. Fix Z €
F[X]. Suppose that for some i € [k], Z t F;. Then except with
probability UF% over uniformly random ay,...,ax € F, Z1F,
where [ := Zle a; F;

Lemma 2: Let n € N. Fix a permutation o of [n], and
ai,...,an,b1,...,b, € F. Suppose that for some i € [n] b; #
g (i)- Then except with probability % over random [,y € F:

n

[ @+ Boti) +7).

i=1

II(ai+Bi+v) =
1=1

Lemma 3 (Schwartz-Zippel lemma): Let P €
Flx1,22,...,2,] be a non-zero polynomial of total degree
d > 0 over a field F. Let S be a finite subset of F and
let r1,72,...,7, be selected at random independently and
uniformly from S. Then

d
Pr[P(r1,72,...,10) =0] < Gk

We will apply last lemma to the special case of univariate
polynomial P(x) and the set S being all of F.

We will show that if prover is able to convince verifier in
correctness of the statement = then there actually exist an
extractor having full access to prover’s state and with high
probability capable of outputting valid witness fr,, fr,fo €
L'|, for given statement 2 = PI(x).

First, let us count the overall number of FRI instances
conducted during the protocol. Let ¢; denote the number of
FRI used for evaluation of setup polynomials (exploiting the
technique of section and let ¢o denote the number of FRI
used for evaluation of witness polynomials (as described in
section [V).

1) Fri is used for retrieving the values of S, (z), S,, (),

Sos (), 9L (x), ar(x), dm(x), go(x), ac(x) at point
z ¢ H sent by the verifier during one of the last
steps of the protocol, hence f; = 8. Note that there
is no need for using FRI for evaluation of any of
Li(z), Ly(x), Z(), Sid, > Sidys Sids as the polynomials
are of very special reduced form and can be evaluated
on behalf a verifier himself without any help from the

prover. More precisely, polynomials S;q; for j € [3] are
linear, L;(x) for i € [n + 1] are of the form:
(n+1l _ 1
L({,E) = 701 (!,l? - )
r— g
for some constant ¢; and Z(z) is of the form:

H (x_a):xn_l

r—1"
acH*

2) Witness polynomials fi(z) = fr(x), fo(z) = fr(x),
fa(x) = fo(x), To(x), T1(x), To(x), T3(x) are evaluated
at point z, Polynomials P(x) and Q(z) are evaluated at
point z and z - g (recall, that we handle multi-evaluation
with one instance of FRI). Hence t5 = 7.

Z(x) =

Assume that prover is malicious: he doesn’t possess a valid
witness and aims to cheat on a honest verifier. Let A denote the
event for the prover to succeed in passing all verifier’s checks.
We will estimate the probability of event A. The probability is
taken over random variables (3, v, z and all verifier’s random
variables sent during all FRI instances.

Assume that after interaction with prover verifier accepts
the proof. The cases why it might happen fall into two major
categories: either prover managed to cheat on verifier during
any of FRI instances (we denote this event as B) or prover
passed all FRI without cheating. Recall that soundness of any
instance of FRI is denoted by err(d) Hence:

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B) Pr(B) <

— (1 —err(6))" " £ Pr(AN B).

We now restrict ourselves to the case of event AN B to
happen. Due to soundness of list commitments scheme and
evaluation scheme, event A N B means that all opening of
setup polynomials are correct, and for every witness oracle
f there exists a polynomial f(z), such that f(z) is d-close
to f and the opening provided by the prover is evaluation of
f(x) at corresponding point. Let L - be the maximal size of
all the |Ls| running over all witnesses’ d-lists. Note that L is
bounded above by Johnson-bound .J, ..

For prover to pass the protocol the equation () should be
satisfied at randomly chosen point z. There are at most L*2
choices of substituted values in equation (*) dependent on par-
ticular choices of functions fi, f2, ..., ft, from corresponding
§-lists of oracles f1, fa, ..., ftZ

Let C be event that for any choice of polynomials
fi,--., ft, from aforementioned ¢-lists the LHS of equation
() is not divisible by Z(z) in the ring F[X]. This in
particular implies that for any choice of polynomials Ty (x),
Ty (z), To(x), T5(xz) on the RHS the equation (x) is not
satisfied identically. Note that LHS and RHS of (x) are both
polynomials of degree at most 4n and if they are not equals
they may coincide on at most 4n points (by Schwartz-Zippel
lemma). Then:

Pr(AN B) =Pr(AN B|C)Pr(C) +Pr(ANBNC)



t 4n _
<L WﬂN+PmAanC)

Event AN BNC means that for some choice of polynomials
P ={f1,..., ft,} equation (*) holds identically. From now
on we fix this set of polynomials P and show that with high
probability they form a valid witness. Note that the set P may
be efficiently derived by prover from corresponding oracles
with the help of Sudan list-decoding algorithm, efficiently
delivering proof of knowledge property.

For P = {f1,..., fn} and any of Fy(x)Fs(x),..., Fs(x)
(where we substitute polynomials from P at appropriate places
in F;(z)), denote by D the event that this is not divisible by
Z(x). Using Lemma [1] we get:

Pr(ANBNC)=Pr(ANBNC|D)Pr(D)+Pr(ANBNCND)
< Pr(Z(x) divides F(z) | 3 Fi(z) : Z(z){ F(z)) + Pr(AnBnCnN D)
1 o
< m—i—Pr(AﬂBﬂCﬂD).

Event D in particular means that Fg(z) is identically zero
on H* and therefore fi(z), fo(x), f3(x), satisfy the second
condition of the definition of witness for £’|,.

From Fi(x), Fa(z),...,F5(x) being identically zero on
H* we retrieve (mimicking the reasoning in the proof of
completeness property) that:

n 3
HH <f(f*1)7l+i +8- T((j —Dn+1) +7> -

i=1j=1
3

H H (f(j—l)n+i+5 ‘Too((j—n+1i) +7>
i=1j=1
(o)

However, we have started with the assumption A that prover
doesn’t posses any valid witness for L£'|, and hence, as
f1(x), fo(x), ..., fa(x), satisfy the second condition of the
definition of witness, they can’t satisfy the first (or they will
constitute the witness in question). Using lemma [2] we then
have:

Pr(ANBNCND)

< Pr(eq. (o) holds | fi(z), f2(x), f3(x) don’t copy-satisty o)
1
<.
||

Resuming all the computations we get, that the probability
of malicious prover to cheat on a honest verifier is at most:

4n 2

+77
|F/D|  |F|

which is negligible (for precise numeric estimates of this
probability refer to section [IX]). Moreover, we have shown that
if prover manages to pass all the protocol’s checks than any
actual witness may be reconstructed (in polynomial number
of steps) with the help of Sudan list decoding algorithm. This
conclusion completes the soundness property proof.

PI‘(A) <1- (1 _ err((s))tl-l‘tz + Lt2

C. Zero-knowledge

We are going to construct the simulator S and transcript
< § > in the following way: we will put as many variables
of the transcript as possible being uniformly and randomly
distributed. All remaining values will be uniquely fixed by the
choice of previous random variables.

The transcript of RedShift is the following:

<B7’77Zﬂ7—<f1>77—<f2>7 ce 7T<Q(£C)>,

where the range here is over all witness polynomials and where
T{(f) denote the part of the transcript corresponding to relaxed
polynomial commitment w.r.t. to witness oracle f. Note that
we do not list the transcripts corresponding to the instances
of polynomial evaluation protocol as it is conducted w.r.t to
setup polynomials and those polynomials are considered to
be public - we do not care how much information evaluation
protocol exposes about them.

We start constructing the transcript < S > of S in the
following way: we take (,~ to be uniformly randomly dis-
tributed over F and y to be uniformly and randomly distributed
over F/H. As those values are also taken at random on
exactly the same domains by a honest verifier during the actual
interaction with prover then this part of transcripts in < .S >
and < P,V > is totally equal. For < S > we also take
the openings of each witness function except for Ty(z) to
be uniformly randomly distributed over F. The evaluation of
To(z) at y is uniquely determined by equation (x) which holds
for any true transcript < P,V > and hence the same relation
between variables should hold for simulator’s transcript < S >
for them to be indistinguishable (It can be easily observed that
there are no other dependencies between the openings). Note,
how we used our convention for y ¢ H here: in this case
Z(y) # 0 and so we can obtain unique value for RHS of (x)
that will satisfy (%) for any random choice of evaluations on
LHS.

Now we are going to analyze transcript 7 (f) for any
witness polynomial f in more detail. In the actual interaction
between prover and verifier the transcripts 7(f) is of the
following form:

11,02, -,k
21,29,y 2k
A NS I Gt
ag, s
q(O)(S(O))7 q(O)(t(O))7 e q(r—l)(s(r—l))7 q(r—l)(t(r—l))
where:
1) %1,%2,...,2; € F - the points in which verifier ask

to open the oracle f. k is one for single-point evalu-
ation (conducted for witness polynomials fi(x), fa(x),
fa(x), To(x), T1(x), Ta(z), T3(x) at y: i = iy = y) and
k = 2 for double evaluation (conducted for P(z) and
Q(zx) at points y and gy: i1 =y, i2 = gy).

2) z1,%2,...,2r - corresponding openings sent by the
prover.



3) 2O 2@ 2=D are random elements of F sent
by verifier during the commit phase of FRI (which is,
according to relaxed commitment protocol is conducted

with respect to quotient function ¢(z) = ¢©(z) =
fz)—
Hz 1(9‘ ll))

4) ag is the only coefficient of (") € T sent by prover at

the end of the commit phase of FRI (note, that according
to the remark at the end of FRI section we assume all
our instantiations of FRI to be fully unrolled and hence
f)(z) to be constant. The proof of zero-knowledge
property for the general case deg(f(") > 0 is only a
little harder and handled in a similar fashion).

5) 59 € D is the value chosen by verifier at the beginning
of the query phase of FRI.

6) Every s(t1) = ¢(s() (for the definition of ¢(z) refer to
FRI section). s(, ¢ is the coset of s(i+1),

The simulated transcript < S > of polynomial commitment

of f is constructed in the following way:

1) The point (i) or two points (i1,42) are already fixed by
the previous history of < S >:i =y or (i1,42) = (v, gy).

2) Similar for corresponding evaluations z(z1,22): recall,
that they were are either chosen at random (for all witness
polynomials except for Ty(x)) or defined uniquely by all
previous values (for Tp(x)).

3) The values z(*) are distributed uniformly over F for
honest verifier V. We take the same approach to simulator
S:in < S > every () is chosen uniformly at random
over F.

4) For S we take s(°) uniformly at random over D = D(©).

5) In < S > the values of ¢(¥)(s°) and ¢(®(¢(?)) are also
taken uniformly at random over F.

6) Recall that in true FRI protocol we have:

q(i+1)(s(i+1)) (1)1+1>( (i))

where
T
E()) (x) := interpolant? =@+ (z),

hence the value of every ¢(FY(s()) is uniquely
determined by values ¢ (s(?) and ¢@(t®) cho-
sen on the previous “level” of FRI. In our sim-
ulator transcript this relation between values of
gD (s0), ¢ (™), ¢+ (s0+D)  should remain un-
changed. At step 5 we have fixed the values of
¢ (59), ¢©O@#©). From what said the value of
¢ (sM) in < S > is then uniquely determined.

7) Now we try to simulate the value of ¢(*(s(?)). As in
previous paragraph, ¢(?)(s(?)) is uniquely determined by
the values of ¢(¥)(s™)) and ¢ (t(!)) but for now only
qM(sM) is fixed in < S > and ¢ (t(M)) remains
undetermined. We lay ¢ (+(1)) uniformly at random over
F and this will fix ¢®)(s(?)) as well.

8) We proceed by induction: to fix the value ¢(®(s(?)) we
choose the value ¢®)(¢t(?)) to be uniformly randomly
distributed over IF. We then take the same approach for all
downstream layers of FRI up to the bottom where we will

eventually fix ag (which is determined by ¢("=1) (s("=1)
and ¢("~Y(¢("=1)), This completes the construction of
simulation < S >.

Our next aim is to achieve the same distribution for tran-
scripts in honest prover-verifier interaction < P,V >. There
are several uniformly distributed random variables that come
from our construction of simulator S for FRI sub-protocol.
Recall that due to our construction of < S > we want the
values

g ('), ¢ (t), gD (M), gD (¢®), ... gD ()

to look like being completely uniformly random. In order to
achieve this we need the following lemma:

Lemma 4: Let f(z) be interpolation polynomial of Z =
{#z1,22,...,2n} over domain I = {iy,...,4,} (which means
that f(z) is the unique polynomial of degree < n — 1, such
that f(i) = 2z, for all k& € [n]). Let = be any point in F
different from all ¢o, .. .%,. If z; runs uniformly over all of F
then f(x) also runs uniformly over F.

Consider s(°1) and ¢(°V) - the coset of ¢(1). Although the
evaluations at these points are never explicitly shown in the
transcript they are of severe importance of us. Indeed, at
least one of s(°Y or t(°V) is unequal to x(°). Without loss
of generality assume t(°) #£ z(0) We use lemma [4] for
I ={sOD O} 7 = {40 (50D) 4O (D)} and z = 2(©)
which implies that uniform distribution of q© )( (01)) results
in uniform distribution of ¢(*)(¢(), independent of value
g (s00),

We proceed by induction with repeated use of lemma [4]
To achieve uniform randomness for ¢(®(t(?)), we need a
uniformly random distribution of one of the values from
the previous level: ¢(M)(s(12) or ¢(M(t(1?). Assume that
s12) £ () and hence satisfy the conditions of lemma
The uniform distribution of ¢(*)(¢(?)) then follows from a
uniformly random distribution of one of ¢(*)(s(1?)) which in
turn follows from the uniform distribution of ¢(®)(5(°2)). The
same logic is then applied for all downstream layers of FRI.

Intuitively, consider the following illustration depicting the
first layers of FRI:

1 N )1 OO | 1) 1 22 B

x{

D o
:: o ) SOOI g )
. i) C}:][:]"s@'[_:_][:_];[:’]‘rm
D i

Here bold lines separate adjacent levels of FRI, green blocks
determine the values that are taken uniformly at random, yel-
low blocks represent the values that are uniquely determined
by the values of corresponding coset on the previous layer and
red blocks have no impact in the constructions.

To sum up, to achieve the same distribution of variables
in transcripts < P,V > and < S > we need to add more
“degrees of freedom” for each witness polynomial. More
precisely, we want the evaluation

g (), ¢O(t?), gD O), ¢V (5),



(r+1 values in total) over the set
K = {5(0),1?(0),1?(01), 5(02), )

on the top level of FRI to be uniformly and randomly
distributed.
Now, recall that:

)/ _ _ f(x) - U(z)
¢ (x) = g(x) = = (**)
iz — i)
Recall that in our case the sets {i1,...,ix} and D are

disjoint. This means that a uniformly random distribution of
values of ¢(9)(x) over K is exactly the same as the uniformly
random distribution of values of f over the same domain (as all
other terms in (**) are now fixed by previous considerations).
Plugging in the the requirement for f(z) to be also uniformly
randomly distributed we arrive at the set K = K’ U z with
|K| = r + 2 at which the values of f should look like
random elements in . To achieve this property, it is enough
to replace f(x) by f'(z) = f(z) + h(x)Z(x) where h(x) is
any polynomials of degree r + 1 (note, that we use the fact
the sets K and H are disjoint).

This completes the proof of zero-knowledge property and
the whole security analysis of RedShift.

APPENDIX C
FRI PARAMETERS

As described in the main text of the paper and in particular
in section[[X]one has a freedom to pick various FRI parameters
that also affect contributions into the soundness error of
RedShift due to list size |L|. In general smaller list sizes will
lead to smaller parameter 0 (this is expected intuitively, as a
larger list size requires less sensitivity) that in turn reduces FRI
soundness for a chosen domain D, parameter p and number
of queries. Alternatively one can pick another limit into the
FRI soundness formula

p= (1 — min{éo, Je(Je(1 — p))} + elog |D|)

and set 6y = 1;2” to be in the unique decoding radius. In
this case list size |L| = 1, but FRI has smaller soundness for
the same number of queries. This means that one has to pay
particular attention to the final system soundness as described
in the section [X} for in case where a sum Agz+Apgr ~ Asz
one should also consider a case of limit 6y = 177" in FRI
soundness and can recalculate Agz and thus a final soundness

in case of list size |L| = 1.
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