
RedShift: Transparent SNARKs from List Polynomial
Commitments

Assimakis A. Kattis

New York University

New York, New York, USA

kattis@cs.nyu.edu

Konstantin Panarin

Matter Labs

Berlin, Germany

kp@matterlabs.dev

Alexander Vlasov

Matter Labs

Berlin, Germany

av@matterlabs.dev

ABSTRACT

We introduce an efficient transformation from univariate polyno-

mial commitment based zk-SNARKs to their transparent counter-

parts. The transformation is achieved with the help of a new IOP

primitive which we call a list polynomial commitment. This primi-

tive is applicable for preprocessing zk-SNARKs over both prime and

binary fields. We present the primitive itself along with a soundness

analysis of the transformation and instantiate it with an existing

universal proof system. We also present benchmarks for a proof of

concept implementation alongside a comparison with the current

non-transparent state-of-the-art. Our results show competitive ef-

ficiency both in terms of proof size and generation times. At the

80-bit security level, our benchmarks provide proof generation

times of about a minute and proof sizes of around 515 KB for a

circuit with one million gates.

CCS CONCEPTS

• Theory of computation→ Interactive proof systems.

KEYWORDS

interactive proof systems, polynomial commitments, zk-SNARKs

ACM Reference Format:

Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. 2022. Red-

Shift: Transparent SNARKs from List Polynomial Commitments. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New

York, NY, USA, 19 pages. https://doi.org/10.1145/548606.3560657

1 INTRODUCTION

Zero-knowledge proofs [27] have recently received increased amounts

of attention for providing efficient verification while maintaining

small proof sizes, even in the case of complex predicates. Initially

limited to theoretical considerations, such proof systems have lately

come to encompass the underlying technology in a wide variety

of practical and industrial applications with delicate trade-offs be-

tween privacy and system security [11] [17] [36]. In this work,

we are interested in applications for which there is limited space

availability in the underlying system, and thus for which minimal

proof size is an important property. Moreover, we ideally want to

focus on applications for which there exist no trusted parties at

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/548606.3560657

any point of the computation, and thus hope to achieve proof size

minimization without compromising the trust model of the system.

The trade-off above is most closely associated with applica-

tions of zero-knowledge proofs to cryptocurrency systems, such as

Ethereum [40] or ZCash [34], in which participants have to verify

state (or transaction) validity to ensure system soundness but for

which there is limited space available in which to do so. Bridging

the gap between these two requirements will allow for not only

efficient but also trustless verification of state transition in such

systems. This has the potential for scaling improvements, such as

increased transaction throughput or better privacy guarantees.

The most widely used proof systems for such an application are

preprocessing Succinct Non-interactive ARguments of Knowledge

(zk-SNARKs) [28] [33] [25], for which proof size and verification

time are polylogarithmic in the size of the circuit being verified.

‘Pre-processing’ here denotes that such systems rely on a one-time

(often expensive) setup procedure to produce a proving/verification

key-pair (𝑝𝑘, 𝑣𝑘) (known as a Structured Reference String or SRS)

that is used in all subsequent computation. The most efficient such

construction is due to Groth [28] and achieves constant proof size

consisting of 3 group elements, with state-of-the-art proving time.

However, this design (along with most in the literature, see [24],

[37], [8]) relies on a trusted setup, or a trusted third-party actor

to generate certain parameters (known as the ‘toxic waste’) that

should be destroyed in order for the system to retain its security

guarantees.

Such a security lapse would be grave for all aforementioned ap-

plications. For example, in a cryptocurrency system such as ZCash

an adversary possessing such waste would be able to spend non-

existent tokens without being found. An adopted approach to mit-

igating this issue involves Multi-Party Computation, in which a

single participant needs to destroy their parameters for security to

hold [13]. However, scaling such an approach to many participants

comes with its own challenges, and can never reach the completely

trustless threat model desired by such systems.

The trust issue inherent in the above approach stems from the

requirements for the generation of the SRS of the proof at the pre-

processing stage. This is done once at the beginning of the protocol,

encoding information that is used in the subsequent proof gener-

ation of any input arguments. More specifically, in most pairing-

based SNARKs (such as [32]) the trusted part of SRS generation

stems from the usage of a polynomial commitment scheme that

needs to sample (secret) randomness in order to provide commit-

ments to some low-degree polynomial that in turn encodes the

circuit in question. That information is then used by the prover

to efficiently convince the verifier that a given value is indeed the

evaluation of this polynomial, thus proving knowledge of the state-

ment. Such systems use the polynomial commitment scheme of

https://doi.org/10.1145/548606.3560657
https://doi.org/10.1145/548606.3560657

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

[31], from which the above trust model is derived. This will be

further discussed in the following sections.

In attempting to retain a trustless (or ‘transparent’) threat model,

the main design challenge lies in the efficiency of the underlying

protocol. Various threads of work in this domain have achieved

different efficiency trade-offs. The work of [26] produces proofs

with size scaling as 𝑂 (𝑑 log𝑇), while the proofs in [39] scale with

𝑂 (𝑑 log𝐺) where𝑇 , 𝑑 and𝐺 the size, depth and width of the circuit

respectively. Succinct Transparent ARguments of Knowledge (zk-

STARKs) [4] achieve 𝑂 (log2𝑇) proof sizes for uniform (layered)

circuits. However, in the context of universal SNARKs (arbitrary
circuits), existing proof systems suffer from performance overheads

with respect to pre-processing SNARKs such as [28]. Some also

require non-trivial circuit designs, similar to what is described in

[21]. Nevertheless, we should note that for the class of problems

that can be efficiently expressed as layered circuits, these proof

systems may be more optimal than universal ones. Since we are

also interested in verifier succinctness, transparent approaches such

as [14] do not suffice here due to the linear dependence between

verification time and predicate size.

Below we informally describe the properties that an ‘ideal’ proof

system should possess for satisfiability of a given circuit 𝐶 , where

|𝐶 | denotes its size. The first three properties define what is known
as a ‘fully succinct’ zk-SNARK:

• Succinctness: Verifier time is polylogarithmic in |𝐶 |,
• Prover Efficiency: Proving time is quasi-linear in |𝐶 |,
• Proof Succinctness: Proof size is poly-logarithmic in |𝐶 |,
• Transparent: No trust assumptions are required,

• Plausibly Quantum Resistant: Not based on assumptions

known to be false in the quantum setting.

1.1 Prior & Concurrent Work

1.1.1 Polynomial Commitment Schemes. Polynomial commitment

schemes (PCS) allow for the efficient verification of the evaluations

of 𝑓 at an arbitrary point in its domain. A transparent and efficiently

computable PCS would yield transparent SNARK constructions that

could satisfy all of the requirements of a fully succinct, transparent

and plausibly quantum resistant zk-SNARK. Since the introduction

of PCS in [31], the first transparent such scheme was introduced

in [39] for multivariate polynomials, with 𝑂 (
√
𝑑) commitment size

and verification complexity. Subsequent work in [15] introduces

a scheme with 𝑂 (𝜇 log𝑑) size and verification complexity, where

𝜇 the number of variables of the polynomial in question and 𝑑 the

polynomial’s degree. Although the asymptotics of the approach

in [15] suffice for the above motivation, the practical implemen-

tation of their system relies on cryptographic operations that are

substantially more resource-heavy than previous approaches. This

stems from the reliance of their system’s security on class groups of

unknown order. Although the proof sizes achieved are sufficiently

succinct, this dependence could make practical deployment difficult

at reasonable security levels when proof generation time needs to

also be substantially efficient. Moreover, the assumptions on which

their construction rests are not quantum-resistant.

The DEEP-ALI protocol [9] uses a similar construction in their

STARK [4] proof system. In this case, all the setup polynomials,

constraints and checked relations are known to the verifier and

are checked naively during the verification procedure. We expect

that our scheme can also be adapted for this case and allow one

to express more complex STARK circuits. Finally, our contribution

extends the approach described in [38], which comes at the cost of

larger proof sizes.

1.1.2 Universal zk-SNARKs. A new approach to the above prob-

lem relies on creating a ‘universal’ SRS at the preprocessing phase,

which can then be used in tandem with any possible predicate (or

circuit). This has been the focus of many recent contributions (see

[32], [41], [35], [23]) that are also fully succinct zk-SNARKs in the

above sense. The approach in such schemes relies on two main

ingredients: (1) encoding the circuit satisfaction problem of the

predicate in question as a property of some (low-degree) polyno-

mial 𝑓 , and then (2) committing to 𝑓 using a PCS. In all the above

approaches, the PCS in [31] is used due to its constant size com-

plexity and efficient implementation. However, this is the only part

in the protocol that introduces the trusted setup, as the setup phase

in the scheme requires a trusted actor to create (and then destroy)

a secret value that is only used in generating commitments.

1.1.3 zk-SNARK Compilation Frameworks. Recent work has also

explored general frameworks for converting Interactive Oracle

Proofs (IOPs) [7] into preprocessing SNARKs. This approach was

introduced in [18], with an equivalent formalization appearing

in [15]. At a high level, both of these contributions formalize the

idea that preprocessing zk-SNARKs can be constructed from IOPs

through oracle access to a low-degree polynomial.

1.2 Our Contributions

In this work, we provide the following contributions:

1.2.1 List Polynomial Commitments. The works of [3] and [9] in-

troduce the Fast Reed Solomon IOP of Proximity (FRI IOPP) - a

novel protocol for efficient proximity testing, or checking if a given

function is close to any low degree polynomial. Such a proximity

tester may be naively turned into a transparent PCS, which pro-

vides commitments of size 𝑂 (log2 𝑑) for polynomials of degree 𝑑 .

However, the soundness error of such a commitment scheme is

rather large, and the protocol should be iterated many times to

reach a sufficient security level. This results in large proof sizes and

computational burden. The reason for the large soundness error

hides in the low sensitivity of FRI: when the Hamming distance

between two different polynomials is smaller than some predefined

constant, it is impossible for FRI to efficiently distinguish them.

In this work, we generalize the PCS in the sense that we construct

a commitment to a list of proximate polynomials. We introduce

a new cryptographic primitive for fast verification of polynomial

evaluations we call a list polynomial commitment (LPC). At a high
level, this scheme retains the necessary security guarantees that are

required for polynomial-based proof systems such as [23] and [32]

to compile into zk-SNARKs. In the language of IOP formalization,

this primitive can be thought of as an alternative compiler for

public-coin IOP protocols.

1.2.2 Compilation of IOPs with LPCs. The above contribution im-

plicitly provides a general framework that demonstrates how the

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

list polynomial commitment can be used to compile any polyno-

mial IOP into a preprocessing zk-SNARK. As previously mentioned,

this follows the approach in [18] and [15] with the main difference

being that we do not require a PCS in their (more restrictive) sense.

1.2.3 RedShift. We demonstrate the security and practicality of

this approach by compiling [23] using the framework above. By

fitting an implementation of the list polynomial commitment on

[23] with suitable adaptations and optimizations, we remove all

trusted computation while retaining efficiency in both proof size

and generation time. We call this new proof system RedShift, and

provide:

(1) formal proofs of correctness and security,

(2) a proof-of-concept implementation, along with benchmarks

establishing feasibility.

At an 80-bit security level and for circuits of size 2
20
, RedShift

provides proofs of size ∼ 515 KB with a proof generation time of

about half a minute. Overall, RedShift is an efficient instantiation

of a potentially quantum-resistant transparent preprocessing zk-

SNARK suitable for practical deployments at high security.

1.3 Transparent zk-SNARKs

Prior work on transparent zk-SNARKs has explored a variety of

trade-offs and different design choices in order to achieve efficiency

gains. We briefly discuss concurrent and previous efforts in build-

ing efficient and transparent proof systems and compare with our

approach. The works of [6] and [20] design IOPs for the Rank-1

Constraint System (R1CS) arithmetization, providing a compilation

framework equivalent to our methods. They require a holographic

lincheck argument/IOP of Proximity respectively in order to con-

struct their IOP for R1CS, which our approach avoids by using a

suitable transformation of the proof system in [23] instead. The

works of [42] (and [41], although not transparent) use a similar

approach but with the IOP from [27]. This makes our approach

easier to formalize.

The authors of [4] and [3] use FRI implicitly as a PCS and design

the ALI-IOP for compilation. Our results are directly applicable and

generalize their approach. In [12], the authors define a restricted

version of PCS that are ‘additive’ (with homomorphic properties),

benchmarking with Bulletproofs [14] for fast recursion. While an

additive PCS is too restrictive to include FRI, batching efficiency

gains are possible if this definition is relaxed. The batch evaluation

problem in Section 4 of [12] is equivalent to a multivariate commit-

ment, and the LCS is a relaxation of that notion that we selectively

apply to proof witnesses. By relaxing the binding property of PCS,

our LCS replaces [31] for transparent multivariate commitments to

witness polynomials more generally.

Subsequent work [1] has built on these ideas, looking at how two

modular modifications to the proof system affect performance by us-

ing a smaller field for faster modular operations and implementing

a leaner PLONK-derived IOP called turboPLONK [22] instead. The

authors explore an additional avenue for optimization of proof effi-

ciency by counterbalancing any soundness loss due to the smaller

field by applying the tight parallel repetition theorem to the IOP in

order to boost soundness and performing FRI in a suitable extension

field. This is then shown to lend itself to efficient recursive proving

times, providing a promising avenue for transparent recursive proof

computations at scale.

2 OVERVIEW

The proof system in [23] (known as PLONK) is based on polynomial

commitments: the prover’s (secret) witness is encoded as a set of

univariate polynomials, while the verifier wishes to ensure this

encoding satisfies some polynomial relations. The prover commits

to her witness polynomials and later the verifier queries their values

at a set of randomly selected points, checking if all relations are

indeed satisfied. As the points were randomly sampled, it is highly

likely that the given polynomial relations hold identically.

The state-of-the-art PCS used in the construction of zk-SNARKs

is the Kate commitment [31], which is based on pairings of points

of elliptic curves. The security of this scheme reduces to the Dis-

crete Logarithm assumption, while in the case of a perfectly hiding

commitment the 𝑡-Strong Diffie Hellman assumption is required.

The main drawback of Kate commitments is that some secret value

is sampled during the parameter generation process. For security to

hold, this value should never be revealed to the prover and verifier.

Such a requirement is very strong, as it means that every proof

system using Kate will require a ‘trusted’ setup process. We denote

proof systems without this requirement as transparent. In fact, the

only reason PLONK requires a trusted setup is due to Kate. In

this work we aim to investigate a suitable replacement for Kate,

turning PLONK (and similar systems) into zero-knowledge Succinct

Transparent ARguments of Knowledge, i.e. zk-STARKs.

We utilize the FRI protocol, which is a key component of STARKs

such as [4] and [6]. FRI is focused on solving the following prox-
imity problem: the verifier is given oracle access to an evaluation

of some function 𝑓 on a fixed domain 𝐷 ⊂ F. The prover wants to
convince the verifier that this function 𝑓 is close (in some metric) to

a polynomial of (predefined) degree 𝑑 . If the verifier queries 𝑓 on all

of 𝐷 and then computes the interpolation polynomial herself, she

can verify the degree bound 𝑑 . However, this requires 𝑂 (𝑑) com-

plexity. FRI solves this problem by requiring only a polylogarithmic

number of queries in 𝑑 .

We now describe a naive way to design a PCS using FRI:

(1) The prover commits to 𝑓 , providing an oracle to all evalua-

tions of 𝑓 on some predefined domain 𝐷 .

(2) The prover and verifier engage in FRI for 𝑓 with respect

to some degree 𝑑 . If the prover passes the check, the veri-

fier is convinced with high probability that 𝑓 is close to a

polynomial of degree less than 𝑑 .

(3) The verifier wants to retrieve the value of 𝑓 at point 𝑖 ∉ 𝐷 .

The prover sends the corresponding opening 𝑧 = 𝑓 (𝑖) and
both parties then conduct another instance of FRI, this time

with respect to a quotient function𝑞(𝑋) = (𝑓 (𝑋)−𝑧)/(𝑋−𝑖)
and degree 𝑑 − 1. Note that the verifier has oracle access

to 𝑞 via oracle access to 𝑓 and also knows 𝑖 and 𝑧. If the

prover passes the last instance of FRI then 𝑞(𝑋) is in fact a

polynomial function of degree less than 𝑑 − 1.
(4) This implies that 𝑓 (𝑖) = 𝑧 which follows from Bezout’s

theorem stating that ℎ(𝑋) has value 𝑦 at point 𝑡 iff ℎ(𝑋) −𝑦
is divisible by 𝑋 − 𝑡 in the ring F[𝑋].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

In reality, this simplified protocol doesn’t suffice. There are sev-

eral reasons for that, among which are the following:

(1) FRI has a sensitivity bound: it is incapable of distinguishing

between precise polynomials and functions sufficiently close

to them in some predefined metric (which in our case is the

relative Hamming distance).

(2) For implementation coherency, wewant the same domain for

both FRI instances. However, FRI has an interdependence be-

tween the degree 𝑑 and the size of the domain |𝐷 | measured

in terms of its rate 𝜌 = 𝑑/|𝐷 |. The structure of FRI requires
the rate to be “2-adic”, i.e. of the form 2

−𝑅
for some 𝑅 ∈ N.

However, this property cannot simultaneously hold for two

adjacent degrees 𝑑 and 𝑑 − 1 without protocol modification.

The first problem means that the scheme needs to correctly

process the case when the function is not a polynomial, but close

to one; a property not naturally supported by existing commitment

schemes. Even more so, allowing the oracle 𝑓 to not be strictly

polynomial and to take as the prover’s commitment the polynomial

𝑓 ′ lying in a small 𝛿-ball around 𝑓 (where 𝛿 is taken according to

the sensitivity of FRI) then we cannot guarantee a priori that this
polynomial 𝑓 ′ is unique in the chosen neighborhood of 𝑓 . The set

of polynomials {𝑓 ′
1
, 𝑓 ′
2
, . . . , 𝑓 ′𝑛 } lying in the 𝛿-neighborhood of 𝑓 is

the 𝛿-list of 𝑓 , which we denote by 𝐿𝛿 := 𝐿𝛿 (𝑓). For small values

of 𝛿 , the list 𝐿𝛿 contains only one polynomial: 𝛿 lies in the unique-
decoding radius. Unfortunately such values of 𝛿 require larger proof

sizes for the same soundness guarantees. Thus, increasing 𝛿 to

reduce proof sizes would lead to the size 𝐿𝛿 being greater than 1.

To solve this, we consider a relaxed treatment of commitment

schemes, where the commitment opens to a polynomial in the

𝛿-list 𝐿𝛿 . When the prover is asked for an evaluation at point 𝑖 ,

they respond with some value 𝑓 ′ (𝑖), where 𝑓 ′ ∈ 𝐿𝛿 . In subsequent

sections we show that this scheme is sufficient for the compilation

of holographic IOPs. During the execution of PLONK, the prover

and verifier need to evaluate a set of initial ‘constraint’ (or setup)

polynomials 𝑐 (𝑋) encoding the constraint system itself. In order

to achieve succinctness, the verifier never calculates the value 𝑐 (𝑖)
at point 𝑖 by herself. PLONK instead relies on Kate: the prover

and verifier run Kate with the commitment to 𝑐 and value 𝑖 as

inputs. By its binding property, the verifier is convinced that the

prover actually sends the evaluation 𝑐 (𝑖) of the polynomial 𝑐 (𝑋) in
question. Since our relaxation commits to a whole neighborhood

𝐿𝛿 (𝑐) of 𝑐 (𝑋) instead of only 𝑐 (𝑋) itself, we lose uniqueness. This
means we can’t use such a ‘relaxed’ scheme as is. However, we

show that with minor changes our LPC can be turned into a PCS.

We call this construction a polynomial evaluation scheme and it

constitutes the second key sub-protocol of the paper.

With the list polynomial commitments and polynomial evalua-

tion schemes, we can modify PLONK to achieve full transparency.

We call the modified version RedShift and prove its correctness in

the IOP model. A large portion of our approach remains the same as

in [23]: our modification doesn’t modify the completeness property

of the system. However, the FRI-based protocol doesn’t possess

the hiding capabilities of Kate. This means that we need to take

additional measures to achieve zero-knowledge for our system. We

also need to change the security model as the original PLONK pro-

tocol was proven secure in the Algebraic Group Model (AGM). The

dependence of our scheme on FRI means that we need to conduct

our security analysis in the IOP model, affecting the soundness

proof as well as the proof of knowledge approaches.

3 DEFINITIONS

In this section, we lay out the building blocks that are necessary to

describe our constructions.

3.1 Notation

Through this paper we use the following notations:

• F𝑞 is a prime field with modulus 𝑞

• 𝐷 ⊂ F evaluation domain for Reed Solomon codes

• 𝑓 |𝐷 is a restriction of function 𝑓 to domain 𝐷

• For function pair 𝑓 , 𝑔, the relative Hamming distance with

respect to some domain 𝐷 is given by:

Δ(𝑓 , 𝑔) = |{𝑥 ∈ 𝐷 : 𝑓 (𝑥) ≠ 𝑔(𝑥)}|
|𝐷 | .

3.2 Preliminaries on Reed-Solomon codes

Most of the information covered in this section can be found in

most standard on algebraic codes (e.g. [30]).

Definition 1 (Reed-Solomon Codes). For a subset of some field
𝐷 ⊆ F and a rate parameter 𝜌 ∈ (0, 1], we denote by RS[F, 𝐷, 𝜌] the
set of all functions 𝑓 : 𝐷 → F for which there exists ˆ𝑓 ∈ F<𝜌 |𝐷 | [𝑋]
agreeing with 𝑓 on 𝐷 . A prime field RS code family is a code fam-
ily RS[F, 𝐷, 𝜌] for which F = F𝑞 for 𝑞 prime. In this case, 𝐷 is a
multiplicative subgroup of F∗𝑞 .

Definition 2 (List Decoding). Let 𝑉 = RS[F, 𝐷, 𝜌] ⊂ F𝐷 be
an RS code family. Set a distance parameter 𝛿 ∈ [0, 1]. For 𝑢 ∈ F𝐷 ,
we define 𝐿(𝑢,𝑉 , 𝛿) to be the set of elements in 𝑉 that are at most
𝛿-far from 𝑢 in relative Hamming distance. The code 𝑉 is said to be
(𝛿, 𝑁)-list-decodable if |𝐿(𝑢,𝑉 , 𝛿) | ≤ 𝑁 for all 𝑢 ∈ F𝐷𝑞 . Let 𝐿max

𝛿
=

𝐿(F, 𝐷, 𝑑, 𝛿) be the maximum size of 𝐿(𝑢,𝑉 , 𝛿) taken over all 𝑢 ∈ F𝐷
for 𝑉 = RS[F, 𝐷, 𝜌 = 𝑑/|𝐷 |].

Theorem 1 (Johnson Bound). For every 𝜌 > 0, there exists a
constant 𝐶𝜌 such that the code family RS[F, 𝐷, 𝜌] is list-decodable
from a 1 − √𝜌 − 𝜖 fraction of errors with the following list size:

𝐿(F, 𝐷, 𝜌 |𝐷 |, 1 − √𝜌 − 𝜖) ≤
𝐶𝜌

𝜖
√
𝜌
:= 𝐽𝜌,𝜖 ,

for every 𝜖 ∈ (0, 1 − √𝜌).

We also provide a (strong) conjecture that substantially improves

on the above bound, which appears in [9].

Conjecture 1 (List Decodability up to Capacity). For every
𝜌 > 0, there exists a constant𝐶𝜌 such that the code family RS[F, 𝐷, 𝜌]
is list-decodable from a 1 − 𝜌 − 𝜖 fraction of errors with the following
list size:

𝐿(F, 𝐷, 𝜌 |𝐷 |, 1 − 𝜌 − 𝜖) ≤
(
|𝐷 |
𝜖

)𝐶𝜌

,

for every 𝜖 ∈ (0, 1 − 𝜌).

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

We now look at which distance parameters 𝛿 provide unique

decodability. To this end, we provide some standard results on the

unique decodability of RS codes.

Definition 3. We call 𝛿0 the unique decoding radius (UDR) for
code family𝐶 if it is the maximum 𝛿0 for which 𝐿max

𝛿0
≤ 1. We denote

all 𝛿 < 𝛿0 as being within the unique decoding radius.

Theorem 2. The UDR for RS[F, 𝐷, 𝜌] is 𝛿0 = (1 − 𝜌)/2.

The decoding problem for the Reed-Solomon code𝑉 = RS[F, 𝐷, 𝜌]
is the problem of finding a codeword 𝑢 ∈ 𝑉 that is within distance

𝛿 (with respect to Hamming distance) of a given word 𝑣 ∈ F𝐷 .
There exists a standard polynomial-time solution known as the

Guruswami-Sudan [29] algorithm. Its output includes all codewords
lying in the 𝛿-ball of 𝑣 .

Theorem 3 (Guruswami-Sudan). For all 𝛿 ≤ 1 − √𝜌 , the code
𝑉 = RS[F, 𝐷, 𝜌] can be list-decoded in time 𝑂 (|𝐷 |15). If 𝛿 < 1 − √𝜌 ,
this reduces to 𝑂 (|𝐷 |3).

3.3 Interactive Oracle Proofs and IOPs of

Proximity

Given some relation R ⊆ 𝑆 × 𝑇 , we denote by L(R) ⊆ 𝑆 the set

of 𝑠 ∈ 𝑆 such that there exists 𝑡 ∈ 𝑇 with (𝑠, 𝑡) ∈ R (also known

as the language defined by R). We also denote by R|𝑠 ⊆ 𝑇 the set

{𝑡 ∈ 𝑇 : (𝑠, 𝑡) ∈ R}. For pairs (𝑥,𝑤) ∈ R, we call 𝑥 the instance

and𝑤 the witness.

The security analysis in this section will be conducted in the

Interactive Oracle Proof (IOP) model [7] which is a generalization

of Interactive Proofs and Probabilistically Checkable Proofs. More

specifically, we will be looking at holographic IOPs, or IOPs in

which (preprocessed) indices are provided to the participating par-

ties through oracles. The model consists of a prover/verifier tuple

(𝑃,𝑉) of two probabilistic interactive algorithms. The number of

interactive rounds, denoted 𝑘 = 𝑟 (𝑥), is called the round complexity
of the system. During a single round, the prover 𝑃 sends a message

𝑎𝑖 (which may depend on prior interaction) to which the verifier 𝑉

provides some response𝑚𝑖 . The final output of 𝑉 after interacting

with 𝑃 is either accept or reject. We denote the result of this inter-

action by ⟨𝑃 (𝑥,𝑤) ↔ 𝑉 (𝑥)⟩, where the input to 𝑉 is 𝑥 ∈ 𝑆 and the

input to 𝑃 is (𝑥,𝑤) ∈ 𝑆 ×𝑇 . The proof length is the sum of lengths

of all messages sent by the prover, herein denoted 𝑙 (𝑥) = ∑𝑘
𝑖=1 𝑎𝑖 .

The query complexity of the protocol, denoted 𝑞(𝑥), is the total
number of entries read by 𝑉 .

Definition 4. A pair of interactive PPT algorithms (𝑃,𝑉) is an
interactive oracle proof system for some language R ⊆ 𝑆 × 𝑇 with
𝜖 : {0, 1}∗ → [0, 1] soundness and 𝑘 : {0, 1}∗ → N rounds of
interaction if it satisfies the following properties:

(1) Completeness:

𝑃𝑟 [⟨𝑃 (𝑥,𝑤) ↔ 𝑉 (𝑥)⟩ = 𝑎𝑐𝑐 | (𝑥,𝑤) ∈ R] = 1

(2) Soundness: For all computationally unbounded malicious
provers 𝑃∗:

𝑃𝑟
[
⟨𝑃∗ (𝑥,𝑤) ↔ 𝑉 (𝑥)⟩ = 𝑎𝑐𝑐 | (𝑥,𝑤) ∉ R

]
≤ 𝜖 (𝑥) .

Probabilities are over the randomness of 𝑃 and𝑉 , which engage
in at most 𝑘 (𝑥) rounds of (adaptive) interaction.

Definition 5. Let 𝐴, 𝐵 be PPT algorithms, 𝑥,𝑦 ∈ {0, 1}∗ and
View(𝐵(𝑥,𝑦), 𝐴(𝑥)) the view (or transcript) of 𝐴(𝑥) in an IOP with
𝐵(𝑥,𝑦). This is the random variable (𝑥, 𝑟, {𝑎𝑖 ,𝑚𝑖 }𝑛𝑖=1) where 𝑥, 𝑟 are
𝐴’s input and randomness and 𝑎𝑖 is 𝐵’s (𝑖-th) answer to 𝐴’s query𝑚𝑖 .

State-Restoration Knowledge Soundness Strengthening the

notion of soundness, we say the IOP has knowledge soundness

𝑒 : {0, 1}∗ → [0, 1] if every prover 𝑃∗ who is capable of convincing
the verifier that 𝑥 ∈ L(R) actually knows some witness𝑤 ∈ R|𝑥 .
Put differently, the IOP is knowledge sound if for all adversaries

A there exists a (non-uniform) PPT extractor EA (𝑥) which gets

full access to the adversary’s transcript at any stage. However, this

does not include A’s random coins, auxiliary inputs and internal

code. We say that (𝑃,𝑉) has proof of knowledge 𝜖 if there exists E
s.t. for every 𝑥 ∈ 𝑆 and PPT A:

Pr

[
(𝑥, EA (𝑥)) ∈ R

]
≥ Pr [(A,𝑉) = 1] − 𝑒 (𝑥) .

Since we are ultimately interested in compiling the IOP into a

non-interactive proof, the stronger notion of state-restoration IOP

soundness error 𝜖sr (𝑟), where 𝑟 the maximal number of rounds, is

needed. This is because the protocol should be robust against state-

restoration attacks, in which the prover has the ability to move to a

previous state of the protocol up to 𝑟 times. It was shown in [7] that

this notion suffices in compiling proofs using Fiat-Shamir in the ran-

dom oracle model, while [16] show this for correlation-intractable

hash functions as well. In order to prove state-restoration bounds,

the idea of round-by-round soundness error 𝜖
rbr

is leveraged. It can

be shown that 𝜖sr ≤ 𝑟 · 𝜖rbr, which is sufficient for security if 𝑟 is a

polynomial number of rewinds/rounds. This analysis holds since

we can apply the round-by-round extractor to every partial tran-

script that comprises trsr and output the first valid witness. Since

the empty transcript is rejecting and trsr accepts, then some partial

transcript moves from rejecting to accepting. Since the round-by-

round extractor fails with probability 𝜖
rbr

, the result follows by a

union bound. We follow the approach in [16],[20] and provide the

required definitions.

Definition 6 (Round-by-Round Soundness). An IOP (𝑃,𝑉)
for language L(R) has round-by-round knowledge soundness 𝜖

rbr
if

there exists a function State from the set of transcripts to {0, 1} and
a polynomial-time extractor E such that for all (𝑥, tr) for which
State(𝑥, tr) = 0, and all messages a received from the prover, if
Pr𝑚 [State(𝑥, tr|a|𝑚) = 1] > 𝜖

rbr
then (𝑥, E(𝑥, tr|a)) ∈ R .

Definition 7 (State-Restoration Soundness). An IOP (𝑃,𝑉)
for language L(R) has state-restoration knowledge soundness 𝜖sr if
there exists a polynomial time extractor E such that for all 𝑥 and
every state-restoration prover 𝑃∗:

Pr

(
trsr accepts trsr ← View(𝑃∗ (𝑥),𝑉 (𝑥))
(𝑥,𝑤) ∉ R 𝑤 ← E(𝑥, trsr)

)
≤ 𝜖sr .

Definition 8 (Zero Knowledge). For a given relation R and
some 𝑧 : {0, 1}∗ → [0, 1], ⟨𝑃,𝑉 ⟩ has 𝑧-statistical honest-verifier
zero knowledge if there exists a PPT algorithm 𝑆 (the simulator) s.t.
∀(𝜙,𝑤) ∈ R, 𝑆 (𝑥, 𝜙) and View(𝑃 (𝜙,𝑤),𝑉 (𝜙)) are 𝑧 (𝑥)-close.

An important subclass of IOP protocols is given below.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

IOPP. An Interactive Oracle Proof of Proximity (IOPP) is an 𝑟 -round
interactive IOP system for the following problem. Given a field F,
degree 𝑑 ∈ N, proximity parameter 𝛿 > 0 and domain 𝐷 ⊂ F, the
prover is provided with the representation of some function 𝑓 and

the verifier is given oracle access to its evaluation on domain 𝐷 (i.e.

an oracle
ˆ𝑓 (𝑥) to 𝑓 (𝑥) |𝐷). The prover then needs to convince the

verifier that 𝑓 |𝐷 is the evaluation of some degree 𝑑 polynomial on

this domain. Namely, that 𝑓 ∈ RS[F, 𝐷, 𝜌 = 𝑑/|𝐷 |]. We follow the

formalization in [3]:

Definition 9 (IOPP). A 𝑘-round IOP of Proximity (𝑃,𝑉) is a
𝑘 + 1-round IOP. (𝑃,𝑉) is an IOPP for the error-correcting code 𝐶 =

{𝑓 : 𝑆 → Σ} and soundness 𝜖 : [0, 1] → [0, 1] with respect to some
metric Δ if the following hold:

(1) First message format: the first prover message is a purported
code-word, i.e. 𝑓 0 ∈ 𝐶 ,

(2) Completeness:

Pr[
〈
𝑃 (𝑓 0,𝐶) ↔ 𝑉 (𝐶)

〉
= 𝑎𝑐𝑐 |Δ(𝑓 0,𝐶) = 0] = 1,

(3) Soundness: For any 𝑃∗,

Pr[
〈
𝑃∗ (𝑓 0,𝐶) ↔ 𝑉 (𝐶)

〉
= 𝑟𝑒 𝑗 |Δ(𝑓 ,𝐶) = 𝛿] ≥ 𝜖 (𝛿).

We note that the notions of proof and query complexity of IOPs

translate naturally to the context of IOPPs. In the rest of the sections,

we use IOPP(𝑓 0,𝐶) → {0, 1} to denote an IOPP protocol IOPPwith

purported code-word 𝑓 0 ∈ 𝐶 and 𝐶 error-correcting code family.

3.4 Fast Reed-Solomon IOPP

In our construction, we opt for using FRI [3], [10]. We provide

an overview of its relevant properties below. For a given RS code

family RS[F, 𝐷, 𝜌] for which |𝐷 | = 𝑛 = 2
𝑘
and rate 𝜌 = 2

−𝑅

for 𝑘, 𝑅 ∈ N. This implies that the degree bound 𝑑 is 2
𝑘−𝑅

. Fix

𝑟 ∈ [1, log𝑑 = 𝑘 − 𝑅] to be the number of rounds in the protocol.

For every 𝜂 ∈ (0, 1], let 𝐽𝜂 : [0, 1] → [0, 1] be the Johnson function

𝐽𝜂 (𝑥) = 1 −
√︁
1 − 𝑥 (1 − 𝜂) . Given this parameter choice, FRI has

the following properties, where the asymptotics are given in terms

of field operations over F:

(1) Prover Complexity: 𝑂 (𝑛)
(2) Verifier Complexity: 𝑂 (log𝑛)
(3) Completeness: If 𝑓 ∈ RS[F, 𝐷, 𝜌] and the prover is honest,

then the verifier always accepts.

(4) Soundness: If Δ(𝑓 ,RS) = 𝛿 and 𝛿 ∈ (0, 𝐽 [3/2]𝜂 (1 − 𝜌)), then
∀𝜂 ∈ (0, 1] the soundness error 𝜖 (𝛿) is bounded above by:

2 log |𝐷 |
𝜂3 |F|

+
(
1 −min

{
𝛿0, 𝛿

}
+ 𝜂 log |𝐷 |

)𝑙
,

where 𝑙 the number of queries the verifier performs.

4 LIST POLYNOMIAL COMMITMENT

We start with the basic requirement for a commitment scheme to

commit to elements of a given polynomial. This will be provided as

an oracle to the underlying gadget, and we assume it’s binding i.e.

that the adversary will be able to fake commitments with negligible

probability over the schemes security. A commitment scheme Σ =

(Gen,Com,Open) is defined as follows:

• Gen(1𝜆) → pp generates public parameters,

• Com : F<𝑑 [𝑋] → C commitment 𝑐 to some 𝑓 ,

• Open : C × F<𝑑 [𝑋] → {0, 1} checks validity of some com-

mitment 𝑐 with access to 𝑓 .

We say that the tuple (Gen,Com) is 𝜖-binding if there exists an

Open function for which:

Pr

[
Open(Com(𝑓)) = 1|pp← Gen(1𝜆)

]
= 1,

and for all PPT adversaries A:

Pr

[
𝑓 ≠ 𝑔,Open(𝑐, 𝑓) = 1 (𝑓 , 𝑔, 𝑐) ← A(pp)

Open(𝑐, 𝑔) = 1 pp← Gen(1𝜆)

]
≤ 𝜖 (𝜆) .

We are now ready to introduce the main ingredient underlying

the transparency of our proving system, which we call a List Poly-

nomial Commitment (LPC) scheme. This cryptographic primitive

most resembles a polynomial commitment scheme, with the main

difference arising from the need to show that 𝑔(𝑧) = 𝑦 where 𝑔 is a

polynomial in a 𝛿 neighborhood around 𝑓 (in a predefined metric

Δ), rather than requiring the evaluation of 𝑓 itself. As before, we

denote 𝐿𝛿 (𝑓) as the 𝛿-list of 𝑓 or the set of all 𝑔 ∈ RS[F, 𝐷, 𝜌] such
that Δ(𝑓 , 𝑔) < 𝛿 .

4.1 Specification

Here we define the generic primitive that formalizes the notion of

a list commitment scheme. We will build on this construction later

to show that it admits (1) an efficient implementation, and (2) mod-

ifications that provide stronger proof-of-knowledge guarantees.

Definition 10. An (𝜖, 𝑘)-list polynomial commitment scheme for
some metric Δ : F[𝑋] × F[𝑋] → [0, 1] and all 𝛿 > 0 consists of the
following:

• Gen(1𝜆) → pp generates public parameters,
• Com : F<𝑑 [𝑋] → C commitment 𝑐 to some 𝑓 ,
• An IOP system (𝑃,𝑉) with 𝜖 (𝛿) soundness and 𝑘 (𝛿) rounds of
interaction for the relation R𝛿 (pp) :=(

⟨(𝑑, 𝑁 , {𝑧𝑖 , 𝑦𝑖 }𝑁𝑖=1, 𝑐); 𝑓 ⟩
∃ 𝑔 ∈ F<𝑑 [𝑋], Δ(𝑓 , 𝑔) < 𝛿,

)
∀𝑖 ∈ [𝑁], 𝑔(𝑧𝑖) = 𝑦𝑖 ,Com(𝑔) = 𝑐

for which (𝑃,𝑉) are both provided with degree bound 𝑑 , and
a set of point-evaluation pairs {(𝑧𝑖 , 𝑦𝑖)}𝑁𝑖=1 and commitment
𝑐 ∈ C, while 𝑃 is also provided with a representation of 𝑓 ∈
F[𝑋] . Both P and V have access to an oracle for Com(·).

4.2 Instantiation

We assume existence of an IOPP protocol FRI in the sense of Def-

inition 9, and specify the LPC routine below. More specifically,

since we are concerned with polynomial commitment schemes, we

present the scheme based on the existence of FRI (Theorem 2 in [3])

for the prime field RS code family 𝐶 = RS[F, 𝐷, 𝜌], where 𝜌 = 2
−R

for some R ∈ N, R > 2 and 𝜌 · |𝐷 | > 16. Note that we model the

Com function as an oracle, so we do not deal with its security here.

In this case, we set the public parameters to be pp = (F, 𝐷):
The oracle provided here is to 𝑓 |𝐷 , which allows both parties to

simulate FRI over the coset domain 𝐷 by calculating the values of

𝑞 |𝐷 . This is since both parties explicitly construct the interpolation

polynomials and have access to 𝑓 |𝐷 . Hence, the verifier is above to
check that 𝑐 = Com(𝑞) using oracle calls to 𝑓 |𝐷 in order to simulate

𝑞 |𝐷 . That the above satisfies the definition of an LPC scheme is

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Algorithm 1 LPC Routine

1: procedure LPC(pp, 𝑑, 𝑁 , {𝑧𝑖 , 𝑦𝑖 }𝑁𝑖=1, 𝑐 ; 𝑓)
2: P and V define the interpolation polynomial𝑈 (𝑋) s.t.

∀𝑖 ∈ [𝑁],𝑈 (𝑧𝑖) = 𝑦𝑖 .

3: P and V define the quotient polynomial

𝑞 (𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)
Π𝑁
𝑖=1
(𝑋 − 𝑧𝑖)

.

4: P and V return FRI(𝑞,RS(F, 𝐷, (𝑑 − 𝑁)/|𝐷 |)) .
5: end procedure

immediate from the security properties of FRI. This is illustrated in

the theorem below:

Theorem 4. The prime field RS[F, 𝐷, 𝜌] code family with rate 𝜌 =

2
−R ,R ≥ 2,R ∈ N and |𝐷 | = 𝑛 has an (𝜖, 𝑘)-LPC over the Hamming
distance Δ with 𝜖 = 𝜖FRI (𝛿) soundness and 𝑘 = 𝑘FRI (𝛿) rounds of
interaction for all 𝜈 ∈ (0, 1 − √𝜌), 𝛿 ∈ (0, 𝐽 [3/2]𝜈 (1 − 𝜌)), 𝑁 , 𝑑 ∈ N
for which log (𝑛) − R = log (𝑑 − 𝑁) and 𝑑 − 𝑁 > 16. The LPC IOP
admits inputs of size 𝑛 for which:
• Prover Complexity: 𝑝FRI (𝑛) +𝑂 (𝑁 log

3 𝑁),
• Verifier Complexity: 𝑣FRI (𝑛) +𝑂 (𝑁 log

3 𝑁),
where 𝑝FRI (𝑛), 𝑣FRI (𝑛) the FRI prover and verifier complexities on
input size 𝑛.

Remark 1:We note that the above scheme retains verifier succinct-

ness when 𝑁 = 𝑂 (log𝑑).

4.3 Polynomial Commitments from LPCs

The scheme introduced above works fine when dealing with “wit-

ness" polynomials 𝑤 (𝑋) within our proof system, since we only

require the existence (and not uniqueness) of such a polynomial.

However, extra care should be taken outside of this regime, when

working with “setup" polynomials 𝑐 (𝑋) encoding the constraint

system itself. In this case, we want to ensure that the openings pro-

vided by the prover are indeed the evaluations of the polynomial

𝑐 (𝑋) itself and not of some polynomial 𝑔 ∈ 𝐿𝛿 (𝑐). The verifier can
evaluate setup polynomial values themselves. However, this doesn’t

retain succinctness as evaluations require 𝑂 (𝑑) computations.

We leverage the fact that for a given setup polynomial 𝑐 (𝑋)
the list 𝐿𝛿 (𝑐) is computable by both the prover and verifier. They

can hence find a distinguishing point 𝑖 at which 𝑐 (𝑖) differs from
the evaluations of all other polynomials 𝑔 ∈ 𝐿𝛿 (𝑐). This is naively
achieved by using a list-decoding algorithm at the beginning to find

all 𝑔 ∈ 𝐿𝛿 (𝑐) and then pick 𝑖 ∈ F at random until 𝑐 (𝑖) ≠ 𝑔(𝑖) ∀ 𝑔 ∈
𝐿𝛿 (𝑐). This, however, has overhead polynomial in |𝐷 |.

The key to our approach is that the procedure of enumerating all

such elements and picking a suitable candidate is (1) fully transpar-

ent, and (2) executed and verified only once for every circuit. We

thus add an offline phase that is performed only once at the begin-

ning of the protocol. The task of the offline phase is to search for

such a distinguishing point 𝑖 . This allows us to strengthen the proof

of knowledge guarantee for the LPC to imply that all evaluations

come from the specific polynomial 𝑐 (𝑋). Note that this is equivalent
to the general proof of knowledge guarantee provided by polyno-

mial commitment schemes. This preprocess phase is analogous to
the work of the indexer in [19].

Definition 11. A PPT algorithmD : F[𝑋] → (F×F)𝜇 is called a
𝜇-dimensional 𝜖-list distinguisher for somemetric Δ : F[𝑋]×F[𝑋] →
[0, 1] if ∀𝑓 ∈ F[𝑋], 𝛿 > 0 the following hold with probability 1−𝜖 (𝛿)
over the randomness of D:

∃𝑖 ∈ [𝜇],∀𝑔 ∈ 𝐿𝛿 (𝑓)\{𝑓 }, 𝑓 (D(𝑓)𝑖,1) ≠ 𝑔(D(𝑓)𝑖,1),

∀𝑖 ∈ [𝜇], 𝑓 (D(𝑓)𝑖,1) = D(𝑓)𝑖,2,
where D(𝑓)𝑖, 𝑗 the (𝑖, 𝑗)-th output element, 𝑖 ∈ [𝜇], 𝑗 ∈ {1, 2}.

Definition 12. An (𝜖, 𝑘, 𝜂)-polynomial evaluation scheme for
some metric Δ is a tuple Π = (D, Σ) where Σ = (𝑃,𝑉) an (𝜖, 𝑘)-LPC
scheme and D an 𝜂-list distinguisher.

Theorem 5. For every 𝛿 > 0, an (𝜖, 𝑘, 𝜂)-polynomial evaluation
scheme admits an IOP with soundness 𝜖 (𝛿) + 𝜂 (𝛿) and 𝑘 (𝛿) rounds
of interaction for the relation R :=

{⟨(𝑑, 𝑁 , {𝑧𝑖 , 𝑦𝑖 }𝑁𝑖=1), 𝑐; 𝑓 ⟩|∀𝑖 ∈ [𝑁], 𝑓 (𝑧𝑖) = 𝑦𝑖 ,Com(𝑓) = 𝑐}.

The above theorem relies on a simple observation: if we have

access to some distinguishing point-evaluation pair (𝑥, 𝑓 (𝑥)) such
that 𝑓 (𝑥) ≠ 𝑔(𝑥) for all 𝑔 ∈ 𝐿𝛿\{𝑓 }, then adding (𝑥, 𝑓 (𝑥)) to the

openings performed by the LPCmeans that only 𝑓 is a valid witness.

This process is done once during the setup of the LPC scheme and

each instantiation of an LPC that requires binding security can then

retrieve these points from the proving key.

4.3.1 Instantiation. We now provide two instantiations of the PES

based on different list distinguisher choices, and discuss the trade-

offs between the two.

List Decodability: The most obvious way to construct a distin-

guisher D is by using a list-decoding algorithm for the given code

to enumerate all 𝑔 ∈ 𝐿𝛿 (𝑓). By sampling random values 𝑟 ∈ F
and checking the required relation, this algorithm can be used to

construct D with no soundness error but high time complexity.

Indeed, for 𝛿 < 1 − (𝑑 − 𝑁 − 𝜇)/|𝐷 | the algorithm takes 𝑂 (|𝐷 |3)
time, while in the case of equality between the two this can go up

to 𝑂 (|𝐷 |15)!

Random Sampling:Due to the above efficiency considerations, we

opt to add some soundness error to the distinguisher in exchange for

a large increase in the efficiency of the protocol. We construct the

distinguisher by sampling 𝜇 random points and simply returning

them along with their evaluations. Due to the Schwartz-Zippel

lemma, there is a high chance that the random points will indeed

separate 𝑓 from its corresponding 𝛿-list. This takes time 𝑂 (𝜇 · 𝑑)
which, although linear with respect to 𝑑 , is substantially faster than

list-decoding when 𝑑 ∼ |𝐷 |.

Claim 1. The random sampling algorithm defines an 𝜂-list distin-
guisher D taking time 𝑂 (𝜇 · 𝑑) with soundness error:

𝜂 (𝛿) =
(
𝑑 · (|𝐿𝛿 | − 1)

|F|

)𝜇
.

We can use the LPC scheme constructed in the previous sec-

tion along with the distinguisher defined above to put everything

together in the following theorem.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

Theorem 6. The prime field RS[F, 𝐷, 𝜌] code family with rate
𝜌 = 2

−R ,R ≥ 2,R ∈ N and |𝐷 | = 𝑛 has an (𝜖, 𝑘, 𝜂)-PES Π = (D, Σ)
over the Hamming distance Δ.

Σ is an (𝜖, 𝑘)-LPC scheme with 𝜖 = 𝜖FRI (𝛿) soundness and 𝑘 =

𝑘FRI (𝛿) rounds of interaction for 𝜈 ∈ (0, 1 − √𝜌), 𝛿 ∈ (0, 𝐽 [3/2]𝜈 (1 −
𝜌)), 𝑁 , 𝑑, 𝜇 ∈ N for which log (𝑛) − R = log (𝑑 − 𝑁 − 𝜇) and 𝑑 −
𝑁 − 𝜇 > 16. Σ also admits inputs of size 𝑛 for which:

• Prover Complexity: 𝑝FRI (𝑛) +𝑂 ((𝑁 + 𝜇) log3 (𝑁 + 𝜇)),
• Verifier Complexity: 𝑣FRI (𝑛) +𝑂 ((𝑁 + 𝜇) log3 (𝑁 + 𝜇)),

where 𝑝FRI (𝑛), 𝑣FRI (𝑛) the FRI prover and verifier complexities on
input size 𝑛.
D is a 𝜇-dimensional 𝜂-list distinguiser for the RS[F, 𝐷, 𝜌] code

family taking 𝑂 (𝜇 · 𝑑) and soundness error:

𝜂 (𝛿) =
(
𝑑

|F| · (𝐽𝜌,𝜈 − 1)
)𝜇
.

This provides the proof of knowledge guarantees needed for

setup polynomials through direct application of Theorem 5.

5 REDSHIFT

We follow the language and notation of PLONK [23].

Definition 13 (PLONK Constraint System). L = (V,Q) is a
constraint system with 𝑛 gates and𝑚 wires for which 𝑛 ≤ 𝑚 ≤ 2𝑛

and where:

• V is of the formV = (a, b, c), where a, b, c ∈ [𝑚]𝑛,
• Q is of the form

Q = (qL, qR, qO, qM, qC) ∈ (F𝑛)5,

where qL, qR, qO, qM, qC are the “selector" vectors.

Moreover, x ∈ F𝑚 is said to satisfy L if ∀𝑖 ∈ [𝑛]:

(qL)𝑖 · xa𝑖 + (qR)𝑖 · xb𝑖 + (qO)𝑖 · xc𝑖+
+(qM)𝑖 · (xa𝑖 · xb𝑖) + (qC)𝑖 = 0.

To define a relation based onL, we extend it to include a positive
integer 𝑙 ≤ 𝑚, and subset 𝐼 = [𝑙] ⊆ [𝑚] of “public inputs”. We can

naturally set RL as the set of pairs (𝑥, 𝜔) with 𝑥 ∈ F𝑙 , 𝜔 ∈ F𝑚−𝑙
such that x := (𝑥, 𝜔) satisfies L. We say L is ‘prepared’ for 𝑙 public

inputs if ∀𝑖 ∈ [𝑙]:

ai = 𝑖, (qL)𝑖 = 1, (qM)𝑖 = (qR)𝑖 = (qO)𝑖 = (qC)𝑖 = 0.

From here on, we will assume that the constraint system is given

in prepared form.

In order to reformulate this constraint system in polynomial

terms, we require some additional ingredients. Let 𝑔 ∈ F∗ be an
element of order 𝑛 + 1, 𝐷 = ⟨𝑔⟩ ⊆ F∗ the cyclic subgroup generated

by 𝑔, and 𝐷∗ := 𝐷/{𝑒} where 𝑒 = 𝑔0 the identity. For 𝑖 ∈ [𝑛 + 1],
denote by 𝐿𝑖 (𝑋) the element of F≤𝑛 [𝑋] with 𝐿𝑖 (𝑔𝑖) = 1 and 𝐿𝑖 (𝑎) =
0 for all 𝑎 ∈ 𝐷 different to 𝑔𝑖 . By construction, {𝐿𝑖 (𝑋)}𝑛+1𝑖=1

form

a Lagrange basis for 𝐷 . Finally, we set 𝑍 (𝑋) := ∏
𝑎∈𝐷∗ (𝑋 − 𝑎) ∈

F≤𝑛 [𝑋] to be a domain polynomial for 𝐷∗, i.e. zero only on 𝐷∗.

Definition 14 (Domain Permutations). For sets of 𝑘 poly-
nomials {𝑓𝑖 }𝑘𝑖=1, {ℎ𝑖 }

𝑘
𝑖=1

for which ℎ𝑖 , 𝑓𝑖 ∈ F[𝑋] and permutation
𝜎 : [𝑘𝑛] → [𝑘𝑛], we say that the set (ℎ1, ..., ℎ𝑘) = 𝜎 (𝑓1, ..., 𝑓𝑘) if, for

all 𝑙 ∈ [𝑘𝑛], the sequences
(
𝑓(1) , . . . , 𝑓(𝑘𝑛)

)
,

(
ℎ (1) , . . . , ℎ (𝑘𝑛)

)
∈ F𝑘𝑛 ,

defined as:

𝑓((𝑗−1) ·𝑛+𝑖) := 𝑓𝑗 (𝑔𝑖), ℎ ((𝑗−1) ·𝑛+𝑖) := ℎ 𝑗 (𝑔𝑖),
for each 𝑗 ∈ [𝑘], 𝑖 ∈ [𝑛], satisfy ℎ (𝑙) = 𝑓(𝜎 (𝑙)) .

Definition 15. Let T = {𝑇𝑖 }𝑠𝑖=1 be a partition of [𝑘𝑛] into 𝑠
disjoint blocks, where 𝑘, 𝑛, 𝑠 ∈ N. We say that {𝑓𝑖 }𝑘𝑖=1 ∈ F[𝑋] copy-
satisfies T if, when defining (𝑓(1) , . . . , 𝑓(𝑘𝑛)) ∈ F𝑘𝑛 as above, we
have 𝑓(𝑙) = 𝑓(𝑙 ′) whenever ∃𝑖 s.t. 𝑙, 𝑙 ′ ∈ 𝑇𝑖 .

We define a permutation 𝜎 (T) on [𝑘𝑛] such that for each block

𝑇𝑖 of T , 𝜎 (T) contains a cycle only going over all the elements

of 𝑇𝑖 . Many possibilities exist: for example, we can rearrange ele-

ments in the cycles corresponding to 𝑇𝑖 , or 𝜎 (T) can be chosen

arbitrarily from the set of all valid permutations. It is simple to

check that (𝑓1, . . . , 𝑓𝑘) copy-satisfies T if and only if (𝑓1, . . . , 𝑓𝑘) =
𝜎 (𝑓1, . . . , 𝑓𝑘). We can thus equivalently say that (𝑓1, . . . , 𝑓𝑘) copy-
satisfy 𝜎 .

Definition 16. Fix domain 𝐷∗ and size parameter 𝑛 ∈ N. The
constraint system L′ is defined as follows:

L′ := (qL, qR, qO, qM, qC, 𝜎, 𝑛),
where:
• qL, qR, qO, qM, qC ∈ F[𝑋] the selector polynomials,
• 𝜎 : [3𝑛] → [3𝑛] a permutation over 3𝑛 elements.

The relation RL′ for L′ is defined as the set
(𝑥,𝜔) := (PI(𝑋), ⟨fL (𝑋), fR (𝑋), fO (𝑋)⟩) ∈ F[𝑋] × (F[𝑋])3,

with the following properties:
(1) fL (𝑋), fR (𝑋), fO (𝑋) copy-satisfy 𝜎 .
(2) ∀𝑎 ∈ 𝐷∗ it holds that:

qL · fL + qR · fR + qO · fO + qM · fL · fR + (qC + PI) = 0.

For completeness we also provide a formal statement of the

equivalence between the two constraint systems, whose proof can

be found in the appendix. PI(𝑋) is the public input polynomial

and encodes public data that is used to define the predicate of

choice, while fL (𝑋), fR (𝑋), fO (𝑋) are the left, right and output wire
polynomials respectively and encode prover-only private data.

Lemma 1. The constraint systems proposed in Definition 13 and
Definition 16 are equivalent.

Remark: Note that the degrees of fL, fR, fC are 𝑛 − 1, where 𝑛 is

the size of L. However in RedShift this is relaxed to some degree

𝑘 > 𝑛 to attain zero-knowledge.

5.1 Protocol Instantiation

Let L′ = (qL, qR, qO, qM, qC, 𝜎, 𝑛) be the constraint system in ques-

tion. Define 𝑘1, 𝑘2, 𝑘3 ∈ F∗ to be representations of different cosets

in F∗\𝐷 , with 𝑘1 = 𝑒 set as the identity. Let 𝜏 be the bijection

between the sets 𝑃1 = [3𝑛] and 𝑃2 = 𝐷∗ ∪ 𝑘2𝐷∗ ∪ 𝑘3𝐷∗ defined by:

𝜏 [𝑛 · (𝑗 − 1) + 𝑖] = 𝑘 𝑗𝑔𝑖 , 𝑖 ∈ [𝑛], 𝑗 ∈ [3] .
Since 𝜎 is a permutation on 𝑃1, 𝜎

′ = 𝜏 ◦ 𝜎 ◦ 𝜏−1 is a permutation

on 𝑃2. Define {𝑆𝑖𝑑𝑖 (𝑋)}3𝑖=1, {𝑆𝜎 𝑗
(𝑋)}3

𝑗=1
each of degree at most 𝑛

as the set of permutation polynomials as follows:

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

(1) 𝑆𝑖𝑑 𝑗
(𝑋) = 𝑘 𝑗𝑋 for 𝑗 ∈ [3],

(2) 𝑆𝜎 𝑗
(𝑔𝑖) = 𝜎′ (𝑘 𝑗𝑔𝑖) for 𝑖 ∈ [𝑛], 𝑗 ∈ [3] .

These will be used as part of the setup polynomials to define the

problem instance.

Setup & Witness Polynomials: We can now draw the link be-

tween the “setup” and “witness” polynomials of the previous sec-

tions with their concrete definitions in the instantiation of Red-

Shift. The selector polynomials qL, qR, qO, qM, qC, permutation

polynomials {𝑆𝑖𝑑𝑖 }𝑖∈[3] , {𝑆𝜎 𝑗
} 𝑗∈[3] and Lagrange-basis polynomi-

als {𝐿𝑖 }𝑖∈[𝑛+1] play the role of “setup" polynomials. Moreover, the

wire polynomials fL, fR, fO form the set of “witness” polynomials.

This choice makes intuitive sense: the former fully specify the rela-

tion in question and hence need to be unique in order to prevent

malleability in the proof of knowledge guarantees. The latter (which

tend to be much larger in most practical deployments) however, do

not require uniqueness guarantees.

We are now ready to specify the RedShift protocol. At the inter-

active level, it is most similar to the DEEP-ALI protocol, but for the

PLONK constraint system. We instantiate the distinguisher oracle

OD queries as evaluations by an indexer algorithm I that receives

a low-degree polynomial input 𝑓 and outputs 𝜇 separation points

along with their evaluations {𝑥𝑖 , 𝑓 (𝑥𝑖)}𝜇𝑖=1. We can implement the

random sampling distinguisher in the non-interactive setting using

𝑛𝑐 · 𝜇 · 𝑛 queries (where 𝑛𝑐 the number of constraint polynomials),

and provide the set of points as input to the IOP for the PLONK

proof system (c.f. Section 7 in [23]).

In the interests of modularity and ease of exposition, we make

use of an (𝜖, 𝑘)-list polynomial commitment scheme 𝐿𝑃𝐶 while sim-

ulating an (𝜖, 𝑘, 𝜂)-polynomial evaluation scheme 𝑃𝐸𝑆 = (D, 𝐿𝑃𝐶)
with access to a 𝜇-dimensional 𝜂-distinguisher D. The idea is to

replace all instances of commitment to some low-degree polyno-

mial, which is required for the knowledge soundness guarantees of

the proof system, to commitment using the LPC and PES schemes

above. These will be implemented using the FRI protocol, but at the

maximal levels of 𝛿 in order to achieve improvements in proof size.

We identify two types of polynomials with differing knowledge

guarantee requirements. These are the witness and setup polyno-

mials mentioned above. In the first, we only require the existence

of some low degree polynomial to exist, while in the latter the

prover needs to know the specific polynomial they are providing

commitments to.

In the construction below,we assume that {𝑆𝑖𝑑𝑖 }𝑖∈[3] , {𝑆𝜎 𝑗
} 𝑗∈[3] ,

{𝐿𝑖 }𝑖∈[𝑛+1] , qL, qR, qO, qM, qC ∈ pp, have been precomputed over

𝐷∗ and can be instantaneously accessed through commitments

provided by an oracle along with a representation of the public

input polynomial PI(𝑋) given to the verifier. To highlight the above

difference, we explicitly instantiate the commitments that need to

be sent at each step and show how these are used in the PES and

LPC schemes. In the IOP formalism, this is equivalent to sending

the respective polynomials to a trusted intermediary I.
Completeness holds because for honest provers the 𝐹𝑖 are iden-

tically zero on domain 𝐷∗, which means that all the 𝐹𝑖 (𝑋) are
divisible by 𝑍 (𝑋) in the ring F[𝑋], hence so is their linear combina-

tion 𝐹 (𝑋) = ∑
6

𝑖=1 𝑎𝑖𝐹𝑖 (𝑋). Note that the {𝐹𝑖 }𝑖∈[5] are responsible

Algorithm 2 RedShift Routine

1: procedure RedShift(pp, PI, 𝑛, 𝑘, 𝑁 ; fL, fR, fO)
2: P chooses masking polynomials ℎ1, ℎ2, ℎ3 ∈𝑅 F<𝑘 [𝑋].
3: P defines masking witness polynomials:

𝑓1 (𝑋) := fL (𝑋) + ℎ1 (𝑋)𝑍 (𝑋),
𝑓2 (𝑋) := fR (𝑋) + ℎ2 (𝑋)𝑍 (𝑋),
𝑓3 (𝑋) := fO (𝑋) + ℎ3 (𝑋)𝑍 (𝑋),

and sends commitments cm𝑖 , 𝑖 ∈ [3] for them to V.

4: V sends random 𝛽,𝛾 ∈ F to P.

5: For 𝑗 ∈ [3], P computes

𝑝 𝑗 := 𝑓𝑗 + 𝛽 · 𝑆𝑖𝑑 𝑗
+ 𝛾 and 𝑞 𝑗 = 𝑓𝑗 + 𝛽 · 𝑆𝜎 𝑗

+ 𝛾 .
P then defines 𝑝′ (𝑋) and 𝑞′ (𝑋) by:

𝑝′ (𝑋) =
∏
𝑗 ∈ [3]

𝑝 𝑗 (𝑋), 𝑞′ (𝑋) =
∏
𝑗 ∈ [3]

𝑞 𝑗 (𝑋) .

6: P computes 𝑃,𝑄 ∈ F<𝑛+1 [𝑋] such that 𝑃 (𝑔) = 𝑄 (𝑔) = 1 and for

𝑖 ∈ [𝑛 + 1]\{1}:

𝑃 (𝑔𝑖) =
∏

1≤ 𝑗<𝑖
𝑝′ (𝑔 𝑗),𝑄 (𝑔𝑖) =

∏
1≤ 𝑗<𝑖

𝑞′ (𝑔 𝑗),

and sends commitments cm4, cm5 of 𝑃 and𝑄 to V.

7: V sends random 𝑎1, . . . , 𝑎6 ∈ F to P.

8: P defines the following polynomials:

• 𝐹1 (𝑋) = 𝐿1 (𝑋) (𝑃 (𝑋) − 1)
• 𝐹2 (𝑋) = 𝐿1 (𝑋) (𝑄 (𝑋) − 1)
• 𝐹3 (𝑋) = 𝑃 (𝑋)𝑝′ (𝑋) − 𝑃 (𝑋 · 𝑔)
• 𝐹4 (𝑋) = 𝑄 (𝑋)𝑞′ (𝑋) − 𝑄 (𝑋 · 𝑔)
• 𝐹5 (𝑋) = 𝐿𝑛 (𝑋) (𝑃 (𝑋 · 𝑔) − 𝑄 (𝑋 · 𝑔))
• 𝐹6 (𝑋) = qL (𝑋) 𝑓𝐿 (𝑋) + qR (𝑋) 𝑓𝑅 (𝑋) + qO (𝑋) 𝑓𝑂 (𝑋) +
qM (𝑋) 𝑓𝐿 (𝑋) 𝑓𝑅 (𝑋) + (qC (𝑋) + PI(𝑋))

9: P defines 𝐹 =
∑

6

𝑖=1 𝑎𝑖𝐹𝑖 and computes𝑇 (𝑋) = 𝐹 (𝑋)/𝑍 (𝑋) , sending
V a commitment cm6 to𝑇 .

10: V sends P a random evaluation point 𝑦𝑚 ∈ F\𝐷,𝑚 ∈ [𝑁] .
11: P responds with 𝑁 sets of points, where𝑚 ∈ [𝑁]:
𝑇 (𝑦𝑚), 𝑃 (𝑦𝑚),𝑄 (𝑦𝑚), { 𝑓𝑖 (𝑦𝑚) }3𝑖=1, {𝑆𝑖𝑑𝑖 (𝑦𝑚) }

3

𝑖=1, {𝑆𝜎𝑖 (𝑦𝑚) }
3

𝑖=1,

and qj (𝑦𝑚) for j ∈ {L,R,O,M,C} := J.
12: P and V engage in sub-protocols, outputting 0 if any fail:

PES(pp, 𝑛 + 1, 𝑁 , { (𝑦𝑚, qj (𝑦𝑚)) }𝑚∈ [𝑁] , cmqj ; qj), j ∈ J,
PES(pp, 𝑛 + 1, 𝑁 , { (𝑦𝑚, 𝑆𝑖𝑑 𝑗

(𝑦𝑚)) }𝑚∈ [𝑁] , cmid
j
;𝑆𝑖𝑑 𝑗

), 𝑗 ∈ [3],
PES(pp, 𝑛 + 1, 𝑁 , { (𝑦𝑚, 𝑆𝜎 𝑗

(𝑦𝑚)) }𝑙 ∈ [𝑁] , cm𝜎
j
;𝑆𝜎 𝑗
), 𝑗 ∈ [3],

LPC(pp, 𝑛 + 1, 𝑁 , { (𝑦𝑚, 𝑓𝑖 (𝑦𝑚)) }𝑚∈ [𝑁] , cmi; 𝑓𝑖), 𝑖 ∈ [3],
LPC(pp, 𝑛 + 1, 2𝑁, { (𝑦𝑚, 𝑃 (𝑦𝑚)), (𝑦𝑚 · 𝑔, 𝑃 (𝑦𝑚 · 𝑔)) }𝑚∈ [𝑁] , cm4;𝑃),
LPC(pp, 𝑛 + 1, 2𝑁, { (𝑦𝑚,𝑄 (𝑦𝑚)), (𝑦𝑚 · 𝑔,𝑄 (𝑦𝑚 · 𝑔) }𝑚∈ [𝑁] , cm5;𝑄),

LPC(pp, 3𝑛 + 1, 𝑁 , { (𝑦𝑚,𝑇 (𝑦𝑚)) }𝑚∈ [𝑁] , cm6;𝑇) .
13: Using the queried values above, ∀𝑚 ∈ [𝑁] V computes {𝐹𝑖 (𝑦𝑚) }𝑖∈ [6] ,

outputting 1 if the following holds:

6∑︁
𝑖=1

𝑎𝑖𝐹𝑖 (𝑦𝑚) = 𝑍 (𝑦𝑚)𝑇 (𝑦𝑚) .

14: end procedure

for checking the copy-satisfiability of the witness polynomials. This

is directly equivalent to the completeness argument in PLONK.

We also briefly explain the intuition behind the 𝑆𝑖𝑑 𝑗
and 𝑆𝜎 𝑗

polynomials: 𝑆𝑖𝑑 𝑗
is only required to map 𝐷 to the disjoint sets

𝑃1, 𝑃2, 𝑃3. 𝑆𝜎 𝑗
should then map to the same set 𝑃 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3 but

in a “permuted” fashion. We construct a map 𝜏 for permutation 𝜎

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

from domain [𝑛] to 𝑃 . The simplest way to define 𝑆𝑖𝑑𝑘 is to map [𝑛]
to [1, ..., 𝑛], [𝑛 + 1, ..., 2𝑛], [2𝑛 + 1, ..., 3𝑛] respectively, in this case

there is no need to apply the map 𝜏 as then there is no need for

domain translation (𝑃 = [𝑛]). The problem is that all of the 𝑆𝑖𝑑 𝑗

polynomials will be of degree 𝑛 in general. We construct 𝑆𝑖𝑑 𝑗
so as

to be of minimal possible degree 1, so it is easy for the verifier to

calculate evaluations of those polynomials by themselves without

requiring the usage of the (more expensive) evaluation procedures.

This optimization is taken from [23].

We opt for sampling𝑦 outside of the domain𝐷 in order to achieve

perfect-zero knowledge guarantees instead of statistical. 𝑁 here

denotes the number of random challenge points sampled and is set

to 𝑁 = 1 for our implementation. Finally, due to the restrictions

on the degree it may be necessary to split 𝑇 into separate poly-

nomials {𝑇0,𝑇1,𝑇2} and commit to them independently. This and

other optimizations are further discussed in the appendix, as is the

formal analysis of the security and zero-knowledge properties of

the protocol. We end with a formal statement capturing the security

properties of RedShift.

Theorem 7. The prime field RS[F, 𝐷, 𝜌] code family with rate
𝜌 = 2

−R ,R ≥ 2,R ∈ N and 𝜌 |𝐷 | = 𝑛 + 1 admits an IOP for the
constraint system S described in Definition 13, where 𝑛 the size of the
instance in S and 𝑁 a repetition parameter. This IOP achieves perfect
completeness, perfect zero-knowledge, and ∀𝜈 ∈ (0, 1 − √𝜌), 𝛿 ∈
(0, 𝐽 [3/2]𝜈 (1 − 𝜌)) has round-by-round knowledge soundness:

𝜖𝜋 (𝛿) ≤ max

(
𝜖FRI (𝛿), 𝜖𝑁IOP,

1

|F|

)
, where 𝜖IOP := (𝐽𝜌,𝜈)6 ·

4𝑛

|F\𝐷 | .

The above IOP is instantiated as a Non-Interactive Random Or-

acle Proof (NIROP) using the “CS-proof” technique to compile

the oracles to the constraint functions. More specifically, this as-

sumes the existence of a Random Oracle (RO) for the hash function

H : F×F→ F [7] and constructs Com(𝑓) as the root 𝑐 of a Merkle

tree where the leaves form the evaluations of 𝑓 on 𝐷 . The RO is

not required, as correlation-intractable hash functions have been

shown to suffice (see [16]). In the non-interactive setting, the prover

will provide the verifier with a Merkle authentication path to some

𝑓 (𝑖) upon a query for 𝑖 ∈ 𝐷 to the oracle for 𝑓 . Note that this adds

log |𝐷 | overhead to the protocol for each query.

6 SYSTEM INSTANTIATION

The various components of RedShift can now be put together in

order to arrive at security guarantees of a functional implementa-

tion. By modularity of the above approach, it is possible to analyze

the security guarantees of the system based on different choices

for the rate, distinguisher, and LPC scheme. The starting point for

this is the soundness bound of Theorem 7. Since this depends on

the list decodability of the RS codes, the analysis can be split into

two axes: based on Theorem 1 and on Conjecture 1, each of which

gives different bounds on protocol soundness. We analyze the above

based on a changing rate parameter 𝜌 at a given security level, and

look the total number of queries that need to be executed by the

FRI protocol to achieve this. In the analysis below, we work with a

field of size log |F| = 256 bits and aim for 80 bit security. First we

focus on the contribution from the list-decoding bound: 𝐽 8𝜌,𝜈
4𝑛
|F/𝐷 | :

note the exponent of 8 instead of 6 due to splitting 𝑇 into 3 smaller

polynomials. In the syntax of Theorem 1, a choice of 𝜈 = |F|−1/20
provides a list size of

1

2
|F|1/20𝜌−1/2. For our choice of field size,

this yields an error contribution on the order of 2
−128

. Now we

focus on how such a choice of 𝜈 ≠ 0 will affect the soundness of

FRI. By picking 𝜌 = 1/16 we get the following contribution to the

FRI soundness error for 𝛿 < 𝐽
[3/2]
𝜈 (1 − 𝜌):

𝑝 (𝜈, 𝜌) =
(
1 −min

{
𝛿0, 𝐽

[3/2]
𝜈 (1 − 𝜌)

}
+ 𝜈 log |𝐷 |

)
.

A smaller such value allows for fewer queries for a given level

of soundness, shrinking proof size in the non-interactive setting.

In the case of 𝜈 = 0, we have 𝑝 (0, 1/16) = 1/2. For domain size

|𝐷 | = 2
32

(which equates to a degree bound 𝑑 = 𝜌 |𝐷 | = 𝑛 +
1 = 2

28
) we have that 𝑝 (|F|−1/20, 1/16) ∼ 0.504. For comparison

purposes, if we instead use 𝜌 = 1/32 we get 𝑝 (0, 1/32) ∼ 0.421 and

𝑝 (|F|−1/20, 1/32) ∼ 0.425.

We are now ready to look at the effect of changing 𝛿 on the total

number of queries required to achieve a constant security level

for the overall protocol. We fix a rate of 𝜌 = 1/64 with 𝜈 = 0 for

simplicity and provide the total query number required to achieve

an 80 bit security level for three regimes for 𝛿 : (1) unique decoding

radius 𝛿 = 𝛿0, (2) 𝛿 within the ‘one-and-a-half’ Johnson bound

(used in FRI [10]), and (3) 𝛿 within the Johnson bound (used in

DEEP-FRI [9]). Note that (1) denotes the worst-case error and is

provided as a reference for the relative efficiency of the two LPC

instantiations. We note a 51% reduction in the query number at

this security level in using FRI, while DEEP-FRI achieves a 67%

reduction at rate 𝜌 = 1/64. As rate increases, this improvement is

less pronounced; however, we still get a 32% and 55% improvement

in query complexity for the two respective instantiations even at

𝜌 = 1/16. This demonstrates concrete efficiency improvements to

the underlying proof even with small rate deviations.

Subsequent work [5] has demonstrated that for FRI instances

over large fields we can do strictly better. If 𝑞 > |𝐷 |2, the maximal

𝛿 for which FRI is sound is actually equal to the Johnson bound

𝐽𝜈 (1−𝜌) instead of 𝐽 [3/2]𝜈 (1−𝜌). In practice, this gives us the same

soundness error for FRI and DEEP-FRI since the number of queries

performed dominates the error contribution. Finally, by assuming

Conjecture 1 we can do even better: 𝛿 is pushed beyond the John-

son bound to 1 − 𝜌 and, due to the constant list size assumption,

the soundness of FRI and DEEP-FRI persists in this larger range.

Note, however, that going beyond the Johnson bound comes with a

loss of knowledge security: we cannot use the Sudan list-decoding

algorithm to extract a witness, so any knowledge claim would have

to be non-extractable in this setting.

Table 1: LPC Instantiation Comparisons.

Method 𝛿 Bound
𝑝 Bound

(𝜈 = 0)
Query Number

1/64 1/32 1/16
Unique Decoding (1 − 𝜌)/2 (1 + 𝜌)/2 82 84 88

FRI [10] 𝐽
[3/2]
𝜈 (1 − 𝜌) 3

√
𝜌 40 48 60

FRI with 𝑞 > |𝐷 |2 [5] 𝐽𝜈 (1 − 𝜌) √
𝜌 27 32 40

DEEP-FRI [9] 𝐽𝜈 (1 − 𝜌) √
𝜌 27 32 40

FRI with Conjecture 1 1 − 𝜌 𝜌 14 16 20

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

7 RESULTS

We instantiate RedShiftwith 𝑟 = 576460752303423505,𝑞 = 𝑟 ·2192+
1which is a Proth prime and use 𝜌 = 1/16. Oracles were instantiated
as Merkle trees using the Blake2s hashing algorithm. The PES

was instantiated using the random sampling approach, where a

random point was sampled using Fiat-Shamir: i.e. by placing all

individual root hashes of the oracles to the setup polynomials into

the transcript. Circuit sizes were chosen so as to set 𝑛 + 1 = 2
𝑘

which, in the case of RedShift, implies a degree bound 𝑑 = 𝑛+1 for
FRI. All implementations use a certain degree of precomputation:

we precompute the low degree extensions of setup polynomials

and the Merkle trees of the setup polynomial oracles.

The soundness error due to FRI depends on the total number of

queries performed. This does not change the proof generation time

and only affects proof size and verification. We follow the approach

in Section 6 in order to set these parameters, targeting an 80-bit

security level. We note that the final soundness error is dominated

by the FRI error, while the size contribution is dominated by the

total number of queries performed. We used an Apple MacBook

Pro 18.2 with an M1 Max 10-core processor and 64 GB RAM to

record proof generation times, verification times and proof sizes

for different predicate sizes presented in Fig. 1

The verification times and proof sizes provided rely on Con-

jecture 1. If we remove this assumption, we need to double the

proof sizes (and verification times) but the proof generation times

would remain unchanged. This is because FRI operates over a large

enough field that soundness holds for 𝛿 ≤ 𝐽𝜈 (1 − 𝜌). Table 2 in-

cludes calculations for projected proof sizes at different security

levels and rates. We present expected numbers for three different

scenarios: (1) the current implementation, (2) the implementation

after optimization (see Appendix F), and (3) the optimized proof

system assuming Conjecture 1 also holds.

Our empirical results cannot be directly compared to other trans-

parent proof systems such as [19], [20], [6], [41],[42], as the un-

derlying constraint systems differ (all use R1CS, except [42]) and

thus predicate sizes (number of gates) don’t exactly capture the

same complexity across prototypes. Unlike all other approaches,

the PLONK constraint system also allows for ‘custom’ gates, which

means that it can be further modified to be more efficient at express-

ing specific types of circuits by using fewer circuit-specific gates.

This makes a precise comparison between approaches difficult.

Even so, certain comparative observations can be made. Firstly,

proof generation times are competitive with state-of-the-art sys-

tems, such as Aurora and Fractal that achieve a performance of

∼ 200 seconds on predicates of size 2
20

at 128-bit security. Note that

for us proof generation is only influenced by the rate parameter 𝜌 ,

which we fix at 𝜌 = 1/16 in Fig. 1 for all considered security levels

to achieve 35 second proving time for size 2
20

circuits. Our results

are most comparable with Virgo [42] at ∼ 10 seconds.

Verification times for 80-bit security stay at around 3 − 6 ms for

circuit sizes up to 2
20
, clearly outperforming Aurora (∼ 4 seconds

for the same). At 128-bit security, a linear scaling of verification

time (due to the linear increase in the number of queries) gives

around ∼ 9ms. This matches the performance of Fractal (< 10 ms

at 128-bit security) and Virgo (∼ 12 ms at 100-bit security). Note

that verification time is directly connected to proof size through the

number of queries verified, so any corresponding improvements to

proof sizes will affect verification proportionately.

The data clearly shows a logarithmic relationship between proof

and predicate sizes, which is the biggest drawback of the current

scheme. To this end, we propose optimizations (specified in Appen-

dix F) of how the Merkle tree represents data and query calls to

decrease proof size (and verification times) by about two orders of

magnitude (∼ 4×). In this case, projected proof sizes are still larger

(∼ 300kB) than those of both Aurora and Fractal (∼ 150kB) for

a circuit of 2
20

gates at 128-bit security but comparable to Virgo

(∼ 200kB) at 100-bit security. Note that this issue is specific to trans-

parent systems: trusted proof systems like [28] have size < 1kB

proofs for all circuits.

Table 2: Projected Proof Sizes.

Security

(Bits)

Rate

(-log 𝜌)

Circuit Size

(log |𝐶 |)
Proof Size (KB)

Unoptimized Optimized Conjectured

80

4

10 597 151 76

15 1052 264 133

20 1634 410 206

5

20

1308 328 165

6 1090 274 138

7 934 235 118

8 818 206 104

120 4

10 894 225 114

15 1576 396 199

20 2450 614 308

8 OPTIMIZATIONS AND VARIANTS

8.1 Batching FRI

Polynomial commitments and evaluations in RedShift reduce to

the following check: whether particular functions 𝑓1, . . . , 𝑓𝑘 repre-

sented as oracles are close to the space of degree 𝑑 polynomials.

The batching approach is to replace all those separate and inde-

pendent FRI queries by exactly one instance of FRI w.r.t a linear

combination of functions 𝑓𝑖 , where the coefficients of linear depen-

dence are provided by the verifier. This can be done, with details in

Appendix G.

8.2 Binary Fields

Recall that PLONK is restricted to prime fields only. This is because

[31] requires embedding a field F into a group of points on some

pairing-friendly elliptic curve. [3] provides a version of the FRI

protocol for binary fields which exploits additive and vector space

structure of the underlying field. The rest of PLONK is field agnostic

and only the permutation argument would require modification.

This means that RedShift can be instantiated for binary as well

as prime fields and all constructions and proofs follow through by

replacing the multiplicative domain |𝐷 | by an affine subspace. The

binary variant of PLONK is especially effective for computations

that require a lot of bit manipulations.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

Figure 1: Benchmark for RedShift with 𝜌 = 1/16. Top: Proof
Generation Time (seconds). Center: Verification Time (ms).

Bottom: Proof Size (kB).

8.3 Recursion

RedShift verification subroutines can be expressed as circuits,

where the dominating operation will be the verification of Merkle

paths or inclusion proofs in some other cryptographic accumulator.

All remaining arithmetic operations are performed over the same

field that the original circuit (for which the verifier is expressed) is

defined, so there is no requirement for cycles over pairing-friendly

elliptic curves as in previous work. A hybrid approach exists that

performs the last step of recursion using a ‘pairing-based’ PLONK,

e.g. the BLS12-381 curve has a main subgroup of order |𝐺 | such
that 2

32 | (|𝐺 | − 1). This allows for instantiating RedShift. Table 2
shows that in the case of recursive constructions one could use a

higher rate for the “inner” and a lower one for the “outer” level of

recursion that verify the nested proofs, since a smaller inner circuit

is much cheaper to verify. This has been subsequently explored as

an avenue to practical recursion in [1].

8.4 Different Proof Systems

The LPC and PES primitives can be applied to proof systems such

as SONIC [32] and Marlin [19] that use univariate polynomial

commitments. Of interest here are the proximity testing parameters

e.g. testing inclusion in RS[F𝑞, 𝐷, (𝑑 − 1)/|𝐷 |], where (in the case

of Marlin) 𝑑 = 2
𝑘
. [6] contains a description of such a subroutine.

REFERENCES

[1] [n. d.]. Plonky2: Fast Recursive Arguments with PLONK and FRI. https://github.

com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf. Accessed: 2022-08-

09.

[2] [n. d.]. StarkDEX: Bringing STARKs to Ethereum. https://blog.0xproject.com/

starkdex-bringing-starks-to-ethereum-6a03fffc0eb7. Accessed: 2022-08-09.

[3] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Fast

Reed-Solomon interactive oracle proofs of proximity. In 45th International Collo-
quium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scal-

able zero knowledge with no trusted setup. In Annual International Cryptology
Conference. Springer, 701–732.

[5] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi

Saraf. 2020. Proximity Gaps for Reed–Solomon Codes. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 900–909.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2018. Aurora: Transparent Succinct Arguments for

R1CS. Cryptology ePrint Archive, Report 2018/828. https://eprint.iacr.org/2018/

828.

[7] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive oracle

proofs. In Theory of Cryptography Conference. Springer, 31–60.
[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-

cinct non-interactive zero knowledge for a von Neumann architecture. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14). 781–796.

[9] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. 2019.

DEEP-FRI: Sampling outside the box improves soundness. arXiv preprint
arXiv:1903.12243 (2019).

[10] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. 2018. Worst-case to

Average Case Reductions for the Distance to a Code. In Proceedings of the 33rd
Computational Complexity Conference (San Diego, California) (CCC ’18). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany, Article 24, 23 pages. https:

//doi.org/10.4230/LIPIcs.CCC.2018.24

[11] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable delay

functions. In Annual International Cryptology Conference. Springer, 757–788.
[12] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2020. Halo infinite: Re-

cursive zk-snarks from any additive polynomial commitment scheme. Cryptology
ePrint Archive (2020).

[13] Sean Bowe, Ariel Gabizon, and IanMiers. 2017. Scalable Multi-party Computation

for zk-SNARK Parameters in the Random Beacon Model. IACR Cryptology ePrint
Archive 2017 (2017), 1050.

[14] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and

more. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 315–334.
[15] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2019. Transparent SNARKs

from DARK Compilers. Cryptology ePrint Archive, Report 2019/1229. https:

//eprint.iacr.org/2019/1229.

[16] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N Rothblum, and

Ron D Rothblum. 2018. Fiat-Shamir from simpler assumptions. Cryptology ePrint
Archive (2018).

https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7
https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7
https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[17] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. 2016.

Beleniosrf: A non-interactive receipt-free electronic voting scheme. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1614–1625.

[18] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2019. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. Cryptology ePrint Archive, Report 2019/1047. https://eprint.iacr.

org/2019/1047.

[19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2019. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. Cryptology ePrint Archive, Report 2019/1047. https://eprint.iacr.

org/2019/1047.

[20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2019. Fractal: Post-Quantum

and Transparent Recursive Proofs from Holography. Cryptology ePrint Archive,

Report 2019/1076. https://eprint.iacr.org/2019/1076.

[21] Pergament Evgenya. 2017. Algebraic RAM. Master’s thesis. Technion.

[22] Ariel Gabizon and Zachary J. Williamson. [n. d.]. Proposal: The Turbo-PLONK

program syntax for specifying SNARK programs. https://docs.zkproof.org/pages/

standards/accepted-workshop3/proposal-turbo_plonk.pdf. Accessed: 2022-08-

09.

[23] Ariel Gabizon, Zachary JWilliamson, andOana Ciobotaru. 2019. PLONK: Permuta-
tions over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge.
Technical Report. Cryptology ePrint Archive, Report 2019/953.

[24] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic span programs and succinct NIZKs without PCPs. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
626–645.

[25] Craig Gentry and Daniel Wichs. 2011. Separating succinct non-interactive argu-

ments from all falsifiable assumptions. In Proceedings of the forty-third annual
ACM symposium on Theory of computing. ACM, 99–108.

[26] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. 2015. Delegating

computation: interactive proofs for muggles. Journal of the ACM (JACM) 62, 4
(2015), 1–64.

[27] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge

complexity of interactive proof systems. SIAM Journal on computing 18, 1 (1989),

186–208.

[28] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 305–326.

[29] V. Guruswami and M. Sudan. 1999. Improved decoding of Reed-Solomon and

algebraic-geometry codes. IEEE Transactions on Information Theory 45, 6 (1999),

1757–1767. https://doi.org/10.1109/18.782097

[30] W Cary Huffman and Vera Pless. 2003. Fundamentals of error-correcting codes.
Cambridge Univ. Press, Cambridge. https://cds.cern.ch/record/1139892

[31] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
177–194.

[32] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:

Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured

Reference Strings. IACR Cryptology ePrint Archive 2019 (2019), 99.
[33] Silvio Micali. 2000. Computationally sound proofs. SIAM J. Comput. 30, 4 (2000),

1253–1298.

[34] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. 2013. Zerocoin:

Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 397–411.

[35] Srinath Setty. [n. d.]. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. ([n. d.]).

[36] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. 2018. Proving

the correct execution of concurrent services in zero-knowledge. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18). 339–
356.

[37] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J Blumberg, Bryan Parno, and

Michael Walfish. 2013. Resolving the conflict between generality and plausibility

in verified computation. In Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 71–84.

[38] Alexander Vlasov and Konstantin Panarin. 2019. Transparent Polynomial Com-

mitment Scheme with Polylogarithmic Communication Complexity. Cryptology

ePrint Archive, Report 2019/1020. https://eprint.iacr.org/2019/1020.

[39] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 926–943.

[40] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[41] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct zero-knowledge proofs with optimal prover

computation. In Annual International Cryptology Conference. Springer, 733–764.

[42] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent

polynomial delegation and its applications to zero knowledge proof. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 859–876.

A CONSTRAINT SYSTEM EQUIVALENCE

Proof. Suffices to show a polynomial time transition between

the two constraint systems.

Suppose V = (a, b, c); think of V as a vector in [𝑚]3𝑛 . For
𝑖 ∈ [𝑚], let 𝑇𝑖 ⊂ [3𝑛] be the set of indices 𝑗 ∈ [3𝑛] such that

V𝑗 = 𝑖 . Now define 𝑇L := {𝑇𝑖 }𝑖∈[𝑚] - partition of [3𝑛] into non-

intersecting chunks. Define a permutation 𝜎 (𝑇L) on [3𝑛] in the

following way: for each block 𝑇𝑖 of 𝑇L , 𝜎 (𝑇L) contains a cycle

going over all elements of 𝑇𝑖 . For simplicity we write 𝜎 = 𝜎 (𝑇L)
Overloading notation, set the selector polynomials qL, qR, qO,

qM, qC ∈ F[𝑋] defined for each 𝑖 ∈ [𝑛] by

qL (𝑔𝑖) := (qL)𝑖 , qR (𝑔𝑖) := (qR)𝑖 , qO (𝑔𝑖) := (qO)𝑖 ,

qM (𝑔𝑖) := (qM)𝑖 , qC (𝑔𝑖) := (qC)𝑖 .
If (𝑥, 𝜔) is a relation L prepared for 𝑙 public inputs, then (𝑥 ′𝜔 ′) is
a relation for L′ computed in the following way:

(1) PI(X) := ∑
𝑖∈[𝑙] −𝑥𝑖 · 𝐿𝑖 (𝑋)

(2) fL, fR, fO ∈ F[𝑋] are defined by the following condition:

∀𝑖 ∈ [𝑛]

fL (𝑖) = xa𝑖 , fR (𝑖) = xb𝑖 , fO (𝑖) = xc𝑖 .

It is easy to check that such a transition can be reversed, which

yields the proof. □

Remark 1: Note that calculation of 𝑥 ′ requires only the access to

statement 𝑥 and no access to secret witness 𝜔 .

Remark 2: Note that permutation 𝜎 was chosen in such a way that

𝜔 is a valid witness for L|𝑥 iff fL, fR, fO constructed as described

before from a valid witness for L′ |𝑥 ′ .

B FRI OVERVIEW

Definition 17. For a function 𝑓 : 𝑆 → F, let interpolant𝑓 be
the unique degree < |𝑆 | polynomial that satisfies interpolant𝑓 (𝑠) =
𝑓 (𝑠) for all 𝑠 ∈ 𝑆 . This polynomial can be constructed by Lagrange
interpolation.

Setup phase. In the setup phase, the prover and verifier agree on

the following parameters

◦ A prime field F.

◦ A positive integer 𝑅 ∈ Z>0 and the rate 𝜌 = 2
−𝑅

.

◦ A multiplicative domain 𝐷 = 𝐷 (0) = {𝜔,𝜔2, . . . , 𝜔𝑛} gener-
ated by an element 𝜔 = 𝜔0 ∈ F∗ of order 𝑛 = 2

𝑘
for some

𝑘 ∈ N. For chosen 𝜌 = 2
−𝑅

and 𝑛 = 2
𝑘
the protocol will

check if 𝑓 is of degree < 𝜌𝑛 = 2
𝑘−𝑅

.

◦ The prover and verifier agree on a number of rounds 𝑟 < 𝑘 −
𝑅 ∈ N and a sequence of sub-domains𝐷 (0) , 𝐷 (1) , 𝐷 (2) , . . . , 𝐷 (𝑟) ,
constructed inductively as follows: suppose 𝐷 (𝑖) was al-

ready defined and generated (as a cyclic group) by 𝜔𝑖 . Let

𝑞(𝑋) : F → F be the map defined by the rule: 𝑞(𝑋) = 𝑋 2
.

Then define 𝐷 (𝑖+1) = 𝑞(𝐷 (𝑖)). Note that 𝐷 (𝑖+1) is cyclic
subgroup of F∗ generated by 𝜔𝑖+1 = 𝜔2

𝑖
. Note that |𝐷 (𝑖) | =

|𝐷 (0) |/2𝑖 and that ∀𝑖 ∈ {0, 1, . . . , 𝑟 − 1}, 𝐷 (𝑖) can be split

https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://doi.org/10.1109/18.782097
https://cds.cern.ch/record/1139892
https://eprint.iacr.org/2019/1020

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

into cosets

⋃
𝑗 𝑠𝑖 𝑗𝐻

(𝑖)
where 𝐻 (𝑖) is the kernel of the homo-

morphism 𝑞(𝑋) |𝐷 (𝑖) : 𝐷 (𝑖) → 𝐷 (𝑖+1) . Note that all cosets
have equal size |𝐷 (𝑖) |/|𝐷 (𝑖+1) | = 2 and the number of cosets

𝑗 = |𝐷 (𝑖) |/2𝑖+1.
When we say that prover commits to function 𝑓 on domain 𝐷

this means prover sends an oracle containing 𝑓 |𝐷 i.e. all evaluations

of function 𝑓 on domain 𝐷 .

Commit phase. In the commitment phase, the prover inductively

constructs and commits to a sequence of functions 𝑓 (0) , . . . , 𝑓 (𝑟−1)

and a sequence of coefficients 𝑎0, . . . , 𝑎𝑑 with which the verifier

will construct the final function 𝑓 (𝑟) .

◦ Input: a purported low degree polynomial 𝑓 (0) := 𝑓 ∈
RS[F, 𝐷 (0) , 𝜌]. The prover commits to 𝑓 (0) on 𝐷 (0) .
◦ For 0 ≤ 𝑖 < 𝑟 , given that 𝑓 (𝑖) was already defined (and

committed to), the prover constructs 𝑓 (𝑖+1) : 𝐷 (𝑖+1) → F in
the following way:

• The verifier sends a random 𝑥 (𝑖) ∈ F.
• For 𝑦 ∈ 𝐷 (𝑖+1) , let 𝑆𝑦 = {𝑥 ∈ 𝐷 (𝑖) : 𝑞(𝑥) = 𝑦} be the

coset of 𝐷 (𝑖) mapped to 𝑦.

• Using interpolation, the prover constructs the polynomial

𝑝
(𝑖)
𝑦 (𝑋) := interpolant

𝑓 (𝑖) |𝑆𝑦 (𝑋) ,

and defines

𝑓 (𝑖+1) (𝑦) := 𝑝 (𝑖)𝑦 (𝑥 (𝑖)) .

◦ If 𝑖 < 𝑟 − 1, the prover commits to the values of 𝑓 (𝑖+1) on
𝐷 (𝑖+1) . If 𝑖 = 𝑟 − 1 then 𝑓 (𝑟) is a purported polynomial of

degree < 𝜌 |𝐷 (𝑟) |, in which case the prover commits to its

coefficients 𝑎0, . . . , 𝑎𝑑 .

Query phase. In the query phase, the verifier (probabilistically)

validates the proof sent by the prover.

◦ Input: a sequence of oracles 𝑓 (0) , . . . , 𝑓 (𝑟−1) , and coefficients

𝑎0, . . . , 𝑎𝑑 , with which the verifier constructs 𝑓 (𝑟) , by

𝑓 (𝑟) (𝑋) :=
𝑑∑︁

𝑘=0

𝑎𝑘𝑋
𝑘 ∈ RS[F, 𝐷 (𝑟) , 𝜌] .

◦ Verifier generates a random 𝑠 (0) ∈ 𝐷 (0) and for all 0 ≤ 𝑖 < 𝑟
lets

(1) 𝑠 (𝑖+1) := 𝑞(𝑠 (𝑖))
(2) 𝑆 (𝑖) be the coset of 𝐻 (𝑖) in 𝐷 (𝑖) containing 𝑠 (𝑖) .
◦ For 0 ≤ 𝑖 < 𝑟 − 1 the verifier checks that given 𝑓 (𝑖) , the
function 𝑓 (𝑖+1) was constructed according to the protocol:

• She queries 𝑓 (𝑖) on all of 𝑆 (𝑖) , and

• computes 𝑝 (𝑖) = interpolant
𝑓 (𝑖) |

𝑆 (𝑖) , and

• performs a “round consistency" check:

𝑓 (𝑖+1) (𝑠 (𝑖+1)) = 𝑝 (𝑖) (𝑥 (𝑖)).
Note that in the last check, the function considered is 𝑓 (𝑟)

which is in RS[F, 𝐷 (𝑟) , 𝜌] by construction. If all tests pass,

the verifier accepts the proof. Otherwise, she rejects.

Remark: Instead of taking a family of nested sub-domains to be

multiplicative subgroups it is also possible to take the cosets of

them. To be more precise, consider any shift 𝑔 ∈ F∗\𝐷 . There

is a modification to the FRI protocol operating over the domains

𝐷 (0)
′
= 𝑔𝐷 (0) , 𝐷 (1)

′
= 𝑔𝐷 (1) , . . . , 𝐷 (𝑟)

′
= 𝑔𝐷 (𝑟) The function

mapping 𝐷 (𝑖)
′
to 𝐷 (𝑖+1)

′
is 𝑞′ (𝑋) = 𝑞−1𝑋 2

. The modified version

of FRI has the same security guarantees as the original one.

C SUPPLEMENTARY PROOFS

Proof of Theorem 4. It is immediate from the completeness of

the FRI protocol that Algorithm 1 satisfies the completeness prop-

erty for the given relation, which is verified directly by inspection.

We also assume the existence of a (Gen,Com) binding commitment

tuple and model it as an oracle to the IOP on domain 𝐷 .

For the soundness bound, it suffices to show that the only source

of soundness error comes from the FRI protocol. We concern our-

selves with the situation when 𝑞(𝑋) passes the FRI check and the

verifier is convinced that 𝑞(𝑋) is 𝛿-close to some polynomial ℎ(𝑋)
with deg (ℎ) < 𝑑 − 𝑁 . This implies that, except at a 𝛿-fraction of

points on domain 𝐷 , the following relation holds:

𝑓 (𝑋) = 𝑈 (𝑋) + ℎ(𝑋)
𝑁∏
𝑖=1

(𝑋 − 𝑧𝑖) .

Note that 𝑡 (𝑋) = 𝑈 (𝑋) + ℎ(𝑋)∏𝑁
𝑖=1 (𝑋 − 𝑧𝑖) is a polynomial

of degree less than 𝑑 . From the second equation we get that this

polynomial is 𝛿-close to 𝑓 (𝑋) or that Δ(𝑓 , 𝑡) < 𝛿 . Moreover, we

have that ∀𝑖 ∈ [𝑁], 𝑡 (𝑧𝑖) = 𝑈 (𝑧𝑖) = 𝑦𝑖 by the definition of 𝑈 (𝑋).
This means 𝑡 (𝑋) satisfies all the requirements for the candidate

polynomial 𝑔 in the definition of R𝛿 (pp). Prover and verifier com-

plexity results follow immediately by inspection of the IOP and the

fact that the construction of an interpolation polynomial of degree

𝑁 can be achieved with 𝑂 (𝑁 log
3 𝑁) field operations.

□

Proof of Theorem 5. We construct the given IOP by using the

LPC scheme equipped with an additional oracle OD providing

access to D for both parties. Initially, the prover P queries OD (𝑓)
and appends the output {𝑥𝑖 ,𝑤𝑖 }𝜇𝑖=1 to its initial message to the

verifier V. Subsequently, P and V simulate the LPC IOP for the input

set 𝑆 = {𝑥𝑖 ,𝑤𝑖 }𝜇𝑖=1∪{𝑧𝑖 , 𝑦𝑖 }
𝑁
𝑖=1

of 𝜇+𝑁 pairs. This is possible as both

parties have access to 𝑆 as the {𝑧𝑖 , 𝑦𝑖 }𝑁𝑖=1 were provided as public

input. By the security properties of the LPC scheme, except with

probability 𝜖 (𝛿) the prover can convince the verifier of the existence
of some 𝑔 for which 𝑑𝑒𝑔(𝑔) < 𝑑 , Δ(𝑓 , 𝑔) < 𝛿 and ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝜇]
we have that 𝑔(𝑧𝑖) = 𝑦𝑖 and 𝑔(𝑥 𝑗) = 𝑤 𝑗 .

Suffices to argue that 𝑓 = 𝑔. We know by the properties of the

distinguisher that with probability 1 − 𝜂 (𝛿), ∃𝑘 ∈ [𝜇] for which
∀𝑔 ∈ 𝐿𝛿 (𝑓)\{𝑓 }, 𝑔(𝑥𝑘) ≠ 𝑓 (𝑥𝑘). However, from the knowledge

claim above we know that ∀𝑗 ∈ [𝜇], 𝑔(𝑥 𝑗) = 𝑤 𝑗 where𝑤 𝑗 = 𝑓 (𝑥 𝑗)
(since it was an oracle query response). This means that 𝑔(𝑥𝑘) =
𝑓 (𝑥𝑘) and, since Δ(𝑓 , 𝑔) < 𝛿 , we have that 𝑓 = 𝑔. □

Proof of Claim 1. We begin with the case that 𝜇 = 1. If at the

setup step the choice of 𝑥 ∈ F was random, by the Schwartz-Zippel

lemma the probability that any degree 𝑑 polynomial 𝑔 ∈ 𝐿𝛿 (𝑓)
satisfies 𝑔(𝑥) = 𝑓 (𝑥) is:

Pr

𝑥
[𝑔(𝑥) − 𝑓 (𝑥) = 0] ≤ deg (𝑔(𝑋) − 𝑓 (𝑋))

|F| ≤ 𝑑

|F| .

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Enumerating over all 𝑔 𝑗 ∈ 𝐿𝛿 (𝑓)\{𝑓 } with a union bound:

Pr

𝑥


⋃

𝑗∈ |𝐿𝛿 |−1
𝑔 𝑗 (𝑥) − 𝑓 (𝑥) = 0

 ≤
𝑑

|F| · (|𝐿𝛿 | − 1).

For 𝜇 > 1, the distinguisher needs to find at least one such point

out of 𝜇 i.i.d random samples. This will only fail if all 𝜇 random

samples are not separation points. The result follows from the

independence of the random samples, while the time complexity

bound follows as evaluation of 𝑓 takes 𝑂 (𝑑) time. □

Proof of Theorem 6. The random sampling distinguisher along-

side the FRI LPC define a PES satisfying the claim. The statement

follows directly from Theorem 4 and Claim 1, while the upper

bound on the soundness of 𝜂 is obtained using Theorem 1. □

D REDSHIFT SECURITY ANALYSIS

Below we provide a proof of Theorem 7. For clarity, we consider

the completeness and knowledge soundness cases separately. More

specifically, the protocol satisfying the theorem statement is:

RedShift(pp, PI, 𝑛,⊥, 𝑁 ; fL, fR, fO) .

For simplicity, we assume that any polynomial that uses the IOPP

schemes can be decomposed into parts that each have at most

degree 𝑛, thus allowing us to only require one RS code family for 𝑛.

Note that here we ignore the mask polynomials by setting a null

value for 𝑘 .

D.1 Completeness

Assume P possesses a valid witness consisting of polynomials

fL, fR, fO . which copy-satisfy 𝜎 . Note that the addition of mask-

ing polynomials doesn’t change the values of fL, fR, fO on 𝐷 . It is

straightforward to check that 𝐹6 (𝑋) is identically zero on 𝐷∗ by
the definition of witness polynomials, 𝐹1 (𝑋), 𝐹2 (𝑋), 𝐹3 (𝑋), 𝐹4 (𝑋)
will be zero on 𝐷∗ by construction of 𝑃 (𝑋) and 𝑄 (𝑋). To prove

completeness of the protocol it is then enough to check that 𝐹5 (𝑋)
is identically zero on𝐷∗. Using the properties of the Lagrange basis,
this is equivalent for 𝑃 (𝑔𝑛+1) = 𝑄 (𝑔𝑛+1).

By definition of 𝑃 (𝑋) and 𝑄 (𝑋), the above becomes:

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓𝑗 (𝑔𝑖) + 𝛽 · 𝑘 𝑗𝑔𝑖 + 𝛾

)
=

=

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓𝑗 (𝑔𝑖) + 𝛽 · 𝜎′ (𝑘 𝑗𝑔𝑖) + 𝛾

)
.

Since 𝜎′ = 𝜏 ◦ 𝜎 ◦ 𝜏−1, we rewrite this as follows:

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑛+𝑖 + 𝛽 · 𝜏

(
(𝑗 − 1)𝑛 + 𝑖

)
+ 𝛾

)
=

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑛+𝑖 + 𝛽 · 𝜏 ◦ 𝜎

(
(𝑗 − 1)𝑛 + 𝑖

)
+ 𝛾

)
Now we use the fact that 𝑓1, 𝑓2, 𝑓3 copy-satisfy 𝜎 :

𝑓(𝑗−1)𝑛+𝑖 = 𝑓𝜎 ((𝑗−1)𝑛+𝑖) .

Enumerating products on both sides proves equality, and hence

completeness.

D.2 Knowledge Soundness

We require two auxiliary lemmas, proved in [23].

Lemma 2. Let 𝑘 ∈ N. Fix 𝐹1, . . . , 𝐹𝑘 ∈ F[𝑋] and 𝑍 ∈ F[𝑋]. Sup-
pose that for some 𝑖 ∈ [𝑘], 𝑍 ∤ 𝐹𝑖 . Then, except with probability 1

|F |
over uniformly random 𝑎1, . . . , 𝑎𝑘 ∈ F, 𝑍 ∤ 𝐹 , where 𝐹 :=

∑𝑘
𝑖=1 𝑎𝑖𝐹𝑖 .

Lemma 3. Let 𝑛 ∈ N. Fix a permutation 𝜎 of [𝑛], and 𝑎1, . . . , 𝑎𝑛 ,
𝑏1, . . . , 𝑏𝑛 ∈ F. Suppose that for some 𝑖 ∈ [𝑛] 𝑏𝑖 ≠ 𝑎𝜎 (𝑖) . Then except
with probability 𝑛

|F | over random 𝛽,𝛾 ∈ F:
𝑛∏
𝑖=1

(𝑎𝑖 + 𝛽𝑖 + 𝛾) =
𝑛∏
𝑖=1

(𝑏𝑖 + 𝛽𝜎 (𝑖) + 𝛾) .

Let 𝑡1 and 𝑡2 denote the number of PES and LPC instances.

(1) The PES is used on 𝑆𝜎1 , 𝑆𝜎2 , 𝑆𝜎3 , qL, qR, qM, qO, qC at point

𝑦 ∈ F\𝐷 sent by V, hence 𝑡1 = 8. Although technically re-

quired, we do not evaluate the PES on 𝐿1, 𝐿𝑛, 𝑍, 𝑆𝑖𝑑1 , 𝑆𝑖𝑑2 , 𝑆𝑖𝑑3
as these polynomials are in reduced form and can be evalu-

ated by V without any help from P. More precisely, polyno-

mials 𝑆𝑖𝑑 𝑗
for 𝑗 ∈ [3] are linear, 𝐿𝑖 (𝑋) for 𝑖 ∈ [𝑛 + 1] are of

the form:

𝐿(𝑋) =
𝑐𝑖 (𝑋𝑛+1 − 1)

𝑋 − 𝑔𝑖
for some constant 𝑐𝑖 and 𝑍 (𝑋) is of the form:

𝑍 (𝑋) =
∏
𝑎∈𝐻 ∗

(𝑋 − 𝑎) = 𝑋𝑛 − 1
𝑋 − 1 .

(2) LPC instances forwitness polynomials 𝑓1 (𝑋) = fL (𝑋), 𝑓2 (𝑋) =
fR (𝑋), 𝑓3 (𝑋) = fO (𝑋),𝑇0 (𝑋), 𝑇1 (𝑋),𝑇2 (𝑋) (for 𝑇 = 𝑇0 +
𝑋𝑛𝑇1+𝑋 2𝑛𝑇2) are evaluated at point𝑦. For polynomials 𝑃 (𝑋)
and 𝑄 (𝑋) they are evaluated at points 𝑦 and 𝑦 · 𝑔 (within

one instance), giving 𝑡2 = 8. Note that 𝑡2 = 6 if we have 𝑇

instead of the optimized 𝑇0,𝑇1,𝑇2.

We begin by showing round-by-round soundness error. Suffices

to construct a State function using the transcript of the proof, which

is of the following form:

tr := (𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝑃,𝑄, a,𝑇 , y, g · y,𝑤, tr𝐿𝑃𝐶)
where a = (𝑎1, ..., 𝑎6) and y, g · y ∈ F𝑁 while for 𝑗 ∈ [3],𝑤 :=

𝑇 (y), 𝑃 (y), 𝑃 (g · y), 𝑄 (y), 𝑄 (g · y), 𝑓𝑗 (y), 𝑆𝑖𝑑 𝑗
(y), 𝑆𝜎 𝑗

(y)
the openings of each evaluated polynomial at y, g · y and tr𝐿𝑃𝐶 =

(tr1
𝐿𝑃𝐶

, ..., tr
𝑡1+𝑡2
𝐿𝑃𝐶
) the transcript of the LPC evaluation routines,

where tr
𝑖
𝐿𝑃𝐶

the transcript of the 𝑖-th LPC routine. Note that the LPC

routines have round-by-round soundness error 𝜖FRI and therefore

admit a set of functions State
𝑖
𝐿𝑃𝐶

for 𝑖 ∈ [𝑡1 + 𝑡2].
State(𝑝𝑝, PI, 𝑛,⊥, 𝑁 , tr)

(1) If 𝑓1, 𝑓2, 𝑓3, 𝑃,𝑄,𝑇 𝛿-close to codewords
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3, 𝑃, 𝑄̂,𝑇 :

(a) If
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 copy-satisfy 𝜎 and 𝑞C +PI+𝑞L ˆ𝑓1 +𝑞R ˆ𝑓2 +𝑞O ˆ𝑓3 +

𝑞M ˆ𝑓1 ˆ𝑓2‘ = 0, accept

(b) If 𝑍 (𝑋) |𝐹𝑖 (𝑋) for all 𝑖 ∈ [6], accept
(c) If any element of a is empty, reject

(d) If 𝑍 (𝑋) |∑6

𝑖=1 𝑎𝑖𝐹𝑖 (𝑋), accept

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

(e) If any element of y is empty, reject

(f) If ∀𝑚 ∈ [𝑁],∑6

𝑖=1 𝑎𝑖𝐹𝑖 (𝑦𝑚) = 𝑇 (𝑦𝑚) · 𝑍 (𝑦𝑚), accept
(g) Reject

(2) If tn
𝑖
𝐿𝑃𝐶

=⊥ for some 𝑖 ∈ [𝑡1 + 𝑡2], reject.
(3) Return ∩𝑡1+𝑡2

𝑖=1
State

𝑖
𝐿𝑃𝐶
(𝑝𝑝, PI, 𝑛, 𝑁 , tr𝑖

𝐿𝑃𝐶
).

Note that tr =⊥, State(𝑝𝑝, PI, 𝑛,⊥, 𝑁 ,⊥) = 0. We begin with

Step 1, when the (partial) transcript provided contains a set of func-

tions 𝛿-close to codewords. Suppose that we have a non-satisfying

assignment. By definition of the constraint system argument, this is

a set of codewords
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 that either (1) don’t copy-satisfy 𝜎 , or (2)

don’t satisfy the equality 𝑞C + PI+𝑞L ˆ𝑓1 +𝑞R ˆ𝑓2 +𝑞O ˆ𝑓3 +𝑞M ˆ𝑓1 ˆ𝑓2‘ = 0

on 𝐷∗ . In this case, part (a) never holds. Part (b) outputs accept

if 𝑍 (𝑋) divides all of the provided 𝐹𝑖 , which can be inferred from

the transcript using
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3, 𝛽, 𝛾, 𝑃, 𝑄̂ . This however means that

it divides 𝐹6, and therefore that the second condition in part (a)

is satisfied. Thus the only way for part (b) to output success is if

the
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 don’t copy-satisfy 𝜎 and all 𝐹𝑖 are divisible by 𝑍 . This

happens with probability at most 1/|F|. This is because by the proof
of completeness property:

𝑞∏
𝑖=1

3∏
𝑗=1

(
ˆ𝑓(𝑗−1)𝑞+𝑖 + 𝛽 · 𝜏

(
(𝑗 − 1)𝑞 + 𝑖

)
+ 𝛾

)
=

𝑞∏
𝑖=1

3∏
𝑗=1

(
ˆ𝑓(𝑗−1)𝑞+𝑖 + 𝛽 · 𝜏 ◦ 𝜎

(
(𝑗 − 1)𝑞 + 𝑖

)
+ 𝛾

)
. (•)

However, P doesn’t posses a valid witness (else part (a) would

succeed) and, since 𝑞 = 1 here, lemma 3 gives:

Pr(𝑒𝑞. (•) holds | ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 don’t copy-satisfy 𝜎) ≤
1

|F| .

The probability of moving to accept in (d) is also upper bounded

by 1/|F|, since a is randomly distributed (and some 𝐹𝑖 is not divisible

by 𝑍 , else (b) would accept); the result follows from Lemma 2. Part

(f) moves to accept only in the case where no𝑇 exists for which the

given equality holds identically, else part (d) would have accepted.

Since the evaluations are at a random point y ∈ F, the probability
that they coincide for two different polynomials is bounded above as

4𝑛/|F\𝐷 |, since the degrees of∑6

𝑖=1 𝑎𝑖𝐹𝑖 ,𝑇 ·𝑍 are atmost 4𝑛 and thus

the polynomials can only agree on up to 4𝑛 points without being

identically equal. Using the Schwartz-Zippel lemma and taking a

union bound over all possible tuples (note that the Johnson bound

𝐽𝜌,𝜈 upper bounds the list size) yields an error term of 𝜖IOP :=

𝐽
𝑡2
𝜌,𝜈 · 4𝑛/|F\𝐷 |. To succeed for 𝑁 independently random points,

this yields an error term of 𝜖𝑁
IOP

. This gives a round-by-round error-

contribution term of 𝜖1 = max

(
1/|F|, 𝜖𝑁

IOP

)
in the case when the

input polynomials are 𝛿-close to codewords.

If the transcript terminates within the first step, then we have

that the error is at most 𝜖1 by the above analysis. In the case that the

transcript ends after this, it must hold that there exists at least one

of the prover provided oracles that is not 𝛿-close to a codeword. We

evaluate State
𝑖
𝐿𝑃𝐶
∀𝑖 ∈ [𝑡1 + 𝑡2] and an accepting output happens

only if all transcripts tr
𝑖
𝐿𝑃𝐶

for 𝑖 ≤ 𝑡1 + 𝑡2 lead to accepting states.

However, at least one function is not 𝛿-close to a codeword, which

would add 𝜖FRI soundness error. Let the corresponding transcript

of this function be tn
𝑖
𝐿𝑃𝐶

, and notice that by the soundness of the

LPC scheme, Pr(State𝑖
𝐿𝑃𝐶
(𝑝𝑝, PI, 𝑛, 𝑁 , tr𝑖

𝐿𝑃𝐶
) = 1) ≤ 𝜖FRI . By the

Frechet inequality, the probability over a conjunction of events is

upper bounded by the minimum of the probabilities of the individ-

ual events. We thus get that Step 3 has round-by-round soundness

upper bounded by 𝜖FRI.

Remains to show that if State outputs 0, then so will the verifier.

There are two situations in which State rejects a full transcript: if

none of parts (a), (b), (d), (f) accept, or if some State
𝑖
𝐿𝑃𝐶

rejects. In

the former, the verifier will output 0 since the final step in verifica-

tion will fail as otherwise step (f) would have passed. In the latter,

rejection by State
𝑖
𝐿𝑃𝐶

means that the verifier for the LPC will also

fail. However, this means that the verifier for the whole IOP fails,

as the second last step in verification is to check that all LPC/PES

instances verify.

The extractor E(𝑝𝑝, PI, 𝑛,⊥, 𝑁 , tr) with access to the first three

functions as the transcript runs the Guruswami-Sudan list-decoding

algorithm and returns the codewords
ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 𝛿-close to 𝑓1, 𝑓2, 𝑓3. If

State moves to accept with probability greater than max (𝜖1, 𝜖FRI),
then

ˆ𝑓1, ˆ𝑓2, ˆ𝑓3 all copy-satisfy 𝜎 and identically satisfy 𝑞C + PI +
𝑞L ˆ𝑓1 + 𝑞R ˆ𝑓2 + 𝑞O ˆ𝑓3 + 𝑞M ˆ𝑓1 ˆ𝑓2‘ = 0, as part (a) has to accept in step 1

of State. This is by the round-by-round soundness analysis above,

which bounds the probability of moving to an accepting state from

an invalid starting witness to less than max (𝜖1, 𝜖FRI).

D.3 Zero-Knowledge

Suffices to show that there exists a simulator 𝑆 not possessing a

valid witness for L such that 𝑆 is able to generate a transcript

⟨𝑆⟩ which is indistinguishable from the view of an honest prover-

verifier interaction up to 𝑧. Since we need perfect zero knowledge,

we will show that 𝑧 = 0. For simplicity we denote the transcript

in this context as the random variables ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, where 𝑎𝑖
represents either the verifier’s messages/queries or the prover’s

responses to the corresponding queries. Note that the transcript

doesn’t capture any information about the oracles themselves: we

treat all oracles as ideal and hence as exposing no data except for

the elements sent in response to the verifier’s queries (which are

encoded inside 𝑎𝑖). This is a public-coin protocol in which all of the

verifier’s queries are randomly distributed field elements.

We are going to construct the simulator 𝑆 and transcript ⟨𝑆⟩ in
the following way: we will set as many variables of the transcript as

possible to be uniformly and randomly distributed. All remaining

values will be uniquely fixed by the choice of the previous ran-

dom variables. We will then show that such an approach finally

results in the requirement for the witness polynomials 𝑓𝑖 to have

uniformly and randomly distributed values over some domains

𝐾𝑖 (𝐾𝑖 are in general different for each witness polynomial). Then

we will show that adding to each witness polynomial a masking

polynomial𝐻𝑖 (𝑋) of degree at least |𝐾𝑖 | is enough to achieve the re-
quired uniform distribution of values over 𝐾𝑖 , which suffices for the

proof. More specifically, to retain soundness we will add masking

polynomials of the form 𝑍 (𝑋)𝐻𝑖 (𝑋), as we don’t want to change

the values of 𝑓𝑖 (𝑋) on the domain 𝐷 = 𝐻∗ defined by 𝑍 (𝑋).
We can rewrite the transcript of RedShift in the following form:

⟨𝛽,𝛾, 𝑧,T ⟨𝑓1⟩,T ⟨𝑓2⟩,T ⟨𝑓3⟩,T ⟨𝑇 ⟩,T ⟨𝑃⟩,T ⟨𝑄⟩⟩,

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

where T ⟨𝑓 ⟩ denotes the part of the transcript corresponding to the
LPC with respect to the witness oracle 𝑓 . Note that we do not list

the transcripts corresponding to the instances of the elements that

are precomputed as part of the public parameters.

Let 𝛽,𝛾 to be uniformly randomly distributed over F and 𝑦 to

be uniformly and randomly distributed over F\𝐻 . As those values

are also taken at random on exactly the same domains by a honest

verifier during the actual interaction with the prover, this part of the

transcript in ⟨𝑆⟩ and ⟨𝑃,𝑉 ⟩ is equidistributed. For ⟨𝑆⟩ we also take

the openings of each witness function except for𝑇 (𝑋), 𝑃 (𝑋), 𝑄 (𝑋)
to be uniformly randomly distributed over F. The evaluation of

𝑇 (𝑋) at 𝑦 is uniquely determined for any true transcript ⟨𝑃,𝑉 ⟩
and hence the same relation between variables should hold for the

simulator’s transcript ⟨𝑆⟩ for them to be indistinguishable. Note,

we have used the fact that 𝑦 ∉ 𝐻 here: in this case 𝑍 (𝑦) ≠ 0 and so

we can obtain a unique value for the RHS of (1) that will satisfy
(1) for any random choice of evaluations on LHS. Similarly for

the values of 𝑃 (𝑋) and 𝑄 (𝑋): by construction, these values are

uniquely specified based on 𝑓1, 𝑓2, 𝑓3. At any point when we sample

a random element for the value of a witness polynomial 𝑓𝑖 (𝑔 𝑗) for
𝑔 𝑗 ∈ 𝐻∗ (which we have not sampled before), we make sure that

the values of 𝑇 (𝑔 𝑗), 𝑃 (𝑔 𝑗), 𝑄 (𝑔 𝑗) are updated so as to satisfy the

above constraints. Note that this means we also need to sample

𝑓𝑘 (𝑔 𝑗), 𝑘 ∈ [3]\{𝑖} as this is needed for 𝑃,𝑄,𝑇 . We keep track of

all such oracle calls and return the provided value in the case of

repeated queries, retaining consistency. In the analysis below, we

implicitly do this check (and update) whenever it is stated that we

randomly sample a new element as the evaluation of some function

of a witness polynomial.

We now analyze the transcript T (𝑓) for a given witness polyno-

mial where the LPC is instantiated with FRI. In the actual interac-

tion between the prover and verifier the transcript T ⟨𝑓 ⟩ is of the
following form:

𝑖1, 𝑖2, . . . , 𝑖𝑘

𝑧1, 𝑧2, . . . , 𝑧𝑘

𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝑟−1)

𝑎0, 𝑠
(0)

𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), . . . , 𝑞 (𝑟−1) (𝑠 (𝑟−1)), 𝑞 (𝑟−1) (𝑡 (𝑟−1))
where:

(1) 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ F are the points at which the verifier asks to

open oracle 𝑓 . 𝑘 = 1 for a single-point evaluation (conducted

for witness polynomials 𝑓1, 𝑓2, 𝑓3,𝑇 at𝑦) and 𝑘 = 2 for double

evaluation (conducted for 𝑃 and 𝑄 at the points 𝑦 and 𝑔 · 𝑦).
(2) 𝑧1, 𝑧2, . . . , 𝑧𝑘 are the corresponding prover-sent openings.

(3) 𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝑟−1) are random elements of F sent by the

verifier during the FRI COMMIT phase, which is conducted

with respect to the quotient function:

𝑞(𝑋) = 𝑞 (0) (𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)∏𝑘
𝑙=1
(𝑋 − 𝑖𝑙)

.

(4) 𝑎0 is the coefficient of 𝑓 (𝑟) ∈ F sent by the prover at the end

of the FRICOMMIT phase. Note that according to the remark

at the end of the FRI section we assume all our instantiations

of FRI are fully unrolled and hence that 𝑓 (𝑟) (𝑥) is constant.
The proof for the general case deg(𝑓 (𝑟)) > 0 is only a little

more involved and is handled in a similar fashion.

(5) 𝑠 (0) ∈ 𝐷 is the value chosen by the verifier at the beginning

of the FRI QUERY phase.

(6) Every 𝑠 (𝑖+1) = 𝑞(𝑠 (𝑖)) (for the definition of 𝑞(𝑥) refer to FRI

section). 𝑠 (𝑖) , 𝑡 (𝑖) is the coset of 𝑠 (𝑖+1) .

The simulated transcript ⟨𝑆⟩ of FRI on 𝑓 is constructed in the

following way:

(1) The point 𝑖 (or two points (𝑖1, 𝑖2)) are already fixed by the

previous history of ⟨𝑆⟩: i.e. 𝑖 = 𝑦 or (𝑖1, 𝑖2) = (𝑦,𝑔 · 𝑦).
(2) Similarly for the corresponding evaluations 𝑧1 (or (𝑧1, 𝑧2)):

recall that they are either chosen at random (for witness

polynomials 𝑓1, 𝑓2, 𝑓3) or defined uniquely by all the previous

values (for 𝑇,𝑄, 𝑃).

(3) The values 𝑥 (𝑖) are distributed uniformly over F for an hon-

est verifier𝑉 . We take the same approach in the simulator 𝑆 :

in ⟨𝑆⟩ every 𝑥 (𝑖) is chosen uniformly at random from F.

(4) For ⟨𝑆⟩ we take 𝑠 (0) to be uniformly random over 𝐷 = 𝐷 (0) .
(5) In ⟨𝑆⟩ the values of 𝑞 (0) (𝑠0) and 𝑞 (0) (𝑡 (0)) are also taken

uniformly at random over F.
(6) Recall that in the FRI protocol we have:

𝑞 (𝑖+1) (𝑠 (𝑖+1)) = 𝑝 (𝑖)
𝑠 (𝑖+1)
(𝑥 (𝑖))

where:

𝑝
(𝑖)
𝑠 (𝑖)
(𝑋) := interpolant

𝑞 (𝑖) |{𝑠 (𝑖) ,𝑡 (𝑖) } (𝑋),

hence the value of every 𝑞 (𝑖+1) (𝑠 (𝑖)) is uniquely determined

by the values of 𝑞 (𝑖) (𝑠 (𝑖)) and 𝑞 (𝑖) (𝑡 (𝑖)) that were chosen
at the previous iteration. In the simulator transcript, this re-

lation between 𝑞 (𝑖) (𝑠 (𝑖)), 𝑞 (𝑖) (𝑡 (𝑖)), 𝑞 (𝑖+1) (𝑠 (𝑖+1)) should re-
main unchanged. Sincewe have fixed the values of𝑞 (0) (𝑠 (0)),
𝑞 (0) (𝑡 (0)) above, 𝑞 (1) (𝑠 (1)) in ⟨𝑆⟩ is then uniquely deter-

mined.

(7) We proceed by induction: to fix the value𝑞 (𝑖) (𝑠 (𝑖))we choose
the value 𝑞 (𝑖) (𝑡 (𝑖)) to be uniformly randomly distributed

over F and compute 𝑞 (𝑖+1) (𝑠 (𝑖+1)) for 𝑖 ∈ [𝑟 − 2]\{1}.
(8) Compute 𝑎0 based on 𝑞 (𝑟−1) (𝑠 (𝑟−1)) and 𝑞 (𝑟−1) (𝑡 (𝑟−1)).
Remains to show that this achieves the same distribution for

transcripts in the honest prover-verifier interaction ⟨𝑃,𝑉 ⟩. First, for
all witness polynomials (except for 𝑇, 𝑃,𝑄) we want their values at

𝑦 to look like randomly distributed values over F. Moreover, due to

our construction of ⟨𝑆⟩ we want the values
𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), 𝑞 (1) (𝑡 (1)), 𝑞 (2) (𝑡 (2)), . . . , 𝑞 (𝑟−1) (𝑡 (𝑟−1))

to look uniformly random. In order to show this we need the fol-

lowing lemma:

Lemma 4. Let 𝑓 (𝑋) denote the interpolation polynomial of 𝑍 =

{𝑧1, 𝑧2, . . . , 𝑧𝑛} over domain 𝐼 = {𝑖1, . . . , 𝑖𝑛}. Let 𝑥 ∈ F be different
from all 𝑖2, . . . 𝑖𝑛 . If 𝑧1 is uniformly random over F then 𝑓 (𝑥) is also
uniformly random over F.

Proof. Recall the Lagrange interpolation polynomial:

𝑓 (𝑋) =
𝑛∑︁
𝑗=1

∏
𝑘≠𝑗

𝑋 − 𝑖𝑘
𝑖 𝑗 − 𝑖𝑘

𝑧 𝑗 .

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov

Figure 2: FRI Transcript. Bold lines separate the adjacent levels of FRI, green blocks illustrate the values that are taken uniformly

at random, yellow blocks represent the values that are uniquely determined by the coset of the previous layer, while red blocks

have no impact on the construction of ⟨𝑆⟩.

Fix 𝑥, 𝑖1, . . . , 𝑖𝑛 and 𝑧1, . . . , 𝑧𝑛 , 𝑓 (𝑥) as a function of 𝑧1 equals:

𝑓 (𝑥) = 𝑎𝑧1 + 𝑏.

where 𝑎, 𝑏 - constants ∈ F. Note that:

𝑎 =
∏
𝑘≠1

𝑥 − 𝑖𝑘
𝑖1 − 𝑖𝑘

≠ 0,

provided 𝑥 being different from all of 𝑖2, . . . 𝑖𝑛 . For a linear function,

the claim follows by the randomness of 𝑧1. □

Consider 𝑠 (01) and 𝑡 (01) (the coset of 𝑡 (1)). Indeed, at least one
of 𝑠 (01) or 𝑡 (01) is unequal to 𝑥 (0) . Without loss of generality as-

sume 𝑡 (01) ≠ 𝑥 (0) . We use lemma 4 for 𝐼 = {𝑠 (01) , 𝑡 (01) }, 𝑍 =

{𝑞 (0) (𝑠 (01)), 𝑞 (0) (𝑡 (01))} and 𝑥 = 𝑥 (0) which implies that a uni-

form distribution of 𝑞 (0) (𝑡 (01)) results in a uniform distribution for

𝑞 (1) (𝑡 (1)), independent of the value of 𝑞 (0) (𝑠 (01)).
We proceed by induction through repeated use of lemma 4. To

achieve a uniformly random distribution for 𝑞 (2) (𝑡 (2)) we need
a uniformly random distribution for one of the values from the

previous level: 𝑞 (1) (𝑠 (12)) or 𝑞 (1) (𝑡 (12)). Assume that 𝑠 (12) ≠ 𝑥 (1)

(hence satisfying the conditions of lemma 4). The uniform dis-

tribution of 𝑞 (2) (𝑡 (2)) then follows from the uniformly random

distribution of one of 𝑞 (1) (𝑠 (12)) which in turn follows from the

uniform distribution of 𝑞 (0) (𝑠 (02)). The same logic is then applied

for all downstream layers of FRI. This is illustrated in fig. 2.

Finally, to achieve the same distribution of variables in tran-

scripts ⟨𝑃,𝑉 ⟩ and ⟨𝑆⟩ we need to add more “degrees of freedom"

for each witness polynomial 𝑓𝑖 , 𝑖 ∈ [3]. More precisely, we want

the evaluation:

𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), 𝑞 (0) (𝑡 (01)),

𝑞 (0) (𝑠 (02)), . . . (𝑟𝑖 + 1 values in total)

over the set 𝐾
′
𝑖
= {𝑠 (0) , 𝑡 (0) , 𝑡 (01) , 𝑠 (02) , . . .} on the top level of FRI

to be uniformly random for each 𝑖 ∈ [3]. Now, recall that:

𝑞 (0) (𝑋) = 𝑞(𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)∏𝑘
𝑙=1
(𝑋 − 𝑖𝑙)

. (∗∗)

In this case the sets {𝑖1, . . . , 𝑖𝑘 } and 𝐷 are disjoint. This in turn

means that a uniformly random distribution of values of 𝑞 (0) (𝑋)
over 𝐾

′
𝑖
is exactly the same as the uniformly random distribution of

values of 𝑓𝑖 over the same domain (as all other terms in (∗∗) are now
fixed by previous considerations). Plugging in the the requirement

for 𝑓𝑖 (𝑦) to be also uniformly randomly distributed we arrive at the

set 𝐾𝑖 = 𝐾
′
𝑖
∪ 𝑦 with |𝐾𝑖 | = 𝑟𝑖 + 2 at which the values of 𝑓𝑖 should

look like random elements in F for 𝑖 ∈ [3].
Since𝑇, 𝑃,𝑄 are each fully specified by 𝑓1, 𝑓2, 𝑓3 on 𝐷 , we need to

add to𝐾𝑖 any potential oracle queries in the FRI instances for𝑇, 𝑃,𝑄

that sampled values for which the 𝑓𝑖 were not already queried.

Denote the number of these new calls by 𝑟𝑇 , 𝑟𝑃 , 𝑟𝑄 . Since for all of

𝑇, 𝑃,𝑄 queried at a point 𝑔 ∈ 𝐷 the values of 𝑓𝑖 (𝑔) have to also be

queried if they were not queried already, any potential extra queries

due to these variables are added to the respective degrees of all

three witness polynomials 𝑓𝑖 . To achieve this property, it is enough

to replace 𝑓𝑖 (𝑋) by 𝑓
′
𝑖
(𝑋) = 𝑓 (𝑋) + 𝐻𝑖 (𝑋)𝑍 (𝑋) where 𝐻𝑖 (𝑥) is a

random polynomial of degree 𝑟𝑖 + 𝑟𝑇 + 𝑟𝑃 + 𝑟𝑄 + 1.

E FRI PARAMETERS

As described in the main text of the paper and in particular in

Section 6, one has the freedom to pick FRI parameters that also

affect contributions into the soundness error of RedShift due to

the list size |𝐿 |. In general, smaller list sizes will lead to a smaller 𝛿
parameter (this is intuitively expected, as a larger list size requires

less sensitivity) that in turn reduces FRI soundness for a chosen

domain 𝐷 , parameter 𝜌 and number of queries. Alternatively, one

can pick another limit in the FRI soundness formula

𝑝 (𝜌, 𝜈) =
(
1 −𝑚𝑖𝑛

{
𝛿0, 𝐽𝜈 (𝐽𝜈 (1 − 𝜌))

}
+ 𝜈 log |𝐷 |

)
and set 𝛿0 = (1 − 𝜌)/2 to be in the unique decoding radius. In

this case list size |𝐿 | = 1, but FRI has smaller soundness for the
same number of queries. This means that one has to pay particular

attention to the final system soundness as described in Section 7:

for in the case where the sum 𝐴1 + 𝜖𝐹𝑅𝐼 ∼ 𝐴1 one should also

consider the case of the limit 𝛿0 = (1 − 𝜌)/2 in the FRI soundness

term and can recalculate 𝐴1 and thus a final soundness in case of

RedShift: Transparent SNARKs from List Polynomial Commitments CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

list size |𝐿 | = 1. Such checks are also important if one would want

to reduce the field size for a corresponding reduction in proof size.

F PROOF SIZE OPTIMIZATIONS

There are various options that can reduce the proof size. Some of

the are described in detail in [20]. There are two essential parts to

check satisfiability at the random point 𝑦:

(1) Consistency between polynomial openings at 𝑦. The prover

sends the purported evaluations to the verifier and these

values are used for two subroutines:

(a) Check the equations from Section 5 at 𝑦.

(b) Simulate oracles to the quotient function 𝑞(𝑦).
(2) Proximity testing performed by the invocation of FRI.

Merging Oracles: As described in [20], the prover can join the

evaluations of the different polynomials over the domain 𝐷 into

a single oracle by placing the corresponding values into the same

leaf of the Merkle tree. This reduces the total number of Merkle

paths required for authentication, which is a bottleneck for proof

size. We can perform such a joining operation for the following

sets of polynomials:

(1) Constraint polynomials: selectors 𝑞𝐿, 𝑞𝑅, 𝑞𝑂 , 𝑞𝑀 , 𝑞𝐶 and per-

mutation polynomials 𝑆𝑖𝑑1 , 𝑆𝜎1 , 𝑆𝜎2 , 𝑆𝜎3 , as all those are in-

dependent and prepared at setup.

(2) Witness polynomials: 𝑓𝐿, 𝑓𝑅, 𝑓𝑂 .

(3) Grand product polynomials: 𝑃,𝑄 .

(4) Polynomials 𝑇0,𝑇1,𝑇2 for which

𝑇 (𝑋) = 𝑋 2𝑛𝑇2 (𝑋) + 𝑋𝑛𝑇1 (𝑋) +𝑇0 .

While we initially have to provide 17 independent Merkle paths

for the authentication of various oracle values, this optimization

reduces their number to 4, directly reducing proof size and verifi-

cation time. This is due to the smaller number of prover-provided

Merkle paths which imply a smaller number of hash function invo-

cations, which are the current verification time bottleneck. Such

an argument universally applies to all the optimization described

below that also reduce proof sizes.

Bitreversed Domain Element Enumeration as Merkle Tree

Leaves: Another important optimizations for FRI is to use “bitre-

verse” enumeration when placing the claimed LDE values into the

Merkle tree. In this case, values that form the coset required for the

FRI “folding” step are always adjacent and can thus be placed in

the same leaf (combined with the optimization below), sharing a

single Merkle path per FRI intermediate oracle query step. We do

not use this optimization in the prototype implementation.

Concatenating Merkle Tree Leaves:We can place more values

into the leaves of every Merkle tree used to instantiate the oracles.

This optimization allows us to use a larger ‘localization parameter’

for FRI and thus reduce the number of intermediate oracles. In

practice implementations follow an adaptive strategy where the

localization parameter is large (usually 8) for the initial FRI stages

when the Merkle path is “long” and decreases it when the tree

becomes more shallow.

Other optimizations exist: e.g. performing proof-of-work on

top of challenge values obtained from the transcript to reduce the

number of required FRI queries (as used in [2]) and other estimates

for the number of required queries. To the best of our knowledge,

there is no public analysis for such optimizations and we thus do

not use them in our analysis.

For completeness we should also mention that for a substantial

number of queries of Merkle path elements that are close to the root

are often duplicate between queries and thus it may be beneficial

to send them once, only later sending the values that are missing

to complete the path to the leafs. One can also perform a smaller

number of FRI “folding” steps and output not just a single coefficient

of the claimed low degree polynomial, but settle on a larger degree

based on the expected number of queries.

G BATCHED FRI

Consider the following theorem found in [3]. We define 𝐽
[𝑘]
𝜈 (𝜆) =

𝐽𝜈 (𝐽𝜈 (· · · (𝐽𝜈 (𝜆)))), where there are 𝑘 iterations of the function 𝐽𝜈 .

We also denote the relative hamming distance of set 𝑆 ⊆ F𝑛 as

Δ(𝑆) = min{Δ(𝑤,𝑤0) |𝑤,𝑤0 ∈ 𝑆,𝑤 ≠ 𝑤0}.

Theorem 8. Let 𝑉 ⊆ F𝑛 be a linear space over a finite field F
with Δ(𝑉) = 𝜆. Let 𝑢∗ ∈ F𝑛 and 𝜖 > 0 satisfy 𝛿 < 𝐽

[𝑙+1]
𝜖 (𝜆). For

𝑢1, 𝑢2, . . . , 𝑢𝑙 ∈ F𝑛 define

𝐴 =

{
𝛼 ∈ F∗

�����Δ(𝑢∗ + 𝑙∑︁
𝑖=1

𝛼𝑖𝑢𝑖 ,𝑉) < 𝛿
}
.

If |𝐴| > 𝑙 · (2/𝜖)𝑙+2, then ∀𝑗 ∈ [𝑙], ∃𝑣∗, 𝑣 𝑗 ∈ 𝑉 such that:������
𝑖

������ (𝑢∗𝑖 = 𝑣∗𝑖) ∧
©­«

𝑙∧
𝑗=1

(𝑢 𝑗)𝑖 = (𝑣𝑙)𝑖ª®¬

������ ≥ (1 − 𝛿 − 𝜖)𝑛,

where (𝑢 𝑗)𝑖 denotes the 𝑖-th coordinate of 𝑢 𝑗 and 𝑖 ∈ [𝑛].
In particular, Δ(𝑢∗, 𝑣∗) ≤ 𝛿 + 𝜖 and ∀𝑖 ∈ [𝑙] :

Δ(𝑢𝑖 , 𝑣𝑖) ≤ 𝛿 + 𝜖.

Specifying this theorem for 𝑉 = RS[F, 𝐷, 𝜌] (for which 𝜆 =

Δ(𝑉) = 1 − 𝜌), the contrapositive yields the following corollary:

Corollary 1. Let 𝑉 = RS[F, 𝐷, 𝜌] be the family of RS-codes.
Let 𝜖 ∈ (0, 1), 𝛿 > 0 satisfy 𝛿 < 𝐽

[𝑙]
𝜖 (1 − 𝜌). Let 𝑙 ≥ 2 ∈ N and

𝑢1, 𝑢2, . . . , 𝑢𝑙 ∈ F𝑛 , such that there exists 𝑖 ∈ [𝑙] for which Δ(𝑢𝑖 ,𝑉) >
𝛿 + 𝜖 . Then it holds that:

|𝐴| ≤ (𝑙 − 1)
(
2

𝜖

)𝑙+1
.

We sketch a batched FRI protocol, the correctness of which is a

trivial consequence of the previous corollary.

Batched FRI protocol:

(1) P publishes oracles to 𝑓1, . . . , 𝑓𝑘 .

(2) V selects random 𝛼 ∈ F∗ and sends it to P.

(3) P and V perform FRI w.r.t 𝑓 =
∑𝑘
𝑖=1 𝛼

𝑖−1 𝑓𝑖 .
(4) V accepts if the previous step accepts.

	Abstract
	1 Introduction
	1.1 Prior & Concurrent Work
	1.2 Our Contributions
	1.3 Transparent zk-SNARKs

	2 Overview
	3 Definitions
	3.1 Notation
	3.2 Preliminaries on Reed-Solomon codes
	3.3 Interactive Oracle Proofs and IOPs of Proximity
	3.4 Fast Reed-Solomon IOPP

	4 List Polynomial Commitment
	4.1 Specification
	4.2 Instantiation
	4.3 Polynomial Commitments from LPCs

	5 RedShift
	5.1 Protocol Instantiation

	6 System Instantiation
	7 Results
	8 Optimizations and Variants
	8.1 Batching FRI
	8.2 Binary Fields
	8.3 Recursion
	8.4 Different Proof Systems

	References
	A Constraint System Equivalence
	B FRI Overview
	C Supplementary Proofs
	D RedShift Security Analysis
	D.1 Completeness
	D.2 Knowledge Soundness
	D.3 Zero-Knowledge

	E FRI parameters
	F Proof Size Optimizations
	G Batched FRI

