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Abstract

Most electronic voting systems today satisfy the basic requirements of privacy, unreusability, eligibility and
fairness in a natural and rather straightforward way. However, receipt-freeness, incoercibility and universal
verifiability are much harder to implement and in many cases they require a large amount of computation
and communication overhead. In this work, we propose a blockchain-based voting system which achieves
all the properties expected from secure elections without requiring too much from the voter. Coercion
resistance and receipt-freeness are ensured by means of a randomizer token – a tamper-resistance source of
randomness which acts as a black box in constructing the ballot for the user. Universal verifiability is ensured
by the append-only structure of the blockchain, thus minimizing the trust placed in election authorities.
Additionally, the system has linear overhead when tallying the votes, hence it is scalable and practical for
large scale elections.

Keywords: Internet voting, blockchains, coercion resistance, receipt-freeness, universal verifiability, com-
mitments, zkSNARKs.

1. Introduction

Voting is an essential part of any democratic society, delivering the will of people in a fair and trustworthy
manner. Compared to traditional voting systems which have a large overhead in both time and money,
electronic voting (e-voting) systems present an alternative that aims to be secure, efficient, convenient
and less error-prone. However, e-voting systems introduce several concerns, the most important being the
potential for large scale fraud and attacks on privacy.

Existing electronic voting systems mainly fall in two categories [1]. In the first category one finds systems
that use a private voting booth where voters can cast their ballots in private (eg. [2, 3, 4], to name a few).
Assuming that it is difficult to tap the communication line between the voting booth and the collection server,
coercion and vote selling can be prevented. These systems, however, are still not convenient, requiring the
presence of a voter in a polling station as in traditional paper-ballot systems. Systems of the second category
are internet-based. After an initial registration period, people can cast their votes from any location as long
as there is internet access availability ([5, 6, 7, 8, 9]). They use a combination of cryptographic primitives
and protocols, such as blind signatures, threshold cryptosystems, mix networks, homomorphic encryption,
etc. to satisfy the properties expected from secure elections. While voting of this kind aims to increase user
participation and make the whole process more efficient, it also carries with it the potential of abuse at a
larger scale.

A voting system is considered secure if it satisfies the following properties:

• Privacy : It should be impossible to link a vote to a voter.

• Completeness: All valid votes are counted correctly.

• Soundness: Invalid votes should be easy to detect and discard.

• Eligibility : Only legitimate voters should be able to take part in the election.



• Unreusability : Voters can vote only once, thus double-voting is prevented.

• Fairness: Early results should not be obtained, as they could influence the vote of the remaining
voters.

The basic requirements listed above are relatively easy to implement and are satisfied by most electronic
voting systems. Hence, a lot of research has focused on providing a list of extended requirements that, if
not satisfied, can undermine the election results. These include:

• Universal verifiability : Anyone should be able to verify the fairness of the election and the correct
computation of the final tally from submitted ballots.

• Receipt-freeness: A voter neither obtains nor is able to construct a receipt on how she voted. This
would also prevent vote selling.

• Coercion-resistance: A voter cannot be coerced into casting a particular vote as desired by a coercer.

These last two properties are considered very crucial and must be addressed in a fair and democratic
election process. While coercion and vote buying also occur in traditional voting systems, these threats are
more dangerous in Internet voting schemes as an attacker may exercise influence and control at a larger
scale [7].

Coercion is a strong attack on privacy, in which an adversary may instruct voters to reveal their keys
or vote in a particular way. On the other hand, a coercion-free system is one in which a voter deceives an
adversary into believing she behaved as instructed. This implies receipt-freeness since a voting proof can be
used as an avenue for coercion. From a usability point of view it is best if such a system does not demand
any strategy on the voter side (e.g. lie, create fake credentials, etc.) This is satisfied in our system; all the
voter has to do is simply vote.

Our work uses Bitcoin’s blockchain infrastructure to realize an e-voting system that satisfies the properties
described above. Participants that use the blockchain network have a single view of all transactions, requiring
no trust on any particular entity. Hence the blockchain may be used to provide verifiability which is at the
heart of all voting systems, minimizing at the same time the trust placed in election authorities.

Contributions: Compared to existing work, our system has a number of advantages that we highlight
here: i) it is simple in the sense that all a voter has to do is vote; ii) the tallying overhead is linear, making
this a scalable and practical system for large scale elections; iii) the system remains universally verifiable;
iv) voter privacy is guaranteed; privacy only depends on the existence of simple anonymous channels where
users can submit their votes, and v) the protocol ensures receipt freeness and coercion-resistance.

It is important to note that coercion resistance (and by implication receipt-freeness) can be achieved by
our scheme without asking the voters to vote multiple times in order to cancel possibly coerced submitted
votes ([6, 7, 10]), issue fake credentials ([7, 8]), or rely on the existence of re-randomization networks and
re-encryption mixes ([7, 8, 9, 11, 12]). All we need to assume is that the attacker cannot influence the
randomness used by the voter to encrypt her vote or authenticate herself. This is achieved through the use
of a randomizer token, a tamper resistant device that can be instantiated with simple smart cards or TPM
enabled devices. Coercion resistance is then possible because the randomness used in the creation of a ballot
is not under the control of the voter. Thus, the voter cannot use it to re-create a ballot and show how she
voted nor can she be coerced to use specific randomness in order to have her vote tracked.

Thus, our scheme does not demand any strategy on the voter side. The voter does not need to lie or
produce fake credentials nor does she have to re-vote or deceive the coercer in any way. The voter simply
has no way to prove how she voted. Additionally, the use of a blockchain as a public medium to post the
ballots helps eliminate trust to election authorities with its built-in verifiability and integrity properties.

Organization: The remainder of the paper is structured as follows. In the next section we review related
work on receipt freeness and coercion resistance with emphasis on blockchain voting schemes. Section 3
discusses our voting model and the assumptions we use throughout the paper, while Section 4 highlights the
cryptographic primitives used in our proposal. In Section 5, we detail the voting system; its security and
efficiency properties are then analyzed and discussed in Section 6. Finally, Section 7 concludes this work.
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2. Related work

Electronic voting systems can be thought as end-to-end systems that consume voters’ encrypted ballots
and produce a final tally along with a proof that the result of the election was computed correctly. Most
voting systems use a combination of blind signatures, mix networks and homomorphic encryption techniques.
Voting schemes based on blind signatures are generally simple and more efficient since voters can have their
ballots blindly signed by the election authority and then submit them through an anonymous channel. These
systems, however, are not receipt-free since voters can use the blind factors in their ballots to prove how
they voted. Alternatively, a coercer may dictate the factor to be used. Voting schemes based on mix or
re-encryption networks are generally less efficient due to the larger number of intermediate steps involved,
while systems based on homomorphic encryption require the cooperation of a set of trustworthy tallying
authorities to produce the final result.

As mentioned in the introduction one important requirement of e-voting systems is receipt-freeness. The
concept was introduced in [13] to capture security against vote selling. In a receipt-free system, the voter
should not be able to get or construct a receipt proving the contents of her vote. Yet an even more desirable
property which implies receipt-freeness is coercion resistance . This concept was formalized in [7] by defining
an adversary who can demand participants to vote in a specific way. The system was based on a credential
mechanism in which a voter could cast more than one ballots under different (fake) credentials, thus making
it hard for an adversary to tie a vote to a particular credential (voter’s key pair). Each ballot, however, had
to go through a series of mixes to ensure coercion-resistance, causing the overhead for the tallying authorities
to be quadratic in the number of votes. The Civitas [8] system is an enhancement of this idea.

Another important property of voting systems is verifiability which is about ensuring that the outcome
of the election reflects correctly the voter choices. In a verifiable system, anyone should be able to verify
that submitted ballots are tallied correctly. A popular system Helios [6] is verifiable but it is not receipt-free.
On the other hand systems like [7] and its variants that depend on the trustworthiness of the talliers are
not really verifiable. Although a basic assumption in all works is that not all talliers can be corrupt, the
authors in [1] argue that a verifiable system should not be built on the existence of a trustworthy set of
tallying authorities.

The emergence of blockchains introduced a new way to construct systems which have less inherent
security vulnerabilities. Blockchains act as distributed databases, where the complete set of data stored
in the database is shared among all participants in the network. This concept is the basic element of
the Bitcoin1 protocol, the largest peer-to-peer payment system that was developed as an alternative to
conventional, centralized money systems. Blockchains have already been used in voting systems to increase
the level of transparency and verifiability offered. However, many of these solutions fail to satisfy important
properties expected from secure election systems as explained below.

In [14], a fund transfer system is developed based on Bitcoin transactions. Correct voter behavior is
enforced through the use of deposit, however, malicious voters can still forfeit the voting process by refusing
to cast their votes. Voting in this scheme is reduced to transferring funds, similar to lottery protocols, but
applicability is limited to choosing between two candidates.

A protocol based on the work of [5] and the use of blind signatures is developed in [15]. Anonymity is
maintained through the use of PBCs (Prepaid Bitcoin Cards) which are given to voters after registration,
however the scheme lacks receipt-freeness. In [16], a blockchain-based voting platform is proposed to conduct
national elections. This system relies upon the existence of a trusted third party to hide the user’s vote from
the election authorities, which negates any of the benefits introduced by the use of blockchains.

Recently, a smart-contract voting system was proposed in [17]. A person’s vote is distributed among
peers who must tally the votes submitted to them using homomorphic encryption. However, the system does
not guarantee fairness as dishonest peers may intentionally “drop” votes. Such behavior is only prevented by
incentivizing users to behave correctly, which does not necessarily mitigate malicious behavior. Boardroom
voting based on smart contracts was described in [18]. Yet the protocol is not coercion resistant and is

1“Bitcoin: A peer-to-peer electronic cash system.” http://bitcoin.org/bitcoin.pdf
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limited to elections with two options (yes/no). Another recent smart-contract based proposal was given in
[19]. It is based on homomorphic encryption and the use of linkable ring signatures to provide a voting
framework that is independent from the security and privacy features of the underlying blockchain platform.

The works in [20] and [21] make direct use of the ZeroCoin [22] and ZeroCash [23] protocols developed
to anonymize bitcoin transactions. Here one anonymous coin is basically exchanged for one vote. However,
while the latter protocols help ensure the anonymity of bitcoin transactions, they cannot be used for voting
per se as the security requirements are different. For example, the commitments used to hide the coins in
[22] and [23] can help break receipt-freeness in voting schemes when used “as is”. Hence the protocols [20]
and [21] are not coercion-resistant.

A number of commercial systems ([24, 25]) have also been proposed that use the blockchain as a ballot
box. Although these systems claim to achieve verifiability and accessibility, they suffer from other short-
comings. In particular, [24] requires a trusted authority to ensure voter confidentiality and to hide the
correspondence between the voter’s identity and their voting key. In [25], voter anonymity is protected
through the use of a mixing phase, yet no mechanism is anticipated to protect voters from coercion.

In this work we develop a blockchain-based voting protocol that aims to remove dependence on trusted
third parties or election authorities in tallying and publishing election results. Having an on-blockchain
election system enables direct observation and verifiability of the outcome using available tools and scripts
running on the blockchain. Our proposal combines the benefits of using blockchain technologies with a
number of cryptographic tools such as Pedersen commitments and zkSNARKs to achieve the properties
expected from secure elections. Our tools and assumptions are described in the sections that follow.

3. Model

The main entities in our system are the voters V1,V2, . . . ,Vn which are the entities participating in
the election administered by a registration authority R. The role of R is mainly to authenticate voters,
distribute secret credentials and post their public credentials in a blockchain B set up for voting. Once users
are registered they can participate in the election. The blockchain is used to provide universal verifiability. It
is an append-only mechanism whose goal is to create a consistent view of the information posted which, once
posted, it cannot be removed. Finally, the tallying authority T is responsible for processing the submitted
ballots and publish the final result. The role of T in our proposal is minimal since its role can be assumed
by any interested party, including the voters themselves. The registrar and the tallier(s) can also be part of
the same authority which is termed election authority (EA).

3.1. Definition of voting scheme

Voting in our system consists of each voter submitting a single vote v which captures the choices of the
election (e.g. whether there is one or many candidates, whether the vote is a simple ‘Yes’ or ‘No’, and so
on). We abstract away these details under the submission of a vote v whose format is well specified by the
election authority EA. Any invalid votes will be rejected during tallying.

The main operations of our proposal are listed below. These enable users to register, vote, verify the
tally, and so on. Each voter carries a token randomizer (defined in the next section) that helps her with
some of these tasks.

• Setup(1κ) → params is a probabilistic algorithm that on input a security parameter κ generates the
election authority’s public and private keys along with other system parameters.

• Register(Vi,R) → (Vi, Ci, σi) is a protocol executed between a voter Vi and the registrar R. The
outcome of this protocol is a pair of public/private keys for the voter along with a signed commitment
Ci on values si, ri generated by Vi’s token randomizer. The commitment is signed with the voter’s
private key to produce σi. Once this phase is over, the voter is authorized to vote and (Vi, Ci, σi) is
added to the public list.
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• Vote(params,Vi, si, ri, vi,Ki) → bi is executed by Vi’s randomizer to produce ballot bi. At a high
level, Vi constructs a vote vi and then encrypts it with a one-time key Ki to produce EKi(v). She
then reveals si and produces a proof πi that she knows the secret number ri used in the commitment
Ci, without however revealing either of ri or Ci. The ballot bi = (πi, si, EKi(v)) is then sent to the
blockchain B though an anonymous channel.

• Valid(params,B, b)→ {⊥,>} checks the validity of a ballot b posted on the blockchain B . It returns
> for valid ballots and ⊥ for invalid ones (e.g. containing proofs that fail to verify, containing numbers
s that have already been posted in the blockchain, and so on).

• PostKey(Vi) → 〈si,Ki〉 is used by voter Vi to anonymously post her key Ki in the blockchain, while
si is also sent to facilitate matching the key to her previously transmitted encrypted vote EKi(vi).

• Tally(T ,B, {bi}i, {Kj}j) → τ is run by talliers T to produce the final election result. The talliers
apply Valid(params,B, bi) to check the validity of ballots bi and use the keys to decrypt the votes and
account them in the tally τ .

• VerifyTally(B, {bi}i, {Kj}j , τ) → {⊥,>} is used to check the election tally τ . Any interesting party
(the public, the voters, etc.) can verify if each ballot carries a correct proof, and if each encrypted vote
has been decrypted and incorporated only once in the final tally. If the result equals τ , the function
outputs >, otherwise it outputs ⊥.

Our voting scheme VS is the collection of the functions defined above and is denoted as VS = {Setup,Register,Vote,
Valid,PostKey,Tally,VerifyTally}.

3.2. Assumptions

3.2.1. On election authorities and setup

Our voting scheme places minimal trust in election authorities in the sense that they can collaborate
with each other to reveal a person’s vote. For example a registrar R can leak to an adversary information
revealed during the registration process as an attempt to infer the vote of a user. Alternatively, an adversary
may coerce a voter to retain transcripts of the registration process. Similarly, talliers can collaborate with
R to modify or miscount votes. Our protocol is resistant to these adversarial behaviors.

However, we must assume that token randomizers (described in detail below) handed to the users by the
election authorities are not malicious and can be trusted. This is similar to the issuance of smart cards to
be used in e-voting schemes for secure identification, secure storage and for processing parts of the e-voting
scheme such as signing and encrypting messages and/or votes [26]. We thus take it as given that independent
verification and analysis can vouch for the correct operation and trustworthiness of the randomizers.

Additionally, the zkSNARKs (see Section 4) require a trusted party to generate the common reference
string (CRS) for the production and the verification of the proofs. However, a malicious party (e.g. the
election authorities) can provide a CRS that allows it to break the ZK property and learn information
about the voter’s secret parameters. This attack can be prevented if the prover (voter) checks that the CRS
is correctly formed. Hence no trust is really placed on the election authorities. Alternatively, the use of
Subversion-NIZK [27] ensures that the ZK property is preserved even under maliciously chosen CRS.

3.2.2. On coercion-resistance and token randomizer properties

Coercion can come in many flavors, from simple, the coercer issues some instructions and asks for a
proof, to full-on: the coercer is with the voter to make sure that she makes the right voting decisions
(e.g. the coercer might be watching through an online video feed). Defending against the latter case is
clearly impossible. Our goal is to produce an election scheme that mitigates threats of the former case,
while satisfying secure election requirements with as few assumptions as possible.

In this work we introduce the notion of a token randomizer (T R), a tamper-resistant device which acts
as a black-box on behalf of the user. Receipt-freeness and coercion resistance now will be based on the
difficulty of tampering with T R, in particular disclosing randomness produced internally. Randomization
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services are not new in the literature of e-voting. They go as back as [28], in which the authors proposed a
receipt-free voting scheme based on a trusted, third-party randomizer, and [29, 30, 31] in which the role of
the external randomizer is assumed by a tamper-resistant device. Despite the use of such device, however,
these voting protocols remain rather involved, requiring the use of threshold cryptosystems and trustful
talliers.

Here, our expectations from the T R are much simpler. Below we list the main assumptions and opera-
tions we anticipate from such token randomizer.

• TRA-1 : T R is programmed in advance to perform certain cryptographic operations on data submitted
to it through pre-defined API calls. Additionally, T R has its own source of randomness which can
be used to generate cryptographic keys or other random values required by T R’s built-in logic. Such
randomness is retained with the T R’s module and is safely erased once it is not needed any more
for subsequent operations. However, the T R may return such data to higher level programs if this is
dictated by its predefined logic. Thus, the user does not have access to T R’s state unless otherwise
specified by the algorithms “hardwired” in the T R.

• TRA-2 : T R may internally store values which can be returned to the user once a predefined interval
has passed. This assumes the existence of an internal counter that can be used to release information
at selected intervals only. These intervals are also hardwired in the T R before the election starts and
cannot be modified at will.

The first assumption, TRA-1, is typical of tamper-resistant devices such as smart cards or TPM-enabled
chips. As far as we know, there is also nothing to prevent the feasibility of TRA-2. The logic of T R will be
captured by the following operations.

• T R.Commit() → C. The randomizer returns a Pedersen (Section 4) commitment C = gshr mod p
for values s and r chosen at random by T R. Only C is returned to the user while both r and s are
stored internally.

• T R.Ballot(v) → {〈s, EK(v), π〉,⊥}. The randomizer creates a one-time key K and uses it to encrypt
the vote v supplied as input by the user. Embedded in its logic is the proof system of the zkSNARK
generator (Section 4) which uses only public information and the randomness r retained by T R to
compute a zero knowledge proof of knowledge for the value r used in the commitment C. Once π is
computed, r is permanently destroyed. The randomizer posts the tuple 〈s, EK(v), π〉 to the blockchain
but stores K internally. Subsequent calls of T R.Ballot(v) will return the value ⊥ as r has been erased.
Additionally, premature calls of this function (i.e. before the internal counter reaches the correct value
signifying the beginning of the voting period) also return the value ⊥.

• T R.Reveal() → {〈s,K〉,⊥}. Once the internal clock of the randomizer reaches the correct value,
signifying the end of the voting period, it posts to the blockchain the value s and the key K used
in the encryption EK(v) of the vote. Then s,K are permanently destroyed. Premature calls of this
function return the value ⊥ as well as subsequent ones.

The intervals used in the T R.Ballot and T R.Reveal operations are hardwired and cannot change at
election time. These values have been specified by the election authorities in advance. Finally, the randomizer
is presented to the user by the registrar R. It is directly connected to the voting system, it has a limited set of
communication interfaces and acts on behalf of the voter during voting (similar assumptions have been used
in [30]). All messages produced by the T R are digitally signed with its Direct Anonymous Attestation2

2In the context of vote submission, our goal is to be able to verify that a submitted ballot or key is authenticated but
without tying it to a particular randomizer device. For completeness, we briefly summarize how DAA can be adopted in this
setting; the interested reader may look at how the scheme has been used for remote, anonymous authentication of Trusted
Platform Modules (TPMs) [32]. In our setting the DAA signer is the token randomizer/TPM, a DAA issuer is the manufacturer
of the randomizers, while a verifier can be the election authorities or any other external party. At the core of the scheme is
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(DAA) signing key. Messages posted to the blockchain must bear the DAA-signature of the T R to be
considered valid.

As mentioned in the beginning of the section, we assume that independent verification and analysis can
verify the correct operation of the randomizer.

Remark 1. There is an obvious attack that can be used to break coercion-resistance of the system; the
user may be forced to simply hand-over its token randomizer. In Section 6.1.2, we explain how the basic
functionalities of T R can be extended to defend against this type of attack.

3.2.3. On side channels and DoS

Finally, we assume that ballots cannot be distinguished based on side channels like time of submission
or origin. As the interval between posting a transaction to the P2P blockchain network and seeing the
transaction stored in some block may be large, this is a reasonable assumption to expect, especially for
large scale elections. Additionally, we ask voters to cast their ballots through anonymous communication
channels since if the IP address of the voter is visible when she casts a vote then it can be easily linked
to the identity submitted during the registration phase (this is a standard assumption in all works where
users may directly interact with an adversarial authority). One mechanism that can be used to ensure that
a network connection remains anonymous is the anonymity network TOR.

We do not consider Denial-of-Service (DoS) attacks in this work. As the network is open, malicious users
may attempt to flood the network with invalid ballots or other data as required by the various phases of the
protocol. We are assuming that such erroneous data can easily be filtered. Alternatively, to avoid machine
generated posts, users may required to solve a CAPTCHA or, as proposed in [7], solve a cryptographic
puzzle before submitting their vote; however this is beyond the scope of this work.

4. Main tools

In what follows we describe the main tools we will be using in our proposal. We assume the existence of
two groups G = 〈g〉 and G = 〈g〉 of prime order q = O(2κ), with κ being the security parameter, that have
an efficiently computable bilinear pairing e.

Pedersen commitments

A commitment scheme is a pair of algorithms (Commit, Open) executed between a committer and a re-
ceiver. Commit takes a message m and a random number r, and produces a commitment C = Commit(m, r).
In the opening phase, the committer sends (m, r) to the receiver which checks whether the opening algo-
rithm Open(C,m, r) returns Accept. A commitment scheme is secure if it is both binding and hiding. The
“hiding” property ensures that the receiver can learn no information about m before the opening phase,
while the “binding” property ensures that, once committed, a malicious user cannot find different m′ or r′

such that Open(C,m′, r′) = Accept. The Pedersen commitment scheme can be used to commit to a message
m by computing Commit(m, r) = hrgm mod q, where g is a generator of a group G of prime order q.

QAPs and zkSNARKs

We will base our constructions to the zero-knowledge Succinct Non-interactive ARguments of Knowledge
(zkSNARKs) as developed in [34]. Such arguments can be used to prove NP statements about Quadratics
Arithmetic Programs (QAPs) without revealing anything about the corresponding witnesses. After taking
a QAP Q as input, a one-time setup results in two public keys: an evaluation key EKQ and a verification

the certification of the DAA key by the issuer, which however learns nothing about the key. Signing with such a key provides
anonymity-preserving assurance that the randomizer has a valid DAA key. Yet, neither the verifier nor the issuer, even if they
collude with each other, can tell which randomizer signed a message, only that the signature comes from a valid randomizer.
In short, the TPM can transform the original credential into new a credential that cannot be linked to original one. The reader
may consult [32] for more explanations.
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key EVQ. The evaluation key allows an untrusted prover to produce a proof π regarding the validity of the
QAP NP statement.

Informally, a zkSNARK for a QAP Q is a triple of (randomized) algorithms (KeyGen,Compute,Verify):

• KeyGen(Q, 1κ) → (EKQ, V KQ). On input a security parameter 1κ and a QAP Q, this function
produces a public evaluation key EKQ and a public verification key V KQ.

• Compute(EKQ, x, w) → πQ. On input a public evaluation key EKQ, a x ∈ LQ, where LQ is the NP
decision language defined by the QAP, and a corresponding witness w, this function produces a proof
πQ that w is a valid witness for x.

• Verify(V KQ, x, πQ)→ {0, 1}. On input a public verification key V KQ, x and a proof πQ, it outputs 1
if x ∈ LQ and 0 otherwise.

The properties expected by zkSNARKs are completeness, soundness and zero knowledge. The proof returned
by algorithm Compute can be turned into a signature scheme by making the message m to be signed part
of the challenges exchanged while constructing the proof [36]. We will denote this by the notation

πQ ← zkSNARK [m]((S) : P ),

where S insides parentheses denotes private information known only to the prover while P constitutes public
information available to the verifier.

Let d be the degree of the QAP and let q = 4d + 4. In terms of security, the constructions above are
secure under the q-power knowledge of exponent (d-PKE), the q-power Diffie-Hellman (q-PDH) and the
2q-strong Diffie-Hellman (2q-SDH) assumptions [34].

Blockchains

We assume limited familiarity with Bitcoin and blockchains, for more information the reader is referred
to [37]. A blockchain is a linked-list data structure in which data is organized as blocks, and blocks are
connected together through hash pointers (pointer to the hash value of the previous block) to form a chain.
Maintaining a hash pointer instead of a simple pointer turns the blockchain into an append-only data
structure. As all nodes point to the hash of the previous node, updating a node will result in a chain of
updates all the way until the first node in the list. Thus any change to an earlier node can be detected by
maintaining the first node’s hash value. This property allows the blockchain to maintain its integrity.

The process of extending the blockchain is called mining. Miners compete against each other to extend
the blockchain with new blocks. This competition ensures that the network always maintains the largest
chain through appropriate consensus mechanisms such as proof-of-work or proof-of-stake. As a result, a
nodes’ dishonest behavior will be detected and prevented by other nodes.

In this work, we envision the use of the blockchain as a substitute to a public board that should be secure,
anonymous and transparent. In the proposed system, the trust to other authorities will be minimized. This
way, authorities cannot perform malicious actions because transactions are communicated in public and
the append-only character of the blockchain ensures that all transactions are being considered. For more
information on blockchains and their use for voting, please see Appendix A.

5. Voting protocol

The protocol works in a P2P, distributed fashion without the need of centralized server. There is a
one-time setup phase for the zkSNARK algorithms which can be used for multiple elections.

Before we delve into the details of the protocol, we give a rough outline of the main phases of our voting
scheme. During an initial registration phase each user is equipped with a token randomizer and public-
private key pair which will be used to sign a commitment during the pre-voting period. The randomizer
will be responsible for carrying out the main voting actions on behalf of the voter.

During the actual voting period, a registered voter can cast an encrypted vote, authenticating herself
using a zkSNARK constructed with the previously submitted commitment. Essentially the voter proves that
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she knows the secret values bound in one of the commitments submitted in the previous phase.Auditing
and verification can be done by any interested party once the counting phase is over. The details of each
phase are shown in the sections that follow.

Finally, the authorities define a list of intervals to ensure that the election progresses in a timely manner.

• TV oting: This signifies the most important phase of the election in which voters submit their ballots.

• TPostV oting: At this point no more ballots will be accepted by the system. When this phase begins,
voters submit the keys used to encrypt their votes.

• TTallying: The election is over and tallying can begin.

These intervals must be active for a sufficient amount of time to allow voters to commit and cast their votes.
These timers are embedded in the token randomizers as explained below.

5.1. One-time setup

The system is initialized with a call to KeyGen(1κ), where κ is the security parameter. Once the group
parameters (q,G,G, g, g, e) are created, the election authority picks a public/private key pair that will be
used to sign voters’ public keys during registration.

5.2. Pre-Registration and preparations

To participate in the election, users must register first. This typically occurs by presenting valid creden-
tials such as a national ID or passport. Additionally the voter generates a public/private key pair (PKi, SKi)
and submits her public key to be signed by the registration authority. The authenticated public key will be
included in the list of eligible voters along with the user ID.

Each voter is then presented with a token randomizer whose role is to facilitate the rest of the phases
of the election. Timer TV oting is associated with operation T R.Ballot(), preventing voters to have access or
cast their ballots before time TV oting. Similarly, TPostV oting is associated with T R.Reveal() which is used
to post the ballot keys to the blockchain.

5.3. Registration

Register(Vi,R) is executed between a voter Vi and the registrar R. Every pre-registered user who wishes
to participate in the election will send to the registrar a commitment Ci ← T Ri.Commit() for a secret value
si masked with a random value ri to be used in the actual voting process. The voter does not have access
to the values si, ri which constitute internal state of her T Ri.

The commitment is then signed by Vi using her private key SKi to produce a signature σi on Ci. An
entry 〈Vi, Ci, σi〉 will be created by R and posted in the blockchain or in a public database which will hold
these triples for all legitimate voters and their commitments. Legitimacy of the signed commitment can be
verified by checking whether the associated public key belongs to one of the voters that have been certified.
It is clear that submission of the pair (Ci, σi) does not have to be anonymous. These values should be
verifiable by any entity for the sake of transparency and validity of the voting process.

Notice that while the pre-registration and registration periods have been described as two separate phases,
they can also be merged to one if voters already possess valid credentials. These preparations usually take
place before the actual voting to give enough time to users to fulfill the necessary election requirements.

5.4. Voting period

A registered voter V uses Vote(params,V, s, r, v,K) to anonymously cast a ballot b, authenticating herself
as a legitimate voter using a zkSNARK. In this phase, each voter reveals the secret number s used in her
commitment C and proves knowledge of the secret value r used. The release of s prevents double-voting,
since s is stored in the blockchain and cannot be re-used. The whole process is facilitated by the voter’s
T R. The exacts details are described below.

The zkSNARK is constructed by the T R, making use of the pairing system developed in [34, 35] which
encodes computations as QAPs. The quadratic program for vote submission is based on the following two
observations:
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• Checking whether a commitment C belongs to the set of commitments {C0, C1, . . . , Cn−1} submitted
by voters is equivalent to checking whether Πi(C − Ci) = 0.

• To prove knowledge of r in the commitment C = gshr, one can argue as follows. Let r = rκ−12κ−1 +
· · ·+2r1+r0 be the binary representation of r, with κ being the security parameter of the commitment
scheme. Then C = gshrκ−12

κ−1+···+2r1+r0 = gsΠκ−1
j=0h

rj2
j

. Thus, instead of proving knowledge of r,

one can prove knowledge of h0, h1, . . . , hκ−1, with hj being equal to 1 or h2
j

, depending on the value
of bit rj , such that C = gsΠκ−1

j=0hj .

Combining the two requirements, we obtain the following witness relation R that can be captured by a
QAP: (

(C0, C1, . . . , Cn−1, g
s), (hj)

κ−1
j=0

)
∈ R⇔

∀j(hj − 1)(hj − h2
j

) = 0 ∧Πi(g
sΠκ−1

j=0hj − Ci) = 0

To vote, the user makes a call T R.Ballot(v) to its token randomizer, where v captures the user’s

choice. The randomizer picks a fresh key K to produce EK(v). It also computes gs and hj = hrj2
j

,
where r =

∑
j rj2

j . This is possible since s and r have been stored internally in the T R. Then it
feeds these values to the proof algorithm (recall Section 4) which is again part of the T R to get π =
Compute((C0, C1, . . . , Cn−1, g

s, (hj)
κ−1
j=0 ). This proof is essentially a signature for the encrypted vote by in-

cluding EK(v) to the random values used by the prover. Thus, T R creates a ballot which consists of the
encryption of the vote EK(v), the number s and the proof

π = zkSNARK [EK(v)]((hj)
κ−1
j=0 ) : ((Ci)

n−1
i=0 ),

where the hj ’s are part of the internal state of the T R. Once the proof is created, r and the hj ’s are
permanently erased. The key K and s, however, are retained until the next phase. Finally, the ballot

b = 〈s, EK(v), π〉

is posted anonymously to the blockchain.

5.5. Post-voting

When the election authorities signal the end of the voting period, no more encrypted votes will be
accepted and voters can release the keys used to encrypt their votes. Notice that for some elections it might
be ok for the vote to be unencrypted and counting to begin as soon as the votes arrive. In that case the
proof π above would just contain the user’s vote v in plain form.

However, this would expose the progress of the election while still in the voting phase. In most election
systems this would violate the fairness property as early results may influence the decision of late voters.
Hence the need for the encrypted vote. Encryption keys are posted to the blockchain through calls to
PostKey(Vi), which is making use of the voter’s randomizer functionality T R.Reveal(). The pair 〈s,K〉 is
again posted to the blockchain through an anonymous channel.

5.6. Tallying and Verifying

Once the key-submission phase is over, keys will be matched to encrypted votes and counting can
begin using Tally(T ,B, {bi}i, {Kj}j). This phase is straightforward as all the information is available in the
blockchain and can be carried out by the talliers T or any other interested party. Hence anybody can audit
and verify the tally τ using VerifyTally(B, {bi}i, {Kj}j , τ).

To facilitate decryption, the talliers may store encrypted votes in a hashtable as soon as they are posted.
The key to search the hashtable is the value s contained in the ballot and sent along with the key. Thus,
keys and encrypted votes can be matched easily, so decryption takes O(1) per vote, or O(n) overall.
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6. Analysis

In this section we analyze the security and efficiency aspects of our proposal, with emphasis on coercion
resistance.

6.1. Security

Eligibility: IDs of registered voters are published together with their commitments Ci. When voters
obtain their randomizers T Ri, election authorities know that submitted ballots are authorized although
they cannot link a ballot to a voter. Therefore only legitimate voters can participate in voting.

Unreusability: Each voter, by means of its randomizer, posts an encrypted ballot which is tied to one of
the commitments through the associated zkSNARK and the serial si used in Ci. Double voting is prevented
since no second vote can be submitted with the same si. Thus, every voter can only vote once.

Universal Verifiability, Completeness and Soundness: Our protocol provides universal verifiability since
both the outcome of the election and the submitted ballots can easily be checked by any other interested
party. In particular, one can

• Check that all submitted commitments Ci have been properly signed by certified voter keys.

• Verify whether the zkSNARKs in submitted ballots bi are properly constructed. These proofs essen-
tially show that they have been posted by a legitimate voter, who has submitted a commitment in the
previous phase and can be accounted only once (through their serial number si).

• Match they keys to encrypted votes using the serials si.

• Recount the decrypted votes using VerifyTally(B, {bi}i, {Kj}j , τ).

Thus, if these checks are performed, one can be sure that all ballots posted on the blockchain are
correctly tallied and accounted in the final result. Hence the protocol has completeness. As invalid ballots
are discarded and not considered in the tally, the protocol also satisfies the soundness property.

6.1.1. Receipt-freeness and Coercion-resistance:

In this work we are assuming that the attacker cannot constantly monitor the voter. Making a system
resistant to this type of attack is impossible if the coercer and the voter are side-by-side during the whole
voting period. Note that re-voting does not solve this problem as this assumes that the voter is given a
chance to vote again in private. Our work considers attackers that will issue instructions and ask for proof
of compliance. Matching these instructions to some form of receipt is the only way for the coercer to check
if a voter has complied.

Typically, these instructions may require the voter to use a specific encryption key or randomness that
may link the outcome of a cryptographic operation to the coerced vote. In our case, the only places where
this can occur is (i) during registration, in the construction of the initial commitment C, and (ii) during
voting, in the encryption of the vote with the one-time key K.

The randomness r used in the commitment C = hrgs is never revealed by the randomizer and is safely
erased once the proof π is constructed during the operation T R.Ballot(v). Assuming the tamper-resistance
of randomizer T R, the voter cannot obtain any information on T R’s internal state (r and K). As the voter
cannot prove any correlation between the submitted ballot (voting phase) and the commitment (registration),
no receipt can constructed from the protocol messages. These observations will be captured by the model
defined below.

Remark 2. Note that a coerced voter may try to submit an invalid vote. Although this would reveal the
link between the vote and the voter upon decryption, such a vote would not be useful to the coercer. This
“attack” can be prevented by making sure that only well-constructed votes are posted by the randomizer
during operation T R.Ballot(v).
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Remark 3. A voter may try to sell her vote by bypassing T R entirely. The voter may generate the com-
mitment herself and submit the zkSNARK proof during voting. This would definitely be possible since T R
only uses public algorithms to construct the proof. However, any submission during the voting phase must
bear the DAA-signature of a registered T R. The tamper-resistance of the T R ensures that a voter does not
have access to the embedded DAA key.

To model coercion, we follow the definition of privacy introduced in recent works [12, 33]. These works
are mostly used to model protocols where the tally does not produce just a result but also proofs of correct
tallying (in our case, tallying is just plain counting of votes). Coercion is formalized as a game in which
an adversary A has to distinguish between two worlds: one in which coercion succeeds and one in which it
doesn’t. In both worlds, all information submitted is contained in ballot boxes BB0 and BB1 that start out
empty. Box BB0 corresponds to the real election (that will be tallied) while BB1 is a fake ballot box which
the adversary has to distinguish from BB0. In both worlds, the adversary can see the information posted in
the ballot boxes BBβ , where β = {0, 1}.

Using this definition our scheme would be deemed insecure since an adversary could easily distinguish
between the two cases using the encryption keys posted in the blockchain. Yet these keys have only been
used to introduce fairness to the election so that votes are not visible prematurely. They do not present
any new information to an observer, so they should not be used to judge privacy. Additionally, using these
models, one has to make certain assumptions about the distribution of votes (as in [1, 7]) in order to preclude
trivial distinguishing attacks such as when honest nodes vote for candidates a and b but the coerced voter
votes for c.

To show that our system is coercion-free, we use the experiment shown in Figure 1 that closely matches
the workings of our protocol. In this setting, voters participating in the voting system VS interact with an
adversary A. In particular, two voters V0, V1 are involved in the following game with A. After the voters
are registered, they are “coerced” to create a ballot bβ = 〈sβ , EKβ (v), πβ〉 ← T Rβ .Ballot(v), for a vote v
chosen by A and β = 0, 1. The adversary is then given access to one of the ballots and is asked to guess
which voter does it correspond to. A wins the game if its guess is correct.

If the adversary cannot distinguish the two cases with probability significantly more than random guess-
ing, we say that the scheme provides coercion-resistance as per the definition below:

Definition 1 (CR). Let VS = {Setup,Register,Vote, Valid, PostKey, Tally,Verify- Tally} be our voting
scheme. We say that VS is coercion-resistant if no PPT adversary A can distinguish between the games
Expcr,0A,V S and Expcr,1A,V S defined by the experiment in Figure 1; that is, for any PPT adversary A the following
is negligible in the security parameter κ:∣∣∣Pr

[
Expcr,0A,V S = 1

]
− Pr

[
Expcr,1A,V S = 1

]∣∣∣ .
We now show that our voting system is coercion-resistant.

Theorem 1. Our voting system VS is coercion-resistant if the commitment scheme is hiding and the QAP
proof system is sound and zero knowledge.

Proof : We prove the theorem by showing that from an adversary A that attacks coercion-resistance we
can construct adversaries B and C against the commitment scheme and the QAP proof system such that

AdvcrA,VS ≤ AdvhideB + Advpok−extrPOK, C + AdvZKPOK,C ,

where AdvhideB denotes the hiding advantage of the commitment scheme and Advpok−extrPOK,C , AdvZKPOK,C the
extractability and zero-knowledge advantages of the underlying zkSNARK system, respectively.

For the setup phase described in Figure 1, coercion-resistance reduces to the Discrete Log (DL) as-
sumption used to prove the hiding property of the commitment scheme as no polynomial time algorithm
can distinguish between hrgs mod q and another random quantity t ∈ Zq. If there is a polynomial time
adversary A that breaks coercion-resistance in our voting scheme then that adversary could be used by an
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Experiment Expcr,βA,V S :

Setup phase: The system is initialized with a call to KeyGen(1κ), where κ is the security parameter. A
set V of n voters is registered into the system. Each voter Vi generates a key pair (PKi, SKi) and is
given a randomizer T Ri which is used to produce a commitment Ci ← T Ri.Commit(). Commitments
are signed by the voters. The collection of signed commitments {〈Ci, σi〉}i is given to adversary A.

Challenge phase:

• A selects two voters V0 and V1 and a vote v. A is given access to a voting oracle.

• β R← {0, 1}. The oracle gives A the ballot bβ which is equal to 〈sβ , EKβ (v), πβ〉 ← T Rβ .Ballot(v).

• A outputs a guess bit β′.

Exp is successful if β = β′.

Figure 1: Coercion-resistance experiment Expcr,βA,V S .

adversary B to determine if its input is a Pedersen commitment in polynomial time. This would break the
DL assumption of the commitment scheme.

Alternatively, an adversary A may try to break the soundness property of the underlying zkSNARK. A
can try to extract a witness from all verifying proofs of knowledge πβ = Compute((C0, C1, . . . , Cn−1, g

sβ , (hj)
κ−1
j=0 )

communicated during the challenge phase. If A can do this, then it can guess the bit β used in the exper-
iment of Figure 1. However, the success of A depends on the outcome of an extractor algorithm E for the
QAP system whose advantage is bounded by Advpok−extrPOK,C .

Finally, A may try to break the zero knowledge property of the associated zkSNARK. A SNARK for an
NP language L with a corresponding NP relation R is zero-knowledge, if there exists a simulator S that can
produce a simulated proof that is indistinguishable from the the real proof π [36]. This property guarantees
that the proof reveals nothing more than the correctness of the statement. Thus, an adversary A that breaks
coercion-resistance in our voting scheme implies an adversary C that breaks the zero-knowledge property of
the NIZK proof system with advantage AdvZKPOK,C .

Adversary C works as follows. It runs adversary A as a subroutine by simulating the security experiment
exactly as in Figure 1. When C has to decide between a simulated proof πs which is provided by the
simulator S and a real proof π as implied by the NIZK security experiment, it constructs the following
ballots for voters V1 and V2. It sets π0 = Compute((C0, C1, . . . , Cn−1, g

s0 , (hj)
κ−1
j=0 ), π1 = πs and constructs

the corresponding ballots b0, b1. Then it picks a random bit β and gives A the ballot bβ . If A can distinguish
between the two cases, then B breaks the zero-knowledge property of the underlying QAP system.

This is not possible, however, as was shown in [36]. Hence under the q-PDH and d-PKE assumptions,
our voting scheme instantiated with the QAP defined in Section 5.4 is sound and zero knowledge. �

6.1.2. Other real world attacks

We close this section by summarizing a number of real-world attacks our protocol defends against.

In a randomized ballot attack, an adversary coerces a voter to submit a randomly composed ballot.
While both the attacker and the voter have no idea about which candidate this voter casts the ballot for,
the purpose of this attack is to nullify the ballots submitted by the voter. This attack does not work in our
system since the voter cannot bypass the T R nor submit an invalid ballot as explained in Remarks 2 and 3
above.

In a ballot buying attack, the adversary asks for proof that the voter complied and voted as instructed.
This is prevented in our system since the randomness r used to produce the commitments during registration
and the proofs in the voting phase is never revealed. Thus nothing can link the ballot to the identity of the
voter.
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In a credential leaking attack, an attacker can force the voter to give away her secret credentials. The
purpose of this attack is either to allow the coercer vote on behalf of the user, or find out what the user
voted for. This attack is also prevented by our system since the actual ballot posted by the user is not linked
to her private key used to sign her commitment in the registration phase. A more applicable attack is for
the coercer to ask for the voter’s token randomizer. We treat this attack below.

What if attacker asks for the user’s token randomizer? A coercion-free system is one in which a voter
deceives an adversary into believing she behaved as instructed, even if she was asked to reveal her secret
keys or vote in a particular way. In our case, the analogue of giving away secret keys would be to hand-over
the token randomizer. To defend against this hand-over attack, we suggest a simple modification to T R’s
functionality. An implicit assumption here is that coercion takes place remotely, i.e. the adversary does not
continuously watch over the shoulder of a voter, monitor her hard-drive, etc. Hence the voter has a moment
of privacy (see also [7] for a similar assumption).

In particular, we let the voter specify a vote v that will be locked in the T R’s state. Then during the
voting stage, even if the user (or the coercer) specifies a different vote v′, operation T R.Ballot(v′) will result
in posting the ballot 〈s, EK(v), π〉 to the blockchain. This ballot remains unlinkable and the coercer cannot
tell what the T R posted to the blockchain.

Locking a vote v can occur any time after registration. The user interacts with the T R as if she was ready
to vote. However, if the T R’s internal counter signifies that the voting stage has not yet begun, the value v
is stored internally and becomes a locked vote. This locked vote is then released when voting is allowed. As
the T R already has the capability of internally storing secret values (recall operational assumption TRA-2 ),
this functionality can easily be supported.

6.2. Efficiency aspects

One important aspect of our system is that tallying has only a linear overhead with respect to number
of voters n (as a comparison the system in [7] requires O(n2) work). This is due to the fact that the
encrypted votes in ballots and the keys to open them bear the same identifier s (the serial used in the initial
commitment). Hence tallying and producing the final result is a very efficient procedure.

Additionally, the characteristics of the proof system for arithmetic circuits developed in [34] translate
directly to our voting system. Nonetheless, significant performance gains can be achieved by maintaining
the voter commitments in a Merkle tree instead of an explicit list Lcom (the idea was used in the Zerocash
implementation [23] for anonymous Bitcoin payments). Doing so, reduces the time and space complexity
from linear in the size of Lcom to just logarithmic. Additionally, the NP statement used in the QAP
construction of knowing the value r of one of the commitments Ci maintained in Lcom now becomes “I know
r such that Ci appears as a leaf in a Merkle tree with root r.” This modification increases exponentially the
number of users (and their commitments) that can be supported by the system.

The above, together with the state-of-the-art implementation of zkSNARKs for arithmetic circuits results
in a prover (the token randomizer’s) running time of a few minutes and a proof verification to just a few
milliseconds. In particular, the findings in [23] show that a proof can be generated in under 3 minutes in
a single threaded 2.7GHz CPU. Verifying a proof takes less than 9ms, while proof size is restricted to 288
bytes.

The above numbers suggest the practicality of our system and its use in large-scale elections. Our
system does not require any heavy computational power on behalf of the talliers since the only important
operation required to produce the final tally is verifying proofs in submitted ballots. Hence our system
remains verifiable in a strong sense as anyone can check the validity of the election outcome.

7. Conclusions

As existing blockchain voting systems cannot provide the comprehensive list of security features needed
for secure elections, we have proposed a blockchain-based voting scheme that ensures voter privacy with
minimal involvement on the user side. Our protocol uses the blockchain as an infrastructure for universally
verifiable elections along with a number of cryptographic primitives that can be used to achieve all basic
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properties expected from secure election systems. Our protocol achieves coercion resistance (and hence
receipt-freeness) by means of a randomizer token whose purpose is to act as a black-box on behalf of the
user. As no complicated operations like re-voting, managing fake credentials, or lying to coercer are expected
by the user, the protocol achieves usability, which is another important requirement of e-voting systems.
Additionally, the protocol requires no trust on election authorities; even if the adversary corrupts tallying
authorities, ballots cannot be forged. Finally, the protocol is scalable and has linear tallying overhead which
makes it practical for large-scale elections.
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Appendix A – On the use of Blockchains for Voting

All voting systems assume the existence of a bulletin board (BB), an append-only broadcast channel
where ballots or other data get posted, without however specifying how this can be implemented. In real
life, the bulletin board would have the form of website maintained by the election authorities, where data
appear for public use, after being replicated to various storage servers to protect against accidental failures.

In an end-to-end verifiable voting system, the main role of the bulletin board is to ensure the fairness
and correctness of the election process. To meet these objectives, bulletin boards must have a number of
desirable properties, such as:

• They must be distributed to withstand DOS attacks and accidental failures.

• They must support the chronological logging of events.

• They must be integrity protected to avoid manipulation attacks such as adding, removing or altering
posted data.

• They should be verifiable, i.e. that information posted is authentic.

In real life, however, bulletin boards seldom satisfy these properties; election authorities control the
bulletin board so they can add/remove information or even censor messages to be published. Consider, for
example, the extreme case where authorities want to know what Alice voted for. They can simply replace
all other ballots in the bulletin board by encryptions of valid votes and then during tallying the preference
of Alice will be revealed. What this “attack” demonstrates is that you cannot expect to have full privacy
when bulletin boards are controlled by election authorities. Essentially, all protocols based on the use of
BBs pre-suppose that election authorities can be trusted.

The answer to “whether a blockchain is really necessary” is not clear. In principle, a bulletin board can
be used instead considering the trust assumptions mentioned previously. But currently, the blockchain is
the best implementation we have for a bulletin board [39]. It is widely distributed, it is maintained by a
collection of entities (not necessarily affiliated with election authorities) which are incentivized to include
all posted transactions, in a highly consistent manner.

Use of a public blockchain comes with a number of disadvantages too, the most important one being that
every transaction requires a fee. So, who is going to pay for this? The election authorities may give each
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user a small amount but nothing prevents the user from taking the money and spent it elsewhere. Even if
users are equipped during registration with blindly signed tokens that can be exchanged with ballots, such
transactions still require a small fee. Another disadvantage is throughput. A public blockchain like the one
used by the Bitcoin network processes one transaction every few seconds, so it would take many days to
handle the load generated by a large scale election.

A solution to the above might be the use of permissioned blockchains. A blockchain of this kind is
controlled by a group of nodes that determine who can transact on the blockchain and who can serve the
network by extending the chain with new blocks. That blockchain will not require a fee if a transaction
is posted by a legitimate voter. Another variant, a consortium blockchain might be closer to the needs
of a democratic election. It is a “partially decentralized” blockchain [40], where the consensus process is
controlled by a pre-selected set of nodes. Consider a consortium of 10 local and international institutions,
in which 6 must sign every block in order for the block to be added to the blockchain. The right to read
the blockchain can be public or restricted to the participants. These blockchains would process transactions
at a greater rate, thus serving the needs of real-life elections. They would also be more resistant to spam
and DoS attacks as they could easily filter transactions. They would, however, re-introduce trust in the
authorities running these blockchain, hence the need for impartial observers.3

3Election observation is a tool already used by the United Nations [41] when domestic observer organizations do not have
the strength or resources to organize impartial elections. Observation protects the civil and political rights of participants and
can help build confidence in the honesty of the electoral processes. One can envision a similar service to be used when restricted
blockchains are used to run large scale elections. These observers may be running mining nodes, requiring their agreement and
participation to extend the blockchain with new valid blocks.
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