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Abstract

In this paper we present a system for maintaining a membership list of users in
a group, designed for use in the Signal Messenger secure messaging app. The goal
is to support private groups where membership information is readily available to all
group members but hidden from the service provider or anyone outside the group. In
the proposed solution, a central server stores the group membership in the form of
encrypted entries. Members of the group authenticate to the server in a way that
reveals only that they correspond to some encrypted entry, then read and write the
encrypted entries.

Authentication in our design uses a primitive called a keyed-verification anonymous
credential (KVAC), and we construct a new KVAC scheme based on an algebraic
MAC, instantiated in a group G of prime order. The benefit of the new KVAC is
that attributes may be elements in G, whereas previous schemes could only support
attributes that were integers modulo the order of G. This enables us to encrypt group
data using an efficient Elgamal-like encryption scheme, and to prove in zero-knowledge
that the encrypted data is certified by a credential. Because encryption, authentication,
and the associated proofs of knowledge are all instantiated in G the system is efficient,
even for large groups.

1 Introduction

Secure messaging applications enable a user to send encrypted messages to one or more
recipients. A notion of groups is often supported: messages sent to a group will be delivered
to all users who are current members of the group. Typically a group is created by a user
to contain an initial set of members. These members (and the group creator) are given
privileges to add and remove other members and grant them privileges, and so on. The
result is that group membership is managed by the members.

Maintaining this membership list introduces challenges. First, the membership list
must be stored and made available to users. Second, changes to the membership list must
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be subject to authentication and access control, to ensure that changes are only made by
authenticated and authorized users.

The standard approach is to store the membership list, in plaintext, in a database
on a server. This solves the problems of storage and availability, and the server enforces
authentication and access control. The downside to this approach is that the server has
a stored repository of associations between its users, and can easily insert malicious users
into groups to receive messages. These are serious threats for an encrypted messaging
system.

The Signal messaging app [Sig19] previously introduced a private group approach where
the membership list is hidden from the server. In Signal’s system the group membership
list is maintained in a distributed fashion by each user [Mar14]. Users send encrypted
group changes to each other when they want to modify group membership. Users then
apply these changes to their local copy of the group state. This avoids problems with
server trust, but introduces new problems around group consistency in the face of race
conditions, lost messages, or malicious users. To reduce some consistency problems, clients
can trust each other to provide copies of the group state, but this limits their ability to
enforce access control and introduces other risks [RMS17].

To address the above problems with distributed private groups while maintaining their
security, we introduce a new approach to private groups. In our new approach, group
membership is stored on a server but in encrypted form.

This use of server storage addresses the availability and consistency challenges: there is
always a single membership list for each group, stored on the server, which clients can query.
The use of encryption reduces the trust placed in the server: in our design the entries that
store each member’s identity (called a UID) are encrypted with a group-specific secret key
which all members share with each other. A malicious server could still learn something
about the group by observing access patterns as entries are used for authentication, added,
and deleted. A malicious server could also make limited changes by restoring old entries
or returning incomplete information. However, the server is prevented from decrypting
entries or forging new entries.

Another benefit of this approach is that all changes to the membership list go through
the server. Thus, even though entries are encrypted, the server can reliably enforce access
control rules regarding which entries are allowed to make which changes.

Using encryption in this manner introduces new requirements, which are the focus of
the present work:

• Anonymous authentication: When a group member wishes to add or remove another
user from the group, the existing member must first authenticate to the server so
that the server can perform access control and determine whether the member is
allowed to perform this operation. This is true for the standard “plaintext on server”
approach and remains true in our proposal, except that the group entry being used for
authentication and access control contains an encrypted UID rather than a plaintext

2



UID. The group member will need to anonymously authenticate using their encrypted
entry by proving ownership of the encrypted UID, without the server learning the
UID.

• Deterministic encryption: It is important that each plaintext UID in a group corre-
sponds to a single encrypted UID in that group, and that an entry must not decrypt
successfully unless it is the unique deterministic encryption of the underlying UID. If
this requirement is not met, a single UID could be added to the group many times us-
ing different ciphertexts, and these ciphertexts would be treated as different members
by the server. This would complicate access control and operations such as deletion.

• Decryption and authentication consistency : Because encrypted entries are used in
two ways (decrypted by users to learn the group membership, and used for authen-
tication), it is important for entries to decrypt successfully if and only if they can
be used for authentication, even if entries are created by a malicious group mem-
ber. In other words, successful decryption must imply that an entry can be used
for authentication, and successful authentication must imply that an entry can be
decrypted. If this requirement is not met, a malicious group member could cause an
honest group member’s view of group membership to diverge from the group mem-
bership that the server is using for access control. (Note that these requirements do
not prevent a user from uploading an invalid ciphertext, provided that it cannot be
used for authentication; nor do they prevent a user from encrypting an invalid UID.)

We satisfy the anonymous authentication requirement using server-issued anonymous
credentials. In particular, we introduce a new form of keyed-verification anonymous creden-
tials, extending the construction from [CMZ14] to support efficient zero-knowledge proofs
compatible with verifiable encryption. These proofs assert that a verifiably-encrypted ci-
phertext decrypts to a plaintext P , and that the prover has a credential certifying P .
The plaintext P can be any value that can be encoded as a group element1. Given this
credential scheme, the server will issue users time-limited auth credentials for their UID,
encoded as a group element. Because encryption of UIDs is deterministic, users can cal-
culate their encrypted group entry without needing to retrieve it (so that the encrypted
group membership list is not exposed to non-members). Users will then provide the server
a zero-knowledge proof that they have a valid auth credential matching their encrypted
entry. Because of the zero-knowledge property, the server has assurance that the user
possesses such an auth credential without learning the UID certified by the credential, or
other information that might link this use of the credential to other uses or to credential
issuance.

We satisfy the deterministic encryption and decryption/authentication consistency re-
quirements by (a) having the user prove to the server that their entry is a correct deter-
ministic encryption of some UID at the same time as the user authenticates using that

1The term group here and elsewhere is used in its mathematical sense; we trust context will disambiguate.
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entry, and (b) having decrypters check that entries are correct deterministic encryptions
of the UID at the time of decryption.

Profile keys With the above building blocks we have a rudimentary management sys-
tem for private groups, capable of storing and managing membership lists comprised of
encrypted UIDs. We then build a more sophisticated system that additionally stores an
encrypted profile key for each user. Profile keys are a notion from the Signal Protocol,
where they are used to encrypt user-associated profile data such as avatar images and pro-
file names that provide a more user-friendly view of a user’s identity [Lun17]. Encrypted
profile data is stored on the server and fetched and decrypted by users, but is not decrypt-
able by the server. Users will share their profile key (and thus their profile data) with other
users whom they trust.

To improve the Signal group experience we will also store encrypted profile keys in
the group membership state so that users in any group will see a user-friendly, “profile-
enhanced” view of the membership list, rather than simply a list of UIDs. If a user Alice
would like to add Bob to a group and she knows Bob’s profile key then she can encrypt
the profile key and add the ciphertext to a group herself. If Alice would like to add Bob to
a group without knowing his profile key she will invite Bob into the group. The server will
record this invitation but Bob won’t be considered a full member (and thus won’t receive
group messages) until he accepts Alice’s invitation by adding his encrypted profile key.

Storing encrypted profile keys introduces a new requirement for UID and profile key
consistency : it is important that the server only stores a pair (UID ciphertext, profile key
ciphertext) if this pair correctly decrypt to a UID and its associated profile key, even if
these ciphertexts are created by a malicious group member. If this requirement is not
met, a malicious group member could cause an honest group member’s view of other group
members to be inaccurate or incomplete with respect to profile data.

We satisfy this requirement with an additional server-issued anonymous credential.
Unlike the auth credentials discussed previously which are issued to the owners of UIDs,
these profile key credentials are issued to any user who knows another user’s profile key.
Users will register a profile key commitment with the server. Then other users can prove
to the server that they know another user’s profile key without revealing it. We combine
this proof with a blinded credential issuance since the server must issue a credential on a
UID and profile key without knowing the profile key.

After a user (Alice) acquires a profile key credential for another user (Bob), she can
add Bob to groups by providing UID and profile key ciphertexts for Bob along with a zero-
knowledge proof that these ciphertexts are correctly associated (i.e., that they encrypt
values which are certified by a profile key credential). The zero-knowledge property of the
credential system means that the server does not learn which profile key credential was
used, nor learn anything about the encrypted UID and encrypted profile key beyond the
fact that they are associated.

4



1.1 System Overview

At this point we can summarize the main objects and interactions in the Signal Private
Group System from the perspective of two users, Alice and Bob. More details on these
objects and operations are presented in Section 5.

• Bob generates a ProfileKey and registers his ProfileKeyCommitment with the server.
Bob uses his ProfileKey to encrypt profile data.2

• Bob trusts Alice to view his profile data and so shares his ProfileKey with Alice by
sending her an encrypted message. 3

• Alice and Bob are configured with ServerPublicParams which corresponds to the
ServerSecretParams used by the server for credential issuance. Alice and Bob use
the ServerPublicParams for verifying issued credentials and presenting credentials.

• Alice contacts the server, without identifying herself, and uses Bob’s ProfileKey to
fetch and decrypt Bob’s profile data, and also to fetch a ProfileKeyCredential for
Bob’s UID and ProfileKey.

• Alice and Bob contact the server periodically to fetch AuthCredentials for their UID.

• Alice creates a new group containing her and Bob by generating a pair (GroupSecret-
Params, GroupPublicParams), contacting the server without identifying herself, and
registering the GroupPublicParams with the server. Alice also uploads pairs of (Uid-
Ciphertext, ProfileKeyCiphertext) for herself and Bob. Alice proves these ciphertexts
are correct by proving that she has an AuthCredential for her UidCiphertext, and
by proving she has a ProfileKeyCredential for each pair of ciphertexts.

• Alice sends Bob the GroupSecretParams via an encrypted message. Bob can now
authenticate to the group using his AuthCredential to download and decrypt the
other group entries and learn the membership. If Bob’s entry is authorized to add or
delete members of the group, Bob can also authenticate to the server and request it
to perform these operations.

Cryptography For efficiency and simplicity, our solution is designed to work using cryp-
tography instantiated in a group G of prime order q. We augment this group with functions
to hash to group elements or integers modulo the group order, and functions to encode and
decode data into group elements.

Our encryption scheme is symmetric-key, deterministic, CCA-secure, and has a prop-
erty we call unique ciphertexts, meaning that it is intractable to find two valid encryptions

2The details of profile data encryption (see [Lun17]) are not relevant to how groups are managed.
3This is an end-to-end encrypted message which we assume the secure messaging platform provides. For

details of E2E encryption in Signal, see [Sig19].
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of the same plaintext, even with knowledge of the key. Since it is a variant of Elgamal
encryption in G, it has small ciphertexts with efficient encryption and decryption. More-
over, it is compatible with the efficient zero-knowledge proof system we use for credential
presentation, allowing us to prove that ciphertexts are well-formed with respect to a public
commitment of the key, and that the plaintext is an attribute from a credential.

For the latter part of the proof, we need a credential system that supports attributes
that are group elements. Previously known anonymous credentials and KVAC schemes
only support attributes from Zq. Following the approach to constructing a KVAC scheme
from [CMZ14], we first design an algebraic MAC where the message space is n-tuples
of elements in G. Note that we can still support attributes m ∈ Zq, by having a fixed
base G ∈ G and computing the MAC on Gm, which is helpful since some ZK proofs are
easier when attributes are in Zq. We prove our new MAC is secure in the random oracle
model, assuming i) that DDH in G is hard, and ii) that a simpler MAC, called MACGGM,
from [CMZ14] is secure. Our security analysis of our encryption scheme first defines the
new properties required for the private groups application, then we prove the scheme is
secure under the same assumptions as the security proof for our new MAC.

We then give protocols for credential (blind) issuance and presentation, to construct a
complete KVAC system satisfying the security properties defined in [CMZ14]. The resulting
credential scheme and proof protocols are efficient, and can be instantiated using well-
known non-interactive generalized Schnorr proofs of knowledge.

2 Preliminaries and Related Work

Notation We use capital letters to denote group elements, and lower case letters to
denote integers modulo the group order.

2.1 Group Description and Hardness Assumptions

The new cryptographic primitives in this paper are designed to work in a cyclic group,
denoted G, of prime order q. We require that G has three associated functions.

1. A function HashToG : {0, 1}∗ → G that hashes strings to group elements. This should
be based on a cryptographic hash function; we will model it as a random oracle.

2. A function HashToZq : {0, 1}∗ → Zq, also based on a cryptographic hash function.

3. A function EncodeToG : {0, 1}` → G, that maps `-bit strings to elements of G in a
reversible way. The parameter ` depends on the size of G and the encoding.

For our security analysis, we will assume that the decisional Diffie-Hellman (DDH) is
hard in G, i.e., given (Ga, Gb, C) decide if C = Gab. This implies that the discrete logarithm
problem (DLP) is also hard in G, i.e., given Y = Gx it is hard to find x. We also require
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that MACGGM is uf-cma-secure, and the only known proofs are in the generic group model,
so we inherit this assumption as well.

2.2 Keyed-Verification Anonymous Credentials (KVAC)

An anonymous credential system [Cha85, CV02, PZ13] is a set of cryptographic protocols:
A credential issuance protocol provides users with credentials that ”certify” some set of
attributes. A credential presentation protocol enables the user to prove that they possess
a credential whose attributes satisfy some predicate without revealing the credential or
anything else about it (a zero-knowledge proof). There is a vast literature on anonymous
credentials, a good starting point on the subject is [RCE15].

Traditional anonymous credentials designs are based on public key signatures: the
credential Alice holds is a special type of signature on the attributes. When she presents
the credential to Bob, she proves (in zero-knowledge) that her credential is a valid signature
with respect to the credential issuer’s public key. The benefit of signature-based credentials
is that Alice may present her credential to anyone in possession of the issuer’s public key,
but the drawback is that known constructions are either relatively expensive, being based
on the strong RSA assumption [CL03] or groups with a pairing [CL04], or if the credentials
are efficient (using prime order groups) [PZ13, BL13] they do not support multi-show
unlinkability. This means that if Alice presents her credential to Bob twice, he can link
these presentations (effectively making Alice pseudonymous, rather than anonymous, or
requiring Alice to use a fresh credential for each presentation).

With keyed-verification anonymous credentials (KVAC) [CMZ14], the issuer and verifier
are the same party (or share a key), and so the design can use a MAC in place of a signature
scheme. It is then possible to have an efficient credential system constructed in a group of
prime order, with multi-show unlinkability. In the present scenario the issuer and verifier
are the same party, so a KVAC system is a natural fit.

2.3 MACs and Algebraic MACs

Many popular MAC algorithms are constructed using symmetric-key primitives like hash
functions (e.g., HMAC [KBC97]) and block ciphers (e.g., Poly1305-AES [Ber05]). Unlike
algebraic MACs, these MACs do not have efficient zero-knowledge proofs associated to
them, allowing one to prove possession of a MAC authenticating a message. We use
the term algebraic MAC to mean a MAC constructed using group operations. Dodis et
al. [DKPW12] study many algebraic MACs, and Chase et al. [CMZ14] show that certain
algebraic MACs can be used to construct an efficient type of anonymous credential.

We describe a particular algebraic MAC, called MACGGM, that we use as a building
block in our new encryption and MAC schemes.

Definition 1. The MACGGM construction [DKPW12, CMZ14] is an algebraic MAC con-
structed in a group G of prime order q, with the following algorithms.
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KeyGen: choose random (x0, x1) ∈ Zq2, output sk = (x0, x1).

MAC(sk,m): choose random U ∈ G, output σ = (U,Ux0+x1m).

Verify(sk, (U,U ′),m): recompute U ′′ = Ux0+x1m, output “valid” if U ′′ = U ′, and “invalid”
otherwise.

In [DKPW12] it is shown that MACGGM satisfies a weak notion of MAC security called
selective security (where the adversary must specify the message that will be forged in
advance), assuming DDH. In [CMZ14, ABS16], it is shown that MACGGM is uf-cmva secure
in the generic group model.

The security notions for algebraic MACs are the same as for traditional MACs.

uf-cma: unforgeability under chosen message attacks

suf-cma: strong unforgeability under chosen message attacks

suf-cmva: strong unforgeability under chosen message and verification attacks

Definition 2. For a MAC with algorithms (KeyGen,MAC,Verify), consider the following
security game between a challenger C and an attacker A.

1. C uses KeyGen to generate sk. If the MAC has public parameters, C gives them to A.

2. A makes queries to C.

• MAC query: A submits m and C outputs σ = MAC(sk,m). C stores (m,σ) in a
set M .

• Verify query: A submits (σ,m) and C outputs Verify(sk, σ,m)a

3. A outputs (σ∗,m∗)

We say that A wins the uf-cma game if no Verify queries are made, and m∗ is not in M . We
say that A wins the suf-cma security game if no Verify queries are made, and (m∗, σ∗) 6∈M .
We say that A wins the suf-cmva game if (m∗, σ∗) 6∈M . The MAC is uf-cma-secure if no
polynomial-time A wins the uf-cma game with probability that is non-negligible in κ (and
suf-cma, suf-cmva security are defined analogously).

A proof of the following lemma is in [BS17, Theorem 6.1]. Basically it says that
verification queries don’t help an attacker, when looking only at asymptotic security.

Lemma 3. Let M be a MAC scheme. The security notions suf-cma and suf-cmva are
equivalent. If M is suf-cma secure, then it is also suf-cmva secure (and vice-versa).

8



2.4 Zero-Knowledge Proofs

In multiple places our constructions use zero-knowledge (ZK) proofs to prove knowledge of
discrete logarithms and of representations of elements in G. We use the notation introduced
by Camenisch and Stadler [CS97]. A non-interactive proof of knowledge π is described by:

π = PK{(x, y, . . . , ) : Predicates using x, y and public values}

which means that the prover is proving knowledge of (x, y, . . .) (all elements of Zq), such
that the predicates are satisfied. Predicates we will use in this paper are knowledge of
a discrete logarithm, e.g., PK{(x) : Y = Gx} for public Y and G, and knowledge of
a representation using two or more bases, e.g., PK{(x1, . . . , xn) : Y =

∏n
i=1Gi

xi}. We
also use multiple predicates, and require that they all be true, e.g., PK{(x, y) : Y =
Gx ∧ Z = GyHx}. Given two proofs we can combine them by merging the list of secrets
and predicates, e.g., proofs π1 = PK{(x) : Y = Gx} and π2 = PK{(x, y) : Z = GxHy}
combine to give π3 = PK{(x, y) : Y = Gx ∧ Z = GxHy}.

There are multiple ways to instantiate the proofs of knowledge we need. The Signal
implementation uses a generalization of Schnorr’s protocol [BS17, Ch. 19], made non-
interactive with the Fiat-Shamir transform [FS87]. As in previous work, we must also
assume that the proof system has a strong extraction property; see discussion in [CMZ14,
Appendix D].

2.5 Secure Messaging and Signal

In a secure messaging application such as Signal, users send each other encrypted mes-
sages with the aid of a server. For the purposes of this document, most details of the
Signal Protocol [Sig19] can be abstracted away, leaving a few points which are crucial for
understanding the Signal Private Group System in Section 5.

Users can contact the Signal server over a mutually-authenticated secure channel, or
over a secure channel that only authenticates the server. For simplicity, we’ll describe the
former case as an authenticated channel, and the latter case as an unauthenticated channel.
Unauthenticated channels are used when the user wishes to interact with the server without
revealing their identity, and thus will be used extensively in the protocols described here.

When users in a Signal group send encrypted messages to the group, they encrypt
and send the message to each group member, individually, with end-to-end encryption.
The server is given no explicit indication of the difference between group and non-group
encrypted messages, apart from traffic analysis.

Users are identified by some UID . Users send their profile key attached to encrypted
text messages if the recipient is trusted, which we interpret to mean either: the recipient is
in the sender’s address book; or the sender initiated the conversation; or the sender opted
in to sharing profile data with the recipient. Given a user’s UID and profile key, you can
fetch and decrypt profile data they have uploaded for themselves.
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3 A New KVAC and Protocols

In this section we define our new keyed-verification anonymous credential system. We
start with the new algebraic MAC that the scheme is based on, then describe protocols for
credential issuance and presentation.

3.1 A New Algebraic MAC

Our new MAC construction is constructed in a group G of prime order q. A new feature
that is important for our use case is that the list of attributes may contain a mix of
elements of G (group attributes), or integers in Zq (scalar attributes), while in previous
work attributes were restricted to being chosen from Zq. When using generalized Schnorr
proofs in a cyclic group (the most common ZK proof system), the types of statements
that can be proven about attributes in G are limited, however, it does allow us to prove
knowledge of the plaintext corresponding to an Elgamal ciphertext, and that the plaintext
is certified by a MAC.

Parameters Let κ be a security parameter. The scheme is defined in a group G of prime
order q, written multiplicatively.

The number of attributes in the message space is denoted n. We write ~x to denote a
list of values. The scheme requires the following fixed set of group elements:

G,Gw, Gw′ , Gx0 , Gx1 , Gy1 , . . . , Gyn , Gm1 , . . . , Gmn , GV

generated so that the relative discrete logarithms are unknown, e.g., Gm1 = HashToG(“m1”).

KeyGen(params) The secret key is sk := (w,w′, x0, x1, (y1, . . . , yn)) all elements of Zq.
We will write W := Gw

w, and W is considered part of sk. Optionally, compute the issuer
parameters iparams (CW , X, Yi) as follows:

CW = Gw
wGw′

w′ , I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gyn

yn

The iparams are optional for basic use of the MAC, but are required when the MAC is
used in the protocols we consider, therefore we assume iparams is always present.

MAC(sk, ~M) The MAC is calculated over a collection of group attributes and scalar at-
tributes. For a given MAC key, each of the n attribute positions is fixed as either a group
attribute or scalar attribute. Group attributes are elements in G, denoted as Mi, and scalar
attributes are elements mj in Zq, written as Mj = Gmj

mj . Choose random t ∈ Zq, U ∈ G,
and compute
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V = WUx0+x1t

(
n∏
i=1

Mi
yi

)
Output (t, U, V ) as the MAC on ~M .

Verify(sk, ~M, (t, U, V )) Recompute V as in MAC (denote it V ′) and accept if V
?
= V ′.

3.2 Credential Issuance and Presentation

Here we describe how credentials are issued and presented. To start, we describe issuance
when there are no blind attributes, and describe blind issuance in Section 5.9.

Credential Issuance A credential is a MAC from Section 3.1 computed by the issuer
on the attributes. The MAC is the triple (t, U, V ) ∈ Zq ×G×G where t ∈R Zq, U ∈R G,
and

V = WUx0+x1t

(
n∏
i=1

Mi
yi

)

The issuer proves knowledge of the secret key, and that (t, U, V ) is correct relative to
iparams = (CW , I), with the following proof of knowledge.

πI = PK{(w,w′, x0, x1, y1, . . . , y4) :

CW = Gw
wGw′

w′ ∧

I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gyn

yn
∧

V = Gw(Ux0)(U t)x1

(
n∏
i=1

Mi
yi

)
}

Credential Presentation To present the credential (t, U, V ) on attributes ~M , a user
creates the following proof (called a Show protocol). On its own this only proves that the
user holds a valid credential, so we will always add additional predicates that prove more
about the attributes. Attributes may be revealed to the verifier, or kept hidden, in which
case the user proves knowledge of hidden attributes.
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1. Choose z ∈R Zq and compute (i ranges from 1 to n):

Cyi =


Gyi

zMi if i is a hidden group attribute

Gyi
zGmi

mi if i is a hidden scalar attribute

Gyi
z if i is a revealed attribute

Cx0 = Gx0
zU

Cx1 = Gx1
zU t

CV = GV
zV

along with the value z0 = −tz (mod q). Let Hs denote the set of hidden scalar
attributes.

2. Compute the following proof of knowledge:

π = PK{(z,z0, {mi}i∈Hs , t) :

Z = Iz ∧
Cx1 = Cx0

tGx0
z0Gx1

z ∧

Cyi =

{
Gyi

zGmi
mi if i is a hidden scalar attribute

Gyi
z if i is a revealed attribute

}

3. Output (Cx0 , Cx1 , Cy1 , . . . , Cyn , CV , π)

4. Let H denote the set of all hidden attributes. The verifier computes

Z =
CV

(WCx0
x0Cx1

x1
∏
i∈HCyi

yi
∏
i 6∈H(CyiMi)yi)

using the secret key (W,x0, x1, y1, . . . , yn) and revealed attributes, and then verifies π.

4 Verifiable Encryption

Since our credential system supports attributes that are group elements, we can use the
Elgamal encryption scheme to create an efficient verifiable encryption scheme [CD00]. By
verifiable, we mean that we can prove properties about the plaintext in zero-knowledge.
In particular, we show how to prove that the plaintext is certified by a credential from
Section 3.

Suppose we have a credential certifying a group attribute M1, and let Y = Gy be an
Elgamal public key. The encryption of M1 with Y is (E1, E2) = (Gr, Y rM1). To prove
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that the plaintext is certified, we add two predicates to the credential presentation proof:

E1 = Gr ∧ Cy1/E2 = Gzy1/Y
r ,

and prove knowledge of r in the same proof. Previous verifiable encryption schemes did
not allow us to efficiently encrypt group elements, and thus required more expensive tech-
niques, such as a variant of Paillier’s encryption scheme [CS03], or groups with bilinear
maps [CHK+11]. We caveat that this is only a promising direction for a new (public-key)
verifiable encryption scheme, since the above basic Elgamal scheme is not CCA secure, and
we have not carefully analyzed its security. Therefore, for many applications, the previous
schemes may be more appropriate.

Since it will be sufficient for our application, we focus on symmetric-key verifiable
encryption that is CCA secure, and leave construction of a public-key CCA-secure verifiable
encryption scheme compatible with our credential scheme as an open problem.

Symmetric-key verifiable encryption with unique ciphertexts Informally, we will
need a symmetric-key encryption scheme that (i) has unique ciphertexts, meaning that for
every plaintext there is at most one ciphertext that will decrypt correctly, (ii) has public
verifiability, meaning that we can prove that a ciphertext encrypts a certified plaintext with
a key that is consistent with some public parameters, and (iii) is correct under adversarially
chosen keys, meaning that it is hard to find a key and message that cause decryption to
fail.

4.1 Construction

The notation we use here is chosen to be consistent with later sections.

System parameters A cyclic group G of prime order q, with associated hash and encode
functions (as described in §2.1). Recall that EncodeToG is a function that encodes
strings as group elements, that HashToG and HashToZq are cryptographic hash func-
tions that hash strings to elements of G and Zq (respectively). We define a fourth
function Derive : {0, 1}2κ → (Zq)3, used to derive three keys from a master key.
Derive should also be a cryptographic hash function. Group elements Ga, Ga0 , Ga1
are chosen such that the relative discrete logs are unknown.

KeyGen(1κ) Choose the secret key k0 at random from {0, 1}2κ, and derive k = Derive(k0) =
(a, a0, a1) ∈ (Zq)3. We assume that honest parties will not use k that was not derived
from a k0 in this way. Compute the public parameters pk := Ga

aGa0
a0Ga1

a1 .

Enc(k,m) Compute M1 = EncodeToG(m), M2 = HashToG(m) and m3 = HashToZq(m).
Compute

E1 = M2
a0+a1m3

E2 = (E1)
aM1
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Dec(k,E1, E2) First compute m′ = DecodeFromG(E2/E
a
1 ). If

E1 = HashToG(m′)a0+a1HashToZq(m′)

output m, otherwise output ⊥.

Prove(k, pk,E1, E2, ~C) To prove that the ciphertext (E1, E2) encrypts the plaintext com-
mitted in the list of commitments ~C:

Cy1 := M1Gy1
z, Cy2 := M2Gy2

z, and Cy3 := Gm3
m3Gy3

z,

first compute Cy2
′ := Cy2

a1 and the scalar z1 = −z(a0 +a1m3), then create the proof

πEnc = PK{(a, a0, a1,m3, z, z1) :

pk = Ga
aGa0

a0Ga1
a1 ∧

Cy1/E2 = Gy1
z/E1

a ∧ //plaintext is M1

Cy2
′ = Cy2

a1 ∧
E1 = Cy2

a0(Cy2
′)
m3Gy2

z1 ∧ //E1 is well-formed

Cy3 = Gy3
zGm3

m3 }

Verify(pk, πEnc, ~C,C
′
y2) Accept if πEnc verifies, otherwise reject.

Discussion When we use the Prove function, it will be combined with the credential
presentation proof, which creates the triple of commitments ~C (and this is why they use
the same z value). The E1 part of the ciphertext can be seen as part of a MACGGM

authentication tag on m3, computed with key (a0, a1), where the MAC function’s choice of
a group element is derandomized by hashing the message. When HashToG is modelled as
a random oracle, security of this 1-element MAC reduces to the security of MACGGM and
may be of independent interest, as it halves the tag size.

The Derive function in key generation serves two purposes. First, when sharing group
keys amongst themselves, group members can share a short master key, saving bandwidth.
Second, it ensures that (a, a0, a1) are not a degenerate value (such as all zero), that might
be used to break the correctness under adversarially chosen keys property (Definition 8).

5 The Signal Private Group System

In the next sections we provide a high-level description of the data objects and operations
in the the Signal Private Group System. Following this we describe these objects, and their
associated proofs of knowledge, in detail.
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5.1 General Data Objects

UID: A 16-byte UUID (universally unique identifier) representing a user.

ServerSecretParams: A set of secret values the server uses to issue credentials and
verify zero-knowledge proofs about credentials.

ServerPublicParams: A set of public values which are derived from ServerSecret-
Params and which are known to all users. The ServerPublicParams are used by users to
verify issued credentials and produce zero-knowledge proofs about credentials.

5.2 Data Objects for Authentication

AuthCredentialResponse: A message sent from the server to a user containing an
AuthCredential and a zero-knowledge proof that this credential was constructed correctly.
Since the corresponding request is trivial, we omit it.

AuthCredential: A credential with attributes based on the UID and a redemption time
which specifies the day on which this credential is valid. Since none of the attributes are
secret (known only to the user), the credential itself must be kept secret, and issued over
a secure channel.

AuthCredentialPresentation: A message sent from a user to the server containing
a UidCiphertext, a redemption time, and the credential presentation proof πA from Sec-
tion 5.11.

5.3 Data Objects for Profile Keys

The data objects in this section are all related to profile keys, commitment and credentials.

ProfileKey: A 32-byte key used for symmetric-key encryption of profile data. A user
shares their ProfileKey with users they trust, but not with the server. At any point in time
a UID is associated with a single profile key, but the profile key associated with a UID
could be changed at the user’s discretion. The uses of profile data are outside the scope of
this document, but two examples are a user’s screen name and profile picture.

ProfileKeyCommitment: A deterministic commitment to a ProfileKey.

ProfileKeyVersion: A collision-resistant hash of the ProfileKeyCommitment.
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ProfileKeyCredentialRequest: A message sent from a user to the server to request a
ProfileKeyCredential. The message contains a ProfileKeyV ersion, a proof of knowledge
of the corresponding ProfileKey, and some additional data to help the server perform a
blinded credential issuance.

ProfileKeyCredentialResponse: A message sent from the server to a user containing
a ProfileKeyCredential and the blind issuance proof πB from Section 5.9.

ProfileKeyCredential: A credential with attributes based on a UID and ProfileKey.
Note that an AuthCredential for a UID is issued only to the user who owns that UID,
whereas ProfileKeyCredentials are issued to anyone who knows the profile key for a UID.
Since profile keys are shared between users, many users will hold a ProfileKeyCredential
certifying a user’s ProfileKey.

ProfileKeyCredentialPresentation: A message sent from a user to the server con-
taining a UidCiphertext, a ProfileKeyCiphertext, and a zero-knowledge proof of knowledge
of some ProfileKeyCredential issued over the encrypted UID and ProfileKey.

5.4 Data Objects for Groups

The data objects in this section exist for a specific group.

GroupMasterKey: A random value which the GroupSecretParams are derived from.
When a new user is added or invited to a group, the user adding them will send the new
member the group’s GroupMasterKey via an encrypted message, so the new member can
derive the GroupSecretParams. Each encrypted message sent within the group will also
contain a copy of the GroupMasterKey, in case the initial message fails to arrive. Note
that a user who has acquired a group’s GroupMasterKey and then leaves the group (or is
deleted) retains the ability to collude with a malicious server to encrypt and decrypt group
entries. We deem this risk acceptable for now due to the complexities in rapid and reliable
rekey of the GroupMasterKey.

GroupSecretParams: A set of secret values which group members use to encrypt and
decrypt UidCiphertexts and ProfileKeyCiphertexts, as well as construct zero-knowledge
proofs about these ciphertexts.

GroupPublicParams: A set of public values which are derived from some GroupSecret-
Params. The GroupPublicParams are stored on the server to represent a group. The
server uses the GroupPublicParams to verify zero-knowledge proofs about UidCiphertexts
and ProfileKeyCiphertexts.
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GroupIdentifier: A collision-resistant hash of the GroupPublicParams.

UidCiphertext: A deterministic encryption of a UID using GroupSecretParams.

ProfileKeyCiphertext: A deterministic encryption of a ProfileKey using GroupSecret-
Params.

Role: A value specifying what access privileges a user has to modify the group. For
example, a user with an administrator role may have more privileges than other users.
Discussion of specific roles is out of scope of this document. Roles are enforced by the
server, not by a cryptographic mechanism.

5.5 Operations for Credentials

Here we describe the protocols used to get profile and authentication credentials.

CommitToProfileKey

1. The user generates a random ProfileKey, computes a ProfileKeyCommitment from
the ProfileKey, and computes a ProfileKeyV ersion by hashing their ProfileKey-
Commitment.

2. The user sends the (ProfileKeyV ersion, ProfileKeyCommitment) pair over the au-
thenticated channel to the server.

3. The server stores the ProfileKeyCommitment associated with the authenticated
user’s UID and the ProfileKeyV ersion.

4. Note that the server does not check anything about the ProfileKeyCommitment or
ProfileKeyV ersion. If a user registers an invalid commitment, that will have the same
effect as distributing an invalid profile key to other users, which the user cannot be
prevented from doing.

GetProfileKeyCredential This operation provisions a user with a ProfileKeyCredential
for some (UID , ProfileKey) if and only if the user knows a ProfileKey matching a Profile-
KeyCommitment that was previously sent to the server via the CommitToProfileKey op-
eration.

1. The user has a ProfileKey for a target UID (their UID or another user’s UID).

2. The user derives a ProfileKeyV ersion from the ProfileKey, and computes a Profile-
KeyCredentialRequest from the ProfileKey.
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3. The user sends the (UID , ProfileKeyV ersion, ProfileKeyCredentialRequest) over an
unauthenticated channel to the server.

4. If the server has a stored ProfileKeyCommitment for the specified UID and Profile-
KeyV ersion, the server verifies the proof of knowledge in the ProfileKeyCredential-
Request.

(a) If verification succeeds the server generates a ProfileKeyCredentialResponse.

(b) Otherwise (if the lookup fails or verification of ProfileKeyCredentialRequest
fails) the server returns an error.

5. The user verifies the proof of knowledge in the ProfileKeyCredentialResponse, and if
verification succeeds the user stores a ProfileKeyCredential for the target UID .

GetAuthCredential

1. The user contacts the server over an authenticated channel and requests an Auth-
Credential for some redemption date.

2. If the date is in the allowed range, the server returns an AuthCredentialResponse for
the date, and returns an error otherwise.

3. The user verifies the proof of knowledge in the AuthCredentialResponse and stores
an AuthCredential if the verification succeeds.

5.6 Operations for Group Management

In this section we describe the operations used to manage groups.

CreateGroup

1. The user generates a pair (GroupSecretParams, GroupPublicParams) for the new
group.

2. The user encrypts their UID into a UidCiphertext using the GroupSecretParams.

3. The user creates an AuthCredentialPresentation containing the UidCiphertext and
a proof of knowledge of an AuthCredential matching the encrypted UID .

4. For each (UID , ProfileKey) that will be members of the new group, including this
user (the group creator), the user:

(a) Encrypts the UID and ProfileKey into a UidCiphertext and ProfileKeyCipher-
text using the GroupSecretParams.
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(b) Creates a ProfileKeyCredentialPresentation containing these ciphertexts and a
proof of knowledge of a ProfileKeyCredential matching the ciphertexts.

5. The user contacts the server over an unauthenticated channel and sends:

• GroupPublicParams

• AuthCredentialPresentation for itself

• List of initial members including the creator, each containing a ProfileKey-
CredentialPresentation and a Role.

6. The server verifies

(a) The proof of knowledge in the AuthCredentialPresentation using the UidCipher-
text from the same AuthCredentialPresentation.

(b) The proof of knowledge in each ProfileKeyCredentialPresentation using the
UidCiphertext and ProfileKeyCiphertext from the same ProfileKeyCredential-
Presentation.

(c) That the AuthCredentialPresentation contains a UidCiphertext that matches
some UidCiphertext in a ProfileKeyCredentialPresentation.

(d) That the GroupIdentifier derived from these GroupPublicParams is not used
for any existing group.

If all these verifications succeed, the server stores the GroupPublicParams and a
list of (UidCiphertext, ProfileKeyCiphertext, Role) tuples associated to the Group-
Identifier. Otherwise the server returns an error.

AuthAsGroupMember This operation uses an unauthenticated channel so that the
server does not learn the user’s UID , but the channel is authenticated to a particular
UidCiphertext within a group. This operation is used by other operations for group man-
agement.

1. The user recomputes their UidCiphertext for the group and creates an AuthCredential-
Presentation to prove knowledge of an AuthCredential matching the encrypted UID .

2. The user contacts the server over an unauthenticated channel and sends:

• GroupPublicParams identifying a particular group, and

• The AuthCredentialPresentation

3. The server verifies the proof of knowledge in the AuthCredentialPresentation us-
ing the transmitted GroupPublicParams and the UidCiphertext which is contained
within the AuthCredentialPresentation.
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4. If this verification succeeds, and the GroupPublicParams corresponds to an actual
group, and the AuthCredentialPresentation ′s UidCiphertext corresponds to a user
in the group, then the user is authenticated as the corresponding group member.
Otherwise an error is returned.

AddInvitedGroupMember This operation is used when a group member would like to
add some target user to the group but doesn’t know the target’s ProfileKey. The target
will be sent a GroupMasterKey and invited to join the group, and can accept the invitation
and join by using the UpdateProfileKey operation.

1. The user and server execute AuthAsGroupMember, and abort if it fails.

2. The user encrypts another user’s UID as a UidCiphertext using the GroupSecret-
Params, and sends this ciphertext, and a Role for the new user, to the server.

3. The server verifies that the UidCiphertext does not already exist in the group, and
that the user’s Role allows them invite other users.

4. The server stores the UidCiphertext and Role in the group with no associated Profile-
KeyCiphertext (this user is only an invited member, not a full member, of the group).
Note that the server does not check anything about the UidCiphertext, aside from
checking for duplicates.

AddGroupMember

1. The user and server execute AuthAsGroupMember, and abort if it fails.

2. The user encrypts the new user’s (UID , ProfileKey) into a UidCiphertext and Profile-
KeyCiphertext using the GroupSecretParams, then creates a ProfileKeyCredential-
Presentation proving these ciphertexts are well-formed and consistent, and sends it
to the server, along with a Role for the new user.

3. The server verifies that

(a) The authenticated user’s Role allows them to add other users.

(b) The UidCiphertext does not already exist in the group as a full member. If the
UidCiphertext exists in the group as an invited member (i.e., missing ProfileKey-
Ciphertext), then this operation proceeds and adds the user as a full member.

(c) The proof of knowledge in the ProfileKeyCredentialPresentation is valid

If these checks succeed, the server stores the tuple (UidCiphertext, ProfileKeyCipher-
text, Role) in the group. Otherwise the server returns an error.

DeleteGroupMember
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1. The user and server execute AuthAsGroupMember, and abort if it fails.

2. The user sends the UidCiphertext of another user or themselves (the target user).

3. The server checks whether the authenticated user’s Role allows them to delete the
target user. If not, this operation fails.

4. The corresponding entry in the group membership is deleted.

5. If all members are deleted then the group is deleted.

FetchGroupMembers

1. The user and server execute AuthAsGroupMember, and abort if it fails.

2. All of the (UidCiphertext, ProfileKeyCiphertext) pairs are returned for full members
as well as invited members (members without a ProfileKeyCiphertext).

UpdateProfileKey

1. The user and server execute AuthAsGroupMember, and abort if it fails.

2. The user encrypts their own UID and ProfileKey into a UidCiphertext and ProfileKey-
Ciphertext using the GroupSecretParams, creates a ProfileKeyCredentialPresentation
containing these ciphertexts and a proof of knowledge of a ProfileKeyCredential
matching these ciphertexts, and then sends the ProfileKeyCredentialPresentation to
the server.

3. The server verifies

(a) The proof of knowledge in the ProfileKeyCredentialPresentation.

(b) That the UidCiphertext in the AuthCredentialPresentation is the same as the
UidCiphertext in the ProfileKeyCredentialPresentation and matches an entry
in the group’s membership list.

If these checks succeed the ProfileKeyCiphertext is replaced (or added in case of an
previously invited user), otherwise an error is returned.

5.7 System Parameters and Server Parameters

The Signal Private Group System involves two types of credentials, AuthCredentials and
ProfileKeyCredentials. They are each issued with a separate issuer key and iparams.

System Parameters In addition to the parameters of the MAC scheme, the group ele-
ments (Ga, Ga0 , Ga1 , Gb, Gb0 , Gb1 , H,G,H1, H2) are generated so that the relative discrete
logarithms are unknown, e.g., Ga0 = HashToG(“a0”).
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ServerSecretParams and ServerPublicParams The ServerSecretParams contains
two secret keys for the MAC scheme. The ServerPublicParams contains the corresponding
issuer parameters, denoted iparamsA (for auth credentials) and iparamsP (for profile key
credentials).

5.8 Auth Credentials

An AuthCredential has four attributes:

1. M1 := EncodeToG(UID), a reversible encoding of UID ,

2. M2 := HashToG(UID),

3. M3 := G3
m3 , where m3 = HashToZq(UID),

4. M4 := G4
m4 , where m4 ∈ Zq, is a “redemption time”.

An AuthCredentialResponse contains an algebraic MAC for the credential, and also
the proof of issuance πI . The user verifies this proof in the GetAuthCredential operation,
using attribute values (M1,M2,m3) which the user derives from their own UID.

5.9 Profile Key Commitments and Credentials

A ProfileKeyCredential links a UID and a ProfileKey. The first three credential attributes
encode the UID and are the same as the AuthCredential, and the last three encode the
ProfileKey:

1. N1 = M1 = EncodeToG(UID),

2. N2 = M2 = HashToG(UID),

3. N3 = M3 = Gm3
m3 where m3 = HashToZq(UID),

4. N4 = EncodeToG(ProfileKey), an encoding of the profile key,

5. N5 = HashToG(ProfileKey,UID), a hash of the profile key and UID, and

6. N6 = Gm6
n6 , where n6 = HashToZq(ProfileKey,UID), a hash of the profile key and

UID.

A ProfileKeyCommitment commits to the three values N4, N5 and N6. Since N4

and N5 are group elements and not scalars, we can’t simply use Pedersen’s commit-
ment scheme. Instead, a ProfileKeyCommitment is the triple of values (J1, J2, J3) =
(Gn6 , H1

n6N4, H2
n6N5). Note that this commitment scheme is not perfectly hiding, but

since ProfileKeys are assumed to have high min-entropy, this is sufficient. Further, the
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commitment is deterministic since (N4, N5, n6) is derived from the ProfileKey, thus any
user with a ProfileKey can reconstruct the ProfileKeyCommitment.

The ProfileKeyV ersion is a collision-resistant hash of the ProfileKeyCommitment and
is used as an identifier for the ProfileKey.

Blind Issuance Issuance of ProfileKeyCredentials differs from AuthCredentials be-
cause the ProfileKeyCredential attribute values are not all known to the server, so the
server can’t simply calculate and return a MAC to the user.

Instead, the user and server will perform a blind issuance protocol, based on the same
idea as in [CMZ14]. The ProfileKeyCredentialRequest will contain an Elgamal encryption
of the blinded attributes (N4, N5, N6) and a proof that these values match the ProfileKey-
Commitment. The server will use the homomorphic properties of Elgamal encryption to
create an encrypted MAC and return it to the user along with a proof of correctness, in a
ProfileKeyCredentialResponse. The user will verify the proof and then decrypt the MAC
to recover their ProfileKeyCredential.

To generate the ProfileKeyCredentialRequest the user generates an Elgamal key pair
(y, Y = Gy), where G is a generator of G. The blind attributes (N4, N5, n6) are encrypted
as

(D1, D2) = (Gr1 , Y r1N4)

(E1, E2) = (Gr2 , Y r2N5)

(F1, F2) = (Gr3 , Y r3Gm6
n6)

for random r1, r2 and r3. The ProfileKeyCredentialRequest contains the ciphertexts, the
public key Y , and a proof that the encrypted values match the commitment (J1, J2, J3) =
(Gn6 , H1

n6N4, H2
n6N5):

πB = PK{(y,r1, r2, r3, n6) :

Y = Gy ∧D1 = Gr1 ∧ E1 = Gr2 ∧ F1 = Gr3 ∧ J1 = Gn6∧
D2/J2 = Y r1/H1

n6∧
E2/J3 = Y r2/H2

n6∧
F2 = Y r3Gm6

n6}

To create a ProfileKeyCredentialResponse after verifying the ProfileKeyCredential-
Request the server will create a partial credential (t, U, V ′) that covers the unblinded
attributes, and encrypt V ′ with the user’s public key Y to get (R1, R2) = (Gr

′
, Y r′V ′) for

a random r′. Then the server will compute

(S1, S2) = (D1
y4E1

y5F1
y6R1, D2

y4E2
y5F2

y6R2) .

Because Elgamal encryption is homomorphic, the ciphertext (S1, S2) is an encryption of
V for a credential (t, U, V ) which covers both blinded and revealed attributes. With the
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attributes (N1, . . . , N6) as described above, (S1, S2) will be:

S1 = Gy4r1+y5r2+y6r3+r
′
,

S2 = Y y4r1+y5r2+y6r3+r′WUx0+tx1
6∏
i=1

Ni
yi

= Y y4r1+y5r2+y6r3+r′V

The server can prove that (S1, S2) were calculated correctly by modifying the issuance
proof to be the following proof πBI :

PK{(w,w′, y1, . . . , y6, x0, x1, r′) :

CW = Gw
wGw′

w′ ∧

I =
GV

Gx0
x0Gx1

x1Gy1
y1 . . . Gy6

y6
∧

S1 = D1
y4E1

y5F1
y6Gr

′ ∧

S2 = D2
y4E2

y5F2
y6Y r′Gw

w(Ux0)(U t)x1M1
y1M2

y2M3
y3}

The server sends (S1, S2, t, U, πBI) to the user, and if πBI is valid, the user decrypts V =
S2/S1

y and outputs the credential (t, U, V ) with attributes (N1, . . . , N6).

5.10 Verifiable Encryption of UIDs and Profile Keys

Encryption of UIDs and ProfileKeys is done with the symmetric-key scheme from Sec-
tion 4.1. Both encryption and decryption require the secret key (GroupSecretParams).
The public key (GroupPublicParams) only exists to allow users to prove to the server that
ciphertexts are well-formed.

GroupSecretParams and GroupPublicParams The GroupSecretParams are (a, a0,
a1, b, b0, b1) ∈ Zq6 derived from a randomly-chosen GroupMasterKey. The GroupPublic-
Params are pk := Ga

aGa0
a0Ga1

a1Gb
bGb0

b0Gb1
b1 .

Encryption of UIDs Recall that M1 = EncodeToG(UID), M2 = HashToG(UID), and
m3 = HashToZq(UID). To encrypt a UID to a UidCiphertext (EA1 , EA2) calculate:

EA1 = M2
(a0+a1m3)

EA2 = EA1
aM1
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To decrypt the UidCiphertext first compute:

M ′1 = EA2/EA1
a

then decode M ′1 to get UID ′, compute M ′2 = HashToG(UID ′), and m′3 = HashToZq(UID ′).
Then perform the following checks and return UID ′ if they succeed, ⊥ otherwise:

EA1

?
= (M ′2)

a0+a1m′3

EA1

?
6= 1

Encryption of ProfileKeys Recall thatN4 = EncodeToG(ProfileKey), N5 = HashToG(Profile-
Key,UID) and n6 = HashToZq(ProfileKey,UID). To encrypt a ProfileKey as a ProfileKey-
Ciphertext (EB1 , EB2) calculate:

EB1 = N5
(b0+b1n6)

EB2 = EB1
bN4

To decrypt the ProfileKeyCiphertext first compute:

N ′4 = EB2/EB1
b

then decode N ′4 to get ProfileKey ′, and compute N ′5 = HashToG(ProfileKey ′,UID) and
n′6 = HashToZq(ProfileKey′,UID). Then perform the following checks and return Profile-
Key′ if they succeed, ⊥ otherwise:

EB1

?
= (N ′5)

b0+b1n′6

EB1

?
6= 1

5.11 Presenting an AuthCredential

An AuthCredentialPresentation contains a UidCiphertext, a redemption time, and a proof
of knowledge calculated as follows:

1. Recompute (EA1 , EA2) from UID and (a, a0, a1) as described in Section 5.10.
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2. Choose z ∈R Zq and compute

Cy1 = Gy1
zM1 Cx0 = Gx0

zU

Cy2 = Gy2
zM2 Cx1 = Gx1

zU t

Cy3 = Gy3
zGm3

m3 CV = GV
zV

Cy4 = Gy4
z Cy2

′ = Cy2
a1

along with two values in Zq: z0 = −tz and z1 = −z(a0 + a1m3).

3. Compute the following proof of knowledge:

πA = PK{(z,sk, z0, z1,m3, t) :

Z = Iz ∧
Cx1 = Cx0

tGx0
z0Gx1

z ∧
pk = Ga

aGa0
a0Ga1

a1Gb
bGb0

b0Gb1
b1 ∧

Cy1/EA2 = Gy1
z/EA1

a ∧ //plaintext is M1

Cy2
′ = Cy2

a1 ∧
EA1 = Cy2

a0(Cy2
′)
m3Gy2

z1 ∧ //EA1
is well-formed

Cy3 = Gy3
zGm3

m3 ∧
Cy4 = Gy4

z }

4. Output (Cx0 , Cx1 , Cy1 , . . . , Cy4 , CV , Cy2
′, EA1 , EA2 , πA)

5. The server computes

Z = CV /(WCx0
x0Cx1

x1Cy1
y1Cy2

y2Cy3
y3(Cy4Gm4

m4)y4)

using the timestampm4 and the secret key (W,x0, x1, y1, . . . , y4), and then verifies πA.

5.12 Presenting a ProfileKeyCredential

A ProfileKeyCredentialPresentation contains a UidCiphertext, a ProfileKeyCiphertext,
and a proof of knowledge calculated as follows:

1. Choose random z, r then compute

Cyi = Gyi
zNi for i = 1, . . . , 6 CV = GV

zV

Cx0 = Gx0
zU Cy2

′ = Cy2
a1

Cx1 = Gx1
zU t Cy5

′ = Cy5
b1

along with three values in Zq: z0 = −tz, z1 = −z(a0+a1m3), and z2 = −z(b0+b1n6).
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2. Then compute the proof of knowledge

πP = PK{(sk,m3, n6, z, z0, z1, z2, t) :

Z = Iz∧
Cx1 = Cx0

tGx0
z0Gx1

z∧
pk = Ga

aGa0
a0Ga1

a1Gb
bGb0

b0Gb1
b1 ∧

Cy1/EA2 = Gy1
z/EA1

a ∧ //plaintext is N1

Cy2
′ = Cy2

a1 ∧
EA1 = Cy2

a0(Cy2
′)
m3Gy2

z1 ∧ //EA1 is well-formed

Cy3 = Gy3
zGm3

m3 ∧
Cy4/EB2 = Gy4

z/EB1
b ∧ //plaintext is N4

Cy5
′ = Cy5

b1 ∧
EB1 = Cy5

b0(Cy5
′)
n6Gy5

z2 ∧ //EB1 is well-formed

Cy6 = Gy6
zGm6

n6

}

and output ({Cyi}6i=1, Cx0 , Cx1 , CV , Cy2
′, Cy5

′, πP ).

3. The server computes

Z = CV /(WCx0
x0Cx1

x1

6∏
i=1

Cyi
yi)

using the secret key (W,x0, x1, y1, . . . , y5), and then verifies πP .

6 Security analysis

In this section we analyze the security of: the encryption scheme defined in Section 4.1, our
new algebraic MAC from Section 3.1, and the security of the keyed-verification anonymous
credential system build on top of the MAC.

6.1 Security of Encryption

We first give a definition of weak pseudorandom functions (wPRF) [NR95], tailored to our
setting.

Definition 4. Let G be a group of prime order q. A function fk : G→ G with key k ∈ Zq
is said to be a weak pseudorandom function (wPRF), if the following two sequences (of
length polynomial in κ) are indistinguishable

(x1, fk(x1), (x2, fk(x2)), . . .
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and
(x1, r1), (x2, r2), . . .

where xi and ri are sampled from the uniform distribution on G.

Weak PRFs are useful because they are PRFs when the inputs are chosen at random.
The specific wPRF we use in our security analysis is the function fk : G → G defined as
fk(x) = xk. The fact that fk is a wPRF is known in the literature (e.g,. [DKPW12]).

First we show that the encryption scheme of §4.1 is CPA secure. Our definition uses
a real-or-random experiment [BDJR97], and to model the deterministic property, the en-
cryption oracle can only be queried once per plaintext.

Definition 5. For a deterministic symmetric key cipher with public verifiability (KeyGen,Enc,
Dec), we define CPA security by the following security game.

• The challenger selects (k, pk)← KeyGen(1κ), and a random bit b.

• The attacker is given pk and an oracle Ok(·) that outputs EncK(·) when b = 0 and
EncK(r) for uniformly random r (of the same length) when b = 1. Ok outputs ⊥ if
the input was previously queried.

• A outputs a guess bit b′ and wins if b = b′.

In the following proof and throughout this section, we use the shorthand H to denote
HashToG, and h to denote HashToZq.

Theorem 6. The encryption scheme of Section 4.1 is CPA secure, in the random oracle
model, assuming the DDH problem is hard in G.

Proof. Let A be an attacker in the CPA game. We construct a DDH distinguisher B that
uses A as a subroutine. We proceed with a hybrid argument. Let Gi be the probability
that A outputs 1 in Game i. Suppose that DDH is εddh-hard in G, i.e., no polynomial time
algorithm exists for DDH that succeeds with probability better than εddh.

Game 0 This is the real CPA game, where B is the challenger, and H is modeled as a
random oracle. The probability that A breaks CPA security of the scheme is G0.

Game 1 is the same as Game 0, but B replaces pk with a random value. We claim that
G1 − G0 ≤ εddh. Let B have a DDH triple as input, (A,B,C) = (Ga0 , Gb, Ga0b or Gz) for
a random z ∈ Zq. B chooses a, a1 at random and creates pk, by first programming H so
that Ga0 = B = Gb (this is possible since Ga0 is derived using H). Then B computes
pk = Ga

aCGa1
a1 . On hash queries H(M), B outputs Gr for random r and stores (M, r).

To answer Enc(M) queries, B programs H (or has already) so that H(M) = Gr, then
Ar = Ga0r = H(M)a0 . B outputs (E1, E2) = (ArH(M)a1h(m), (E1)

aM).
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When the DDH triple is real, games G0 and G1 are identical, and when the triple is
random, pk is uniformly distributed in G. The output of Enc queries is always the same in
both games because it doesn’t depend on C. Therefore, G1 − G0 ≤ εddh.

Game 2 is the same as Game 1, except B replaces E1 with a random value when A
makes an Enc query. B chooses (a, a1) at random, and acts as a wPRF attacker, for
an instance where a0 is the secret. When A queries H(m), B queries the wPRF oracle
to get (U,U ′). B programs H(m) = U , then outputs (E1, E2) = (U ′Ua1h(m), (E1)

am).
Note that since m never repeats, U is a fresh random group element for every Enc query
with overwhelming probability. When the wPRF oracle outputs real pairs then B outputs
E1 = U ′Ua1h(m) = Ua0+a1h(m) = H(m)a0+a1h(m), and G2 = G1. When the wPRF output
is random, then E1 is uniformly distributed in G. Therefore B is a distinguisher for the
wPRF game (and hence DDH) with probability G2 − G1 ≤ εddh.

Game 3 is the same as 2 but now E2 is replaced with a random value. B does not
use (a0, a1), and again plays the wPRF game, this time for an instance with secret a.
When A makes an Enc(m) query, B queries the wPRF oracle to get (U,U ′), and B outputs
(E1, E2) = (U,U ′m). E1 is uniformly distributed in both games 2 and 3. For E2, when the
wPRF output is real, we have E2 = (E1)

am, exactly as in Game 2, and when the wPRF
output is random, E2 is uniformly distributed. Therefore G3 − G2 ≤ εddh.

In Game 3 B no longer uses m. By a union bound

Pr[A wins the CPA game ] ≤ 3εddh

Now we formally define the unique ciphertexts property.

Definition 7. We say a symmetric-key encryption scheme (KeyGen,Enc,Dec) has unique
ciphertexts if for all polynomial-time A,

Pr[(k, c1, c2)← A(1κ) : c1 6= c2 ∧ Deck(c1) = Deck(c2) 6= ⊥]

is negligible in κ.

Next we define correctness under adversarially chosen keys. Our definition refers to the
Derive hash function from our construction, used to derive the secret key from a seed.

Definition 8. We say a symmetric-key encryption scheme (KeyGen,Enc,Dec) is correct
under adversarially chosen keys if for all polynomial-time A,

Pr[(k0,m)← A(1κ) : sk = Derive(k0) ∧ DecskEncsk(m) = ⊥]

is negligible in κ for all polynomial time A.
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Now we prove that our encryption scheme has unique ciphertexts (Definition 7) and is
correct under adversarially chosen keys(Definition 8).

Theorem 9. The encryption scheme of Section 4.1 has unique ciphertexts, and is cor-
rect under adversarially chosen keys assuming HashToG is a random oracle, HashToZq is
collision-resistant, Derive is a random function and the DLP is hard in G.

Proof. First we prove that the scheme has unique ciphertexts. Because decryption recom-
putes E′1 from M , and this step is deterministic, there is exactly one E1 value for each
M , such that decryption will succeed. For a pair of ciphertexts (E1, E2) and (E′1, E

′
2) that

decrypt successfully to the same M , since E1 = E′1, and E2/(E1)
a = E′2/(E

′
1)
a it must

that E2 = E′2.
Now for correctness under adversarially chosen keys. Suppose A has output k0 such

that k = Derive(k0) and M such that Deck(Enck(M)) = ⊥. By definition Enck succeeds
for any k and M in range, therefore Enc outputs some (E1, E2). Deck(·) can only fail if
it recomputes some E′1 6= E1. Let M ′ be the value computed during the first step of Dec,
i.e., M ′ = E2/(E1)

a. We prove that E1 6= E′1 if and only if M ′ 6= M .
If E1 6= E′1 then M 6= M ′ since encryption is deterministic.
If M 6= M ′ then E1 6= E′1 since encryption is deterministic, and it’s hard to find

collisions in the function used to compute E1. More specifically, it should be hard to find
M 6= M ′ such that

H(M)a0+a1h(M) = H(M ′)a0+a1h(M
′) .

Suppose A is an adversary that outputs such a pair, we construct B that solves the DLP
instance Y = Gx using A, in the random oracle model. For each query H(M) made by A,
B responds with Y sGt for random (s, t), and stores (M, s, t). When A outputs colliding
M 6= M ′, B has

(Y sGt)a0+a1h(M) = (Y s′Gt
′
)a0+a1h(M

′) (1)

Let v = a0 + a1h(M) and v′ = a0 + a1h(M ′). Solving equation 1 gives Y sv−s′v′ = Gt
′v′−tv.

Note that s, s′ are statistically hidden from the adversary, so the probability that he can
find M , M ′, a0, a1 such that s′v′ − sv = 0 is negligible. That means B can output the
discrete log as t′v′−tv

sv−s′v′ .

To relate the security properties of our new encryption to the more standard notion of
CCA security, we first note that unique ciphertexts and plaintext integrity (PI, see [BS17,
Excercise 9.15]) implies ciphertext integrity (CI, see [BS17, Definition 9.1]). In PI and CI,
an adversary is given an encryption oracle, and must either create a new ciphertext that
decrypts correctly (CI), or create a ciphertext that decrypts to a message that was never
queried (PI).

To see that our scheme provides PI security, note that E1 is a MACGGM tag on the
message HashToZq(M), with secret key (a0, a1). Then a PI attacker can be used to create
a forgery on MACGGM. The reduction will choose a, and use it compute E2, for E1 it
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will query a MACGGM oracle to get (U,U ′) and program HashToG(M) = U and output
E1 = U ′. When the PI attacker outputs E∗1 as part of a ciphertext on a never queried M∗,
the reduction outputs (M∗, H(M), E1) as a forgery in the MACGGM uf-cma-security game.
This fails if there was a collision in HashToZq, so we assume it is collision resistant.

Now we argue that PI and unique ciphertexts implies CI. When the CI attacker out-
puts a new ciphertext, PI security ensures that it is an encryption of a previously queried
message. However, each previously queried message has only one ciphertext by the unique
ciphertext security. Therefore, the attacker cannot output a valid ciphertext without break-
ing one of the two security properties.

Finally, if an encryption scheme is both CI and CPA secure, then it is CCA secure [BS17,
§9.2.3].

6.2 Security of our New MAC

In this section we prove that our new MAC is secure.

Theorem 10. The MAC defined in Section 3.1 is suf-cmva secure, assuming the DDH
problem is hard in G, and that the MACGGM construction is uf-cma secure.

Proof. Using Lemma 3, we can ignore verification queries and prove that the MAC is
suf-cma secure.

We consider three possible types of forgeries, and show that each can occur with at
most negligible probability. Recall that the forged MAC on message M∗ consists of three
values (t∗, U∗, V ∗), and let Mi and (ti, Ui, Vi) be the message used and MACs resulting
from the adversary’s MAC oracle queries. In Type 1 forgeries, t∗ 6= ti for any i. In Type 2
forgeries, there exists a previous query i such that t∗ = ti, but M∗ 6= Mi. (Note that since
t is chosen freshly at random for each MAC produced by the oracle, there will be at most
one such i.) Finally, in Type 3 forgeries, there exists a previous query i such that t∗ = ti
and M∗ = Mi, but U∗ 6= Ui. Note that since V ∗ is fully defined by M∗, U∗, t∗, this covers
all possible forgeries in the suf-cma game. Let A be an attacker who plays the suf-cma
security game.

Type 1 (t∗ was not output by the MAC oracle) Suppose that there is an attacker A
that can produce a Type 1 forgery in the suf-cma game with non-negligible probability.
In this case, A’s forgery uses a new tag value t∗, i.e., one that has not been output by in
response to a MAC query from A.

We construct an algorithm B that uses A as a subroutine. B will be a uf-cma forger for
MACGGM. B plays the uf-cma security game for MACGGM with a challenger, who provides a
MAC oracle. First B generates part of the MAC key and the issuer parameters. B chooses
(w, y1, . . . , yn) at random and computes CW . Then B chooses a random z and queries
MACGGM(z) to get a MAC (U,U ′). Since U ′ = Ux0+x1z = Ux0Ux1z, when the random
oracle used to generate parameters is programmed to output Gx0 = U and Gx1 = U z, B
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can create I = GV /(Gy1
y1 . . . Gyn

ynGx0
x0Gx1

x1) as I = GV /(Gy1
y1 . . . Gyn

ynU ′). Now B
initializes A with the issuer parameters.

For MAC queries, B computes M̃ =
∏n
i=0Mi

yi . B chooses a random t, queries
MACGGM(t) to get (U,U ′) and computes the MAC as (t, U, V = M̃WU ′). Since U ′ =
Ux0+x1t, this MAC is computed correctly.

WhenA outputs a forgery, B can compute (U∗, V ∗/M̃W ), and output this as a MACGGM

forgery on the message t∗. If t∗ was never output in a MAC created by B it was never
queried to the MACGGM oracle, and is therefore a valid MACGGM forgery, if σ∗ is a valid
MAC and a Type 1 forgery.

Type 2 or Type 3 (t∗ was output by the MAC oracle) Suppose that there is an attacker
A that can produce a Type 2 or Type 3 forgery in the suf-cma game with non-negligible
probabilty. We argue that this will allow us to construct a reduction B to break DDH. We
proceed via a series of games:

Game 0 This is the real suf-cma game, with the modification that the adversary wins if
the forgery is valid and is of Type 2 or Type 3. By assumption A produces a Type 2 or
Type 3 forgery with non-negligible probability ε.

Game 1 This game proceeds as the suf-cma game with the following exception: the game
first chooses a random i∗ ∈ 1 . . . Q, where Q is the the maximum number of queries that A
can make, and the adversary wins only if t∗ = ti∗ . The adversary will win this game with
probability at least ε/Q.

Game 2 This game proceeds as in Game 1 with the following exceptions: First, the
issuer parameters are chosen at random. Then, on the i∗th query that A makes to its
MAC oracle, the game will respond by running the MAC algorithm. For all other MAC
oracle queries, the game will return three random values (t, U, V ) in the appropriate groups.
The adversary wins if the MAC verifies and t∗ = ti∗ but either ~M or U is new. Suppose
that the adversary’s success probability in Game 2 is non-negligibly lower than in Game 1.
In this case we build an algorithm B that breaks DDH.

Let (R,X1, Z) be a DDH instance in G, that B will useA to answer. We use the notation
(Gr, Gx1 , Grx1) for a real DDH triple, and replace Grx1 with Gz when Z is random. The
base G ∈ G is assumed to be different from the parameters used by the MAC scheme.
B no longer chooses x0, x1 in the secret key. Instead B chooses random d, ti∗ ∈ Zq. The

value of x1 is fixed by X1 in the DDH instance, and the value x0 used by B when creating
MACs will be implicitly defined as x0 = d− x1t∗.

To create I in the issuer parameters without (x0, x1), B first programs the random oracle
so that Gx1 is derived as RaGb for a random a, b. Then B computes the term Gx1

x1 as
ZaXb

1. Similarly, for the term Gx0
x0 , B programs the random oracle to derive Gx0 = Ra

′
Gb
′
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for a random a′, b′. Then B computes Gx0
x0 = ((Ra

′
Gb
′
)d(Za

′
Xb′

1 )−t
∗
. Finally B chooses

CW at random; since this is a perfectly hiding commitment the distribution is identical to
that in the real parameters.

For MAC query i∗, B chooses random ai∗ , bi∗ and outputs the MAC

(Rai∗Gbi∗ , M̃W (Rai∗Gbi∗ )d, t∗) (2)

and for the other query i 6= i∗ B chooses random ai, bi, t and outputs

(RaiGbi , M̃W (RaiGbi)d(ZaiXbi
1 )t−t

∗
, t) (3)

Note that (2) is a special case of (3), since when t = t∗ part of (3) cancels out.
By the definition of d, the MAC in (2) is valid and distributed identically to the output of

the MAC algorithm. When Z = Grx1 , it can be checked that (3) is also valid and distributed
identically to the output of the MAC algorithm, as are the issuer parameters. When Z
is random, ZaXb

1 is random and independent of RaGb, so (3) consists of 3 independent
random values. Similarly in this case I is random as well.

When A outputs a forgery (M∗, t∗, U∗, V ∗), by assumption it will use a tag output by
B, and if the tag is not t∗ output in query i∗, B aborts. If the tag is t∗, B computes M̃ from
M∗, uses ~yi and checks whether V ∗/(U∗)d = M̃W . If the comparison fails, the forgery is
invalid, and B outputs “random” to the DDH instance, if it succeeds, B outputs “DDH
tuple”. So if A’s forgery probability changes between games 0 and 1, B’s DDH advantage
changes by the same amount. Thus games 1 and 2 are indistinguishable assuming DDH is
hard in G.

Success probability in Game 2 Now we argue that A’s forgery probability in Game
2 is negligible. First consider a Type 2 forgery. Note that a forgery on a new message
~M ′ must have M̃ ′ =

∏n
i=0M

′
i
yi . If ~M ′ = G

~m′ , the logarithm of M̃ ′W to the base G is
y1m

′
1 + . . . + ynm

′
n + w (mod q). Note that this is a pairwise independent function of

m′1, . . . ,m
′
n. Since A has only received one value using ~y and w (in the response to the i∗th

MAC query), the adversary can produce this value with probability at most 1/q. Next, we
consider a Type 3 forgery. Let d = x0 + x1t

∗. Then the one MAC that B has output using
the secret key has V = M̃Gw+ud and the forgery has V ∗ = M̃Gw+u

∗d, where u, u∗ are the
discrete logs of U and U∗ from the i∗th query and the forgery respectively. Again, note
that this is a pairwise independent function of u, and since A only has one MAC using
w, d, the adversary has only negligible probability of producing the right value for u∗.

6.3 Credential Security

Referring to the definition in [CMZ14], a keyed-verification anonymous credential scheme
has the following protocols: CredKeygen, BlindIssue, BlindObtain, Show, ShowVerify. The
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key generation, (non-blind) issuance, and show protocols are described in Section 3, and
the blind issuance protocol is described in Section 5.9

The following security properties are for formally defined in [CMZ14]. In this section
we review them briefly and argue that a similar analysis applies here.

Correctness The first part of correctness (that credentials always verify) follows from
correctness of the MAC. Correctness of the second part (that Show always succeeds for
valid credentials), follows from the correctness of the zero-knowledge proof system, and the
equation Z = Iz. Using our 4-attribute example where (M1,M2,M3) are hidden and M4

is revealed, when Z is computed honestly, we have

Z =
CV

Cy1
y1Cy2

y2Cy3
y3(M4Cy4)y4WCx0

x0Cx1
x1

=
V GV

z

(M1Gy1
z)y1 · · · (M4Gy4

z)y4W (UGx0
z)x0(U tGx1

z)x1

=
V GV

z

(M1
y1 · · ·M4

y4WUx0+tx1)G1
zy1 · · ·G4

zy4Gx1
zx1Gx0

zx0

=
GV

z

Gy1
zy1 · · ·Gy4zy4Gx0zx0Gx1zx1

= Iz

and it can be checked similarly that this also holds with more than four attributes.

Unforgeability Intuitively, credential unforgeability means that an adversary cannot
create a valid proof for a statement not satisfied by the credentials they have been is-
sued. This follows from the unforgeability of the MAC (proven in Section 6.2), and the
extractability of the proof system. If the adversary outputs a proof based on a MAC
with attributes that were not output by Issue, then we can extract a forgery for the MAC
scheme.

For example, referring the to the proof of knowledge used for authentication in Sec-
tion 5.11, note that from a successful prover we can extract (z,m3, sk), then use these
to compute (t, U, V ), which is a valid MAC on the attributes (M1,M2,m3,m4) since it
satisfies the verification equation (assured by the proof statement Z = Iz). If the MAC
was created by the issuer, authentication should succeed. If not, and the MAC is new, it
is a forgery and the MAC scheme is broken.

Anonymity This requires that the proofs output when presenting a credential reveal only
the statement being proven. Below we sketch a proof that the authentication proof is zero-
knowledge, and this proof includes the statements common to any credential presentation.

To show that the proof of Section 5.11 is zero-knowledge, we first need to show that the
commitments are hiding (which is nontrivial since they all share the same random value
z). Note that in the random oracle model, the bases Gyi are a random set, that are then
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input to the wPRF fz, so Gyi
z is a PRF output under the DDH assumption. Therefore,

the commitments (Cy1 , . . . , Cy4 , Cx0 , Cx1 , CV ) are hiding, and they can be simulated with
random group elements. Similarly, since Cy2

′ is a PRF output assuming DDH (since Cy2
is input to the wPRF fa1), it can be simulated with a random group element. Since the
ciphertext (EA1 , EA2) is CPA secure, it can also be simulated with random values, and
since the proof πA is zero-knowledge, a simulator exists to simulate it.

Blind Issuance This property requires that blind issuance be a secure two-party proto-
col, between the user, who has the blind attributes as private input, and the issuer, who has
the issuer secret key as private input. Our blind issuance protocol based on homomorphic
Elgamal encryption is unchanged from [CMZ14], and security follows from CPA security of
Elgamal (implied by DDH) and the privacy and extractability of the zero-knowledge proof
system. Note that non-blind issuance is the special case where no attributes are hidden.

Key-parameter consistency This property ensures that an issuer cannot use different
secret keys with different users, in order to link an instance of BlindIssue with an instance
of Show.

We consider two cases, starting with the key consistency of (w,w′). From an issuer that
creates two proofs πI with different (w,w′), we can extract two openings to the Pedersen
commitment CW = GW

wGW ′
w′ , breaking the binding property. Given such a malicious

issuer, we can construct an algorithm for the DLP in G. Given a DLP instance Y = Gx,
set GW = Y and GW ′ = Gr1 . Then given two distinct openings of the commitment CW ,
and knowledge of r1, we can solve for x.

Now consider the secrets used in the I value of iparams. Similarly, the product
Gy1

y1 . . . Gyn
ynGx0

x0Gx1
x1 is a binding commitment under the DLP assumption in G, and

by the same argument no malicious issuer can prove knowledge of distinct openings if the
DLP is hard in G.
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