
LegoSNARK: Modular Design and Composition of
Succinct Zero-Knowledge Proofs

Matteo Campanelli

matteo.campanelli@imdea.org

IMDEA Software Institute, Madrid, Spain

Dario Fiore

dario.fiore@imdea.org

IMDEA Software Institute, Madrid, Spain

Anaïs Querol

anais.querol@imdea.org

IMDEA Software Institute, Madrid, Spain

Universidad Politécnica de Madrid, Spain

ABSTRACT
We study the problem of building SNARKs modularly by linking

small specialized “proof gadgets” SNARKs in a lightweight manner.

Our motivation is both theoretical and practical. On the theoretical

side, modular SNARK designs would be flexible and reusable. In

practice, specialized SNARKs have the potential to be more effi-

cient than general-purpose schemes, on which most existing works

have focused. If a computation naturally presents different “com-

ponents” (e.g. one arithmetic circuit and one boolean circuit), a

general-purpose scheme would homogenize them to a single rep-

resentation with a subsequent cost in performance. Through a

modular approach one could instead exploit the nuances of a com-

putation and choose the best gadget for each component.

Our contribution is LegoSNARK, a “toolbox” (or framework) for

commit-and-prove zkSNARKs (CP-SNARKs) that includes:

1) General composition tools: build new CP-SNARKs from proof

gadgets for basic relations simply.
2) A “lifting” tool: add commit-and-prove capabilities to a broad

class of existing zkSNARKs efficiently. This makes them interop-

erable (linkable) within the same computation. For example, one

QAP-based scheme can be used prove one component; another

GKR-based scheme can be used to prove another.

3) A collection of succinct proof gadgets for a variety of relations.

Additionally, through our framework and gadgets, we are able

to obtain new succinct proof systems. Notably:

– LegoGro16, a commit-and-prove version of Groth16 zkSNARK,

that operates over data committed with a classical Pedersen vector

commitment, and that achieves a 5000× speed in proving time.

– LegoUAC, a pairing-based SNARK for arithmetic circuits that has

a universal, circuit-independent, CRS, and proving time linear in

the number of circuit gates (vs. the recent scheme of Groth et al.

(CRYPTO’18) with quadratic CRS and quasilinear proving time).

1 INTRODUCTION
Zero-knowledge proofs (ZKPs), introduced by Goldwasser, Micali

and Rackoff [38], let a prover convince a verifier of a statement

without revealing more information than its validity. This power

of ZKPs—simultaneously providing integrity (the prover cannot

cheat) and privacy (the verifier does not learn any of the prover’s

secrets)—has found countless applications, including multiparty

computation [36], signature schemes [62], public-key encryption

[56], and, more recently, blockchain systems [6, 10].

Some zero-knowledge proofs systems—called succinct or simply

zkSNARKs, zero-knowledge Succinct Non-interactive Argument of

Knowledge—have short and efficiently verifiable proofs [15, 34, 55].

Succinctness is desirable in general but is especially critical in appli-

cations where verifiers would not invest significant computational

resources (e.g. if they are unwilling to do it for reasons of scalability

and cost, or if they are computationally weak).

Motivation. The last years have seen remarkable progress in the

construction of zkSNARKs. Different lines of work (cf. Section 1.2

for a detailed review) have built a variety of schemes that are highly

expressive, supporting general computations in the class NP. The

general-purpose nature of these schemes makes them very attrac-

tive to practitioners. At the same time, this high expressivity comes

at a cost in terms of performance. To achieve generality, these

constructions abstract specific features of computation by assum-

ing one single unifying representation (e.g., boolean or arithmetic

circuits, state-machine transitions, RAM computations), and this

abstraction is often a source of overhead, for two main reasons.

First, computation tends to be heterogeneous, often consisting of

several subroutines of different nature. For example it may combine

both arithmetic and boolean subroutines, and the single represen-

tation assumed by a SNARK may not be the best one for both.

Second, general-purpose zk-SNARKs may miss opportunities for
significant optimizations by not exploiting the nuances of a com-

putation. In contrast, specialized solutions can gain efficiency by

exploiting specific structural properties, but become useless if the

computation at hand does not fit these properties. For example,

recently proposed variants of the GKR protocol [27, 68] show that

it can be highly optimized for parallel computations; at the same

time this protocol fails to be succinct if a computation is sequential.

As a result, using such a protocol for a computation that includes

both a sequential and a parallel subroutine is not an option.

A Modular Approach for zk-SNARKs. In this paper we study

an alternative approach for building zkSNARKs that proceeds in a

modular “bottom-up” fashion. Whereas most current works build

general-purpose schemes using one representation that must be

shared by the different computation’s subroutines, we instead con-

sider designing a “global” SNARK for a computation C through

a (lightweight) linking of “smaller” specialized SNARKs (that we

also call “proof gadgets”) for the different subroutines composing C .
The advantage of this approach is that it inherits all the benefits

of modularity, such as reducing complexity (only need to focus on

specific, simpler problems), increased flexibility and costs reduction

(proof gadgets can be reused, replaced, etc.).

Modularity from Commit-and-Prove SNARKs. To realize this

modular approach we rely on the well known commit-and-prove
(CP) methodology [24, 46]. With a CP scheme one can prove state-

ments of the form “cck(x) contains x such that R(x ,w)” where cck(x)
is a commitment. To see how the CP capability can be used for mod-

ular composition consider the following example of sequential com-

position in which one wants to prove that ∃w : z = h(x ;w), where
h(x ;w) := д(f (x ;w);w). Such a proof can be built by combining

1

two CP systems Πf and Πд for its two building blocks, i.e., respec-

tively f and д: the prover creates a commitment cck(y) of y, and
then uses Πf (resp. Πд) to prove that “cck(y) contains y = f (x ;w)
(resp. contains y such that z = д(y;w))”.

Challenges of the CP modular composition. The composition

idea sketched above implicitly assumes that Πf and Πд work on the

same commitment cck(y). Namely, in order to be composed, different
CP schemes must be compatible with the same commitment scheme
(and commitment key). Essentially we need a sort of universal
commitment scheme that is as decoupled as possible from the specific

argument systems that will operate on it.

We argue that achieving such universality with state-of-the-art

zkSNARKs entails major challenges:

(a) Most of the popular zkSNARKs, e.g., [41, 58], are not explic-

itly commit-and-prove. This limitation can be overcome using

a (somewhat folklore) approach in which the SNARK Π ad-

ditionally proves the correct opening of the commitment, i.e.,

R(x ,w) ∧ “cck(x) opens to x”. This approach has two main draw-

backs: (i) Π must be expressive enough to express the commit-

ment verification in its language, but in our vision Π is a SNARK

for a specialized task and may not have this capability; (ii) even
if Π were expressive enough (e.g., supports arbitrary circuits),

encoding commitment verification incurs significant overheads.
1

(b) Some existing SNARKs have commit-and-prove capabilities [28,

40, 51, 65]. Yet, each of these schemes uses its own specific com-

mitment scheme. In some cases [28] the commitment keys are

relation-dependent, which means commitments cannot be gener-

ated before fixing one or multiple relations.
2
In the other cases,

despite being relation-independent, commitment keys have a

very specific structure that may not fit other proof systems.

In summary, a main limitation of existing commit-and-prove

SNARKs is their incompatibility, between them and with other

potential candidates to be developed.

1.1 Our Results

LegoSNARK Framework.We present LegoSNARK, a framework

for commit-and-prove zkSNARKs (CP-SNARKs) that includes:

• Definitions that formalize CP-SNARKs and their variants.

• Composition recipes that show how to use different CP-SNARKs

in a generic and secure way for handling conjunction, disjunc-

tion and sequential composition of relations. This composition

result enables the use of modularity in designing CP-SNARKs

for complex relations out of schemes for simpler relations.

• A generic construction to efficiently turn a broad class of zk-

SNARKs into CP-SNARKs that can be composed together. This

class includes several existing schemes such as ones based on qua-

dratic arithmetic programs [28, 41, 58], or zk-vSQL [70, 71]. For

this transformationwe only need a “minimal” CP-SNARK,CPlink,

for proving that two commitments (under different schemes)

open to the same value.

1
For example, we experimentally found that, when handling a Pedersen commitment

to a vector of length 2048 with [41], the proving overhead is 428 secs (7 minutes).

2
This could be mitigated by using universal circuits, paying a (multiplicative) logarith-

mic overhead in parameters size and prover complexity.

LegoSNARK Gadgets. We populate our framework by construct-

ing new CP-SNARKs for several basic relations, such as:

• CPlink for proving that two different Pedersen-like commitments

open to the same vector.
3
Plugging CPlink in our generic con-

struction solves the challenges (a) and (b) mentioned above and

gives us interoperable versions of several existing schemes.

• CPlin for proving that a linear relation F · ®u = ®x holds for a

committed vector ®u, a public matrix F and public vector ®x .

• CPhad for proving a self-permutation, i.e. that a vector ®u0 is the
Hadamard product of ®u1 and ®u2, when all the three vectors are

committed.

• CPsfprm for proving that yi = yϕ(i) for a public permutation ϕ

and a committed vector ®y.

All the aforementioned schemes have succinct proofs and work for

Pedersen-like commitments in bilinear groups. This means that by

using our generic construction with CPlink they can be turned to

support the same commitment and then be composed.

LegoSNARKApplications and Evaluation. Using our initial set
of specialized proof gadgets, our next step is to combine them in

order to build new succinct proof systems for different use cases,

mentioned below. Our results offer various improvements over the

state of the art. We have also implemented some of our solutions

to test their concrete performance.

1) Efficient Commit-Ahead-of-Time. Through our generic con-

struction instantiated with CPlink we also obtained commit-and-

prove versions of popular efficient zkSNARKs, such as Groth’s [41],

that can prove statements about data committed using the Ped-

ersen scheme for vectors [59], in which bases are random group

elements that can be generated without trusted setup. Such commit-

and-prove schemes are useful in applications where one needs to

commit before the SNARK keys for a relation are created, e.g., to

post commitments on a blockchain so that one can later prove state-

ments about the committed data. By applying our solution to [41]

we obtain a scheme that is 5000× faster than a scheme where the

commitment is encoded in the circuit.

2) CP-SNARKs for Parallel Computation. Consider the prob-

lem of proving (in zero-knowledge) correctness of a computation

that consists of the same subcircuit executed in parallel. The re-

cent Hyrax system [69] is suitably designed for and shows good

performances on this type of circuit. It requires, however, an ad-

ditional verification cost whenever the repeated subcircuits share

(non-deterministic) inputs, which is common. The verifier thus

pays an additional factor linear in the total width of the circuit.

Using our LegoSNARK framework we show how to build a new

CP-SNARK based on Hyrax that avoids this problem. The idea is

that parallel computation on joint inputs can be expressed as the

combination of a fully parallel computation (after inputs were ap-

propriately duplicated) and a permutation check to ensure that

inputs have been duplicated correctly. We build this by combining

our CPlin gadget with a version of Hyrax modified to work with

the polynomial commitment of zk-vSQL [71].

3) CP-SNARKs for Arithmetic Circuits. We give two main con-

structions of CP-SNARKs for arithmetic circuit (AC) satisfiability.

3
By “Pedersen-like” we mean schemes where the verification algorithm is the same as

in Pedersen scheme [59] for vectors (but the bases can have a different distribution).

2

Scheme Uni KG time Prove time Ver. time |crs| |π |
[41, 58] – n+m m+n logn |x | n+m O(1)

LegoAC1 – n+m n logn |x | n O(1)

LegoAC2 – n+m n |x |+logn n logn

[42] ✓ n2 m+n logn |x | n2 O(1)

LegoUAC ✓ N ∗ N |x |+logN N ∗ logN

Table 1: Comparing pairing-based zkSNARKs for arithmetic cir-
cuits withm wires and N gates, of which n are multiplication gates,
na (resp. nc) are addition (resp. multiplication-by-constant) gates,
and N ∗ = max(n, na, nc). Numbers in the table are in O (·) notation.

Table 1 summarizes a theoretical comparison with other schemes in

the literature (selected among the ones with similar succinctness).

Our first scheme, LegoAC, relies on an encoding of AC based on

Hadamard products and linear constraints from [18] and can be

built from CPlin and CPhad gadgets. We evaluate two instantiations:

- LegoAC1—from our CPlin and a CPhad from [51]—is secure in

the generic group model (GGM), enjoys constant-size proofs,

and has a logn factor in proving time (similar to [41, 58]);

- LegoAC2—from our CPlin and CPhad gadgets—is secure in the

GGM and random oracle model, it has logn-size proofs but only
linear proving time.

The second CP-SNARK, LegoUAC, builds on an encoding of AC

based on Hadamard products, additions and permutation from [19,

39] and can be built from ourCPhad andCPsfprm gadgets.
4
Themain

novelty of LegoUAC is to admit a universal, circuit-independent CRS,
in the “specialization” model of [42] where the universal CRS can be

specialized to a circuitC with a deterministic algorithm. LegoUAC’s
CRS has O(N) size where N is an upper bound on the number of

gates of the circuits; in contrast, the CRS has quadratic size in the

recent scheme in [42]. Our LegoUAC also improves on the approach

applying an efficient system, say [41], on a universal circuit [43, 64],

which would incur at least a logarithmic multiplicative factor in

circuit size.

1.2 Related Work
The idea of combining two different NIZKs to improve efficiency

when handling heterogeneous computations has been considered by

Chase et al. [26] and more recently by Agrawal et al. [5]. In [5], they

propose combining the Pinocchio scheme [58] with Sigma-protocol-

based NIZKs and show an efficient construction for computations

that combines algebraic relations in a cryptographic group and

arbitrary computation. Their scheme benefits from composing these

different proof systems and obtains interesting performance results.

The solution in [5] is tailored to two specific proof systems and their

combination methodology does not always preserve succinctness.

In contrast, the techniques we study are general, apply to a variety

of existing proof systems and preserve succinctness (they compose

succinct schemes into succinct schemes).

Succinct ZK Proofs. In the past years several research lines have

built a variety of zk-SNARKs for general NP statements. Here we

provide an overview of each line, especially focusing on their dif-

ferences in performance.

A major research line is the one based on the seminal paper of

Gennaro et al. [33] who proposed a pairing-based SNARK based on

4
Additions are handled for free if the commitment is linearly homomorphic.

the NP-complete language of quadratic span/arithmetic programs.

This approach improves on previous approaches by Ishai et al. [44],

Groth [40] and Lipmaa [50], and is the basis of several works such

as [8, 11, 13, 22, 28, 31, 41, 42, 49, 58, 67]. The zkSNARKs in this

family enjoy constant-size proofs and fast verification, the latter de-

pending only linearly on the statement size; on the downside, they

feature large overheads at proving time, costly (although amortiz-

able) preprocessing and security properties based on non-standard

non-falsifiable assumptions.

A second research line builds on the MPC-in-the-head approach

of Ishai et al. [45] to construct a ZK argument from anMPC protocol.

The first scheme that refined and experimented this approach is

ZKBoo [35], then improved in [25]; a more recent work in this line

is Ligero [7]. These schemes do not need trusted setup and show

excellent proving performances on Boolean circuits, since they rely

only on symmetric-key cryptographic primitives. On the downside

their proofs are not fully succinct, being linear in the circuit size

|C | in [35], and Õ(
√
|C |) in [7].

The works [69–71] stem from the interactive proof techniques

for low-depth circuits pioneered in Goldwasser et al. [37] and later

refined in [27, 63, 66]. The resulting succinct ZK arguments are

made non-interactive in the random oracle model. These schemes

offer good proving performance and use asymptotically fewer cryp-

tographic operations than those from the MPC-in-the-head family;

they can be instantiated without [69] (or with a circuit-independent

[71]) trusted setup. On the other hand their proof size and verifica-

tion time depend on the structure of the circuit at hand, notably on

the depth and in some cases on the width.

Building on the work of Groth [39], two recent proposals [18, 23]

give ZK arguments for arithmetic circuit satisfiability that can be

instantiated without trusted setup. The first scheme of Bootle et al.

[18] has proofs of size O(
√
M) whereM is the number of multipli-

cation gates in the circuit, while their second scheme (improved in

[23]) has proofs of size O(logM) but has a linear time verifier.

Compared to the results from the latter three research lines we

described, our instantiations have the disadvantage of needing a

trusted setup
5
, although in some cases this is universal and thus

reusable. In terms of performances, however, our results are more

succinct, both in terms of proof size and verifier time.

A recent line of work [9] builds on the seminal works of Kilian

[47] and Micali [54], and generalizations of PCPs (IOPs) [12, 60] in

order to construct systems (dubbed zkSTARKs) that are general-

purpose (capturing very general computations that can be expressed

as state-machine transitions), do not require trusted setup and offer

good timings for prover and verifier. On the downside, the memory

costs for the prover are still high and their security relies on a

non-standard conjecture about Reed-Solomon codes.

2 PRELIMINARIES
We use λ ∈ N to denote the security parameter, and 1

λ
to denote its

unary representation. Throughout the paper we assume that all the

algorithms of the cryptographic schemes take as input 1
λ
, and thus

we omit it from the list of inputs. For a distribution D, we denote by
x ← D the fact that x is being sampled according to D. We remind

5
We stress that only our concrete instantiations require a trusted setup—our general

composition framework does not.

3

the reader that an ensembleX = {Xλ }λ∈N is a family of probability

distributions over a family of domains D = {Dλ }λ∈N. We say

two ensembles D = {Dλ }λ∈N and D ′ = {D ′λ }λ∈N are statistically

indistinguishable (denoted byD ≈s D
′
) if

1

2

∑
x |Dλ(x)−D

′
λ(x)| <

negl(λ). IfA = {Aλ } is a (possibly non-uniform) family of circuits

and D = {Dλ }λ∈N is an ensemble, then we denote by A(D) the

ensemble of the outputs of Aλ(x) when x ← Dλ . We say two

ensembles D = {Dλ }λ∈N and D ′ = {D ′λ }λ∈N are computationally

indistinguishable (denoted by D ≈c D
′
) if for every non-uniform

polynomial time distinguisher A we have A(D) ≈s A(D
′).

We denote by [n] the set of integers {1, . . . ,n} and by [: n] the
set {0, 1, . . . ,n−1}. We use (uj)j ∈[ℓ] to denote the tuple of elements

(u1, . . . ,uℓ).

Relations. Let {Rλ }λ∈N be a family of polynomial-time decidable

relations R on pairs (x ,w) where x ∈ Dx is called the statement
or input, andw ∈ Dw the witness. We write R(x ,w) = 1 to denote

that R holds on (x ,w), else we write R(x ,w) = 0. When discussing

schemes that prove statements on committed values we assume that

Dw can be split in two subdomainsDu×Dω . Finally we sometimes

use an even finer grained specification ofDu assuming we can split

it over ℓ arbitrary domains (D1 × · · · × Dℓ) for some arity ℓ. In

our security definitions we assume relations to be generated by a

relation generator RG(1λ) that, on input the security parameter 1
λ
,

outputs R together with some side information, an auxiliary input

auxR , that is given to the adversary. We define RGλ as the set of

all relations that can be returned by RG(1λ).

2.1 Zero-Knowledge SNARKs
We recall the definition of (pre-processing) zkSNARKs [14, 15].

Definition 2.1 (SNARK). A succinct non-interactive argument

of knowledge for {Rλ }λ∈N is a tuple of three algorithms Π =
(KeyGen,Prove,VerProof) that work as follows and satisfy the no-

tions of completeness, succinctness and knowledge soundness defined
below

6
. If Π also satisfies zero-knowledge we call it a zkSNARK.

• KeyGen(R ∈ Rλ) → crs = (ek, vk) : outputs a common refer-

ence string consisting of an evaluation and a verification key.

• Prove(ek,x ,w) → π : returns proof that R(x ,w) holds.

• VerProof(vk,x ,π)→b ∈ {0 = reject, 1 = accept}

Completeness. For any pair (x ,w) satisfying the relation, the ver-

ifier always accepts the corresponding proof.

Succinctness. Π is said succinct if the running time of VerProof is
poly(λ) (λ+ |x |+ log |w |) and the proof size is poly(λ) (λ+ log |w |).

Knowledge Soundness. Π is KSND(RG,Z) if there exist benign
relation generatorRG and auxiliary input generatorZ such that for

every non-uniform adversary A there is a non-uniform extractor

E winning the following game with negligible probability:

GameKSND
RG,Z,A,E

→ b

(R, auxR) ← RG(1λ) ; crs := (ek, vk) ← KeyGen(R)

auxZ ← Z(R, auxR, crs) ;
(
x, π

)
← A(R, crs, auxR, auxZ)

w ← E(R, crs, auxR, auxZ) ; b = VerProof(vk, x, π) ∧ ¬R(x, w)

6
Formal definitions in Appendix A.2

Composable Zero-Knowledge. Π is CZK(RG) if there exists a
pair of simulators S = (Skg,Sprv) such that any adversary can-

not tell if it receives honestly generated crs ← KeyGen(R) and
proofs π ← Prove(ek,x ,w), or a simulated (crs, tdk) ← Skg(R)
and simulated proofs π ← Sprv(crs, tdk,x).

zkSNARKs with specializable universal CRS. In [42] Groth et

al. introduce a variant of the SNARK notion where Π works for

universal relations, the keys output by KeyGen work for the whole

family Rλ and can be used to prove and verify statements about

any R ∈ Rλ . This is convenient because the cost of setup can be

amortized. In a nutshell, this notion formalizes the idea that key

generation for R can be seen as the sequential combination of two

steps: a first probabilistic algorithm that generates a CRS for the

universal relation, and a second deterministic algorithm, Derive,
that specializes this universal CRS into one for a specific R.

Commitments.We recall non-interactive commitment schemes.

Definition 2.2. A commitment scheme is a tuple of algorithms

Com = (Setup,Commit,VerCommit) that work as follows and sat-

isfy the notions of correctness, binding and hiding. Formal definitions

of these properties are recalled in Appendix A.1.

• Setup(1λ) → ck takes the security parameter and outputs a

commitment key ck. This key includes descriptions of the input

space D, commitment space C and opening space O.

• Commit(ck,u) → (c,o) takes the commitment key ck and a

value u ∈ D, and outputs a commitment c and an opening o.

• VerCommit(ck, c,u,o) → b takes as input a commitment c , a
value u and an opening o, and accepts (b = 1) or rejects (b = 0).

3 BUILDING THE LEGOSNARK FRAMEWORK
3.1 Commit and Prove SNARKs
In a nutshell, a commit-and-prove SNARK (CP-SNARK) is a SNARK

that can prove knowledge of (x ,w) such that R(x ,w) holds with
respect to a witnessw = (u,ω) such that u opens a commitment cu .
Our formal definitions below essentially add some syntactic sugar

to this idea in order to explicitly handle relations in which the input

domain Du is more fine grained and splits over ℓ subdomains. For

a reason that will shortly become clear, we call these subdomains

commitment slots. This splitting is in most of the cases natural (e.g.,

if u is a binary string, one can think of u := (u1, . . . ,uℓ) for suitable
substrings), and it is crucial to exploit the compositional power

of CP-SNARKs, as we show in Section 3.2. We assume that the

description of the splitting is part of R’s description.

Definition 3.1 (CP-SNARKs). Let {Rλ }λ∈N be a family of rela-

tions R over Dx × Du × Dω such that Du splits over ℓ arbitrary

domains (D1 × · · · × Dℓ) for some arity parameter ℓ ≥ 1. Let

Com = (Setup,Commit,VerCommit) be a commitment scheme (as

per Definition 2.2) whose input space D is such that Di ⊂ D for

all i ∈ [ℓ]. A commit and prove zkSNARK for Com and {Rλ }λ∈N
is a zkSNARK for a family of relations {RCom

λ }λ∈N such that:

• every R ∈ RCom
is represented by a pair (ck,R) where ck ∈

Setup(1λ) and R ∈ Rλ ;
• R is over pairs (x,w) where the statement is x := (x , (c j)j ∈[ℓ]) ∈

Dx × C
ℓ
, the witness is w := ((uj)j ∈[ℓ], (oj)j ∈[ℓ],ω) ∈ D1 ×

4

· · · × Dℓ × O
ℓ × Dω , and the relation R holds iff∧

j ∈[ℓ]

VerCommit(ck, c j ,uj ,oj) = 1 ∧ R(x , (uj)j ∈[ℓ],ω) = 1

Furthermore, when we say that CP is knowledge-sound for a re-

lation generator RG and auxiliary input generator Z (denoted

KSND(RG,Z), for short) we mean it is a knowledge-sound SNARK

for the relation generator RGCom(1
λ) that runs ck ← Setup(1λ)

and (R, auxR) ← RG(1λ), and returns ((ck,R), auxR).

We denote a CP-SNARK as a tuple of algorithms CP = (KeyGen,
Prove,VerProof). For ease of exposition, in our constructions we

adopt a more explicit syntax for CP’s algorithms as defined below.

• KeyGen(ck,R) → crs := (ek, vk)
• Prove(ek,x , (c j)j ∈[ℓ], (uj)j ∈[ℓ], (oj)j ∈[ℓ],ω) → π

• VerProof(vk,x , (c j)j ∈[ℓ],π) → b ∈ {0, 1}

Remark 1 (Comparing with existing definitions). The au-
thors of the Geppetto scheme [28] define a notion of commit-and-prove
SNARKs. Here we highlight the main differences between their defini-
tion and ours. First, our commitment key can be generated without
fixing a priori a relation (or a set of them , e.g., a multi-QAP). Sec-
ond, in their model one needs to commit to data using a commitment
key corresponding to a specific portion of the input (in their lingo a
“bank”), whereas in our model one can just commit to a vector of data,
and only at proving time one assigns that data to a specific input
slot. Third, in out notion the commitment scheme does not need to
be trapdoor. Ours is closer to Lipmaa’s [51] (with the exception that
again we do not need commitments to be trapdoor), and is in fact a
specialization of the SNARK notion when considering specific families
of relations that include verifying openings of commitments.

3.2 Composition Properties of CP-SNARKs
In this section, we formally show how the commit and prove capa-

bility can be used to combine different CP-SNARK systems.

Conjunction of relations with shared inputs. Let {R(0)λ }λ∈N
and {R

(1)

λ }λ∈N be two families of relations such that, for every

λ ∈ N the input domains D
(0)
u and D

(1)
u of relations R0 ∈ R

(0)

λ
and R1 ∈ R

(1)

λ respectively can split as follows: D
(0)
u := D0 × D2

and D
(1)
u := D1 × D

′
2
with D2 = D

′
2
.
7
In other words we require

these relations to share a commitment slot that we indeed call the

shared slot. Given the above relation families, we define {R∧λ }λ∈N
as the family of relations where for every λ ∈ N,R∧λ = {R

∧
R0,R1

:

R0 ∈ R
(0)

λ ,R1 ∈ R
(1)

λ } and R∧R0,R1

(x0,x1,u0,u1,u2, (w0,w1)) is de-

fined as the conjunction R0(x0,u0,u2,w0) ∧ R1(x1,u1,u2,w1).

Let Com be a commitment scheme, for b ∈ {0, 1} let CPb be a

CP-SNARK for Com and {R
(b)
λ }λ∈N. From these, we show how to

generically build a CP-SNARK CP∧ for Com and {R∧λ }λ∈N. The

idea is simple: from the definition of R∧R0,R1

it is enough to use CPb
to prove and verify the two statements (xb ,ub ,u2,wb)b ∈{0,1} using

the same commitment to u2. Our transformation also guarantees

that if both CP0 and CP1 are CP-SNARKs with specializable uni-

versal CRS, then so is the resulting CP∧. This composition result is

formalized in the following theorem. Its proof and a full descrip-

tion of the scheme CP∧ are in Appendix B. The main idea behind

soundness is that, in order for an adversary to break CP∧, it must

7
Note such a splitting is rather general, as D2 and D

′
2
, or D0 , or D1 may be empty.

break either one of the two underlying schemes, CP0,CP1, or the
binding of the commitment scheme.

Theorem 3.2. If Com is a computationally binding commitment
and, for b = 0, 1, CPb is a zkCP-SNARK for Com and relation family
{R
(b)
λ }λ∈N, then there is a zkCP-SNARK CP∧ for Com and {R∧λ }λ∈N.

Functions composition. A CP-SNARK for conjunction of rela-

tions can be easily used for proving correctness of composed func-
tions, e.g., proving that ∃(y,w) : z = f (x ,y,w), where f (x ,y,w) :=
h(д(x ,w),y). Indeed, let Rh (x

′,y, z) = 1 iff ∃(x ′,y) : h(x ′,y) = z,
and Rд(x ,x

′) = 1 iff ∃(x ′,w) : д(x ,w) = x ′, then ∃ (y,w) : z =
f (x ,y,w) can be expressed as Rh (x

′,y, z) ∧ Rд(x ,x
′).

Disjunction of relations with shared inputs. We can reduce

the case of OR composition to the conjunction construction above.

For this we assume relations are defined over elements of a ring. For

a relation R(u) denote by R̂(u, t) the relation such that R̂(u, 0) = 1

iff R(u) = 1 and R̂(u, t) = 1 iff R(u) = 0 when t , 0. We can now

express the disjunction of R0(u0), R1(u1) as R
∨
R0,R1

(u0,u1, t0, t1) :=
R̂0(u0, t0) ∧ R̂1(u1, t1) ∧ t0t1 = 0. For this approach to workwe need

the proof systems for the two relations R0,R1 to support their mod-

ified version R̂0, R̂1, which is the case for proof systems supporting

general arithmetic or boolean circuits. Finally, we need a simple

efficient proof system for the relation Rmul(t0, t1) = 1 iff t0t1 = 0,

where both t0 and t1 are committed in two different slots.

Composing more than two relations. We can apply Theorem

3.2 several times to build CP-SNARKs for the composition of differ-

ent relations (or even the same relation with itself). Succinctness

degrades linearly with the number of relations involved into a state-

ment and is preserved if one composes a constant or logarithmic

number of relations. This is arguably the case when we deal with

heterogeneous computations.

3.3 Commit-Carrying SNARKs
In this section we define a variant of SNARKs that lies in be-

tween standard SNARKs and CP-SNARKs. We call these schemes

SNARKs with commit-carrying proofs (or commit-carrying SNARKs,

cc-SNARKs for short). In a nutshell, a cc-SNARK is like a SNARK

in which the proof contains a commitment to the portion u of the

witness. Formalizing this idea requires to make explicit the commit-

ment scheme associated to the SNARK, as well as the commitment

key that is part of the common reference string. In the next section

we discuss how many of the existing SNARK constructions satisfy

this property. Later, in Section 3.5 we show that cc-SNARKs can

be lifted to become full fledged, composable, CP-SNARKs. Taking

these two results together allows us to compose several existing

SNARKs. We define commit-carrying SNARKs as follows:

Definition 3.3 (cc-SNARK). A commit-carrying zkSNARKs for
{Rλ }λ∈N is a tuple of algorithms ccΠ = (KeyGen(R) → (ck, ek, vk),
Prove(ek,x ,w := (u,ω)) → (c,π ;o),VerProof(vk,x , c,π) → {0, 1},
VerCommit(ck, c,u,o) → {0, 1}) that satisfy completeness, succinct-
ness, zero knowledge and knowledge soundness. In addition, the

commitment underlying ccΠ must satisfy the usual binding. For-
mal definitions can be found in Appendix A.4. Below we give the

knowledge-soundness experiment that is the main difference with

that of SNARKs. Essentially the difference is that in cc-SNARKs

we assume the extractor outputs the opening of the commitment

returned along with the proof.

5

GameccKSND
RG,Z,A,E

→ b ∈ {0, 1}

(R, auxR) ← RG(1λ) ; crs := (ck, ek, vk) ← KeyGen(R)

auxZ ← Z(R, auxR, crs) ;
(
x, c, π

)
← A(R, crs, auxR, auxZ)(

u, o, ω
)
← E(R, crs, auxR, auxZ)

b ← VerProof(vk, x, c, π) ∧ ¬(VerCommit(ck, c, u, o) ∧ R(x, u, ω))

cc-SNARKs can be seen as a less versatile version of CP-SNARKs

(clearly, a CP-SNARK implies a cc-SNARK). In a cc-SNARK the

commitment key depends on the relation taken by KeyGen, and a

commitment is freshly created by the Prove algorithm and is tied to

a single proof; in a CP-SNARK the commitment key is independent

of relations and commitments can also be created independently and

shared across different proofs. In the literature, there are examples

of schemes that lie in between our notions of CP-SNARK and cc-

SNARK; this is the case for commit and prove SNARKs in which

the commitment key is relation-dependent, e.g., [28, 65].

In our paper we also define a variant of cc-SNARKswith a weaker

notion of binding in which for the underlying commitment it can

be easy to find some collisions, yet it is hard to find two openings

such that one one falsifies and the other one satisfies the relation. In

fact, existing QAP-based schemes [13, 41, 58] are not fully binding

but can satisfy our weak binding. In Appendix K.5 we prove that

[41] is a weak cc-SNARK. Worth noting that our generic compiler

can also turn weak cc-SNARKs into CP-SNARKs.

3.4 Existing CP-SNARKs and cc-SNARKs
In this section, we provide a summary of existing schemes that can

be explained, with no or little modification, under our CP-SNARK

and cc-SNARK notions.

Existing CP-SNARKs. The following list is a summary. Details

supporting the following claims appear in Appendix K.

• Adaptive Pinocchio [65] is a CP-SNARK for relations RQ (x ,
(uj)j ∈[ℓ],ω) where RQ is a quadratic arithmetic program (QAP),

and the commitment scheme is the extended Pedersen commit-

ment of Groth [40] in which the ith basis of the commitment

key is дx
i
for a random x .

• The scheme in [51][Section 4] is a CP-SNARK for Hadamard

product relations Rhad(®a, ®b, ®c) over Z
3m
q , i.e. Rhad holds iff ∀i ∈

[m] : ai · bi = ci . In this case the commitment scheme is a

variant of the extended Pedersen scheme where the ith basis of

the commitment key is дℓi (x) for a random x and ℓi being the

i-th Lagrange basis polynomial.

• zk-vSQL [71] is a CP-SNARK for relations R((uj)j ∈[ℓ])where R is

an arithmetic circuit, and the commitment is a polynomial com-

mitment that, we observe (cf. Appendix K), can also be explained

as a variant of extended Pedersen.

Existing cc-SNARKs.Geppetto [28] is a commit-and-prove SNARK

for QAP relations RQ (x ,u,ω), with a relation-dependent commit-

ment key. This scheme immediately yields a cc-SNARK where

VerCommit is also a variant of extended Pedersen.

ANew Efficient cc-SNARK for QAPs.We show that the SNARK

of [41] can be modified to obtain a cc-SNARK for QAP relations

RQ (u,ω), where the witness portion committed in a fully binding

way can be chosen (see Appendix K.5). Compared to the other

cc-SNARKs for QAPs mentioned above, this scheme offers nearly

optimal efficiency (essentially due to the fact that we start from

[41] whereas [28, 65] build on [58]).

3.5 Bootstrapping our Framework
A key requirement to apply the composition results of the LegoS-

NARK framework is to start from CP-SNARKs that share the same

commitment scheme. In practice this is not always the case (see for

example the discussion in the previous section). In this section we

propose a solution to this issue by giving a generic compiler for

turning a cc-SNARK ccΠ for a family of relations {Rλ }λ∈N into a

CP-SNARK CP that supports the same relations and works for a

given, global, commitment scheme Com. Incidentally, since a CP-

SNARK CP for commitment Com′ is also a cc-SNARK, our compiler

can also turn CP into a CP-SNARK for another commitment Com.

As noted in the introduction one could solve this problem via

a folklore approach that affects efficiency and requires ccΠ to be

expressive enough (which may not be true if ccΠ supports only

specialized tasks, as per our vision). Our compiler uses an alterna-

tive approach. The intuition is the following. Consider a relation

R(u,w) and denote by c(u) a relation-independent commitment to

u. A cc-SNARK ccΠR could prove R(u,w) by producing (cR (u),πR);
this proof however lacks of any link with the commitment c(u). To
solve this, we use a specialized CP-SNARK CPlink for statements

like “c(u) and cR (u) open to the same value”, which can be seen as a

commit-and-prove relation about the opening of cR with respect to

a global commitment c . This minimal tool turns any cc-SNARK into

a full fledged CP-SNARK. Despite the funny fact that we require a

CP-SNARK to create CP-SNARKs, CPlink can be a simple scheme

(as confirmed by our construction in Section 4.1) so it allows us to

create efficient instantiations of CP-SNARKs.

Our cc-SNARK-lifting compiler. Let ccΠ be a cc-SNARK for a

family of relations {Rλ }λ∈N where, for every λ, R ∈ Rλ is over

tuples in Dx × Du × Dω , and Du splits over ℓ subdomains (D1 ×

· · · × Dℓ) for some arity parameter ℓ. Consider the commitment

verification algorithm ccΠ.VerCommit. For any λ ∈ N and any

ck′ ∈ {ccΠ.KeyGen(R)}R∈Rλ , we define the relation R◦ that has
input space D◦x = C

′
, and witness space D◦ω = D

◦
u × D

◦
ω such

that D◦u = D1 × · · · × Dℓ and D◦ω := O′, where C′ and O′ are

the commitment and opening space of the commitment of ccΠ. For

compactness we represent R◦ with (ck′,D◦x ,D
◦
u ,D

◦
ω). Then, R

◦
is

defined as follows:

R◦
(
x◦, (u◦j)j ∈[ℓ],ω

◦
)
:= ccΠ.VerCommit(ck′,x◦, (u◦j)j ∈[ℓ],ω

◦)

We remark that, above,x◦ ∈ C′ is a commitment for ccΠ.VerCommit
and ω◦ ∈ O′ is its opening.

Let CPlink be a CP-SNARK for Com and a family of relations

{R◦λ }λ∈N such that for every λ ∈ N the relation R◦ defined above is

in R◦λ . In Figure 1 we describe a CP-SNARK CP for {Rλ }λ∈N that

works by using ccΠ and CPlink.

We state the following result about the security of our compiler.

A formal statement and a proof appear in Appendix C.

Theorem 3.4. If ccΠ is a zk-cc-SNARK (or a weak cc-SNARK)
for {Rλ }λ∈N and CPlink is a zk-CP-SNARK for {R◦λ }λ∈N, then the
scheme CP in Figure 1 is a zk-CP-SNARK for {Rλ }λ∈N.

6

CP.KeyGen(ck,R) → (ek := (ck′, ek′, ek◦), vk := (vk′, vk◦))

(ck′, ek′, vk′) ← ccΠ.KeyGen(R); Build R◦ from (ck′, D◦x , D
◦
u, D

◦
ω)

(ek◦, vk◦) ← CPlink .KeyGen(ck, R◦)

CP.Prove(ek,x , (c j ,uj ,oj)j ∈[ℓ],ω) → π := (c ′,π◦,π ′)

(c′, π ′, o′) ← ccΠ.Prove(ek′, x, (uj)j∈[ℓ];ω); (x
◦, ω◦) := (c′, o′)

π ◦ ← CPlink .Prove(ek◦, x◦, (c j)j∈[ℓ], (uj)j∈[ℓ], (oj)j∈[ℓ], ω
◦)

CP.VerProof(vk,x , (c j)j ∈[ℓ],π) → {0, 1}

CPlink .VerProof(vk◦, c′, (c j)j∈[ℓ], π
◦) ∧ ccΠ.VerProof(vk′, x, c′, π ′)

Figure 1: Generic Construction of CP from CPlink and ccΠ.

4 CP-SNARKS FOR PEDERSEN-LIKE
COMMITMENTS

In this section we propose two CP-SNARKs that work for any

commitment schemewhose verification algorithm is the same as the

extended Pedersen commitment (essentially a multiexponentiation).

For vectors committed in this way, we show two schemes. Our

first scheme (given in Section 4.1) allows to prove that another

commitment, with the same verification algorithm but different key,

opens to the same vector. This is essentially an efficient realization

of the CPlink CP-SNARK needed in our compiler of Section 3.5,

and that works for cc-SNARKs whose underlying commitment

verification has the same structure as Pedersen. Our second scheme

(given in Section 4.2) instead allows one to prove correctness of a

linear function of the committed vector (i.e., that ®x = F®u).
In what follows we start by recalling facts and notation about

bilinear groups and Pedersen commitment.

Preliminaries on Bilinear Groups. A bilinear group generator
BG(1λ) outputs (q,G1,G2,GT , e), where G1, G2, GT are additive

groups of prime order q, and e : G1 × G2 → GT is an efficiently

computable, non-degenerate, bilinear map. In this paper, we con-

sider Type-3 groups where it is assumed there is no efficiently

computable isomorphism between G1 and G2. We use bracket no-

tation of [29], i.e., for s ∈ {1, 2,T } and a ∈ Zq , we write [x]s to

denote a · дs ∈ Gs , where дs is a fixed generator of Gs . From an

element [a]s ∈ Gs and a scalar b it is possible to efficiently compute

[ab] ∈ Gs . Also, given elements [a]1 ∈ G1 and [b]2 ∈ G2, one
can efficiently compute [a · b]T by using the pairing e([a]1, [b]2),
that we compactly denote with [a]1 · [b]2. Vectors and matrices are

denoted in boldface. We use the bracket notation also for matrix

operations, i.e., [®A]1 · [®B]2 = [®A · ®B]T . For a vector ®a and for i < j
we denote by ®a[i, j] its portion (ai , . . . aj).

Pedersen Vector Commitment. Let us recall the extended Ped-

ersen commitment scheme for vectors of size n. Here we consider
an instantiation on a group G1.

Ped.Setup(1λ) → ck := [®h]1 ← G
n+1
1

from distribution D

Ped.Commit([®h]1, ®w) → (c,o) := ((o, ®w⊤) · [®h]1,o)where o←$Zq

Ped.VerCommit([®h]1, c, ®w,o) → c
?

= (o, ®w⊤) · [®h]1

Above D is a probability distribution over the group elements that

allows to argue that the scheme is perfectly hiding and computa-

tionally binding. For example, D may be the uniform distribution,

in which case we obtain the classical scheme that is binding under

the discrete logarithm assumption, orD may output powers of ran-

dom values, e.g., hi = s
i
for an s ←$Zq , that has also been proven

computationally binding under a suitable assumption.

In our constructions we only require the commitment scheme

to have the same verification algorithm as Ped.VerCommit.

Tool: SNARK for Linear Subspaces. In our CP-SNARK construc-

tions we make use of a SNARK for the linear subspace relation

RM([®x]1, ®w) = [®x]1
?

= [M]1 · ®w ∈ Gl
1
where [M] ∈ Gl×t

1
, ®w ∈ Ztq .

Namely, given a fixed public matrix [M]1 and a public vector [®x]1,
one can prove knowledge of a vector ®w such that [®x]1 = [M]1 · ®w .

We denote a SNARK for this family of relations with ssΠ. A can-

didate scheme for ssΠ is the Kiltz-Wee QA-NIZK scheme Π′as [48]
that works in bilinear groups. As described in [48], the security

of this scheme requires that l > t , which is not satisfied in our

setting where matrices have always more columns than rows. This

means that, when M has full rank, RM is satisfied for any [®x]1. In
fact, what we need is an argument of knowledge for this language.

For this, by extending a recent result [30], we show the knowl-

edge soundness of Π′as [48], without the l > t restriction, under
the discrete logarithm assumption, in the algebraic group model

[32]. We recall the scheme and its security statement in Appendix

F. For knowledge soundness, the matrix [M]1 must be generated

using a witness sampleable distribution Dmtx, i.e., there must exist

a polynomial time algorithm that samples M in Zq such that [M]1
has the same distribution as the one sampled with Dmtx. We note

that this is satisfied by our use cases where M includes bases of

Pedersen-like commitment schemes.

4.1 CP-SNARK for Pedersen Verification
Let Com be a commitment scheme such that Com.VerCommit =
Ped.VerCommit. We build a CP-SNARK CPlink for Com and for

the following class of relations R◦. Fixed a security parameter λ
(and the group setting for λ as well), R◦ is over (Dx × D1 × · · · ×

Dℓ × Dω), where Dx = G1, Dω = Zq and Dj = Z
nj
q for some

nj such that

∑
j nj = m. R◦ is parametrized by a commitment

key [®f]1 ∈ G
m+1
1

, and is defined as: R◦
(
c ′, (®uj)j ∈[ℓ],o

′
)
= 1 ⇐⇒

c ′
?

= (o′, ®u⊤
1
, . . . , ®u⊤

ℓ
) · [®f]1. Before describing the construction in

full detail, let us present the main ideas.

Let ck = [®h]1 ∈ Gn+1
1

be the key of the global commitment Com.

In our CPlink the public inputs of the prover are ℓ commitments

(c j)j ∈[ℓ] and another commitment c ′; the witness is a set of open-
ings ((®uj)j ∈[ℓ], (oj)j ∈[ℓ]) for commitments (c j)j ∈[ℓ], and an opening
o′ for c ′. In particular, the prover must prove that

R◦Ped(c
′, (c j)j ∈[ℓ], (®uj)j ∈[ℓ], (oj)j ∈[ℓ],o

′) = 1 ⇐⇒∧
j ∈[ℓ]

c j = (oj , ®u
⊤
j) · [

®h[0,nj]]1 ∧ c ′ = (o′, ®u⊤
1
, . . . , ®u⊤ℓ) · [

®f]1

The description of our scheme CPlink follows:

CPlink.KeyGen(ck,R◦): parse ck = [®h]1 ∈ Gn+1
1

, and let R◦ : G1 ×

D1×· · ·×Dℓ×Zq be the relation defined above with ck′ = [®f]1 ∈

Gm+1
1

. Use [®h]1, [®f]1 and R◦ to build a matrix M as in equation

(1). Compute (ek, vk) ← ssΠ.KeyGen([M]1) and return (ek, vk).
CPlink.Prove(ek, c ′, (c j)j ∈[ℓ], (®uj)j ∈[ℓ], (oj)j ∈[ℓ],o

′): define [®x]1 and
®w as in as in equation (1), compute π ← ssΠ.Prove(ek, [®x]1, ®w)
and return π .

7

CPlink.VerProof(vk, c ′, (c j)j ∈[ℓ],π): set [®x]1 as in (1) and return

ssΠ.VerProof(vk, [®x]1,π).

The key idea of the construction is that this relation can be

expressed as a linear subspace relation RM([®x]1, ®w) where M, ®x , ®w
can be defined as follows from the inputs of R◦Ped, with l = ℓ + 1
and t =m + ℓ + 1:

[®x]1︷︸︸︷
c1
...

cℓ
c ′


1

=

[M]1︷ ︸︸ ︷

h0 0 . . . 0 0
®h[1,n1] 0 . . . 0

0 h0. . . 0 0 0
®h[1,n2] . . . 0

...
...
. . .
...
...
...

...
. . .

...

0 0 . . . h0 0 0 0 . . . ®h[1,nℓ]

0 0 . . . 0 f0 ®f[1,n1]
®f[n1+1,n2]. . .

®f[nℓ−1+1,nℓ]


1

®w︷︸︸︷©­­­­­­­­­­­­«

o1
...

oℓ
o′

®u1
...

®uℓ

ª®®®®®®®®®®®®¬
(1)

In Appendix D we state and prove the security of CPlink based

on that of ssΠ. In Appendix D.2 we show how to extend CPlink to

handle a more general class of relations R◦pre that essentially checks

that a set of vectors (®uj)j ∈[ℓ] is a prefix, of known length, of a vector

®u ′ committed in c ′.

4.2 CP-SNARK for linear properties
In this section we show a CP-SNARK for the relation Rlin

that

checks linear properties of (committed) vectors: for a fixed pub-

lic matrix F ∈ ZN×mq , relation Rlin
F over public input ®x ∈ ZNq and

witness ®u ∈ Zmq , with ®u := (®uj)j ∈[ℓ] and ®uj ∈ Z
nj
q , holds iff ®x

?

= F · ®u.
Our scheme, called CPPed

lin , considers each ®uj to be committed

using a commitment scheme Com such that Com.VerCommit =
Ped.VerCommit, and whose key is ck = [®h]1 ∈ Gm

∗+1
1

, withm∗ ≥

m.
8
The idea is to express such a commit-and-prove relation with

the linear subspace relation RM([®x
′]1, ®w

′) that holds iff [®x ′]1 =

[M]1 · ®w ′, where [®x ′]1 ∈ Gl
1
, [M]1 ∈ Gl×t

1
and ®w ′ ∈ Ztq can be built

from the inputs of Rlin
F as follows (for l = ℓ + N and t =m + ℓ):

[®x ′]1︷︸︸︷
c1
...

cℓ
®x


1

=

[M]1︷ ︸︸ ︷

h0 0 . . . 0
®h[1,n1] 0 . . . 0

0 h0 . . . 0 0
®h[1,n2] . . . 0

...
...
. . .

...
...

...
. . .

...

0 0 . . . h0 0 0 . . . ®h[1,nℓ]

®0 F


1

®w ′︷︸︸︷©­­­­­­­­­­«

o1
...

oℓ
®u1
...

®uℓ

ª®®®®®®®®®®¬
(2)

The scheme CPPed
lin is quite similar to CPlink and essentially consists

into invoking ssΠ to prove that the above subspace relation holds.

The full description of CPPed
lin appears in Appendix E.

Efficiency. When using ssΠ from [48], the prover cost is one

multiexponentiation of lengthm+ℓwhile the verifier needs ℓ+| ®x |+1
pairings. If ®x is some fixed value, as in our applications, | ®x | of

these pairings either disappear (if ®x = ®0) or can be precomputed.

Furthermore, it is possible to see that the cost of KeyGen is O(ℓ ·
t + nF where nF is the number of nonzero entries of F. Essentially
this cost depends on the sparsity of the matrix; this is crucial in

8
While in our description we use the same commitment key for every ®uj , our scheme

easily extends to the case where different commitment keys are used.

our applications where for example F includes the W matrices

representing the linear constraints of a circuit [18].

5 EFFICIENT CP-SNARKS FOR POLYNOMIAL
COMMITMENTS

This section shows a collection of zero-knowledge CP-SNARKs

for a variety of relations over vectors committed using a specific

polynomial commitment scheme from [71], that we call PolyCom.

5.1 Preliminaries and Building Blocks
Polynomial Commitments. We abstract away the VPD primi-

tive of [71] distinguishing between the commitment scheme for

multivariate polynomials (that we call PolyCom) and the proof sys-

tem for committed evaluation at a public point (that we call CPpoly).

PolyCom is a linearly homomorphic extractable trapdoor polynomial
commitment consisting of a tuple of algorithms:

9

Setup(1λ) → ck : outputs a commitment key for a class F ⊂ F[®X].

ComPoly(ck, f) → (cf ,of) : commits a polynomial f ∈ F .

ComVal(ck,y) → (cy ,oy) : commits a value y ∈ F.

CheckCom(ck, c) → b : takes a commitment and accepts it or not.

VerCommit(ck, cf , f ,of) → b : accepts or rejects openings.

HomEval(ck,д : Fℓ→ F, (c j)j ∈[ℓ], (oj)j ∈[ℓ]) → (c
′,o′) : computes

commitment and opening corresponding to the homomorphic

evaluation of a linear function on commitments-openings (c j ,oj).

Also, denote by ComPoly∗ a version of ComPoly that uses fixed

randomness (e.g., 0), and similarly ComVal.

CP-SNARKs for PolyCom.We use the following ZK-CP-SNARKs

for PolyCom (whose ek is just ck, and vk := cvk, a subset of ck
enough to run CheckCom,ComVal and HomEval):

• CPeq for the relation Req(u1,u2) := u1
?

= u2 : ∀uj ∈ F
• CPprd for the relation Rprd(u1,u2,u3) := u3

?

= u1 · u2 : ∀uj ∈ F
• CPpoly for the relation Rpoly(®x ∈ F

µ , f ∈ F ,y ∈ F) := y
?

= f (®x)

The first two can be obtained using classical Sigma protocols;CPpoly
is extracted from [71] and shown in Appendix G. We recall that

CPpoly proving time isO(m) (withm the number of nonzero mono-

mials of f), whereas verification time and proof size is O(µ).

Multilinear Extensions. Given a function f : {0, 1}µ → F,
its unique multilinear extension (MLE) is the (unique) multilinear

polynomial
˜f : Fµ → F such that f (®b) = ˜f (®b) for all ®b ∈ {0, 1}µ .

Such multilinear extension is defined as the following polynomial

˜f (X1, . . . ,Xµ) =
∑

®b ∈{0,1}µ

χ ®b (X1, . . . ,Xµ) · f (®b)

where χ ®b (X1, . . . ,Xµ) =
∏µ

j=1 χbj (X j), χ1(X) = X and χ0(X) =

1 − X . For a vector ®u ∈ Fm (for somem = 2
µ
), its unique MLE is

the MLE ũ of the function u : {0, 1}µ → F such that, for every

0 ≤ i ≤ m − 1 with i =
∑µ−1
j=0 i j2

j
, u(i0, . . . , iµ−1) = ui+1. Note that

by using MLEs one can commit to a vector ®u using PolyCom by

committing to its MLE ũ.

9
See Appendix H for formal definitions related to PolyCom

8

Let eq : {0, 1}µ × {0, 1}µ → {0, 1} be the equality predicate

(eq(a,b) = 1 iff a = b) and let ˜eq be its MLE (which has a closed-

form representation that allows evaluation in time O(µ) [63]). We

recall the following lemma from [61] (as restated in [63]):

Lemma 5.1 ([61, Lemma 3.2.1]). For any polynomial h : Fµ→ F

extending p : {0, 1}µ → F (i.e., such that ∀®b ∈ {0, 1}µ : h(®b) = p(®b)),
it holds that p̃(®X) =

∑
®b ∈{0,1}µ ˜eq(®X , ®b) · h(®b)

5.2 A CP-SNARK for Sum-Check
The sum-check protocol [52] is an interactive proof that allows a

prover to convince a verifier of the validity of a statement of the

form t =
∑
®b ∈{0,1}µ д(

®b) where д : Fµ → F. The protocol consists

of µ rounds, it is public coin, and the running time of the verifier in

it isO(
∑µ
i=1 deдi (д)) plus the cost of evaluatingд once (on a random

point).

Here we propose a zero-knowledge variant of the sum-check

protocol where both the polynomial д and the target value t are
committed and one proves knowledge of these values such that

t =
∑
®b ∈{0,1}µ д(

®b). Precisely, we work with polynomials д defined

as the product of p + 1 polynomials of the form д(®S) =
∏p

i=0 дi (
®S),

such that all the дi ’s, except д0, are committed. Namely, we show a

CP-SNARKCPsc for commitment scheme PolyCom and the relation

Rsc(®x , ®u), with ®x ∈ F and ®u ∈ F × F p
, that is formally defined as:

Rsc(д0, (t , (дj)j ∈[p]))=1 ⇐⇒ д(®S)=
∏p

i=0дi (
®S)∧t =

∑
®b ∈{0,1}µ д(

®b)

Our scheme, dubbed CPsc, is built as a generalization of the pro-

tocol recently proposed in [69, 71] that works for a relation that is

the same as the above one except that only t is committed while

д is public to the verifier. For the reader familiar with the zero-

knowledge sum-check protocol in [71, Construction 2], what we do

here is to modify their protocol using the following ideas: whereas

in [71] the verifier has access to д and computes a commitment to

д(®s) for a random point ®s on its own, in our case the verifier has

access to a commitment cд of д and we let the prover create a com-

mitment to д(®s) and use CPpoly to prove its correctness with respect

to cд . More precisely, the verifier does not have a commitment to

д but rather commitments to the factors of д. Hence our prover
proceeds by additionally creating commitments to each дi (®s), it
proves their correct evaluations and then uses CPprd to prove that

д(®s) =
∏p

i=0 дi (®s)with respect to these commitments. Making these

changes results in a protocol that is the same as that in [71] except

for the last round from the prover to the verifier. Indeed we can

prove the security of our protocol by making a reduction to the

one of [71]. We state the following result. For lack of space the full

description of the protocol and the proof are in Appendix H.1.

Theorem 5.2. Assume PolyCom is an extractable linearly homo-
morphic commitment, CPpoly and CPprd are zkSNARKs for relations
Rpoly and Rprd respectively, and Construction 2 in [71] is a ZK interac-
tive argument for sum-check. Then there is a ZK interactive argument
for relation Rsc. Furthermore, by applying the Fiat-Shamir heuristic
we get a zkSNARK in the random oracle model, that we call CPsc.

Efficiency. In CPsc, the verifier needs time O(µ) plus the time to

compute д0(®s). The prover’s costs include the running time in the

sum-check protocol and the creation of the CPpoly proofs. If the

дi are multilinear, CPpoly.Prove’s time is O(2µ). Also, from [63], if

the polynomials дi allow for evaluation in O(µ) time or are MLE of

vectors, the prover’s cost in sum-check can be reduced to O(2µ).

5.3 A CP-SNARK for Hadamard Products
In this section we propose a CP-SNARK for PolyCom for the rela-

tion Rhad over (Fm)3 such that

Rhad(®u0, ®u1, ®u2) = 1 ⇐⇒ ∀i ∈ [m] : u0,i = u1,i · u2,i
Let m = 2

µ
and let ũj : Fµ → F be the MLE of ®uj . Clearly, the

relation holds iff for all
®b ∈ {0, 1}µ we have ũ0(®b) = ũ1(®b) · ũ2(®b). If

the relation holds, observe that the polynomial ũ1(®X) · ũ2(®X) is an
extension of the vector ®u0, but not a multilinear one. From Lemma

5.1 the following equality holds

ũ0(®X) =
∑

®b ∈{0,1}µ

˜eq(®X , ®b) · ũ1(®b) · ũ2(®b)

Without considering zero-knowledge, the main idea of our protocol

is that, to check the above equality, the verifier starts by picking

a random point ®r ←$Fµ , and then the prover uses CPsc to show

that t = ũ0(®r) =
∑
®b ∈{0,1}µ д(

®b), where д(®S) = ˜eq(®r , ®S) · ũ1(®S) · ũ2(®S).

Notice indeed thatд can bewritten as the product of three polynomi-

als д(®S) :=
∏

2

0
дi (®S), of which the first one is public: д1(®S) = ũ1(®S),

д2(®S) = ũ2(®S) and д0(®S) := ˜eq(®r , ®S). Finally, the prover also needs

to convince the verifier that t = ũ0(®r), which is done using a CP-

SNARK CPpoly for proving correctness of polynomial evaluations.

Therefore we build a CP-SNARK CPhad for Rhad and PolyCom
by using CP-SNARKs CPpoly,CPsc for PolyCom as building blocks.

Furthermore, we describe the scheme as a non-interactive one by

letting ®r ← H ((c j)j ∈[:3]) using the random oracle model for H .

The full description of the scheme is given below.

KeyGen(ck)→(ek := (ck, eks , ekp ,H), vk := (cvk, vks , vkp ,H))

(eks , vks) ← CPsc .KeyGen(ck) ; (ekp, vkp) ← CPpoly .KeyGen(ck)

Prove(ek, (c j)j ∈[:3], (®uj)j ∈[:3], (oj)j ∈[:3]) → π := (ct ,π0,πsc)

®r ← H ((c j)j∈[:3]) ; t ← ũ0(®r) ; (ct , ot) ← ComVal(ck, t)

π0 ← CPpoly .Prove(ekp, ®r, (c0, ct), (ũ0, t), (o0, ot))

πsc ← CPsc .Prove(eks , ˜eq(®r, ®S), (ct , c1, c2), (t, ot , ũ1, o1, ũ2, o2))

VerProof
(
vk, (c j)j ∈[:3],π

)
→ b

®r ← H ((c j)j∈[:3]) ; b ← CPpoly .VerProof(vkp, ®r, c0, ct , π0)

b ← b ∧ CPsc .VerProof(vks , ˜eq(®r, ®S), (ct , c1, c2), πsc)

Efficiency. Computing π0 takes time O(m), and the same holds

for πsc . The latter follows by observing that the factors of д(®S)
satisfy the good efficiency conditions for CPsc, i.e., ˜eq(®r , ®s) can be

computed in O(µ) time and ũ1, ũ2 are MLE of vectors of length

m = 2
µ
. For similar reasons, the verifier’s time is O(µ).

We state the following result; its proof is in Appendix H.2.

Theorem 5.3. In the random oraclemodel, assuming thatPolyCom
is an extractable trapdoor commitment, CPpoly,CPsc are zero-knowl-
edge CP-SNARKs for PolyCom and relations Rpoly and Rsc respec-
tively, then the scheme CPhad described above is a zero-knowledge
CP-SNARK for PolyCom and relation Rhad.

9

5.4 A CP-SNARK for Self Permutation
Let ϕ : [m] → [m] be a permutation. In this section we pro-

pose a CP-SNARK for PolyCom for the relation R
sfprm
ϕ such that

R
sfprm
ϕ

(
®y := (®x , (®uj)j ∈[ℓ])

)
= 1 ⇐⇒ ∀i ∈ [m] : yi = yϕ(i).

Our scheme uses a probabilistic trick to prove a permutation

of vectors due to [19, 39]. For this we need of a CP-SNARK for

proving that z =
∏n

i=1 yi with respect to a commitment to point z
and vector ®y. We call such a relation internal product Ripd.

In what follows we present the main ideas to build a CP-SNARK

for Rsfprm
from one for Ripd. Next, we discuss how a CP-SNARK

for Ripd can be instantiated.

Recall that the goal is to prove that, for a permutation ϕ : [m] →
[m] a committed vector ®y satisfiesyi = yϕ(i),∀i ∈ [m]. Consider the
following vectors in Fm , ®1, ®v = (1, . . . ,m), and ®ϕ = (ϕ(1), . . . ,ϕ(m)),
and assume that the prover committed to ®y. Let the verifier choose

two random values r , s ←$F and define the vectors ®y′ := ®y+r · ®v−s ·®1

and ®y′′ := ®y + r · ®ϕ − s · ®1.

If ®y is a permutation of itself according to ϕ, then (®y + r · ®ϕ)
is a permutation of (®y + r · ®v) according to ϕ; however, if ®y is

not a self-permutation according to ϕ then with overwhelming

probability over the choice of r some of the entries of ®y + r · ®ϕ will

not be in the vector ®y + r · ®v . In our scheme the idea is to let the

prover show that

∏
i y
′
i = z =

∏
i y
′′
i using CPipd on (z, ®y′) and

(z, ®y′′). However, if some entries of ®y + r · are not in ϕ , ®y + r · ®v ,∏
i (yi + r · i − s) =

∏
i (yi + r · ϕ(i) − s) holds with negligible

probability over the choice of s by the Schwartz-Zippel lemma, thus

a prover can be succesful only by cheating with CPipd.

Our scheme CPsfprm formalizes the above ideas with some addi-

tional details to deal with the fact that ®y is the concatenation of ℓ

vectors (®uj)j ∈[ℓ]; also it defines the values r , s as output of a random
oracle modeled hash function H ((cϕ, j)j ∈[0, ℓ], ®x , (c j)j ∈[ℓ]). For lack
of space a full description of CPsfprm is deferred to Appendix H.3.

Theorem 5.4. In the random oraclemodel, assuming thatPolyCom
is an extractable and linearly-homomorphic trapdoor commitment,
CPipd, CPprd are zero-knowledge CP-SNARKs for PolyCom and rela-
tions Ripd and Rprd respectively, then CPsfprm in Figure 13 (Appendix
H.3) is a zero-knowledge CP-SNARK for PolyCom and relation Rsfprm.

Instantiating CPipd. Ripd can be expressed with an arithmetic

circuit that is a tree of multiplications over n = 2
ν
inputs. Thaler

[63] showed that for this specially regular circuit the CMT protocol

can be adapted so that the prover runs in time O(n). To build a

CP-SNARK for Ripd, we thus modify the zk-vSQL protocol [71] so

as to work over Thaler’s protocol instead of CMT. The changes

are quite minimal and mainly regard the equation that links the

adjacent layers of the tree. We show this protocol in Appendix I.

From the efficiency observations about CPipd given above, we

get that CPsfprm.Prove and CPsfprm.VerProof run in timeO(m) and
O(logm) respectively.

6 LEGOSNARK APPLICATIONS AND
EVALUATION

In this section we first show how to use the modular commit-

and-prove approach to obtain new CP-SNARKs for computation

expressible by arithmetic circuits (ACs) and then we discuss the

resulting instantiations. Our treatment here will not be completely

formal; a full formalization is in Appendix J.

CP-SNARKs for Arithmetic Circuits. Bootle et al. [18, 23] show
that satisfiability of an arithmetic circuitC holds if the assignment of

the inputs-output wires of multiplication gates satify an Hadamard

product relation and a set of linear constraints, i.e., if there are three

vectors ®uML , ®u
M
R , ®u

M
O ∈ F

N
such that

®uML ◦ ®u
M
R = ®u

M
O ∧ WL · ®u

M
L +WR · ®u

M
R +WO · ®u

M
O = ®c (3)

where WL ,WR ,WO ∈ F
Q×N , ®c ∈ FQ can be extracted from C’s

description. By defining F := [WL |WR |WO], we can encode (3) as

Rhad(®u
M
L , ®u

M
R , ®u

M
O) ∧R

lin
F (®c, (®u

M
L , ®u

M
R , ®u

M
O)). Hence, by applying our

Theorem 3.2, we obtain a CP-SNARK for AC, dubbed LegoAC.
Instantiations. We evaluate two instantiations of LegoAC:

• LegoAC1: from our CPPed
lin (Section 4.2) and Lipmaa’s CP-SNARK

for Hadamard products [51]. LegoAC1 is a CP-SNARK for the

commitment scheme of [51], and its security holds in the generic

group model (due to GGM security of CPPed
lin).

• LegoAC2: from our CPPed
lin (Section 4.2) and our CPhad (Section

5.3). This is a CP-SNARK for PolyCom, and its security holds in

the GGM and random oracle model (the latter due to CPhad).

If needed, both schemes can be lifted to work with a standard

Pedersen commitment using CPlink. Their complexity, summarized

in Table 1, results from the combined efficiency of the building

blocks plus the observation that the matrices WL ,WR ,WO are

sparse and with a number of nonzero entries linear in the number

of circuit wires.

CP-SNARKs for Arithmetic Circuits with Universal CRS.
Both LegoAC1 and LegoAC2 have a circuit-specific CRS due to

the circuit-specific CRS of CPPed
lin .

10
Aiming for a CP-SNARK for

AC satisfiability with a linear-size CRS, we consider a different

encoding of AC due to [19, 39]. Let C be an arithmetic circuit C
with NA addition and NM multiplication gates. Each gate has a

left input, a right input and an output wire; each output wire can

also be input to another gate. This means that C can be described

by integers NA,NM , and the wiring information saying that the

output wire of addition/multiplication i is the left/right input of
addition/multiplication gate j. Having this in mind, satisfiability

of C holds if there is a satisfying assignment to all the gates, i.e.,

®uAL + ®u
A
R = ®u

A
O and ®uML ◦ ®u

M
R = ®u

M
O , and if these assignments are

consistent with C’s wiring. This consistency is essentially a check

that specific entries of the vector (®uAL , ®u
A
R , ®u

A
O , ®u

M
L , ®u

M
R , ®u

M
O) must

be equal, which can be formalized with R
sfprm
ϕ for an appropriate

permutation ϕ.
Using our composition theorem we obtain a CP-SNARK for

AC satisfiability, dubbed LegoUAC, through the combination of

Rhad and Rsfprm
. We propose to instantiate it with our CPhad and

CPsfprm.
11

Both these schemes admit a universal CRS that can be

deterministically specialized (due to specializing CPsfprm’s CRS to

the circuit-dependent permutation ϕ). The asymptotic efficiency of

LegoUAC is shown in Table 1 and results from that of our CPhad
and CPsfprm.

10
Using our CPlin for PolyCom (Appendix H.4) would give us an instantiation with a

universal CRS, but unfortunately one of size Q · N , that is quadratic in circuit size.

11
Additions come for free by using a linearly homomorphic commitment.

10

(a) In Rpar, R′ inputs are disjoint (b) In Rparjnt, R′ inputs are joint

Figure 2: Inputs structures for parallel relations.

Parallel Checks on Joint Inputs. Consider a relation
Rparjnt(u) :=

∧N
j=1 R

′(u ′j) consisting of N parallel checks of the

same relation R′ on (partially) shared inputs. This relation has

several use cases, e.g., proving knowledge of all the leaves of a

Merkle tree of height N with respect to a public root, which can be

seen as the parallel check of 2
N − 1 hash verification relations (i.e.,

RH (x1,x2,y) := H (x1,x2)
?

= y) that share some of the inputs.

One way to deal with Rparjnt
is by defining the arithmetic circuit

that computes it (cf. Fig. 2b). The Hyrax system is particularly

designed for parallel circuits [69]; they deal with non-parallel input

by introducing a (non-parallel) redistribution layer (RDL) layer that

redistributes the input and feeds it to the identical sub-circuits at

the next level. Unfortunately an effect of using an RDL is that the

verifier must pay an additional cost linear in the total width of the

circuit. In several cases (includingMerkle tree verification described

earlier) this can result in a bottleneck in verification performances

dominating its asymptotics.

We solve this issue by modeling Rparjnt
as the simple conjunction

of two relations: Rpar
for fully parallel checks of R′ on disjoint inputs

(cf. Fig. 2), and another relation that checks the consistency of the

shared inputs across the parallel executions (that we can express

with Rsfprm
or Rlin

). This way, we can build a CP-SNARK for Rparjnt

(called LegoPar) through our composition result applied to our

CPPed
lin and a CP-SNARK for Rpar

relations. For the latter, we use an

adaptation of Hyrax using the polynomial commitment PolyCom
of zk-vSQL. We call HyrPoly-Par this scheme invoked on circuits

without RDL (i.e., it supports Rpar
), and HyrPoly-RDL the same

scheme for circuits with an RDL (i.e., it supports Rparjnt
).

We compare the efficiency of LegoPar and HyrPoly-RDL on

Rparjnt
relations. Let d and G be depth and width of the arithmetic

circuit evaluating R′. Proving time and proof size have the same

complexity in both solutions; verifier time is O(d(G + log(NG))) in
LegoPar and O(d(G + log(NG)) + |u | + NG) in HyrPoly-RDL. We

note that due to the use of CPPed
lin , the CRS of LegoPar becomes

specific to the input wiring of Rparjnt
, whereas in HyrPoly-RDL

the CRS is just the commitment key. On the other hand, this one-

time preprocessing allows the verifier to later check any number

of proofs in shorter time.
12

7 EXPERIMENTAL EVALUATION
We designed and implemented LegoSNARK,13 a library for commit-

and-prove SNARKs that includes a design framework for compos-

able CP-SNARKs, and the implementation of a collection of proof

gadgets: our CPlink and CPPed
lin , the Hadamard product CP-SNARK

12
We do not see a way to run a similar preprocessing in HyrPoly. We evaluated the

possibility to commit, in preprocessing, to the MLE of the RDL wiring so that the

prover would compute this on behalf of the verifier and prove its correct evaluation

using CPpoly . This idea however would require a commitment key quadratic in the

circuit width, which is prohibitively large.

13
The library will soon be made open source.

of [51], and the CPpoly from [71]
14
. LegoSNARK is written in C++;

for polynomial operations and bilinear pairings we use the libraries

underlying libsnark [3]. We executed our experiments on a virtual

machine running Debian GNU/Linux with 8 Xeon Gold 6154 cores

and 30 GB of RAM. We ran all tests single threaded.

In our experiments we tested the performance of some of our

instantiations and compared to different baseline systems.

7.1 Commit-and-Prove SNARKs
We consider a generic application of proving commit-and-prove re-

lations where commitments are created using the Pedersen scheme

for vectors, i.e., proving ∃(u,o,ω)R(u,ω) ∧ VerCommit(ck, c,u,o).
As baseline system, we use the Groth16 zkSNARK in libsnark
on the libsnark gadget circuit for multi-scalar additions over a

SNARK-friendly elliptic curve (to model the Pedersen computa-

tion). We call this CPGro16. We compare CPGro16 to a CP-SNARK,

LegoGro16, obtained by applying our cc-SNARK-lifting compiler

with our CPlink scheme to the cc-variant of [41] described in Appen-

dix K.5. In our experiments we measured the overhead of dealing

with the commitment in both schemes (the costs related to R would

be the same in both cases) at the increase of the committed vector’s

dimension (from 8 to 2048).
15

On the largest instance (n = 2048),

our LegoGro16 proving time is 5, 000× (0.08 vs. 428 s) faster than

CPGro16, at the price of a verification that is 1.2× slower (4.1 vs 3.4

ms), and a slightly larger proof (191 vs. 127 Bytes). LegoGro16’s CRS
is also 7000× shorter (130KB vs. 950MB). Details of our experiments

can be found in Appendix L.

7.2 Parallel Checks on Joint Inputs
We compare performances of our LegoPar system with a baseline

system, i.e. HyrPoly-RDL (see Appendix H.5). Recall that LegoPar
consists of our CPPed

lin and HyrPoly-Par. To evaluate HyrPoly-Par
and HyrPoly-RDL we executed separately the part concerning

PolyCom and CPpoly, and the one that includes the ZKGir++ core.
To benchmark the latter, we used the original Python code (appro-

priately modified for the commitment part) from the Hyrax project

[1] (executed using the JIT-compiling interpreter PyPy [4]).
16

We benchmarked LegoPar and HyrPoly-RDL on a highly paral-

lel computation, that is proving knowledge of an assignment to

the leaves of a Merkle tree [53] (cf. Section 6 to see how it can

be expressed using Rparjnt
). We used SHA256 for the hash and a

varying number of leaves (from 2 to 2
9
). For this computation we

generated two circuits using the Hyrax tool: one fully parallel to be

fed to HyrPoly-Par and one with the RDL for HyrPoly-RDL. Recall
that in LegoPar the RDL is checked using CPPed

lin . We finally note

that the two largest input sizes in our evaluation required extend-

ing the available RAM from 30 to 75GB for both HyrPoly-RDL and

HyrPoly-Par.

Results. Figure 3 compares the costs (proving and verification time)

in the two schemes for repeated computation. Overall LegoPar is
faster than HyrPoly-RDL, both in proving and verification time. On

our largest input, proving in LegoPar is 1.25× faster; verifying is

more than 2.5× faster. Verification is expected to become faster due

to the asymptotic difference in the verification time.

14
For this we adapted to our library the code provided by the authors of [71].

15
At n = 4096 CPGro16 ran out of memory.

16
Full integration of this component into our library is future work.

11

(a) Proving time comparison for LegoPar
and HyrPoly-RDL.

(b) Verification time comparison for LegoPar
and HyrPoly-RDL.

(c) P time (component-wise) for LegoPar (left
bars) and HyrPoly-RDL (right).

Figure 3: Performance comparison of systems for parallel relations. Lower on the y axis is better (in (c), axis y is log-scale).
We remind the reader that LegoPar = HyrPoly-Par + CPlin = (GirnoRDL + CPLego

poly) + CPlin and HyrPoly-RDL = GiryesRDL + CPHyr
poly.

• Proving time: On larger inputs LegoPar has a faster (up to 1.25×)

proving time (Figs. 3a). In both schemes most of the computation

is due to ZKGir++: approximately 50% for LegoPar and 75% for

HyrPoly-RDL. The higher time of ZKGir++ in HyrPoly-RDL is

explained by the additional round for the RDL. On the other

hand, LegoPar spends twice as much time for the proving step of

CPpoly. This is because it evaluates a polynomial with twice as

many terms, in turn requiring roughly twice the number of expo-

nentiations. (This is due to the RDL outputu2, on which LegoPar
operates, being twice as long as the RDL input u1 (also the

“bottom-layer” input), on which CPpoly runs in HyrPoly-RDL).
• Verification time: On larger inputs LegoPar has a shorter (up to

2.5×) verification time (Fig. 3b). This speedup is due to increase

with larger inputs, as the verifier in HyrPoly-RDL has to perform

an additional verification step for the RDL in ZKGir++ (requiring
a number of field operations roughly linear in the width of the

circuit). On the other hand LegoPar performs the same step

through a constant number of pairings (two) in CPveq. In both

schemes, the running time is dominated by ZKGir++, requiring
more than 99.5% of the total verification time

17
.

Discussion. Partly, the different performances we observed are

due to specific features of the circuit chosen for benchmarks (in our

case, Merkle tree verification). In a circuit for parallel computation,

at least two features, both related to the RDL, can have impact: (i)
how “large” the output u2 of the RDL is with respect to its input u1;
(ii) how “complex” the RDL is. A higher ratio between |u2 | and |u1 |
will determine the difference in running time for the CPpoly.Prove
component. As mentioned, in our circuit of choice the ratio was 2.

7.3 LegoAC1 for Arithmetic Circuits
We tested our LegoAC1 scheme (see Section 6) for arithmetic circuits

and compared it to Groth16 as a baseline system. We considered

two benchmark applications:

(a) proving knowledge of a SHA256 pre-image on 512-bit inputs; for

this we used the existing circuit gadgets implemented in libsnark

(for Groth16), and in Bulletproofs [2] (for LegoAC1).

17
This is also why we do not show a detailed bar plot for each component as done for

proving time.

(b) matrix factoring, i.e., proving knowledge of two n × n matrices

A,B whose product is a public matrix C; for this we designed suit-

able constraints systems, considering 32-bit integers entries and a

varying n = 16, 32, 64, 128.

In Appendix L we provide tables with detailed numbers of these

experiments. Overall, our experiments show that LegoAC1 per-

forms slightly worse than Groth16. For example, for SHA256 prov-

ing time is 1.2× slower (0.7 vs. 0.9 s) and verification is 2× slower

(0.9 vs. 1.8 ms). Proof size is constant: 350B in LegoAC1 and 127B

in Groth16. In a way this result is not surprising: Groth16 is an ex-

tremely optimized and well explored scheme, whereas for LegoAC1
we believe that more optimizations could be explored (in a similar

way as Groth16 optimized Pinocchio). More remarkably, LegoAC1
has a built-in commit-and-prove capability that is not present in

Groth16 and that can be useful in several applications. For example,

in our matrix factoring application LegoAC1 works with commit-

ments to the three matrices that could be reused. As an example of

the power of this feature, we could prove a statement like “B = A2
k

for a committed matrixA” by doing k proofs, one for each squaring

step (i.e., to show that Bi = B2i−1); this can be done by reusing the

same CRS for one matrix factoring relation. In contrast, proving

B = A2
k
directly with Groth16 would require a very large CRS and

a memory intensive prover that would not scale for large k and n.

8 CONCLUSIONS
Wehave described LegoSNARK, a framework for commit-and-prove

zkSNARKs that comprises definitions, a general composition result,

and a “lifting” construction. The LegoSNARK tools are useful as

they enable designing zkSNARKs in a modular way (due to the

framework of definitions and the composition theorem) and they

allow to efficiently add commit-and-prove capabilities to a vari-

ety of existing schemes thus made interoperable. Furthermore we

have proposed efficient proof gadgets for specialized relations and

shown how to combine them into succinct proof systems for more

complex relations. We have described instantiations of these new

proof systems and evaluated them against prior work. The results

show they have competitive performances. Specifically they show

slightly worse (but still acceptable) performances in some appli-

cations (general arithmetic circuits) and significant improvements

12

in others (commit-ahead-of-time systems, parallel computations).

A limitation of our current instantiations is that they rely on

pairing-based systems requiring a trusted setup. Interestingly in

some cases a trusted setup is only needed to generate the commit-

ment key of PolyCom. We expect this be doable with a large-scale

MPC ceremony similar to the powers-of-tau round 1 of [20]. It will

be future work to explore this direction. Nonetheless we note that

this limitation is not inherent. The basic results of the framework

(i.e., Section 3) would also apply to schemes without trusted setup

and hence are general enough to allow for future instantiations

without trust assumptions.

Finally, another future work direction is investigating new and

more efficient proof gadgets CP-SNARKs for specialized relations

and test them in specific applications.

ACKNOWLEDGEMENTS
The project that gave rise to these results received the support

of a fellowship from “la Caixa” Foundation (ID 100010434). The

fellowship code is LCF/BQ/ES18/11670018.

REFERENCES
[1] Hyrax. https://github.com/hyraxZK. (Hyrax).

[2] libsecp256k1. https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs. (lib-

secp256k1).

[3] libsnark. https://github.com/scipr-lab/libsnark. (libsnark).

[4] PyPy. https://pypy.org. (PyPy).

[5] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. 2018. Non-Interactive

Zero-Knowledge Proofs for Composite Statements. In CRYPTO 2018, Part III
(LNCS), Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10993. Springer,

Heidelberg, 643–673. https://doi.org/10.1007/978-3-319-96878-0_22

[6] Kurt M. Alonso and Jordi Herrera Joancomartí. 2018. Monero - Privacy in

the Blockchain. Cryptology ePrint Archive, Report 2018/535. (2018). https:

//eprint.iacr.org/2018/535.

[7] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnanVenkitasubrama-

niam. 2017. Ligero: Lightweight Sublinear ArgumentsWithout a Trusted Setup. In

ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 2087–2104. https://doi.org/10.1145/3133956.3134104

[8] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. 2015.

ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated

Data. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 271–286. https://doi.org/10.1109/SP.2015.24

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology

ePrint Archive, Report 2018/046. (2018). https://eprint.iacr.org/2018/046.

[10] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in

Zero Knowledge. In CRYPTO 2013, Part II (LNCS), Ran Canetti and Juan A.

Garay (Eds.), Vol. 8043. Springer, Heidelberg, 90–108. https://doi.org/10.1007/

978-3-642-40084-1_6

[12] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interac-

tive Oracle Proofs. In TCC 2016-B, Part II (LNCS), Martin Hirt and Adam D.

Smith (Eds.), Vol. 9986. Springer, Heidelberg, 31–60. https://doi.org/10.1007/

978-3-662-53644-5_2

[13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-

cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In

USENIX Security. 781–796.
[14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad

Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. Journal of
Cryptology 30, 4 (Oct. 2017), 989–1066.

[15] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From

extractable collision resistance to succinct non-interactive arguments of knowl-

edge, and back again. In ITCS 2012, Shafi Goldwasser (Ed.). ACM, 326–349.

https://doi.org/10.1145/2090236.2090263

[16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. 2014. On the existence

of extractable one-way functions. In 46th ACM STOC, David B. Shmoys (Ed.).

ACM Press, 505–514. https://doi.org/10.1145/2591796.2591859

[17] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In

TCC 2013 (LNCS), Amit Sahai (Ed.), Vol. 7785. Springer, Heidelberg, 315–333.

https://doi.org/10.1007/978-3-642-36594-2_18

[18] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. 2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the

Discrete Log Setting. In EUROCRYPT 2016, Part II (LNCS), Marc Fischlin and

Jean-Sébastien Coron (Eds.), Vol. 9666. Springer, Heidelberg, 327–357. https:

//doi.org/10.1007/978-3-662-49896-5_12

[19] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-

jiabadi, and Sune K. Jakobsen. 2017. Linear-Time Zero-Knowledge Proofs for

Arithmetic Circuit Satisfiability. In ASIACRYPT 2017, Part III (LNCS), Tsuyoshi
Takagi and Thomas Peyrin (Eds.), Vol. 10626. Springer, Heidelberg, 336–365.

https://doi.org/10.1007/978-3-319-70700-6_12

[20] Sean Bowe, Ariel Gabizon, and IanMiers. 2017. ScalableMulti-party Computation

for zk-SNARK Parameters in the Random Beacon Model. Cryptology ePrint

Archive, Report 2017/1050. (2017). https://eprint.iacr.org/2017/1050.

[21] Elette Boyle and Rafael Pass. 2015. Limits of Extractability Assumptions with

Distributional Auxiliary Input. In ASIACRYPT 2015, Part II (LNCS), Tetsu Iwata

and Jung Hee Cheon (Eds.), Vol. 9453. Springer, Heidelberg, 236–261. https:

//doi.org/10.1007/978-3-662-48800-3_10

[22] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blum-

berg, and Michael Walfish. 2013. Verifying computations with state. In Proc. of
the ACM SOSP.

[23] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. 2017. Bulletproofs: Efficient range proofs for confidential
transactions. Technical Report. Cryptology ePrint Archive, Report 2017/1066,

2017. https://eprint. iacr. org/2017/1066.

[24] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally

composable two-party and multi-party secure computation. In 34th ACM STOC.
ACM Press, 494–503. https://doi.org/10.1145/509907.509980

[25] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In

ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 1825–1842. https://doi.org/10.1145/3133956.3133997

[26] Melissa Chase, Chaya Ganesh, and Payman Mohassel. 2016. Efficient Zero-

Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications

to Privacy Preserving Credentials. In CRYPTO 2016, Part III (LNCS), Matthew

Robshaw and Jonathan Katz (Eds.), Vol. 9816. Springer, Heidelberg, 499–530.

https://doi.org/10.1007/978-3-662-53015-3_18

[27] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

verified computation with streaming interactive proofs. In ITCS 2012, Shafi
Goldwasser (Ed.). ACM, 90–112. https://doi.org/10.1145/2090236.2090245

[28] Craig Costello, Cédric Fournet, JonHowell, Markulf Kohlweiss, Benjamin Kreuter,

Michael Naehrig, Bryan Parno, and Samee Zahur. 2015. Geppetto: Versatile

Verifiable Computation. In 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 253–270. https://doi.org/10.1109/SP.2015.23

[29] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. 2013. An

Algebraic Framework for Diffie-Hellman Assumptions. In CRYPTO 2013, Part II
(LNCS), Ran Canetti and Juan A. Garay (Eds.), Vol. 8043. Springer, Heidelberg,

129–147. https://doi.org/10.1007/978-3-642-40084-1_8

[30] Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. 2017. An Efficient

Pairing-Based Shuffle Argument. In ASIACRYPT 2017, Part II (LNCS), Tsuyoshi
Takagi and Thomas Peyrin (Eds.), Vol. 10625. Springer, Heidelberg, 97–127. https:

//doi.org/10.1007/978-3-319-70697-9_4

[31] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko,

and Bryan Parno. 2016. Hash First, Argue Later: Adaptive Verifiable Computa-

tions on Outsourced Data. In ACM CCS 16, Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,

1304–1316. https://doi.org/10.1145/2976749.2978368

[32] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group

Model and its Applications. In CRYPTO 2018, Part II (LNCS), Hovav Shacham

and Alexandra Boldyreva (Eds.), Vol. 10992. Springer, Heidelberg, 33–62. https:

//doi.org/10.1007/978-3-319-96881-0_2

[33] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS), Thomas Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer,

Heidelberg, 626–645. https://doi.org/10.1007/978-3-642-38348-9_37

[34] Craig Gentry and Daniel Wichs. 2011. Separating succinct non-interactive

arguments from all falsifiable assumptions. In 43rd ACM STOC, Lance Fortnow
and Salil P. Vadhan (Eds.). ACM Press, 99–108. https://doi.org/10.1145/1993636.

1993651

[35] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster Zero-

Knowledge for Boolean Circuits. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 1069–1083.

13

https://github.com/hyraxZK
https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs
https://github.com/scipr-lab/libsnark
https://pypy.org
https://doi.org/10.1007/978-3-319-96878-0_22
https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2018/535
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1109/SP.2015.24
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1145/2976749.2978368
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651

[36] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218–229. https://doi.org/10.1145/28395.

28420

[37] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating

computation: interactive proofs for muggles. In 40th ACM STOC, Richard E.

Ladner and Cynthia Dwork (Eds.). ACM Press, 113–122. https://doi.org/10.1145/

1374376.1374396

[38] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The Knowledge

Complexity of Interactive Proof Systems. SIAM J. Comput. 18, 1 (1989), 186–208.
[39] Jens Groth. 2009. Linear Algebra with Sub-linear Zero-Knowledge Arguments. In

CRYPTO 2009 (LNCS), Shai Halevi (Ed.), Vol. 5677. Springer, Heidelberg, 192–208.
https://doi.org/10.1007/978-3-642-03356-8_12

[40] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Ar-

guments. In ASIACRYPT 2010 (LNCS), Masayuki Abe (Ed.), Vol. 6477. Springer,

Heidelberg, 321–340. https://doi.org/10.1007/978-3-642-17373-8_19

[41] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments.

In EUROCRYPT 2016, Part II (LNCS), Marc Fischlin and Jean-Sébastien Coron

(Eds.), Vol. 9666. Springer, Heidelberg, 305–326. https://doi.org/10.1007/

978-3-662-49896-5_11

[42] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.

2018. Updatable and Universal Common Reference Strings with Applications to

zk-SNARKs. In CRYPTO 2018, Part III (LNCS), Hovav Shacham and Alexandra

Boldyreva (Eds.), Vol. 10993. Springer, Heidelberg, 698–728. https://doi.org/10.

1007/978-3-319-96878-0_24

[43] Daniel Günther, Ágnes Kiss, and Thomas Schneider. 2017. More Efficient

Universal Circuit Constructions. In ASIACRYPT 2017, Part II (LNCS), Tsuyoshi
Takagi and Thomas Peyrin (Eds.), Vol. 10625. Springer, Heidelberg, 443–470.

https://doi.org/10.1007/978-3-319-70697-9_16

[44] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2007. Efficient Arguments

Without Short PCPs. In Proceedings of the Twenty-Second Annual IEEE Conference
on Computational Complexity (CCC ’07). IEEE Computer Society, Washington,

DC, USA, 278–291.

[45] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In 39th ACM STOC, David S.

Johnson and Uriel Feige (Eds.). ACM Press, 21–30. https://doi.org/10.1145/

1250790.1250794

[46] J. Kilian. 1989. Uses of Randomness in Algorithms and Protocols. PhD Thesis.

Massachusetts Institute of Technology. (1989).

[47] Joe Kilian. 1992. A Note on Efficient Zero-Knowledge Proofs and Arguments

(Extended Abstract). In 24th ACM STOC. ACM Press, 723–732. https://doi.org/10.

1145/129712.129782

[48] Eike Kiltz and Hoeteck Wee. 2015. Quasi-Adaptive NIZK for Linear Subspaces

Revisited. In EUROCRYPT 2015, Part II (LNCS), Elisabeth Oswald and Marc Fis-

chlin (Eds.), Vol. 9057. Springer, Heidelberg, 101–128. https://doi.org/10.1007/

978-3-662-46803-6_4

[49] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-

moud F. Sayed, Elaine Shi, and Nikos Triandopoulos. 2014. TRUESET: Faster

Verifiable Set Computations. In USENIX Security. 765–780.
[50] Helger Lipmaa. 2012. Progression-Free Sets and Sublinear Pairing-Based

Non-Interactive Zero-Knowledge Arguments. In TCC 2012 (LNCS), Ronald
Cramer (Ed.), Vol. 7194. Springer, Heidelberg, 169–189. https://doi.org/10.1007/

978-3-642-28914-9_10

[51] Helger Lipmaa. 2016. Prover-Efficient Commit-and-Prove Zero-Knowledge

SNARKs. In AFRICACRYPT 16 (LNCS), David Pointcheval, Abderrahmane Nitaj,

and Tajjeeddine Rachidi (Eds.), Vol. 9646. Springer, Heidelberg, 185–206. https:

//doi.org/10.1007/978-3-319-31517-1_10

[52] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic

Methods for Interactive Proof Systems. J. ACM 39, 4 (Oct. 1992), 859–868.

[53] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryp-

tion Function. In CRYPTO’87 (LNCS), Carl Pomerance (Ed.), Vol. 293. Springer,

Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[54] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In 35th FOCS. IEEE Computer

Society Press, 436–453. https://doi.org/10.1109/SFCS.1994.365746

[55] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. 30, 4 (2000),
1253–1298. https://doi.org/10.1137/S0097539795284959

[56] Moni Naor and Moti Yung. 1990. Public-key Cryptosystems Provably Secure

against Chosen Ciphertext Attacks. In 22nd ACM STOC. ACM Press, 427–437.

https://doi.org/10.1145/100216.100273

[57] Bryan Parno. 2015. A Note on the Unsoundness of vnTinyRAM’s SNARK.

Cryptology ePrint Archive, Report 2015/437. (2015). http://eprint.iacr.org/2015/

437.

[58] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 238–252. https://doi.org/10.1109/SP.

2013.47

[59] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS), Joan Feigenbaum (Ed.), Vol. 576.

Springer, Heidelberg, 129–140. https://doi.org/10.1007/3-540-46766-1_9

[60] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. 2016. Constant-round

interactive proofs for delegating computation. In 48th ACM STOC, Daniel Wichs

and Yishay Mansour (Eds.). ACM Press, 49–62. https://doi.org/10.1145/2897518.

2897652

[61] Guy Rothblum. 2009. Delegating computation reliably: paradigms and construc-

tions. (2009). PhD thesis.

[62] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. Jour-
nal of Cryptology 4, 3 (1991), 161–174.

[63] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In

CRYPTO 2013, Part II (LNCS), Ran Canetti and Juan A. Garay (Eds.), Vol. 8043.

Springer, Heidelberg, 71–89. https://doi.org/10.1007/978-3-642-40084-1_5

[64] Leslie G. Valiant. 1976. Universal Circuits (Preliminary Report). In STOC. ACM,

196–203.

[65] Meilof Veeningen. 2017. Pinocchio-Based Adaptive zk-SNARKs and Se-

cure/Correct Adaptive Function Evaluation. In AFRICACRYPT 17 (LNCS), Marc

Joye and Abderrahmane Nitaj (Eds.), Vol. 10239. Springer, Heidelberg, 21–39.

[66] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael

Walfish, and Thomas Wies. 2017. Full Accounting for Verifiable Outsourcing. In

ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 2071–2086. https://doi.org/10.1145/3133956.3133984

[67] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and

Michael Walfish. 2015. Efficient RAM and control flow in verifiable outsourced

computation. In NDSS 2015. The Internet Society.
[68] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2017. Doubly-efficient zkSNARKs without trusted setup. Cryptology ePrint

Archive, Report 2017/1132. (2017). https://eprint.iacr.org/2017/1132.

[69] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Wal-

fish. 2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 926–943.

https://doi.org/10.1109/SP.2018.00060

[70] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over

Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 863–880. https://doi.org/10.1109/SP.2017.43

[71] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. Cryptology

ePrint Archive, Report 2017/1146. (2017). https://eprint.iacr.org/2017/1146.

A FORMAL DEFINITIONS
This section gives formal definitions regarding commitment schemes,

SNARKs, SNARKs with universal CRS and cc-SNARKs.

A.1 Properties of Commitment Schemes
A commitment scheme Com = (Setup,Commit,VerCommit)must

satisfy the following properties:

Correctness. For all λ ∈ N and any input u ∈ D we have:

Pr

[
ck← Setup(1λ)

(c,o) ← Commit(ck,u)
: VerCommit(ck, c,u,o) = 1

]
= 1

Binding. For every polynomial-time adversary A

Pr


ck← Setup(1λ)

(c,u,o,u ′,o′) ← A(ck)
:

VerCommit(ck, c,u ′,o′)

∧ VerCommit(ck, c,u,o)

∧ u , u ′

 = negl

Hiding. For ck ← Setup(1λ) and every values u,u ′ ∈ D, the

following two distributions are statistically close: Commit(ck,u) ≈
Commit(ck,u ′).

A.2 Properties of SNARKs
We first give more insight on the properties of a SNARK, which is

a tuple of algorithms Π = (KeyGen,Prove,VerProof) satisfying the
14

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1145/100216.100273
http://eprint.iacr.org/2015/437
http://eprint.iacr.org/2015/437
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1145/3133956.3133984
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2017.43
https://eprint.iacr.org/2017/1146

notions of completeness, succinctness and knowledge soundness. If Π
also satisfies zero knowledge then we call it a zkSNARK.

Completeness. For any λ ∈ N, R ∈ Rλ and (x ,w) such that

R(x ,w), it holds Pr[(ek, vk) ← KeyGen(R),π ← Prove(ek,x ,w) :
VerProof(vk,x ,π) = 1] = 1.

Succinctness. Π is said succinct if the running time of VerProof is
poly(λ) (λ+ |x |+ log |w |) and the proof size is poly(λ) (λ+ log |w |).

Knowledge Soundness. Π has knowledge soundness for RG and

auxiliary input distributionZ, denoted KSND(RG,Z) for brevity,
if for every (non-uniform) efficient adversaryA there exists a (non-

uniform) efficient extractor E such that Pr[GameKSND
RG,Z,A,E

= 1] =

negl. We say that Π is knowledge sound if there exists benign RG

andZ such that Π is KSND(RG,Z).

GameKSND
RG,Z,A,E

→ b

(R, auxR) ← RG(1λ) ; crs := (ek, vk) ← KeyGen(R)

auxZ ← Z(R, auxR, crs) ;
(
x, π

)
← A(R, crs, auxR, auxZ)

w ← E(R, crs, auxR, auxZ) ; b = VerProof(vk, x, π) ∧ ¬R(x, w)

Composable Zero-Knowledge. A schemeΠ satisfies composable

zero-knowledge for a relation generator RG if for every adversary

A there exists a simulator S = (Skg,Sprv) such that both following

conditions hold for all adversaries A:

Keys Indistinguishability

Pr


(R, auxR) ← RG(1

λ);

crs← KeyGen(R)

A(crs, auxR) = 1

:

 ≈ Pr


(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R)

A(crs, auxR) = 1

:


Proof Indistinguishability For all (x ,w) such that R(x ,w) = 1,

Pr


(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R);

π ← Prove(ek,x ,w)

A(crs, auxR ,π) = 1

:


≈ Pr


(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R);

π ← Sprv(crs, tdk,x)

A(crs, auxR ,π) = 1

:


Remark 2. In the notion of knowledge soundness defined above we

consider two kinds of auxiliary inputs, auxR generated together with
the relation byRG, and auxZ that is generated from some distribution
Z that may depend on the common reference string that in turns
depends on R. An example of this appears in our proof of Theorem
C.1. Notice that although our notion is implied by a notion where
auxiliary inputs can be arbitrary, our aim is a precise formalization of
auxiliary inputs; this is useful to justify why certain auxiliary inputs
should be considered benign, as required to avoid known impossibility
results [16, 21]. Finally, we also note that our notion is also implied
by SNARKs that admit black-box extractors (as may be the case for
those relying on random oracles [55]).

A.3 zkSNARKs with Universal CRS
In the SNARK notion presented in the previous section the common

reference string generated by KeyGen is tied to a specific relation

R ∈ Rλ . Now we define a variant of this notion introduced in [42]

where the CRS only depends on the family Rλ , working for any R
in that family. More formally, let Rλ be a family of relations. The

universal relation R∗ forRλ defines a language with instances (R,x)
such that R∗(R,x ,w) holds iff R ∈ Rλ and R(x ,w) holds.

A Π = (KeyGen,Prove,VerProof) is said a zkSNARK with spe-
cializable universal common reference string [42] if there exist algo-
rithms Derive,Prove∗,VerProof∗ such that:

• Derive(crs,R) → crsR is a deterministic algorithm that takes as

input a crs := (ek, vk) produced by KeyGen(R∗) and a relation

R ∈ Rλ , and outputs a specialized common reference string

crsR := (ekR , vkR).
• Prove(ek, (R,x),w) → π runs (ekR , vkR) ← Derive(crs,R) and

returns π ← Prove∗(ekR ,x ,w).
• VerProof(vk, (R,x),π) → b runs (ekR , vkR) ← Derive(crs,R)

and returns b ← VerProof∗(vkR ,x ,π).

A.4 Properties of cc-SNARKs
This section gives formal definitions of the properties of a commit-

carrying SNARK. Recall a cc-SNARK is a tuple ccΠ of algorithms

working as follows:

• KeyGen(R) → (ck, ek, vk): the key generation takes as input

the security parameter λ and a relation R ∈ Rλ , and outputs a

common reference string that includes a commitment key, an

evaluaton key and verification key.

• Prove(ek,x ,w) → (c,π ;o): the proving algorithm takes as input

an evaluation key, a statement x and a witnessw := (u,ω) such
that the relation R(x ,u,ω) holds, and it outputs a proof π , a
commitment c and opening o such that VerCommit(ck,c,u,o) = 1.

• VerProof(vk,x , c,π) → b: the verification algorithm takes a ver-

ification key, a statement x , a commitment c , and either accepts

(b = 1) or rejects (b = 0) the proof π .

• VerCommit(ck, c,u,o) → b: the commitment verification algo-

rithm takes as input a commitment key, a commitment c , a mes-

sage u and an opening o and accepts (b = 1) or rejects (b = 0).

Completeness. For any λ ∈ N,R ∈ Rλ and (x ,w) such thatR(x ,w),
it holds

Pr

[
(ck, ek, vk) ← KeyGen(R);

(c,π ;o) ← Prove(ek,x ,w)
: VerProof(vk,x , c,π)

]
= 1

Succinctness. ccΠ is said succinct if the running time of VerProof
is poly(λ) (λ + |x | + log |w |) and the size of the proof is poly(λ) ·
(λ + log |w |).

Knowledge Soundness. Let RG be a relation generator such that

RGλ ⊆ Rλ . ccΠ satisfies knowledge soundness for RG and aux-

iliary input distributionZ, or ccKSND(RG,Z), if for every (non-

uniform) efficient adversaryA there exists a (non-uniform) efficient

extractor E such that Pr[GameccKSND
RG,Z,A,E

= 1] = negl. We say that

ccΠ is knowledge sound if there exist benign RG andZ such that

ccΠ is ccKSND(RG,Z).

GameccKSND
RG,Z,A,E

→ b ∈ {0, 1}

(R, auxR) ← RG(1λ) ; crs := (ck, ek, vk) ← KeyGen(R)

auxZ ← Z(R, auxR, crs) ;
(
x, c, π

)
← A(R, crs, auxR, auxZ)(

u, o, ω
)
← E(R, crs, auxR, auxZ)

b ← VerProof(vk, x, c, π) ∧ ¬(VerCommit(ck, c, u, o) ∧ R(x, u, ω))

15

Composable Zero-Knowledge. A scheme ccΠ has composable

zero-knowledge for a relation generator RG if for every adversary

A there exists a simulator S = (Skg,Sprv) such that both following

conditions hold for all adversaries A:

Keys Indistinguishability.

Pr

[
(R, auxR) ← RG(1

λ);

crs← KeyGen(R)
: A(crs, auxR) = 1

]
≈ Pr

[
(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R)
: A(crs, auxR) = 1

]
Proof Indistinguishability. For all (x ,w),

Pr


(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R);

(c,π ;o) ← Prove(ek,x ,w)

:

A(crs, auxR , c,π) = 1 ∧

R(x ,w) = 1


≈ Pr


(R, auxR) ← RG(1

λ);

(crs, tdk) ← Skg(R);

(c,π) ← Sprv(crs, tdk,x)

:

A(crs, auxR , c,π) = 1 ∧

R(x ,w) = 1


Binding. For every polynomial-time adversary A the following

probability is negl(λ):

Pr


(R, auxR) ← RG(1

λ)

crs := (ck, ek, vk) ← KeyGen(R)

(c,u,o,u ′,o′) ← A(R, crs, auxR)

:

VerCommit(ck, c,u ′,o′)

∧VerCommit(ck, c,u,o)

∧u , u ′


Remark 3. While our definitions consider the case where the proof

contains a commitment to a portionu of the witnessw = (u,ω), notice
that this partition of the witness is arbitrary and thus this notion also
captures those constructions where the commitment is to the entire
witness if one thinks of a void ω.

cc-SNARKs with Weak Binding Let us now define a weaker

variant of cc-SNARKs that differs from the one given in Definition

3.3 in that the underlying commitment scheme is not binding in the

usual sense. Slightly more in detail we consider the case where the

commitment refers to the whole witness (i.e., ω is an empty string)

and it is actually possible to find collisions for a given commitment

as long as these collisions are among valid witnesses, or more

precisely we require to be computationally infeasible to find two

different witnesses that validly open the commitment such that one

falsifies the relation and the other one satisfies it.

Definition A.1 (cc-SNARKs with Weak Binding). We define cc-

SNARKs with Weak Binding as in Definition 3.3 with two excep-

tions: we assume that the scheme is defined only for relations such

that Dω = ∅; we replace the binding property with the one below.

Weak Binding. For every polynomial-time adversary A the fol-

lowing probability is negl(λ)

Pr


(R, auxR) ← RG(1

λ)

crs := (ck, ek, vk) ← KG(R)

(x , c,u,o,u ′,o′,π)

← A(R, crs, auxR)

:

VerCommit(ck, c,u,o)

∧ VerCommit(ck, c,u ′,o′)

∧ VerProof(vk,x , c,π)

∧ u , u ′ ∧ ¬R(x ,u) ∧ R(x ,u ′)



B SECURITY PROOF OF CP-SNARK
COMPOSITION

In this section we provide a proof of Theorem 3.2 for CP∧ whose
construction is the following:

CP∧.KeyGen(ck,R∧R0,R1

) → (ek∗, vk∗)

{(ekb, vkb) ← CPb .KeyGen(ck, Rb)}b∈{0,1}
ek∗ := (ekb)b∈{0,1} ; vk∗ := (vkb)b∈{0,1}
CP∧.Prove(ek∗,x0,x1, (c j)j ∈[:3], (uj)j ∈[:3], (oj)j ∈[:3],ω0,ω1) :

{πb ← CPb .Prove(ekb, xb, (cb, c2), (ub, u2), (ob, o2), ωb)}b∈{0,1}
return π ∗ := (πb)b∈{0,1}
CP∧.VerProof(vk∗,x0,x1, (c j)j ∈[:3],π

∗) → b0 ∧ b1
{bb ← CPb .VerProof(vkb, xb, (cb, c2), πb)}b∈{0,1}

Figure 4: CP-SNARK construction for AND composition

We first define relation generators and auxiliary input generators

for this construction.

AuxRG(1λ) :

(R0, aux(0)R) ← RG0
(1λ)

(R1, aux(1)R) ← RG1
(1λ)

return (Rb, aux(b)R)b∈{0,1}

AuxZ(ck, (crsb ,Rb , aux(b)R)b ∈{0,1}) :

aux(0)Z ← Z0(ck, R0, crs0, aux(0)R)

aux(1)Z ← Z1(ck, R1, crs1, aux(1)R)

return (aux(b)Z)b∈{0,1}
RG∗(1λ) :

(Rb, aux(b)R)b∈{0,1}

← AuxRG(1λ)

return (R∧R0,R1

,

(aux(b)R)b∈{0,1})

Z∗((ck,R∧R0,R1

), (ek∗, vk∗), (auxR , aux′R)) :

(aux(b)Z)b∈{0,1}

← AuxZ(ck, (crsb, Rb, aux(b)R)b∈{0,1})

return (aux(b)Z)b∈{0,1}

RGb (1
λ) :

(Rb, aux(b)R)b∈{0,1}

← AuxRG(1λ)

return (Rb, aux(b)R

:= (R
1−b, (aux(b)R)b∈{0,1}))

Zb (ck,Rb , crsb , aux(b)R) :

Parse auxR as (R
1−b, (aux(b)R)b∈{0,1})

crs
1−b ← CP

1−b .KeyGen(ck, R
1−b)

(aux(b)Z)b∈{0,1} ← AuxZ(ck, . . .

. . . , (crsb, Rb, aux(b)R)b∈{0,1})

aux(b)Z := (crs
1−b, (aux(b)Z)b∈{0,1})

return aux(b)Z

Figure 5: Relation and Auxiliary Input Generators for AND
Composition Construction

B.1 Proof of Knowledge Soundness
We state the following lemma.

Lemma B.1. If Com is computationally binding, and if CPb is
KSND(RGb ,Zb) (where RGb ,Zb are defined in terms of RGb ,Zb
in Figure 5) for b ∈ {0, 1}, then the scheme CP∧ in Figure ?? is
KSND(RG∗,Z∗) where RG∗,Z∗ are as defined in Figure 5.

Proof Let A∗ be an adversary against the soundness of CP∧

with respect to RG∗ andZ∗. Now for b ∈ {0, 1} consider adversary

16

Ab (defined in Figure 6) against CPb with respect to RGb andZb .

By the fact that CPb is KSND(RGb ,Zb) there exists an extractor

Eb such that Pr[GameKSND
RGb ,Zb ,Ab ,Eb

= 1] is negligible.

We define an extractor E∗ for CP∧ in Figure 6, and we claim is

such that Pr[GameKSND
RG∗,Z∗,A∗,E∗

= 1]. First observe that with

overwhelming probability the values u2 and u ′
2
in E∗ are equal,

conditioned to the openings being all correct for their respective

commitments (i.e., conditioned to VerCommit returning 1 on each

of them). In fact, if it were otherwise, we could then break the

binding of Com (as done in the proof of Theorem C.1).

We now define the following notations:

{GdCom(cb ,ub ,ob) :=Com.VerCommit(ck, cb ,ub ,ob) = 1}b ∈{0,1}

GdCom(c2,u2,o2) := Com.VerCommit(ck, c2,u2,o2) = 1

GdCom(c2,u ′2,o
′
2
) := Com.VerCommit(ck, c2,u ′2,o

′
2
) = 1

Forb ∈ {0, 1}, by the soundness properties ofCPb and the definition
of Eb , E

∗
we have that pb , as defined below, is negligible.

pb := Pr[b
(b)
ok ∧ (¬GdCom(cb ,ub ,ob)∨

¬GdCom(c2,u2,o2) ∨ Rb (xb ,ub ,u2,ωb) = 0)]

where all the symbols above are as defined in the construction of

E∗. Now we can observe that Pr[GameKSND
RG∗,Z∗,A∗,E∗

= 1] = . . .

= Pr[b
(0)

ok ∧ b
(1)

ok ∧ (¬GdCom(c0,u0,o0)

∨ ¬GdCom(c1,u1,o1) ∨ ¬GdCom(c2,u2,o2)

∨ R0(x0,u0,u2;ω0) = 0 ∨ R1(x1,u1,u2;ω1) = 0)]

≤ Pr[b
(0)

ok ∧ (¬GdCom(c0,u0,o0)

∨ ¬GdCom(c2,u2,o2) ∨ R0(u0,u2,ω0) = 0)] +

Pr[b
(1)

ok ∧ (¬GdCom(c1,u1,o1)

∨ ¬GdCom(c2,u ′2,o
′
2
) ∨ R1(u1,u

′
2
,ω1) = 0)] + negl(λ)

≤ p0 + p1 + negl(λ) ≤ negl(λ)

where in the last two inequalities we used our earlier observa-

tions on the openings of u2 and u
′
2
and p0 and p1 being negligible

respectively. □

Ab (ck, (crsb ,Rb), aux(b)R , aux(b)Z) :

Parse aux(b)R as (R
1−b, (aux(b)R)b∈{0,1})

Parse aux(b)Z as (crs
1−b, (aux(b)Z)b∈{0,1})

(x0, x1, (c j)j∈[:3], π
∗
:= (πb)b∈{0,1})

← A∗(ck, (crs0, crs1, R∧R0,R1

), (aux(b)R)b∈{0,1}, (aux(b)Z)b∈{0,1})

return (xb, cb, c2, πb)

E∗(ck, ((crsb)b ∈{0,1},R
∧
R0,R1

), aux(b)R , aux(b)Z) :

aux(b)R := (R
1−b, (aux(b)R)b∈{0,1}) for b ∈ {0, 1}

aux(b)Z := (crs
1−b, (aux(b)Z)b∈{0,1}) for b ∈ {0, 1}(

(x0, u0, u2), (o0, o2), ω0

)
← E0(ck, (crs0, R0), aux(0)R , aux(0)Z)(

(x1, u1, u′2), (o1, o
′
2
), ω1

)
← E1(ck, (crs1, R1), aux(1)R , aux(1)Z)

return
(
(xb)b∈{0,1}, (uj)j∈[:3], (oj)j∈[:3], (ωb)b∈{0,1}

)
Figure 6: Adversary and Extractor for Proof of Lemma B.1

B.2 Proof of Zero-Knowledge
We state the following lemma.

Lemma B.2. If CPb is zero-knowledge for Com and RGb for b ∈
{0, 1}, then the scheme CP∧ in Figure ?? is a zero-knowledge CP-
SNARK for Com and RG∗ (where relation generators are defined in
Figure 5).

Proof We construct the following two simulators for RG∗ from

simulators for CP0,CP1. Then ZK follows through a standard hy-

brid argument.

S∗kg(ck,R∧R0,R1

)

for b ∈ {0, 1} :

(crsb, td(b)k) ← S
(b)
kg (ck, Rb)

crs∗ := (crsb)b∈{0,1}

td∗k := (td(b)k)b∈{0,1}

return (crs∗, td∗k)

S∗prv((crsb)b ∈{0,1}, (td
(b)
k)b ∈{0,1},

(xb)b ∈{0,1}, (c j)j ∈[:3])

for b ∈ {0, 1} :

πb ← S
(b)
prv (crsb, td(b)k , xb, . . .

. . . , (cb, c2))

return (πb)b∈{0,1}

□

C PROOFS FOR THE GENERAL COMPILER
Theorem C.1. Let CP.RG be a relation generator such that CP.

.RGλ ⊆ Rλ , and let CP.Z be an auxiliary input distribution. Then
the scheme CP in Figure 1 is KSND(CP.RG,CP.Z) and composable
zero-knowledge for CP.RG whenever: (i) ccΠ is ccKSND(ccΠ.RG,
ccΠ.Z) and composable zero-knwledge for ccΠ.RG, (ii) CPlink is
KSND(CPlink.RG,CPlink.Z) and composable zero-knowledge for
CPlink.RG, where the relation generators and auxiliary input distri-
butions ccΠ.RG, ccΠ.Z,CPlink.RG,CPlink.Z are the ones in Figure
7. This result also holds when ccΠ is a cc-SNARK with weak binding
(Definition A.1).

CPlink.RG(1
λ) :

(R, auxR) ← CP.RG(1λ)

crs′ ← ccΠ.KeyGen(R)

Parse crs′ as (ck′, ek′, vk′)

R◦ := (ck′, D◦x , D
◦
u, D

◦
ω)

aux◦R :=
(
ek′, vk′, R, auxR

)
return (R◦, aux◦R)

CPlink.Z((ck,R◦), aux◦R , crs◦) :

Parse aux◦R as

(
ek′, vk′, R, auxR

)
Get ck′ from R◦

Parse crs◦ as (ek◦, vk◦)

ek := (ck′, ek′, ek◦); vk := (vk′, vk◦)

auxZ←CP.Z((ck, R), auxR, (ek, vk))

return aux◦Z := auxZ

ccΠ.RG(1λ) :

ck← CP.Setup(1λ)

(R, auxR) ← CP.RG(1λ)

aux′R := (ck, auxR)

return (R, aux′R)

ccΠ.Z(R, aux′R , crs′) :

Parse crs′ as (ck′, ek′, vk′)

Parse aux′R as (ck, auxR)

Build R◦ from (ck′, D◦x , D
◦
u, D

◦
ω)

(ek◦, vk◦) ← CPlink .KeyGen(ck, R◦)

ek := (ck′, ek′, ek◦); vk := (vk′, vk◦)

auxZ ← CP.Z((ck, R), auxR, (ek, vk))

return aux′Z := (ek◦, vk◦, auxZ)

Figure 7: Relation and Auxiliary Input Generators for Theo-
rem C.1

17

C.1 Proof of Knowledge Soundness
Proof First, recall that proving the knowledge soundness of a CP-

SNARK scheme CP for relation generator CP.RG means proving

the knowledge soundness of CP as a SNARK for the corresponding

relation generator CP.RGCom that, we recall, honestly generates

the commitment key ck← Setup(1λ) and generates (R, auxR) using
CP.RG and outputs ((ck,R), auxR).

Our proof proceeds in the following steps.

First, assume there exists an adversary CP.A against scheme CP
that runs in the experiment GameKSND

CP.RGCom,CP.Z and outputs a

tuple (x , (c j)j ∈[ℓ],π) such that CP.VerProof(vk,x , (c j)j ∈[ℓ],π) = 1.

Then, from such CP.A we can build:

(1) an adversary ccΠ.A against ccΠ that runs in the experiment

GameccKSND
ccΠ.RG,ccΠ.Z

(with the relation and auxiliary input gener-

ators ccΠ.RG, ccΠ.Z defined in Fig. 7), and outputs (x , c ′,π ′);

(2) an adversaryCPlink.A againstCPlink that runs in the experiment

GameKSND
CPlink .RGCom,CPlink .Z

(with the relation and auxiliary input

generators CPlink.RGCom,CPlink.Z defined in Fig. 7), and that

outputs (c ′, (c j)j ∈[ℓ],π
◦);

The two adversaries ccΠ.A,CPlink.A are defined below. By look-

ing at the way their inputs are sampled in their respective games

GameccKSND
ccΠ.RG,ccΠ.Z

and GameKSND
CPlink .RGCom,CPlink .Z

, and how the

relation and auxiliary input generators are defined, the input re-

ceived by CP.A in both simulations (the one by ccΠ.A and the one

by CPlink.A) is distributed identically as the input CP.A would

receive in GameKSND
CP.RGCom,CP.Z .

ccΠ.A(R, crs′, aux′R , aux′Z) :

Parse aux′R as (ck, auxR)

Parse aux′Z as (ek◦,vk◦, auxZ)

Parse crs′ as (ck′, ek′, vk′)

ek := (ck′, ek′, ek◦)

vk := (vk′, vk◦)(
x,(c j)j∈[ℓ],π

)
←CP.A(. . .

(ck, R),(ek, vk),auxR,auxZ)

Parse π as

(
c′, π ◦, π ′

)
return (x, c′, π ′)

CPlink.A((ck,R◦),crs◦,aux◦R ,aux◦Z) :

Parse aux◦R as

(
ek′, vk′, R, auxR

)
Parse crs◦ as (ek◦, vk◦)

Parse aux◦Z as auxZ

Parse R◦ as (ck′, D◦x , D
◦
u, D

◦
ω)

ek := (ck′, ek′, ek◦) ; vk := (vk′, vk◦)(
x, (c j)j∈[ℓ], π

)
← CP.A(. . .

(ck, R), (ek, vk), auxR, auxZ)

Parse π as

(
c′, π ◦, π ′

)
return

(
c′, (c j)j∈[ℓ], π

◦
)

Second, observe that:

• If ccΠ is ccKSND(ccΠ.RG, ccΠ.Z) then for every ccΠ.A there

exists an extractor ccΠ.E that returns ((u ′j)j ∈[ℓ],o
′,w ′) such that

Pr[GameccKSND
ccΠ.RG,ccΠ.Z,ccΠ.A,ccΠ.E

= 1] is negligible.

• If CPlink is KSND(CPlink.RGCom,CPlink.Z) then for every

CPlink.A there exists extractor CPlink.E that returns

(
(u◦j)j ∈[ℓ],

(o◦j)j ∈[ℓ],ω
◦
)
such that the following probability is negligible

Pr[GameKSND
CPlink .RGCom,CPlink .Z,CPlink .A,CPlink .E

= 1].

Hence, let ccΠ.E and CPlink.E be the extractors corresponding to

our adversaries ccΠ.A and CPlink.A respectively. From the ex-

istence of the two extractors ccΠ.E and CPlink.E we construct

extractor CP.E as below.

CP.E((ck,R), (ek, vk), auxR , auxZ) :

Parse ek as (ck′, ek′, ek◦), vk as (vk′, vk◦)

crs′ := (ck′, ek′ vk′); aux′R := (ck, auxR); aux′Z := (ek◦, vk◦, auxZ)(
(u′j)j∈[ℓ], o

′, ω′
)
← ccΠ.E(R, crs′, aux′R, aux′Z)

R◦ := (ck′, D◦x , D
◦
u, D

◦
ω); aux◦R :=

(
ek′, vk′, R∗, auxR

)
; aux◦Z :=auxZ(

(u◦j)j∈[ℓ], (o
◦
j)j∈[ℓ], ω

◦
)
← CPlink .E((ck, R◦), crs◦, aux◦R, aux◦Z)

return
(
(u◦j)j∈[ℓ], (o

◦
j)j∈[ℓ], ω

′
)

Combining the steps above, we have shown that for any CP ad-

versary CP.A there exists a corresponding extractor CP.E. We are

left to prove that Pr[GameKSND
CP.RGCom,CP.Z,CP.A,CP.E = 1] = negl.

Recall that the output of CP.A is of the form

(
x , (c j)j ∈[ℓ],π

)
with

π = (c ′,π◦,π ′), and forCP.E is of the form
(
(u◦j)j ∈[ℓ], (o

◦
j)j ∈[ℓ],w

′
)
.

For convenience we use the following shorter notations about

“good proofs” and “good commitments”:

GdPf(π ′) := ccΠ.VerProof(vk′,x , c ′,π ′) = 1

GdPf(π◦) := CPlink.VerProof(vk◦, c ′, (c j)j ∈[ℓ],π
◦) = 1

GdCom(c j ,u◦j) := VerCommit(ck, c j ,u◦j ,o
◦
j) = 1

GdCom′(c ′,u◦) := ccΠ.VerCommit(ck′, c ′, (u◦j)j ∈[ℓ],ω
◦) = 1

GdCom′(c ′,u ′) := ccΠ.VerCommit(ck′, c ′, (u ′j)j ∈[ℓ],o
′) = 1

R◦(x◦,u◦,ω◦) := ccΠ.VerCommit(ck′,x◦, (u◦j)j ∈[ℓ],ω
◦)

Let us define the following events:

bad :=
(∨
j ∈[ℓ]

¬GdCom(c j ,u◦j) ∨ ¬R(x ,u
◦,ω ′)

)
bad′ :=

(
¬GdCom′(c ′,u ′) ∨ ¬R(x ,u ′,ω ′)

)
;

bad◦ :=
(∨
j ∈[ℓ]

¬GdCom(c j ,u◦j)∨¬GdCom(c ′,x◦)∨¬R◦(x◦,u◦,ω◦)
)

By the knowledge soundness of CPlink and ccΠ we have that

Pr[GdPf(π◦)∧bad◦] = negl(λ) and Pr[GdPf(π ′)∧bad′] = negl(λ),
and we abbreviate nλ := negl(λ) for convenience. Let us now first

consider the case when cc-SNARK is binding and observe that:

Pr[GameKSND
CP.RGCom,CP.Z,CP.A,CP.E = 1]

= Pr[GdPf(π ′) ∧ GdPf(π ◦) ∧ bad] (1)

≤ Pr[GdPf(π ◦)∧bad◦]+Pr[GdPf(π ′)∧bad∧R◦(c ′,u◦,ω◦)
∧
j∈[ℓ]

GdCom(c j ,u◦j)] (2)

≤ Pr[GdPf(π ′)∧¬R(x, u◦, ω′) ∧ R◦(c ′, u◦, ω◦)] + nλ (3)

≤ Pr[GdPf(π ′)∧¬R(x, u◦, ω′) ∧ R◦(c ′,u◦,ω◦)∧(¬R◦(c ′,u′,o′)∨u′=u◦)] + (4)

Pr[R◦(c ′, u◦, ω◦)∧R◦(c ′, u′, o′) ∧ u′ , u◦] + nλ
≤ Pr[GdPf(π ′)∧¬R(x, u◦, ω′)∧R◦(c ′,u◦,ω◦)∧(¬R◦(c ′,u′,o′)∨u′=u◦)]+nλ (5)

≤ Pr[GdPf(π ′) ∧
(
(¬R(x, u′, ω′) ∧ R◦(c ′, u′, ω◦)) ∨

(¬R◦(c ′, u′, o′) ∧ ¬R(x, u◦, ω′) ∧ R◦(c ′, u◦, ω◦))
)
] + nλ (6)

≤ Pr[GdPf(π ′) ∧
(
¬R(x, u′, ω′) ∨ ¬R◦(c ′, u′, o′)

)
] + nλ (7)

≤ negl(λ) (8)

Above, (1) follows by spelling out the winning condition of the

experiment considering our construction of CP.VerCommit; (2)
follows first partitioning over bad◦ and then by observing that

¬bad◦ :=R◦(c ′,u◦,ω◦)
∧
j ∈[ℓ] GdCom(c j ,u◦j); (3) follows by knowl-

edge soundness of CPlink; (4) follows after partitioning on the event

18

Skg(ck,R)

(crs′, td′k) ← S
′
kg(R)

Parse crs′ as (ck′, ek′, vk′)

(crs◦, td◦k) ← S
◦
kg((ck′, D◦u, D

◦
w))

crs := (crs◦, crs′); tdk := (td◦k, td′k)

return (crs, tdk)

Sprv(crs, tdk,x , (c j)j ∈[ℓ])

Parse crs as (crs◦, crs′)

Parse tdk as (td◦k, td′k)

Parse crs′ as (ck′, ek′, vk′)

(c′, π ′) ← S′prv(crs′, td′k, x)

π ◦ ← S◦prv(crs◦, td◦k, c
′, (c j)j∈[ℓ])

π :=
(
c′, π ◦, π ′

)
return π

Figure 8: Zero-knowledge simulators for our generic CP.

R◦(c ′,u ′,o′)∧u ′ ,u◦; (5) is by the binding property of the commit-

ment of ccΠ;
18

(7) holds by using that Pr[((E1∧E
′
1
)∨(E2∧E

′
2
))] ≤

Pr(E1 ∨ E2)]; finally, (8) follows by knowledge soundness of ccΠ.

The case of weak binding. Let us now consider the case in which

ccΠ has onlyweak binding. In this case the commitment returned by

ccΠ.Prove refers to the whole witnessw = u, which in the previous

proof means that the value ω ′ returned by ccΠ.E is empty.

To show that with this change the adversary and extractor still

have negligible probability of making the knowledge soundness

experiment output 1, we closely follow the analysis we already

carried out by equations 1 through 8 above. We slightly deviate

after (3) and obtain

Pr[GameKSND
CP.RGCom,CP.Z,CP.A,CP.E = 1]

...

≤ Pr[GdPf(π ′) ∧ ¬R(x ,u◦) ∧ R◦(c ′,u◦,ω◦)] + negl(λ) (3)

≤ Pr[GdPf(π ′)∧¬R(x ,u◦)∧R◦(c ′,u◦,ω◦)∧(¬R◦(c ′,u ′,o′)∨u ′=u◦)] +

Pr[GdPf(π ′)∧¬R(x ,u◦)∧R◦(c ′,u◦,ω◦)∧R◦(c ′,u ′,o′)∧u ′,u◦] + nλ

For the case u ′ = u◦ we proceed exactly as before. For the case

u ′,u◦, defining comsOpen :=R◦(c ′,u◦,ω◦) ∧ R◦(c ′,u ′,o′), we have

Pr[GdPf(π ′)∧¬R(x ,u◦)∧comsOpen∧ u ′ , u◦]

≤ Pr[GdPf(π ′)∧¬R(x ,u◦)∧comsOpen ∧ u ′ , u◦∧R(u ′,w ′)] + nλ
≤ negl(λ)

where the two inequalities follow respectively from the knowledge

soundness and weak binding of ccΠ. □

C.2 Proof of Zero-Knowledge
Proof Let A be an adversary. Since the scheme CPlink is zero-

knowledge there exists a simulator S◦ = (S◦kg,S
◦
prv) such that

keys and proof indistinguishability hold for A as in Definition A.2.

Similarly, since the scheme ccΠ is zero-knowledge
19

there exists

a simulator S′ = (S′kg,S
′
prv) such that keys and proof indistin-

guishability hold for A as in Definition A.4. In Figure 8 we show

simulators S = (Skg,Sprv) for the CP scheme of Figure 1, and be-

low we argue that keys and proof indistinguishability hold for such

simulators.

18
We can do this through an adversary that would first run A and E and then return

(c ′, (u◦, ω◦), (u′, o′)).
19
We notice that for this proof we only need the zero-knowledge of ccΠ, and it does

not matter if ccΠ has binding or weak binding.

HSkg(ck,R)

crs′ ← ccΠ.KeyGen(R)

Parse crs′ as (ck′, ek′, vk′)

(crs◦, td◦k) ←

S◦kg(ck′, D◦x , D
◦
u, D

◦
ω)

crs := (crs◦, crs′); tdk := td◦k
return (crs, tdk)

HSprv(crs, tdk, x,w)
Parse x as (x, (c j)j∈[ℓ])

Parse crs as (crs◦, crs′)

Parse w as ((uj)j∈[ℓ], (oj)j∈[ℓ], ω)

Parse crs′ as (ck′, ek′, vk′)

Parse tdk as (td◦k, td′k)(
c′, π ′, o′

)
←

ccΠ.Prove(ek′, x, (uj)j∈[ℓ], ω)

π ◦ ← S◦prv(crs◦, td◦k, c
′, (c j)j∈[ℓ])

return
(
c′, π ◦, π ′

)
Figure 9: Hybrids for proof of ZK of Theorem C.1 (differ-
ences with original simulators in blue).

Proof indistinguishability: fixed arbitrary A, x , (c j)j ∈[ℓ],
(oj)j ∈[ℓ], (uj)j ∈[ℓ],ω, we define three hybrids (Figure ??): H0,H1

andHsim, and claim thatH0 ≈ H1 ≈ Hsim, which, by definition of

the hybrids, implies proof indistinguishability. We skip the proof

of the claim as it follows from a standard hybrid argument.

Below we use the same notation as in Definition 3.1: define

x := (x , (c j)j ∈[ℓ]),w := ((uj)j ∈[ℓ], (oj)j ∈[ℓ],ω); the relation R
over pairs (x,w) both tests commitment openings and the

underlying relation R. H0 is defined as the probability that

an adversary outputs 1 when a proof is computed through

CP.Prove. This is the same as in Definition A.2 for the case in

which A takes in input an actual proof:

H0 := Pr


(R, auxR) ← RGCom(1

λ);

(crs, tdk) ← Skg(R);
π ← CP.Prove(crs, x,w)

:

R(x,w) = 1 ∧

A(crs, auxR ,π) = 1


InH1 we replace the sub-proof π

◦
for CPlink with its respec-

tive simulated version (see Figure 9 for a definition ofHSprv):

H1 := Pr


(R, auxR) ← RGCom(1

λ);

(crs, tdk) ← Skg(R);
π ←HSprv(crs, tdk, x,w)

:

R(x,w) = 1 ∧

A(crs, auxR ,π) = 1


We defineHsim as the simulated proof output as in the stan-

dard zero-knowledge experiment (Definition A.2). We point

out that the only change from Hℓ consists in replacing the

actual proof for ccΠ with its simulated version:

Hsim := Pr


(R, auxR) ← RGCom(1

λ);

(crs, tdk) ← Skg(R);
π ← Sprv(crs, tdk, x)

:

R(x,w) = 1 ∧

A(crs, auxR ,π) = 1


Figure 10: Hybrids for proof indistinguishability of CP.

Keys indistinguishability: we proceed by a standard hybrid ar-

gument. Consider the hybrid simulatorHSkg in Figure 9. By con-

struction of HSkg and the keys indistinguishability for S′kg,S
◦
kg

we have that:

19

Pr

[
(ck,R, auxR) ← RGCom(1

λ);

crs← CP.KeyGen(ck,R) = 1

: A(ck, crs, auxR) = 1

]
≈ Pr

[
(ck,R, auxR) ← RGCom(1

λ);

(crs, tdk) ← HSkg(ck,R)
: A(ck, crs, auxR) = 1

]
≈ Pr

[
(ck,R, auxR) ← RGCom(1

λ);

(crs, tdk) ← Skg(ck,R)
: A(ck, crs, auxR) = 1

]
□

D SUPPLEMENTARY RESULTS ON CPLINK

This section contains the security proof and an extension of the

CPlink scheme.

D.1 Proof of CPlink Security
In the following theorem we show that CPlink is knowledge-sound

and zero-knowledge assuming so is ssΠ.

Theorem D.1. Let CPlink.RG be a relation generator and
CPlink.Z be an auxiliary input distribution. If ssΠ is KSND(ssΠ.RG,
ssΠ.Z) where ssΠ.RG is a relation generator as in Figure 11 and
ssΠ.Z = CPlink.Z,then the CP-SNARK construction CPlink given
above is KSND(CPlink.RG,CPlink.Z). Furthermore, if ssΠ is com-
posable ZK for ssΠ.RG, then CPlink is composable ZK for CPlink.RG.

ssΠ.RG(1λ) → ([M]1, aux◦R)

[®h]1 ← Ped.Setup(1λ) using distribution D

(R◦, aux◦R) ← CPlink .RG(1
λ) ; Define [M]1 from [®h]1, R◦

Figure 11: Relation generator on which we base ssΠ security.

Knowledge Soundness.Consider an arbitrary adversaryA against

CPlink. From A we can construct an adversary A ′ against ssΠ as

follows.

A ′([M]1, crs, auxR , auxZ) :

Extract [®f]1, [®h]1 from [M]1
([®x]1, π) ←

A(([®h]1, R◦), crs, auxR, auxZ)

Parse [®x]1 as ((c j)j∈[ℓ], c
′)

return (c′, (c j)j∈[ℓ], π)

E(([®h]1,R
◦), crs, auxR , auxZ) :

Compute matrix [M]1
®w ←

ssΠ.E([M]1, crs, auxR, auxZ)

Parse ®w as ((oj)j∈[ℓ], o
′, (®uj)j∈[ℓ])

return ((®uj)j∈[ℓ], (oj)j∈[ℓ], o′)

By knowledge soundness of ssΠ, for every such A ′ there is an

extractor ssΠ.E, that we can use to build the above extractor E for

A. In particular, the knowledge soundness of ssΠ and the definition

of M give us that E’s output is such that:

Pr


ssΠ.VerProof(vk, (c j)j ∈[ℓ], c

′) = 1 ∧(∨
j ∈[ℓ]

(
c j , (oj , ®u

⊤
j) · [

®h[0,nj]]1
)
∨

c ′ , (o′, ®u⊤
1
, . . . , ®u⊤ℓ) · [

®f]1
)


≤ negl(λ)

Hence we can conclude that Pr[GameKSND
CPlink .RG,CPlink .Z,A,E

= 1]

= Pr[GdPf ∧ (BadComm ∨ BadRel)] ≤ negl(λ) using: GdPf :=

CPlink.VerProof(vk, c ′, (c j)j ∈[ℓ],π) = 1, BadComm :=
∨
j ∈[ℓ] c j ,

(oj , ®u
⊤
j) · [

®h[0,nj]]1, BadRel := c ′ , (o′, ®u⊤
1
, . . . , ®u⊤

ℓ
) · [®f]1.

Zero-Knowledge. From the zero-knowledge property of ssΠ we

know there exists a simulator ssΠ.S = (ssΠ.Skg, ssΠ.Sprv) such

that keys and proof indistinguishability hold for an arbitrary A

as in Definition A.2. We now define the following key simula-

tor CPlink.Skg such that CPlink.Skg([®h]1,R
◦) := ssΠ.Skg([M]1).

Keys indistinguishability follows directly from the assumption on

ssΠ.Skg. Analogously, we obtain proof indistinguishability by de-

fining a proof simulator CPlink.Sprv such that CPlink.Sprv(crs, tdk,

c ′, (c j)j ∈[ℓ]) := ssΠ.Sprv(crs, tdk, [®x]1), with [®x]1 = ((c j)j ∈[ℓ], c
′).

D.2 An extension of CPlink for Prefixes of a
Committed Vector

Fixed a security parameter λ (and the bilinear group setting for

λ as well), R◦pre is a relation over (Dx × D1 × · · · × Dℓ × Dω),

where Dx = G1, Dω = Z
nω+1
q and Dj = Z

nj
q for some nj such

that nω +
∑
j nj = m. R◦pre is parametrized by a commitment key

[®f]1 ∈ G
m+1
1

, and is defined as:

R◦pre
(
c ′, (®uj)j ∈[ℓ], (®uℓ+1,o

′)
)
=1 ⇐⇒ c ′

?

= (o′, ®u⊤
1
, . . . , ®u⊤ℓ+1) · [

®f]1

Similarly to the case of R◦, this relation can be expressed as a

linear subspace relation, RM([®x]1, ®w), where M, ®x , ®w are as follows:

®x︷︸︸︷
c1
...

cℓ
c ′


=

M︷ ︸︸ ︷

h0 0 . . . 0 0
®h[1,n1] 0 . . . 0 0

0 h0. . . 0 0 0
®h[1,n2] . . . 0 0

...
...
. . .
...
...
...

...
. . .

...
...

0 0 . . . h0 0 0 0 . . . ®h[1,nℓ]
0

0 0 . . . 0 f0 ®f[1,n1]
®f[n1+1,n2]. . .

®f[nℓ−1+1,
®f[nℓ+1,

nℓ] nℓ+1]



®w︷ ︸︸ ︷©­­­­­­­­­­­­«

o1
...

oℓ
o′

®u1
...

®uℓ+1

ª®®®®®®®®®®®®¬
Given the above encoding, it is straightforward to extend our

scheme CPlink to support the relation R◦pre instead of R◦.

E DESCRIPTION OF CPPED
LIN

The description of our scheme CPPed
lin follows:

CPPed
lin .KeyGen(ck,Rlin

F): parse ck = [®h]1 ∈ Gm+1
1

. Use [®h]1 and

Rlin
F to build a matrix [M] as in equation (2). Compute

(ek, vk) ← ssΠ.KeyGen([M]1) and return (ek, vk).
CPPed

lin .Prove(ek, ®x , (c j)j ∈[ℓ], (®uj)j ∈[ℓ], (oj)j ∈[ℓ]): define [®x ′]1 and ®w
′

as in equation (2), and return π ← ssΠ.Prove(ek, [®x ′]1, ®w ′).
CPPed

lin .VerProof(vk, ®x , (c j)j ∈[ℓ],π): set [®x ′]1 as in (2) and return

ssΠ.VerProof(vk, [®x ′]1,π).

We state the following theorem. We omit the proof, which is

essentially the same as that of Theorem D.1.

Theorem E.1. Let F ∈ ZN×mq be a matrix from a distribution
Dmtx, and Z be an auxiliary input distribution. If ssΠ is KSND
(ssΠ.RG,Z) where ssΠ.RG is a relation generator that samples
ck and F ← Dmtx, then the CP-SNARK construction CPPed

lin given
20

above is KSND(Dmtx,Z). Furthermore, if ssΠ is composable ZK for
ssΠ.RG, then CPPed

lin is composable ZK for Dmtx.

F A ZKSNARK FOR LINEAR SUBSPACES
Here we recall the QA-NIZK scheme for linear subspaces Π′as of
Kiltz and Wee [48], in the MDDH setting where k = 1.

ssΠ.KeyGen([M]1 ∈Gl×t
1
): ®k ←$Zlq , a←$Zq ; P := M⊤®k ; C :=a · ®k ;

return ek := [P]1 ∈ Gt
1
; vk := ([C]2, [a]2) ∈ Gl

2
× G2.

ssΠ.Prove(ek, [®x]1, ®w): return [π]1 ← ®w⊤[P]1 ∈ G1;
ssΠ.VerProof(vk, [®x]1, [π]1):] check that [®x]⊤

1
· [C]2 = [π]1 · [a]2.

ssΠ.Skg(1
λ): run as ssΠ.KeyGen and output tdk = ®k and (ek, vk).

ssΠ.Sprv(tdk, [®x]1): return [π]1 ← ®k⊤[®x]1.

In the following theorem we prove the knowledge soundness of the

scheme given above. The proof holds under the discrete logarithm

assumption in the algebraic group model of [32]; this can also be

interpreted as a proof in the (bilinear) generic group model. We

also note that a similar proof about the use of this scheme in a

non-falsifiable setting [48] also appeared in [30].

Theorem F.1. Assume that Dmtx is a witness sampleable matrix
distribution. Then, under the discrete logarithm assumption, in the
algebraic groupmodel, the QA-NIZKΠ′as in [48] (in the MDDH setting
k = 1) is a knowledge-sound SNARK for linear subspace relations
with matrices from Dmtx.

Proof Consider an algebraic adversaryA against the knowledge

soundness of ssΠ. Its input consists of the matrix [M]1 and the

associated auxiliary input aux, along with the common reference

string [P]1, [C]2, [a]2. Let [®z]1 be a vector that contains M and the

portion of aux that has elements from the groupG1, and also assume

[®z] includes [1]1.A returns a pair ([®x]1, [π]1) alongwith coefficients

that “explain” these elements as linear combinations of its input in

the group G1. Let these coefficients be:

[®x]1 := X0 [P]1 + X1 [®z]1 = X0 [M⊤®k]1 + X1 [®z]1

[π]1 := ®π⊤
0
[P]1 + ®π⊤1 [®z]1 = ®π

⊤
0
[M⊤®k]1 + ®π⊤1 [®z]1

We define the extractor E to be the algorithm that runs the algebraic

A and returns ®w := ®π0, i.e., the coefficients of [π]1 corresponding
to P. Next, we have to show that the probability that the output of

(A, E) satisfies verification while ®x , M ®w is negligible. In other

words, assume that the output of A is such that:

[®x]⊤
1
· [a · ®k]2 = [π]1 · [a]2 and [®x]1 , [M]1 ®π0

If A returns such a tuple with non-negligible probability, we show

how to build an algorithm B that on input ([®k]1, [®k]2) outputs

nonzero elements A ∈ Zl×lq ,
®b ∈ Zlq , c ∈ Zq such that

®k⊤A ®k + ®k⊤®b + c = 0

Such a B can in turn be reduced to an algorithm B′ that solves

discrete log, i.e., on input ([α]1, [α]2) return α .

Algorithm B([®k]1, [®k]2) proceeds as follows. First, it uses Dmtx
to sample ([M]1, aux) along with its G1 witness (i.e., a vector ®z of
entries in Zq). Second, it samples a←$Zq and runsA([®z, P]1, [a,a ·
®k]2) (notice thatA’s input can be efficiently simulated). Third, once

received the output ofA, B sets A := X0 M⊤, ®b := X1®z −M ®π0 and
c = −®π⊤

1
®z. Notice that

®k⊤A®k + ®k⊤®b + c = ®k⊤ X0 M⊤®k + ®k⊤X1®z − ®k
⊤M ®π0 − ®π⊤1 ®z

= ®k⊤ X0 M⊤®k + ®k⊤X1®z − π

= ®k⊤ ®x − π = 0

Also, one among A, ®b and c must be nonzero. Indeed, if they are all

zero then X1®z −M®π0 = 0, that is ®x = M®π0, which contradicts our

assumption on A’s output.

To finish the proof, we show how the above problem can be

reduced to discrete log in asymmetric groups, i.e., B′ on input

([α]1, [α]2) returns α . B
′
samples ®r , ®s ∈ Zlq and implicitly sets

®k := α · ®r + ®s . It is easy to see that ([®k]1, [®k]2) can be efficiently

simulated with a distribution identical to the one expected by B.

Next, given a solution (A, ®b, c) such that
®k⊤A ®k + ®k⊤®b + c = 0 one

can find a′,b ′, c ′ ∈ Zq such that:

0 = (α®r + ®s)⊤ A (α®r + ®s) + (α®r + ®s)⊤®b + c

= α2(®r⊤A®r) + α · (®r⊤A®s + ®s⊤A®r + ®r⊤®b) + (®s⊤A®s + ®s⊤®b + c)
= a′α2 + b ′α + c ′

In particular, with overwhelming probability (over the choice of

®s that is information theoretically hidden from B’s view) c ′ , 0.

From this solution B′ can solve the system and extract α . □

G A CONSTRUCTION OF POLYCOM AND
CPPOLY FROM ZK-VSQL

We show a pairing-based construction of the commitment PolyCom
and CP-SNARK CPpoly that are “extracted” from the verifiable poly-

nomial delegation scheme of Zhang et al. [71]. Basically, we separate

the algorithms related to committing from the ones related to prov-

ing and verifying evaluations of committed polynomials. Except

for that, the only noticeable difference is that in our case we can

prove that cy opens to y = f (®x) (with respect to cf which opens to

f) for a given cy instead of one that is freshly generated at prov-

ing time. As we show below, this difference would matter only for

zero-knowledge, for which we give a proof a slightly different than

the one in [71].

Setup(1λ): let F be µ-variate polynomials of degree d in each

variable. Sample α , β, s1, . . . , sµ+1 ←$Zq uniformly at random,

compute P = [
∏

i ∈W si ,α
∏

i ∈W si]1, and output

ck = (P, [sµ+1,αsµ+1, βsµ+1]1, [α , β , s1, . . . , sµ+1]2).
ComPoly(ck, f) → (cf ,of): sample of ←$Zq , compute cf ,1 =
[f (s1, . . . , sµ)+of sµ+1]1, cf ,2 = [α(f (s1, . . . , sµ)+of sµ+1)]1 and
output cf = (cf ,1, cf ,2).

ComVal(ck,y) → (cy ,oy): sample oy ←$Zq , compute cy,1 =

[y+oysµ+1]1, cy,2 = [β(y+of sµ+1)]1 and output cy = (cy,1, cy,2).

CheckCom(ck, c): we assume one knows the type for which c was
created. If type = pol, output 1 iff c1 · [α]2 = c2 · [1]2. If type = val,
output 1 iff c1 · [β]2 = c2 · [1]2.

VerCommit(ck, c, f ,o)→b : output c1
?

= [f (s1, . . . , sµ) + osµ+1]1.

Theorem G.1 ([71]). Under the (µ + 1)d-Strong Diffie Hellmand
and the (d, µ)-Extended Power Knowledge of Exponent assumptions

21

(see [71]), PolyCom is an extractable trapdoor polynomial commit-
ment.

The proof of the theorem follows from Theorem 1 in [71]. The only

property that is not proved there is the trapdoor property, which

is however straightforward to see if one considers a simulator Sck
that sets the values α , β , s1, . . . , sµ+1 as trapdoor.

Next, we show a CP-SNARK for polynomial evaluation relations

Rpoly:

CPpoly.KeyGen(ck): set ek := ck and vk := ([α , β , s1, . . . , sµ+1]2)

CPpoly.Prove(ek, ®x , f ,y,of ,oy): sample o1, . . . ,oµ ←$Zq ; find

polynomials qi such that f (Z1, . . . ,Zµ)+of Zµ+1−(y+oyZµ+1) =
µ∑
i=1
(Zi−xi)(qi (Zi , . . . ,Zµ)+oiZµ+1)+Xµ+1(of −oy−

µ∑
i=1

oi (Zi−xi).

For i = 1 to µ, compute ci := (ci,1, ci,2) = [qi (s1, . . . , sµ) +
oisµ+1,α(qi (s1, . . . , sµ) + oisµ+1)]1, cµ+1 := (cµ+1,1, cµ+1,2) =

[of −oy −
∑µ
i=1 oi (si −xi),α(of −oy −

∑µ
i=1 oi (si −xi))]1. Output

π := (c1, . . . , cµ+1).

CPpoly.VerProof(vk, ®x , cf , cy ,π): parse π := (c1, . . . , cµ+1), output

CheckCom(vk, cf) ∧CheckCom(vk, cy)
∧µ+1
i=1 CheckCom(vk, ci)

and (cf ,1 − cy,1) · [1]2 = cµ+1,1 · [sµ+1]2
∑µ
i=1 ci,1 · [(si − xi)]2.

Theorem G.2 ([71]). Under the (µ + 1)d-Strong Diffie Hellmand
and the (d, µ)-Extended Power Knowledge of Exponent assumptions
(see [71]), CPpoly is a zero-knowledge CP-SNARK for Rpoly.

Correctness and knowledge soundness are immediate from The-

orem 1 in [71]. The only difference is in the zero-knowledge prop-

erty. For this, consider the following proof simulator algorithm,

Sprv(td, ®x , cf , cy): for i = 1 to µ, sample ci,1 ←$G1 and compute

ci,2 = α · ci,1. Next, compute cµ+1,1 such that (cf ,1 − cy,1) · [1]2 =

cµ+1,1 · [sµ+1]2 +
∑µ
i=1 ci,1 · [(si − xi)]2 holds and set cµ+1,2 ←

β · cµ+1,1. It is straightforward to check that proofs created by Sprv
are identically distributed to the ones returned by CPpoly.Prove.

H MORE ON CP-SNARKS FOR POLYCOM
In this sectionwe presentmore CP-SNARKs for PolyCom, for which

we first give formal definitions:

Polynomial Commitments. The specific commitment scheme

we consider here is the polynomial commitment underlying the

verifiable polynomial delegation (VPD) scheme of Zhang et al. [71].

In a nutshell, a VPD allows one to commit to multivariate poly-

nomials and later prove their evaluations (also committed) at a

public point. Here we show that their VPD scheme can be seen

as a CP-SNARK for such polynomial commitment, for relations

encoding polynomial evaluations. Namely, whereas in [71] VPD is

presented as a single primitive, here we separate the commitment

scheme from the argument system. With this simple change (to-

gether with a slightly stronger zero-knowledge notion) we can use

our composition results to argue security when commitments are

reused across different proofs.

Formally, we consider a commitment scheme whose message

space D includes both values in a finite field F and a class F of

polynomials with coefficients in F, with µ variables and maximal

degree d in each variable. We denote these partitions ofD = F∪F
as Dpol = F and Dval = F and we use a flag type to differentiate

between them so that f ∈ F when type = pol, and f ∈ F when
type = val.20 In addition to satisfying the notion of Definition 2.2

we assume the scheme to be knowledge extractable and to have a

trapdoor generation. For convenience, we summarize its definition

below.

Definition H.1 (Extractable Trapdoor Polynomial Commitments).
An extractable trapdoor polynomial commitment scheme for a

class of polynomials F is a tuple of algorithms PolyCom = (Setup,
Commit,CheckCom,VerCommit) that work as follows.

Setup(1λ) → ck : takes the security parameter and outputs a com-

mitment key ck.
Commit(ck, f , type) → (cf ,of) : takes the commitment key ck, a
flag type ∈ {pol, val} and an element f ∈ Dtype, and outputs a

commitment cf and an opening of . We use ComPoly(ck, ·) and
ComVal(ck, ·) as shorthands for Commit(ck, ·, pol) and Commit
(ck, ·, val) respectively. We also assume that type is part of cf ,
namely it is not hidden.

CheckCom(ck, c) → b : takes as input a commitment c and accepts
it as valid (b = 1) or not (b = 0).

VerCommit(ck, cf , f ,of) → b : takes as input commitment c , ele-
ment f ∈D and opening of , and accepts (b=1) or rejects (b=0).

PolyCom must satisfy correctness, binding and (perfect) hiding as

in Definition 2.2 (with the additional requirements that correctness

also implies that CheckCom accepts, and binding holds for adver-

sarial commitments that are accepted by CheckCom). In addition

PolyCom must satisfy the trapdoor and extractability properties

defined below.

Trapdoor. There exists three algorithms (ck, td) ← Sck(1
λ),

(c, st) ← TdCom(td, type) and o ← TdOpen(td, st , c, f) such that:

the distribution of the commitment key returned by Sck is

perfectly/statistically close to the one of the key returned by Setup;
for any type ∈ (pol, val), any f ∈ Dtype, (c,o) ≈ (c

′,o′) where
(c,o) ← Commit(ck, f , type), (c ′, st) ← TdCom(td, type) and
o′ ← TdOpen(td, st , c ′, f).

Extractability. PolyCom has knowledge extractability for auxil-

iary input distributionZ if for every (non-uniform) efficient adver-

sary A there exists a (non-uniform) efficient extractor E such that

Pr[Gameextr
Z,A,E

= 1] = negl. We say that PolyCom is knowledge

extractable if there is a benignZ such that the above holds.

Gameextr
Z,A,E

ck← Setup(1λ), auxZ ← Z(1λ)

c ← A(ck, auxZ), (f , o) ← E(ck, auxZ)

return 1 iff: CheckCom(ck, c) = 1 ∧ VerCommit(ck, c, f , o) = 0

Linearly Homomorphic Commitments. For the constructions

presented in this section we assume that the commitments are lin-

early homomorphic. That is we assume existence of a deterministic

algorithm (c ′,o′) ← HomEval(ck,д, (c j)j ∈[ℓ], (oj)j ∈[ℓ]) such that,

for a linear function д : Fℓ → F, if VerCommit(ck, c j ,aj ,oj) = 1

then VerCommit(ck, c ′,д((aj)j ∈[ℓ]),o
′) = 1. In the paper we as-

sume HomEval takes in the vector of ℓ coefficients of д.

20
Note that the only ambiguity can occur when differentiating a degree-0 polynomial

from a point.

22

Zero-knowledge CP-SNARKs for PolyCom. In the construc-

tions of this section we use the following existing CP-SNARKs for

the scheme PolyCom:

• CPeq: a CP-SNARK for relation Req(u1,u2) := u1
?

= u2, where
u1,u2 ∈ F.

• CPprd: a CP-SNARK for relation Rprd(u1,u2,u3) := u3
?

= u1 · u2,
where u1,u2,u3 ∈ F.

• CPpoly: a CP-SNARK for the relation Rpoly over Dx × D1 × D2

whereDx = F
µ
,D1 = F ,D2 = F andRpoly(®x , f ,y) := y

?

= f (®x).
For zero-knowledge, we assume that CPpoly satisfies a notion

where the commitment key is generated in trapdoor mode and

the CPpoly simulators (Skg,Sprv) get access to the commitment

trapdoor produced by Sck. Note that such notion is weaker than

the one of Definition 3.1 but sufficient to argue that a scheme

satisfying this notion is a cc-SNARK.

In Appendix G we show pairing-based constructions of PolyCom
and CPpoly extracted from the verifiable polynomial delegation

scheme of Zhang et al. [71]. As observed by Zhang et al. construc-

tions for CPeq and CPprd can be obtained using standard techniques

from classical sigma-protocols. Finally, we observe that all these

schemes share the same (deterministic) KeyGen algorithm that, on

input the commitment key ck, simply partitions the elements of ck
into ek = ck and vk = cvk, where cvk is a subset of the elements

in ck that is sufficient to run algorithms CheckCom,ComVal and
HomEval.

H.1 Our CP-SNARK for Sum-check
We give a full description of the interactive protocol in Figure 12.

Proof We show the security of our protocol by reducing it to

the one of [71, Construction 2]. For this let us recall the following

theorem from [71]:

TheoremH.2 ([71, Theorem 2]). For any µ-variate total-degree-d
polynomial д : Fµ → F withm non-zero coefficients, assuming Com
is an extractable linearly homomorphic commitment scheme, and
CPeq is a zero-knowledge non-interactive argument for testing equal-
ity of commitments for Com, then there is an interactive argument
for the relation

VerCommit(ck, ct , t ,ot) = 1 ∧ t =
∑

®b ∈{0,1}µ

д(®b)

Moreover, we recall below the last two steps of Construction 2

in [71] (i.e., Construction 2 is the same as in our Figure 12 with the

blue part replaced by the following steps):

1 : Common input: ct , д; P’s input: (t, ot)

2 : P : (c∗µ , o
∗
µ) ← ComVal(ck, д(®s)),

3 : π ∗ ← CPeq .Prove(ck, (c∗µ , comµ), д(®s), (o∗µ , ρµ))

4 : P → V : c∗µ , o
∗
µ , π

∗

5 : V : VerCommit(cvk, c∗µ , д(®s), o
∗
µ)∧CPeq .VerProof(vk,(c∗µ ,comµ), π ∗)

For knowledge soundness, the idea of the proof is that for any

adversary A against CPsc we can create an adversary B against

Construction 2 in [71].

Similarly to [71], we begin by observing that the commitments

c1, c2 as well as all the commitments comaj ’s sent during the µ

rounds are extractable. By extractability, for any successfulA there

exists an extractor EA that, on the same input ofA, outputs with all

but negligible probability valid openings of all these commitments.

Thus we define B as the adversary that executes (A, EA), obtains

д1,д2, reconstructs the polynomial д(®S), and then keeps executing

A until the end of the protocol, forwarding its messages to its

challenger. This is done until the last step whereA sends c ′
1
, c ′
2
,π∗.

Notice that B also has the commitments comaj sent by A in step

µ as well as their openings extracted through EA . Thus, B can

compute homomorphically the commitment comµ and its opening.

With this knowledge, B executes the last two lines in Figure 12

(acting as the verifier): if all verifications pass and B has an opening

of comµ to д(®s), then it executes the lines 2–4 above and sends

(c∗µ ,o
∗
µ ,π
∗) to its challenger.

If all verifications pass but B has an opening of comµ to a value

different from д(®s), then it must be the case that A cheated in one

of the proofs π1,π2,π
∗
. By the knowledge soundness of CPpoly and

CPprd this however occurs only with negligible probability.

To show zero-knowledge, we build a simulator that can simulate

the verifier’s view without knowing the prover’s input. Our sim-

ulator is the same as the one in [71] up to their step (d). For step

(e), we let our simulator additionally create commitments (c ′
1
, c ′
2
) to

dummy values and then run the ZK simulators of CPpoly and CPprd
to simulate proofs (π1,π2,π

∗). By the proof in [71], the verifier’s

transcript except for the last message (c ′
1
, c ′
2
,π1,π2,π

∗) is indistin-

guishable from an honest one. The indistinguishability with respect

to the last message follows immediately from the zero-knowledge

CPpoly and CPprd. □

H.2 Proof of security of CPhad

Proof Let Ahad be the adversary against CPhad that, on input

(ck, eks , ekp) and interacting with the random oracle H , returns a

statement (c j)j ∈[:3] and a proof π that verifies correctly. For any

such Ahad we can define a non-interactive adversary A∗had that

additionally takes as input a sequence of random values ®ri , for i = 1

to Q , such that ®ri is used to answer the i-th query of Ahad to the

random oracle H . For anyAhad makingQ queries to H there exists

an index i ∈ [0,Q] such that the commitments (c j)j ∈[:3] returned at
the end of its execution were queried to H in the i-th query (letting

i = 0 being the case in which they were not asked at all). From the

above adversary A∗had we can define Acom as the non-uniform

adversary that on input (ck, eks , ekp , ®r1, . . . , ®ri−1) runsAhad (in the

sameway asA∗had does) up to its i-th queryH ((c j)j ∈[:3]) and returns

(c j)j ∈[:3]. By the extractability of the commitment, for Acom there

exists an extractor Extcom that on the same input ofAcom outputs

openings (ũj)j ∈[:3], (oj)j ∈[:3]. We define the extractor Ehad to be

the one that runs Extcom and returns its output. Notice that by

the extractability of PolyCom it holds VerCommit(ck, c j , ũj ,oj) for
j = 0, 1, 2 with all but negligible probability.

Next, we need to argue that this adversary-extractor pair (Ahad,

Ehad) has negligible probability of winning in the knowledge sound-

ness experiment. From A∗had we can define two adversaries Ap
and Asc against CPpoly and CPsc respectively, and by using the

knowledge soundness of the two CP-SNARKs we have that for each

of these adversaries there is a corresponding extractor that gives us

a value t such that ũ0(®r) = t and t =
∑
®b ∈{0,1}µ ˜eq(®r , ®b) ·ũ1(®b) ·ũ2(®b)

23

Protocol Πsc :

Common input: ct , д0, c1, c2; P’s input: (t, ot , д1, o1, д2, o2)

P : д(®S) :=
∏

2

i=0дi (®S), c0 := ct , t0 := t, ρ0 := ot , let f (A0, . . .Ak) := A0 +
∑k
j=0Aj := (2, 1, . . . , 1)

for i = 1 . . . µ :

P : hi (X) :=
∑
bi+1, . . .,bµ ∈{0,1}д(s1, . . . , si−1, X , bi+1, . . . , bµ) :=

∑k
j=0ajX

j

P : compute {(comaj , ρaj) ← ComVal(ck, aj)}kj=0, (com∗i−1, ρ
∗
i−1) ← HomEval(ck, f , {comaj }

k
j=0), {ρaj }

k
j=0)

πeq ← CPeq .Prove(ck, comi−1, com∗i−1, ti−1, дi (0) + дi (1), ρi−1, ρ
∗
i−1)

P → V : {comaj }
k
j=0, πeq

V : {CheckCom(cvk, comaj)}
k
j=0, compute (com∗i−1, ·) ← HomEval(ck, f , {comaj }

k
j=0), ·)

V : CPeq .VerProof(cvk, comi−1, com∗i−1, πeq), si ←$F, (comi , ·) ← HomEval(ck, (1, si , . . . , ski), {comaj }
k
j=0, ·)

V → P : si ∈ F

P : ti ← hi (si), (comi , ρi) ← HomEval(ck, (1, si , . . . , ski), {comaj }
k
j=0, {ρaj }

k
j=0)

endfor

P : {(c′j , o
′
j) ← ComVal(ck, д′j := дj (®s)), πj ← CPpoly .Prove(ek, ®s, (c j , c′j), (дj , д

′
j), (oj , o

′
j))}j=1,2

P : (c∗
1
, o∗

1
) ← HomEval(ck, д0(®s), c′1, o

′
1
), π ∗ ← CPprd .Prove(ck, (c∗

1
, c′

2
, comµ), (д0(®s) · д′1, д

′
2
, д(®s)), (o∗

1
, o′

2
, ρµ))

P → V : c′
1
, c′

2
, π1, π2, π ∗

V :

∧
j=1,2CheckCom(cvk, c′j) ∧ CPpoly .VerProof(vk, ®s, c j , c′j , πj)

V : (c∗
1
, ·) ← HomEval(ck, д0(®s), c′1, ·), CPprd .VerProof(vk, (c∗

1
, c′

2
, comµ), π ∗)

Figure 12: Our sum-check protocol over committed polynomial and result; in black are the steps identical to [71].

hold respectively with all but negligible probability. Furthermore,

the binding of PolyCom implies that the values and openings for

all the commitments (c j)j ∈[:3], ct obtained using these extractors

are all the same with all but negligible probability (otherwise we

could define a reduction against the binding of PolyCom).

Since VerCommit(ck, c j , ũj ,oj) for j = 0, 1, 2, the only way for

the adversary to win is when the relation Rhad is not satisfied. Since

we have vectors in MLE form, the check of relation Rhad can be

equivalently written as ∀®b ∈ {0, 1}µ : ũ0(®b)
?

= ũ1(®b) · ũ2(®b). Let us

define the polynomial ũ∗
0
(®X) =

∑
®b ∈{0,1}µ ˜eq(®X , ®b) · ũ1(®b) · ũ2(®b);

essentially ũ∗
0
(®X) is the MLE of the vector that should correctly

verify the Rhad relation. In particular, by lemma 5.1, ũ∗
0
(®X) agrees

with ũ1(®X)·ũ2(®X) on all boolean points. Thus, if the relation does not

hold we must have ũ∗
0
(®X) , ũ0(®X). However, from above we have

that ũ0(®r) = ũ
∗
0
(®r) holds. Notice that from the construction of Ehad,

the polynomials ũ0(®X), ũ1(®X), ũ2(®X) are independent from ®r (this is
because the extractor Ecom that returned this polynomial did not

have ®r = ®ri among its inputs), and ũ∗
0
(®X) is fully determined from

ũ1(®X), ũ2(®X). Therefore, by the Schwartz-Zippel lemma, the event

ũ∗
0
(®X) , ũ0(®X) ∧ ũ0(®r) = ũ∗

0
(®r) occurs with negligible probability

over the random choice of ®r .
The zero-knowledge of CPhad relies on the hiding of PolyCom

and the zero-knowledge of CPpoly and CPsc. Building simulators

Skg and Sprv for CPhad from the corresponding simulators for

CPpoly and CPsc is fairly straightforward and is omitted here. □

H.3 Full description and proof of CPsfprm

We provide in this section the description of CPsfprm, a CP-SNARK

for the self-permutation relation. As explained in Section 5.4, this

construction makes use of a CP-SNARK CPipd, and in particular, in

order to evaluate the efficiency of CPsfprm, we consider an instantia-

tion of CPipd based on Thaler’s protocol for trees of multiplications

[63] (we refer the reader to Appendix I for more details on this

protocol).

One detail to be noted here is that such CPipd works with binary

tree circuits, meaning that their input should be a power of two

length. In our definition of the self-permutation relation R
sfprm
ϕ (®y :=

(®x , (®uj)j ∈[l]) ∈ F
m) however we must work on ℓ + 1 vectors such

that, each has length nj = 2
µ j

(this is immediate since we commit

to MLEs of vectors) but their concatenation has length

∑ℓ
j=0 nj =m

which may not be a power-of-two. To solve this issue, we execute

CPipd on each block and then aggregate the ℓ+ 1 committed results

using a simple zero-knowledge argument for proving a product

relation over three commitments, i.e., CPprd. This results in about

ℓ + 1 calls to CPipd and CPprd. Although this makes proofs grow

with ℓ, we observe that in all our applications ℓ is some small

constant, e.g., 8 − −10 in our arithmetic circuits encoding

We describe this approach in detail in Figure 13.

More deeply, the self-permutation protocol uses a probabilistic

test to check that a vector ®y is a self permutation according to

ϕ. In particular, if it is indeed a self-permutation then

∏
i y
′
i :=∏

i (yi + r · i − s) =
∏

i (yi + r · ϕ(i) − s) :=
∏

i y
′′
i (if it is not, this

equality will hold with negligible probability by Schwartz-Zippel

lemma). The protocol works by computing for each of the ℓ + 1

power-of-2-length-blocks the value of the product of both binary

24

subtrees using Thaler’s approach. Then we compute iteratively the

product of all of them and claim that both values coincide.

Proof Let Asfprm be the adversary against CPsfprm that, on

input (ck, ekp) and interacting with the random oracle H , returns

a statement (ϕ,x , (c j)j ∈[ℓ]) and a proof π that verifies correctly.

For any such Asfprm we can define a non-interactive adversary

A∗sfprm that additionally takes as input a sequence of random val-

ues (ri , si), for i = 1 to Q , such that (ri , si) are used to answer the

i-th query of Asfprm to the random oracle H . For any Asfprm mak-

ing Q queries to H there exists an index i ∈ [0,Q] such that for the

relation statement (ϕ,x , (c j)j ∈[ℓ]) returned at the end of its execu-

tion, ((cϕ, j)j ∈[0, ℓ], ®x , (c j)j ∈[ℓ]) was queried to H in the i-th query

(letting i = 0 being the case in which they were not asked at all, and

cϕ, j be deterministically derived from ϕ). From the above adversary

A∗sfprm we can define Acom as the non-uniform adversary that on

input (ck, ekp , r1, s1, . . . , ri−1, si−1) runs Asfprm (in the same way

asA∗sfprm does) up to its i-th query H ((cϕ, j)j ∈[0, ℓ], ®x , (c j)j ∈[ℓ]) and

returns (c j)j ∈[ℓ]. By the extractability of the commitment, forAcom
there exists an extractor Ecom that on the same input of Acom out-

puts openings (ũj)j ∈[ℓ], (oj)j ∈[ℓ]. We define the extractor Esfprm to

be the one that runs Ecom and returns its output. Notice that by

the extractability of PolyCom it holds VerCommit(ck, c j , ũj ,oj) for
j = 0, 1, 2 with all but negligible probability.

Next, we need to argue that this adversary-extractor pair (Asfprm,

Esfprm) has negligible probability of winning in the knowledge

soundness experiment. Recall that we haveVerCommit(ck, c j , ũj ,oj)
for j ∈ [ℓ] and, by the linear homomorphic property of PolyCom,

for all j ∈ [0, ℓ], c ′j and c
′′
j are commitments to the MLE of ®y′j :=

®yj + r · ®vj − s · ®1j and ®y
′′
j := ®yj + r · ®ϕ j − s · ®1j respectively. Also, in

order for the adversary to be successful it must be the case that the

relation does not hold, i.e., ®y is not a self-permutation according

to ϕ. Notice that the vector ®y is independent of (r , s) since it was
returned by Ecom without having these values in its view. This

allows us to argue that with overwhelming probability over the

choice of r it is the case that at least one of the entries of ®y + r · ®ϕ is

not in ®y + r · ®v . Moreover, when these vectors have different entries

the equation

∏
i (yi + r · i − s) =

∏
i (yi + r · ϕ(i) − s) holds with

negligible probability over the choice of s by the Schwartz-Zippel

lemma.

Hence we have that with all but negligible probability

∏
i (yi +

r · i − s) ,
∏

i (yi + r · ϕ(i) − s), which means that at one of the

statements in theCPipd,CPprd orCPeq proofs is not correct. We can

reduce these cases to the knowledge soundness of CPipd, CPprd or

CPeq using a fairly standard reduction, in which from an adversary

A∗sfprm that falls into the above conditions (i.e., an (r , s) that cause

the above inequality) we build either an adversary Aipd against

CPipd, or an adversaryAprd against CPprd or anAeq against CPeq.

The zero-knowledge of CPsfprm follows from the hiding of

PolyCom (for creating dummy commitments (cz′j , cz
′′
j
)j ∈[0...ℓ]) and

the zero-knowledge of all the underlying CP-SNARKs. □

CPsfprm.KeyGen(ck) → (ek := (ck, ekp), vk := (cvk, vkp)) :

(ekp, vkp) ← CPipd .KeyGen(ck)

CPsfprm.Derive((ek, vk),Rsfprm
ϕ) → (ekϕ , vkϕ) :

for j = 0, . . . , ℓ :

(c1, j , o1, j) ← ComPoly∗(ck, 1̃j)

(cv, j , ov, j) ← ComPoly∗(ck, ṽj)

(cϕ, j , oϕ, j) ← ComPoly∗(ck, ˜ϕj)

ekϕ := (ek, {c1, j , o1, j , cv, j , ov, j , cϕ, j , oϕ, j }
ℓ
j=0, ϕ)

vkϕ := (vk, {c1, j , cv, j , cϕ, j }
ℓ
j=0)

CPsfprm.Prove∗(ekϕ , ®x , (c j)j ∈[ℓ], (®uj)j ∈[ℓ], (oj)j ∈[ℓ]) → π :

(r, s) ← H ((cϕ, j)j∈[0, ℓ], ®x, (c j)j∈[ℓ]) and let ®ρ = (1, r, −s)

(c0, o0) ← ComPoly(ck, x̃)

for j = 0, . . . , ℓ :

(c′j , o
′
j) ← HomEval(ck, ®ρ, (c j , cv, j , c1, j), (oj , ov, j , o1, j))

(c′′j , o
′′
j) ← HomEval(ck, ®ρ, (c j , cϕ, j , c1, j), (oj , oϕ, j , o1, j))

®y′j := ®yj + r · ®vj − s · ®1j ; z′j :=
∏nj

i=1
y′j,i

®y′′j := ®yj + r · ®ϕj − s · ®1j ; z′′j :=
∏nj

i=1
y′′j,i

(cz′j , oz′j) ← ComVal(ck, z′j) ; (cz′′j , oz′′j) ← ComVal(ck, z′′j)

π ′j←CPipd .Prove
(
ekp,cz′j ,(c

′
j,i)i∈[nj],z

′
j ,(y

′
j,i)i∈[nj],oz′j ,(o

′
j,i)i∈[nj]

)
π ′′j ←CPipd .Prove

(
ekp,cz′′j ,(c

′′
j,i)i∈[nj],z

′′
j ,(y

′′
j,i)i∈[nj],oz′′j ,(o

′′
j,i)i∈[nj]

)
if j ?

= 0 : w ′
0
:= z′

0
; w ′′

0
:= z′′

0
; cw ′

0

:= cz′
0

; cw ′′
0

:= cz′′
0

; else :

w ′j ← w ′j−1 · z
′
j ; (cw ′j , ow ′j) ← ComVal(ck, w ′j)

w ′′j ← w ′′j−1 · z
′′
j ; (cw ′′j , ow ′′j) ← ComVal(ck, w ′′j)

πw ′j←CPprd .Prove(ck,cw ′j−1,cz′j ,cw ′j ,w
′
j−1,z

′
j ,w
′
j ,ow ′j−1,oz′j ,ow ′j)

πw ′′j ←CPprd .Prove(ck,cw ′′j−1,cz′′j ,cw ′′j ,w
′′
j−1,z

′′
j ,w

′′
j ,ow ′′j−1,oz′′j ,ow ′′j)

endif ; endfor

πz ← CPeq .Prove(ck, cw ′
ℓ
, cw ′′

ℓ
, w ′ℓ, w

′′
ℓ , ow ′ℓ

, ow ′′
ℓ
)

return π := (c0, o0, {cz′j , cz′′j , cw ′j , cw ′′j , π
′
j , π

′′
j , πw ′j , πw ′′j }

ℓ
j=0, πz)

CPsfprm.VerProof∗
(
vkϕ , ®x , (c j)j ∈[ℓ],π

)
→ b :

(r, s) ← H ((cϕ, j)j∈[0, ℓ], ®x, (c j)j∈[ℓ]) and let ®ρ = (1, r, −s)

b ← VerCommit(cvk, c0, x̃, o0)

for j = 0, . . . , ℓ :

(c′j , ·) ← HomEval(cvk, ®ρ, (c j , cv, j , c1, j), ·)

(c′′j , ·) ← HomEval(cvk, ®ρ, (c j , cϕ, j , c1, j), ·)

b←b∧CheckCom(cvk, cz′j)∧CPipd .VerProof(vkp, cz′j , (c
′
j,i)i∈[nj])

∧ CheckCom(cvk, cz′′j) ∧ CPipd .VerProof(vkp, cz′′j , (c
′′
j,i)i∈[nj])

∧ CheckCom(cvk, cw ′j) ∧ CheckCom(cvk, cw ′′j)

if j , 0 : b ← b ∧ CPprd .VerProof(cvk, cw ′j−1, cz′j , cw ′j , πw ′j)

∧ CPprd .VerProof(cvk, cw ′′j−1, cz′′j , cw ′′j , πw ′′j)

endif ; endfor

b ← b ∧ CPeq .VerProof(cvk, cw ′
ℓ
, cw ′′

ℓ
, πz)

Figure 13: CP-SNARK for specializable universal Rsfprm

25

H.4 A CP-SNARK for Linear Properties of
Committed Vector

In this section we show a CP-SNARK for PolyCom that has a spe-

cializable universal CRS for relations Rlin
F

(
®x , ®u

)
:= ®x

?

= F · ®u where

F ∈ Zn×mq , ®x ∈ Znq and ®u ∈ Zmq . More precisely, our CPlin works

for a family of relations R that includes all Rlin
F for all matrices

F ∈ Fm×n .
The scheme is based on the interactive proof for Matrix multi-

plication of Thaler [63]. In a nutshell, we specialize this protocol to

the case of a matrix-vector multiplication and we turn it into a ZK

argument using ideas similar to those in [71].

Our scheme makes use of the building blocks defined in Section

5.1: a polynomial commitment scheme PolyCom, and CP-SNARKs

CPpoly and CPsc for the relations Rpoly and Rsc respectively.

Review of Thaler’s Matrix Multiplication protocol. We be-

gin by reviewing the idea of Thaler’s matrix multiplication protocol

in our specific case of proving ®x = F · ®u. Let ν := logn, µ :=

logm. We let F̃ : {0, 1}ν × {0, 1}µ → Zq be the multilinear exten-

sion (MLE) of F, i.e., the unique multilinear polynomial such that

F̃ (i1, . . . , iν , j1, . . . , jµ) = Fi, j . Similarly, let ũ and x̃ be the MLE of ®u
and ®x respectively. The protocol exploits that the MLE x̃ can also be

expressed as x̃(®R) =
∑
®b ∈{0,1}µ F̃ (

®R, ®b) ·ũ(®b). In particular, since this

MLE is unique, if F̃ and ũ are MLE of F and ®u respectively, then x̃ is

a MLE of ®x = F · ®u. Next, starting from this observation, the verifier

picks a random ®r , and then starts a sum-check protocol where the

prover convinces the verifier that t = x̃(®r) =
∑
®b ∈{0,1}µ д(

®b) for the

polynomial д(®S) := F̃ (®r , ®S) · ũ(®S). At the end of the sum-check the

verifier instead of computing д(®s) directly, it gets it by evaluating

F̃ (®r , ®s) and ũ(®s) and by computing their product.

The idea to turn the above protocol into a commit and prove

argument is rather simple and consists into using a CP-SNARK for

the sumcheck relation with a committed polynomial д, or more pre-

cisely for the case when a commitment to д is implicitly given

through commitments to its factors (see the CPsc scheme). To

see this, let us write д(®S) :=
∏p

0
дi (®S), where д1(®S) := F̃ (®r , ®S),

д2(®S) = ũ(®S), and д0(®S) := 1 is the constant polynomial. A com-

mitment to ũ(®S) is part of the statement, a commitment to F̃ (®R, ®S)
can be generated when specializing the relation to F in the Derive
algorithm. However, note that CPsc expects a commitment to a

µ-variate polynomial, whereas F̃ is in ν + µ variables. For this, we

let the prover commit to the partial evaluation of F̃ on ®r , i.e., to

the polynomial д1(®S) and uses this commitment and polynomial

in CPsc. Then, what is left to show is that such committed д1(®S) is
actually the partial evaluation of the other committed polynomial

D̃. To prove this, the idea is that the verifier chooses a random

σ ←$Fµ , and the prover uses CPpoly to prove that д1(®σ) = F̃ (®r , ®σ).
We show the full protocol CPlin in Figure 14.

Theorem H.3. In the random oracle model, assuming PolyCom is
an extractable trapdoor commitment and CPpoly and CPsc are zero-
knowledge CP-SNARKs for PolyCom, then CPlin in Figure 14 is a
zero-knowledge CP-SNARK for PolyCom and relations Rlin.

Proof Let Alin be the adversary against CPlin that, on input

(ck, eks , ekp) and interacting with the random oracles H1,H2, re-

turns a statement (F, ®x , cu) and a proof π that verifies correctly. For

any such Alin we can define a non-interactive adversary A∗lin that

additionally takes as input a sequence of random values {®ri }i , {®σj }j ,
for i = 1 to Q1 and j = 1 to Q2, such that ®ri (resp. ®σj) is used to

answer the i-th (resp. j-th) query of Alin to the random oracle H1

(resp. H2). For any Alin making Q1 queries to H1 there exists an

index i ∈ [0,Q1] such that for the statement (F, ®x , cu) returned at

the end of its execution the i-th query to H1 (letting i = 0 being

the case in which they were not asked at all) is (cF , ®x , cu). From the

above adversary A∗lin we can define Acom as the non-uniform ad-

versary that on input (ck, eks , ®r1, . . . , ®ri−1) runs Alin (in the same

way as A∗lin does) up to its i-th query H (cF , ®x , cu) and returns cu .
By the extractability of the commitment, for Acom there exists

an extractor Extcom that on the same input of Acom outputs an

opening ũ,ou . We define the extractor Elin to be the one that runs

Extcom and returns its output. Notice that by the extractability of

PolyCom it holds VerCommit(ck, cu , ũ,ou) with all but negligible

probability.

Next, we need to argue that this adversary-extractor pair (Alin,

Elin) has negligible probability of winning in the knowledge sound-

ness experiment.

In a similar way as we argued extractability of cu , we can show

that it is possible to extract the polynomial д1 that correctly opens

the commitment c1.
Recall that the adversary is successful if the verifications pass

and the relation does not hold, i.e., F · ®u , ®x . Considering MLEs,

this means there is some ®a ∈ {0, 1}ν such that

x̃(®a) ,
∑
®b ∈{0,1}µ

F̃ (®a, ®b)ũ(®b).

This means that the following polynomial inequality holds:

x̃(®R) ,
∑
®b ∈{0,1}µ

F̃ (®R, ®b) · ũ(®b)

First, we argue that with all but negligible probability over the

choice of ®r we have t = x̃(®r) ,
∑
®b ∈{0,1}µ F̃ (®r ,

®b)ũ(®b). Indeed, ®r

is random and independent from ®x , F̃ , ũ and the two polynomials

would be equal when evaluated on ®r with probability at most ν/|F|
by Schwartz-Zippel. Thus we can continue the proof assuming that

t ,
∑
®b ∈{0,1}µ F̃ (®r ,

®b)ũ(®b).

Next, consider that for the extracted д1 there are two possible

cases: (i) д1(®S) = F̃ (®r , ®S), and (ii) д1(®S) , F̃ (®r , ®S).
If (i) occurs, then we can immediately build an adversary against

the soundness of CPsc.

If (ii) occurs, consider two subcases: (ii.a) д1(®σ) = F̃ (®r , ®σ), and
(ii.b) д1(®σ) , F̃ (®r , ®σ). However, by Schwartz-Zippel (ii.a) occurs

with negligible probability µ/|F| over the choice of ®σ . And if (ii.b)

occurs then it is possible to do a reduction to the soundness of

CPpoly (since at least one of the claims y∗ = д1(®σ) or y
∗ = F̃ (®r , ®σ)

is false).

The zero-knowledge of CPlin follows immediate from the zero-

knowledge of CPsc. □

26

CPlin.KeyGen(ck) → (ek, vk) :

(eks , vks) ← CPsc .KeyGen(ck)

(ekp, vkp) ← CPpoly .KeyGen(ck)

ek := (ck, eks , ekp)

vk := (cvk, vks , ekp)

CPlin.Derive((ek, vk), F) :
(cF , oF) ← ComPoly∗(ck, F̃)

ekF := (ek, cF , F, oF)

vkF := (vk, cF)

return (ekF , vkF)

CPlin.Prove∗(ekF , ®x , cu , ®u,ou) → π :

®r ← H1(cF , cu, ®x), ; t ← x̃ (®r) ; (ct , ot) ← ComVal(ck, t)

Let д(®S) := F̃ (®r, ®S) · ũ(®S) := д1(®S) · ũ(®S)

(c1, o1) ← ComPoly(ck, д1) ; ®σ ← H2(cF , c1, ®r);

y∗ ← д1(®σ); (c∗, o∗) ← ComVal(ck, y∗)

π1 ← CPpoly .Prove(ekp, ®σ , (c1, c∗), (д1, y∗), (o1, o∗))

πF ← CPpoly .Prove(ekp, (®r, ®σ), (cF , c∗), (F̃ , F̃ (®r, ®σ)), (oF , o∗))

πsc ← CPsc .Prove(eks , д0, (ct , c1, cu), (t, д̃1, ũ), (ot , o1, ou))

π := (ct , ot , c1, c∗, y∗, o∗, π1, πF , πsc)

CPlin.VerProof∗
(
vkF , ®x , cu ,π

)
→ b ∈ {0, 1} :

®r ← H1(cF , cu, ®x) ; t ← x̃ (®r) ; ®σ ← H2(cF , c1, ®r)

b ← VerCommit(cvk, ct , t, ot) ∧ VerCommit(cvk, c∗, y∗, o∗)

∧ CPsc .VerProof(vkp, д0, (ct , c1, cu), πsc)

∧ CPpoly .VerProof(vks , ®σ , (c1, c∗), π1)

∧ CPpoly .VerProof(vkp, (®r, ®σ), (cF , c∗), πF)

Figure 14: CP-SNARK for specializable universal Rlin

H.5 A CP-SNARK for data-parallel
computations

In this section we discuss how a CP-SNARK for relations Rpar

and Rparjnt
, and for the commitment scheme PolyCom of [71] can

be obtained by merging ideas from [71] and [69]. Such a merge of

techniques was hinted possible in [69]. Here we givemore details on

how such a scheme looks like. Themainmotivation of studying such

a scheme is that the commitment part of the proof (and similarly a

factor of the verification time) is O(log |w |), instead of O(
√
|w |).

An Abstract Version of Hyrax. Hyrax [69] is a zero-knowledge
proof, based on discrete log in the random oracle model that is

based on the CMT protocol [27]. Hyrax extends CMT, which is

particularly suited for circuits composed of parallel identical basic

blocks, by supporting non-determinism in zero-knowledge, as well

as including other optimizations. Its basic structure as an interactive

protocol: (i) the prover creates a commitment cw to the witness

®w (a vector of field elements); (ii) the parties run a ZK variant of

CMT (including optimizations from Giraffe++ [66]); (iii) the prover
“links” together the outputs of steps (i) and (ii). For this, it must

prove that the MLE w̃ of the witness in cw evaluated on a random

point qd is equal to another value y committed in ζ .
In Figure 15 we formalize this structure via a generic use of a com-

mitment scheme for polynomials and a proof system for proving the

correct evaluations of committed polynomials. For these two tools

we use the syntax formalized in Appendix H. We call this scheme

Hyrax-Abstract. It is clear from the security proof of [69] that one

could rephrase their security statement so that Hyrax-Abstract has
witness extended emulation if PolyCom is an extractable commit-

ment and CPpoly is a NIZK argument of knowledge for polynomial

evaluations.

Instantiating Hyrax-Abstract with PolyCom. We call Hyrax −
PolyCom the instantiation of Hyrax-Abstract with the PolyCom
commitment and CPpoly argument from [71] as described in Ap-

pendix G. This is essentially the only difference with the original

Hyrax scheme that uses (an extension of) a matrix commitment of

size O(|w |1/l) and Bulletproof for proving polynomial evaluations

with O(|w |(l−1)/l) verification time. In HyrPoly there is instead a

succinct commitment (of constant size) and a verification time, in

step (iii), of O(log(|w |)).

Using HyrPoly for Data-Parallel Computations. Hyrax, and in

particular its Gir
++

core protocol, is designed to work on arithmetic

circuits of fan-in two, consisting of N identical sub-computations,

each having d layers and width at most G. For this class of cir-
cuits, considering Hyrax’s cost analysis combined with the costs

of PolyCom commitment and CPpoly, we have that in HyrPoly: the
verifier runs in timeO(|x |+ |y |+dG +λd log(NG)) and proofs have
length O(λd log(NG)).

It is easy to see that the relation Rpar((uj)j ∈[N]) :=
∧N
j=1 R

′(uj)

can be modeled with an arithmetic circuit C consisting of N copies

of a circuit C ′ that outputs 0 on uj iff R′(uj) holds.
If we instead consider a parallel relation with joint inputs, i.e.,

Rparjnt(u) :=
∧N
j=1 R

′(u ′j) where each u ′j is a subset of the entries

of u, a corresponding circuit can be built by taking the parallel C
as for Rpar

, and by adding one layer – called redistribution layer
(RDL) in [69] – that appropriately duplicates and redistributes wires

from the input layer to the input wires of each C ′ copy. In the case

of using an RDL, the verifier of Hyrax, and also in our HyrPoly
scheme, incurs an additional overhead in running time of the verifier

O(|x |+ |u |+NG). Essentially, for this break of parallelism the verifier

must pay a cost in the total width of the circuit.

For the sake of our experiments, we callHyrPoly-Par theHyrPoly
scheme executed on fully parallel circuits (no RDL), and we call

HyrPoly-RDL the version of Hyrax − PolyCom executed with cir-

cuits with an RDL.

I A CP-SNARK FOR INTERNAL PRODUCTS
FROM THALER’S PROTOCOL

In this section we show how to modify the zk-vSQL protocol of

[71] in order to efficiently with a special class of circuits that simply

consist of a tree of multiplications. The basic idea is to replace the

CMT protocol over homomorphic commitment schemes proposed

in [71] with an analogous version of the protocol proposed by

Thaler [63] for the specific case of trees of multiplications. The

advantage of this encoding is to bring the prover runtime linear in

the number of gates in the circuit.

We first explain some preliminaries and then present this con-

struction.

I.1 CMT Protocol
The CMT protocol [27] is a variant of the GKR protocol [37] where

the prover runs in time O(S log S), where S is the size of the circuit.

27

Hyrax-Abstract.Setup(1λ) → ck :

ck← PolyCom.Setup(1λ)

Hyrax-Abstract.KeyGen(ck) → (ek, vk) :

(ek, vk) ← CPpoly .KeyGen(ck)

Hyrax-Abstract.Prove(ek,u) → π :

(cũ, oũ) ← ComPoly(ck, ũ)

(πcore, qd , ζ) ← ZK-Gir++CoreP (ek, u)

y ← ũ(qd); (cy, oy) ← ComVal(ck, y)

πeval ← CPpoly .Prove(ek, qd , (cũ, cy), (ũ, y), (oũ, oy))

πeq ← NIPoK-EqP (cy, ζ)

π ←
(
cũ, πcore, cy, πeval, πeq

)
Hyrax-Abstract.VerProof

(
vk, cũ ,πcore, cy ,πeval,πeq

)
:

(qd , ζ) ← ZK-Gir++CoreV (vk, πcore)

Run and test CheckCom(vk, cũ) and CheckCom(vk, cy)

Run and test CPpoly .VerProof(vk, qd , cũ, cy, πeval)

Run and test NIPoK-EqV (πeq, cy, ζ)

Accept if all tests above pass

Figure 15: Pseudocode for Hyrax-Abstract.

This protocol provides a proof that an element is the output of a

circuit evaluated over a certain input. That is y = C(®x), where C is

a circuit of depth d , ®x are the wires of layer d and y is claimed to

be the output wire of the first layer 0. In short, the prover reduces

recursively a claim on layer i to another claim on layer i + 1, until
he obtains a publicly verifiable claim on the input. In order to do

that, both prover and verifier engage in a sum-check protocol for

each layer, using one polynomial representing the values of the

wires in layer i . Its multilinear extension links layer i (of size si) to
layer i + 1 by a summation of wiring predicates as follows

Ṽi (®q) =
∑

®b ∈{0,1}si
®l, ®r ∈{0,1}si+1

д
(i)
®q (
®b, ®r , ®l) :=

∑
®b ∈{0,1}si
®l, ®r ∈{0,1}si+1

˜βi (®q, ®b) · . . .

(
ãddi+1(®l , ®r , ®b)·(Ṽi+1(®l) + Ṽi+1(®r)) + m̃uli+1(®l , ®r , ®b)·Ṽi+1(®l)·Ṽi+1(®r)

)
where Ṽi returns the value of one gate, ˜βi (®q, ®b) = ®q

?

= ®b is a selector

function, and õpni (®l , ®r , ®b) checks whether the value of gate ®b at layer
i is the result of an opn ∈ {add,mul} addition or multiplication

gate with
®l and ®r being its left and right inputs in the (i+1)th−layer.

The standard version of the protocol suggests that for each layer

of the circuit the verifier has to check two claims. This results

in O(2d) calls to the sum-check protocol. However, an ingenious

technique shows how to use a single claim per layer using a line

through both values. Then the verifier chooses one random point

on which they perform a single sum-check invocation per layer,

resulting in O(d) calls.

I.2 Thaler’s Protocol for Trees of
Multiplications

In [63], Thaler proposes another variation of the CMT/GKR pro-

tocol [27, 37] for some specific classes of circuits, allowing for a

logarithmic factor reduction in the prover’s runtime. One of the his

protocols takes advantage of circuits where all gates perform the

same operation, and whose wires are settled in a binary tree struc-

ture. He denotes these regular circuits by trees of multiplications or
additions. This section only shows the notation of the former one

due to its suitability for our construction of CPsfprm. Nonetheless,

moving to the addition case is straightforward.

The main difference that will be discussed here is a different

polynomial for sum-check, as well as the notation of the wiring

predicates. Thaler’s protocol assumes highly structured wiring in

order to reduce the number of arguments of the predicates. Namely,

given a gate at layer i with label
®b ∈ {0, 1}si , we assume its value

is the result of a multiplication of gates of layer i + 1 with labels

(®b |0) ∈ {0, 1}si+1 and (®b |1) ∈ {0, 1}si+1. This means, the number of

inputs to the circuit is a power of two and each layer has half the

size of its preceding one. On this basis, the resulting polynomial of

each layer is much simpler as shown below:

Ṽi (®q) =
∑

®b ∈{0,1}si

д
(i)
®q (
®b) =

∑
®b ∈{0,1}si

˜βi (®q, ®b) · Ṽi+1(®b |0) · Ṽi+1(®b |1)

This tweak, together with a series of precomputations of
˜βi (®q, ®b)

and Ṽi+1(®b) values allows to obtain a linear-time prover.

I.3 Adapting zk-vSQL to Thaler’s Protocol
Here we show how to change the CMT protocol over homomorphic

commitments in [71, Construction 3] in order to work with circuits

that are a tree of multiplication gates using Thaler’s representation

?? to achieve faster prover runtime. From the point of view of

security, this modification of [71, Construction 3] does not require

any significant change; essentially a proof would be a rewrite of

the one in [71], and we leave it for an extended version of the paper.

The precise description of the protocol is however interesting and

therefore we give it for completeness in Figure 16.

Let C : Fm → F be a depth-d binary tree of multiplications such

that C(®y) = z represents the operation z =
∏m

i=1 yi wherem is a

power of two, and let ck← Setup(1λ) be a commitment key of a

linearly homomorphic commitment scheme. The protocol in Figure

16 allows a prover P to convince a verifierV that C(®y) = z with
respect to ®y and z committed in {cyj }j ∈{1...m } and cz .

As in [71], let ZKeq (resp. ZKprod) be a zero-knowledge argument

of knowledge for testing equality of two committed values (resp.

the product relation between three commitments).

A Succinct Zero Knowledge Argument for Rprd. In Figure 17

we give the succinct version of the protocol TTMCom
presented in

Figure 16. The protocol is almost identical to Construction 4 in [71]

except for a few simplifications due to the fact that in our case the

input and output of the circuit are assumed to be already committed

and these commitments are known to the verifier, and that all the

input is committed (i.e., there is no public input). Basically, the

idea is that prover and verifier run the TTMCom
protocol until they

28

TTMCom
:

1 : Common input: cvk ; r0 = 0 ; c0 := cz ; (cyj)j∈{1. . .m}
2 : P input: ck ; t0 := z ; o0 := oz ; ®y ; (oyj)j∈{1. . .m}
3 : for i = 0 . . . d − 1 :

4 : Run Step 1 of Construction 2 [71] (sum-check over homomorphic

5 : commitments) on the claim ti = Vi (®ri) =
∑

b∈{0,1}si
д(i)
®ri
(®b)

6 : At the end of Step 1, P and V hold ®r ′i ∈ F
si ,

7 : and commitment c′i to t
′
i = д

(i)
®ri
(®r ′i)

8 : P : Claims that VerCommit(cvk, c′i , t
′
1
, o′i) = 1

9 : P : (cR, oR) ← ComVal
(
ck, vR := Ṽi+1(®r ′i |0)

)
10 : P : (cL, oL) ← ComVal

(
ck, vL := Ṽi+1(®r ′i |1)

)
11 : P : (c∗, o∗) ← ComVal

(
ck, v∗ := vL · vR

)
12 : P → V : cR, cL, c∗

13 : P and V run ZKprod
(
ck, (cL, cR, c∗); ((vL, vR, v∗), (oL, oR, o∗))

)
14 : P : (c∗i , o

∗
i) ← HomEval(cvk, ˜βi (®ri , ®r ′i), c

∗, o∗)

15 : V : (c∗i , ·) ← HomEval(cvk, ˜βi (®ri , ®r ′i), c
∗, ·)

16 : P and V run ZKeq
(
ck, (c′i , c

∗
i); (t

′
i , (o

′
i , o
∗
i))

)
17 : P : Compute (cℓj , oℓj) ← ComVal(ck, ℓj)

18 : where ℓ(ρ) = Ṽi+1(®r ′i |ρ) for ρ ∈ F and ℓj its coefficients

19 : P → V : {cℓj }j∈{0. . .si+1}
20 : P : cℓ(0) ← cℓ0
21 : (cℓ(1), oℓ(1)) ← HomEval(cvk, (1, . . . , 1), {cℓj , oℓj }j∈[0,si+1])

22 : V : cℓ(0) ← cℓ0 ; (cℓ(1), ·) ← HomEval(cvk, (1, . . . , 1), {cℓj }, ·)

23 : P and V run ZKeq
(
ck, (cR, cℓ(0)); (vR, oR, oℓ0)

)
24 : P and V run ZKeq

(
ck, (cL, cℓ(1)); (vL, oL, oℓ(1))

)
25 : V → P : r ′′i ←$F and define ®ri+1 ← (®r ′i |r

′′
i)

26 : V : (ci+1, ·)←HomEval
(
ck, (1, r ′′i , ..., r

′′
i
si+1), {cℓj }j∈[0,si+1], ·

)
27 : P : ®ri+1 ← (®r ′i |r

′′
i) ; ti+1 ← Ṽi+1(®ri+1)

28 : P : (ci+1,oi+1)←HomEval
(
ck,(1, r ′′i , ..., r

′′
i
si+1), {cℓj , oℓj}j∈[0,si+1]

)
29 : endfor

30 : P → V : ®y ; (oyj)j∈{1. . .m} ; o0
31 : V : {VerCommit(cvk, cyj , yj , oyj)}

m
j=1 ; VerCommit(cvk, c0, t0, o0)

32 : V : (c∗y, o
∗
y) ← ComVal(ck, Ṽy (®rd)) where MLE(Vy (j) = yj) = Ṽy

33 : V → P : o∗y

34 : P and V run ZKeq
(
ck, (c∗y, cd); (Ṽy (®rd), o

∗
y, od)

)
Figure 16: Thaler’s tree of multiplications over homomor-
phic commitment schemes. Main differences from [71, Con-
struction 3] in blue

get to the end of the last round (line 29). Then the last lines of

TTMCom
– in which the prover opens the commitments to input

and output and the verifier gets convinced that cd opens to ỹ(®rd) –
are replaced with a step that does the same: the prover uses CPpoly
to prove that cd opens to ỹ(®rd) with respect to the commitment cy .
For the polynomial commitments and the proof system for their

evaluations we use our notation of Section H.

SuccinctZK − TTM :

Preprocessing: generate the commitment key

(ck, cvk) ← PolyCom.Setup(1λ)

for m-variate multilinear polynomials.

(ek, vk) ← CPpoly .Setup(ck)

Evaluation: on common input (cy, cz) ; P input (z, ỹ, oy)

V : CheckCom(vk, cy) ∧ CheckCom(vk, cz)

P, V : Execute TTMCom
until line 29 :

Both hold ®rd , cd ; P holds and opening od of Ṽd (®rd) = ỹ(®rd)

P → V : πy ← CPpoly .Prove(ek, ®ry, (cy,cd), (ỹ,ỹ(r̃d)), (oy,od))

V : CPpoly .VerProof(vk, ®rd , cṼd , cd , πd)

Figure 17: Succinct zero-knowledge argument for TTMCom

J CP-SNARKS FOR CIRCUITS
Here we formalize the ideas sketched in Section 6 in order to use

the modular commit-and-prove approach to obtain new zkSNARKs

for computation expressible by arithmetic circuits. Precisely, we

show new CP-SNARKs for (1) arithmetic circuit satisfiability, and

(2) parallel computation on joint inputs.

In both constructions the idea is to break the target problem into

the conjunction of simpler relations with shared input. Once having

done this, and assuming the existence of CP-SNARKs for these

simpler relations and that share the same commitment scheme, we

immediately obtain a CP-SNARK for the target problem by applying

our composition Theorem 3.2. Furthermore, thanks to our lifting

transformation of Section 3.5 sharing the same commitment scheme

is not a restricting requirement.

Preliminaries: equalities among vector entries. A common

building block in both schemes of this section is a system for prov-

ing that the entries of a vector satisfy a set of equalities between

them. Namely, given a set S of pairs of indices (i,k), we define a
relation R

veq
S that holds for a vector ®u iff ui = uk for all (i,k) ∈ S .

In what follows we discuss different ways to encode this relation:

Definition J.1 (Relation for equalities among vector entries). Let
D be some domain (e.g., a finite field F), let n0, . . . ,nℓ be posi-

tive integers such that Dj := D
nj

and let m =
∑ℓ
j=0 nj . Given a

set S = {(i1,k1), . . . , (il ,kl)} ⊂ [m] × [m], we define a relation R
veq
S

over D0 × · · · × Dℓ = D
m

such that: R
veq
S

(
®y := (®x , (®uj)j ∈[ℓ])

)
= 1

⇐⇒ ∀(i,k) ∈ S : yi = yk .

In what follows we discuss different ways to encode the above

relation.

Relation R
veq
S can be expressed using R

sfprm
ϕ (see Section 5.4)for

an appropriate permutation ϕ that encodes S . The idea is that a

set S ⊂ [m] × [m] can be seen as the description of an undirected

graph with 2m vertices. From S it is possible to extract another

set S ′ ⊂ [m] × [m] that contains a cycle ((i1,k1), . . . , (it ,kt)) for
every connected component of the graph represented by S . Tak-
ing the product of all the cycles in S ′ defines a permutation ϕ :

[m] → [m] such that ∀(i,k) ∈ S : yi = yk iff ∀j ∈ [m] : yj = yϕ(j).
29

Then for such ϕ computed from S we have R
veq
S (®x , (®uj)j ∈[ℓ]) ⇐⇒

R
sfprm
ϕ (®x , (®uj)j ∈[ℓ]).

At this point one can either design a proof system for R
sfprm
ϕ

(as in Section 5.4) or use an alternative encoding of R
sfprm
ϕ based

on linear constraints. The idea is to evaluate the relation on a vec-

tor ®y ∈ Fm by checking that Z · ®y = ®0, where Z ∈ Fm
′×m

, with

m′ ≤ m, is the matrix obtained by removing the zero rows from

(I − Σϕ) ∈ Fm×m , where Σϕ is the permutation matrix represent-

ing ϕ. Then clearly R
sfprm
ϕ (®x , (®uj)j ∈[ℓ]) holds iff Rlin

Z (
®0, ®x , (®uj)j ∈[ℓ])

holds, where the relation Rlin
, modelling the linear property over

(committed) vectors, is formally defined as follows.

Definition J.2 (Linear property relation). Let n1,n2,m1, . . . ,mℓ

be integers such that {Dx, j := D
nj }j ∈[1,2], {Du, j := D

mj }j ∈[ℓ],

andm = n2 +
∑ℓ
j=1mj . Given a matrix F ∈ Dn1×m

, we define a

relation Rlin
F over Dx,1 × Dx,2 × Du,1 × · · · × Du, ℓ such that:

Rlin
F

(
®x1, ®x2, (®uj)j ∈[ℓ]

)
= 1 ⇐⇒ F·®y = ®x1, where ®y := (®x2, (®uj)j ∈[ℓ])

Note that the above relation Rlin
is slightly different from the one

supported by CPPed
lin of Section 4.2. The only difference is that in

CPPed
lin the linear function is not applied over public inputs. However,

this small discrepancy can be easily solved by adding a commitment

to the additional public input ®x2 and opening this commitment.

J.1 Arithmetic Circuit Satisfiability
Let us consider the problem of arithmetic circuit satisfiability.

Definition J.3. Let C : Fnx × Fnw → Fl be an arithmetic circuit,

where nx ,nw , l ∈ N denote input, witness and output length. We

define the arithmetic circuit satisfiability relation Rac
C (®x , ®w) as the

set of pairs such that C(®x , ®w) = ®0l .

We show two solutions to model the above relation using a

commit-and-prove paradigm. The first one is similar to that of

Groth [39] (recently used in [19]) and encodes arithmetic circuit

satisfiability using Hadamard products, additions and permutations

of (committed) vectors. The second one relies on the encoding put

forward by Bootle et al. [18] that reduces the relation Rac
to an

Hadamard product and a set of linear constraints.

Arithmetic Circuit Satisfiability through Hadamard, Addi-
tion and Equalities. Any arithmetic circuit C consists of NA
addition gates, NM multiplication gates, both of fan-in 2, and NC
multiplication-by-constant gates, of fan-in 1. Each gate has a left

input, a right input and an output wire;
21

also each output wire can

be input to another gate. This means that C can be described by

integers NA,NM ,NC , a vector ®c ∈ F
NC

of constants, and the wiring

information saying that the output wire of addition/multiplication

i is the left/right input of addition/multiplication gate j. With such

a representation ∃ ®w : C(®x , ®w) = ®0l can be encoded by showing the

existence of an assignment to the inputs and outputs of C’s gates
that satisfies every gate, that is consistent with the wiring of C as

well as with the public input ®x and the output ®0.

More formally, consider an arithmetic circuitC :Fnx × Fnw→ Fl

with NA addition gates, NM multiplication gates, and NC multipli-

cation by constant gates, and where we split the witness ®w between

21
We model gates of fan-in 1 as having only a left input.

committed witness ®u ∈ Fnu and free witness ®ω ∈ Fnω . Assume we

arrange the wires ofC so as to have, orderly: the nx input wires, the

nu committed witness wires, the l output wires, the 3NA left, right

and output wires of the addition gates, the 3NM left, right and out-

put wires of the multiplication gates, and the 2NC input and output

wires of the multiplication-by-constant gates. All these wires can be

indexed by integers from 1 tom = nx + nu+ l + 3(NA+NM) + 2NC ,
and the wiring information ofC can be described by a set S of pairs

(i,k) ∈ [m] × [m] indicating that the wire at position i is connected
to the wire at position k .

Thereforewemodel an arithmetic circuitC with a tuple (nx ,nu , l ,
NA,NM ,NC , ®c, S). Then proving ∃(®u, ®ω) Rac

C (®x , ®u, ®ω) can be done by
proving the existence of a vector ®uw , that is the concatenation of

vectors ®uw := (®uAL , ®u
A
R , ®u

A
O , ®u

M
L , ®u

M
R , ®u

M
O , ®u

C
I , ®u

C
O), such that

Rac
C (®x , ®u, ®uw) := Radd(®u

A
L , ®u

A
R , ®u

A
O) ∧ Rhad(®u

C
I , ®c, ®u

C
O)

∧ Rhad(®u
M
L , ®u

M
R , ®u

M
O) ∧ R

veq
S ((®x ,

®0), ®u, ®uw)

where Radd(®u
A
L , ®u

A
R , ®u

A
O) is the relation expressing the predicate

®uAL + ®u
A
R

?

= ®uAO , and Rhad(®u
M
L , ®u

M
R , ®u

M
O) is the Hadamard product

relation ®uML ◦ ®u
M
R

?

= ®uMO (i.e., uML, j · u
M
R, j = u

M
O, j for all j ∈ [3NM]).

If Com is a linearly homomorphic and extractable commitment

scheme, a proof system for Radd comes for free. Therefore, by defini-

tion of Rac
C and our Theorem 3.2 we obtain the following corollary.

Corollary J.4. If there exist CP-SNARKs CPhad and CPveq for a
linearly-homomorphic extractable commitment scheme Com and for
relations Rhad and Rveq respectively, then there is a CP-SNARK CPac
for Com and relation Rac

C .

Arithmetic Circuit Satisfiability throughHadamard and Lin-
ear Constraints. Following [18, 23], an arithmetic circuitC can be

described by a tuple (nx ,nu ,N ,WL ,WR ,WO ,Wx ,WU , ®c) where
nx and nu are the input and (committed) witness lengths respec-

tively, N is the number of multiplication gates, and the matrices

WL ,WR ,WO ∈ F
Q×N ,Wx ∈ F

Q×nx ,WU ∈ F
Q×nu

and vector

®c ∈ FQ describe a system of linear equations over the wires of C .
Using such a definition, C is satisfied by (®x , ®u) if there exist three
vectors ®uML , ®u

M
R , ®u

M
O ∈ F

N
such that

®uML ◦®u
M
R = ®u

M
O ∧ WL · ®u

M
L +WR · ®u

M
R +WO · ®u

M
O +Wx · ®x+WU · ®u = ®c

which for F = (Wx ,WU ,WL ,WR ,WO) ∈ F
Q×(nx+nu+3N)

means

Rac
C (®x , ®u, ®uw) := Rhad(®u

M
L , ®u

M
R , ®u

M
O) ∧ R

lin
F (®c, (®x , ®u, ®u

M
L , ®u

M
R , ®u

M
O))

By the above definition of Rac
C and our Theorem 3.2 we obtain:

Corollary J.5. If there exist CP-SNARKs CPhad and CPlin for a
commitment scheme Com and for relations Rhad and Rlin respectively,
then there is a CP-SNARK CPac for Com and relation Rac

C .

J.2 Parallel Computation on Joint Inputs
Consider relations Rparjnt(u) :=

∧N
j=1 R

′(u ′j) where each u
′
j is a sub-

set of the entries of u.
One way to deal with Rparjnt

is by defining the arithmetic circuit

that computes it (cf. Fig. 2b). The Hyrax system is particularly

designed for parallel circuits [69]; they deal with non-parallel input

by introducing a (non-parallel) redistribution layer (RDL) layer that

redistributes the input and feeds it to the identical sub-circuits at

30

the next level. Unfortunately an effect of using an RDL is that the

verifier must pay an additional cost linear in the total width of the

circuit. This makes verification time pretty high in applications like

the Merkle tree example above.

Here we propose another natural modeling of relations with

joint inputs, that is the simple conjunction of two relations: Rpar

that models fully parallel checks of some R′ on disjoint inputs,
and another relation that models the consistency of the shared

inputs across the (fully) parallel executions. The advantage of this

encoding is that Rpar
is now fully parallel and one could use for it

a system for parallel computation without any caveat, whereas to

check the consistency of shared input one can use a system for the

Rveq
relation from Definition J.1.

More formally, we define a parallel relation on disjoint inputs as

follows.

Definition J.6 (Parallel relation on disjoint inputs). For a relation
R′ overD ′ and an integer N ≥ 1, a parallel relation R

par
R′ on disjoint

inputs is defined as R
par
R′ (®u := (uj)j ∈[N] ∈ (D

′)N) :=
∧N
j=1 R

′(uj).

From Rpar
and Rveq

we define a relation for parallel checks on

joint inputs.

Definition J.7 (Parallel relation on joint inputs). Let n0,n1,n′,N ∈
N be integers such that n′,N ≥ 1 and n0,n1 ≥ 0, and letm = n0 +

n1+N ·n
′
. LetD be some domain, R′ be a relation overD ′ := Dn′

,

and a set S = {(i1,k1), . . . , (il ,kl)} ⊂ [m] × [m]. R
parjnt
R′,S is a relation

overDx ×D1×D2, withDx := Dn0
,D1 := D

n1
andD2 := D

Nn′
,

such that: R
parjnt
R′,S (®x , ®u1, ®u2) := R

par
R′ (®u2) ∧ R

veq
S (®x , ®u1, ®u2)

Basically, R
parjnt
R′,S models the parallel checking of R′ on N differ-

ent subsets of the entries of (®x , ®u1) (consisting of a public ®x and

committed ®u1) where such subsets are defined by the set S , and
their concatenation is the vector ®u2. Alternatively, if ®x , ®u1 are empty,

R
parjnt
R′,S models the parallel checking of R′ on N different sets of

inputs with some shared values (as specified by S).
From the definition of Rparjnt

and our Theorem 3.2 we obtain

the following corollary.

Corollary J.8. If there exist CP-SNARKs CPpar and CPveq for a
commitment scheme Com relations Rpar and Rveq respectively, then
there is a CP-SNARK CPparjnt for Com and relations Rparjnt.

K COMMIT AND PROVE SNARKS FROM
EXISTING SCHEMES

In this section we give details supporting our claims of Section 3.4.

Background onQuadratic Arithmetic Programs. Since several
of the SNARKs considered in this section rely on quadratic arith-

metic programs [33] here we recall this notion.

Definition K.1 (QAP [33]). AQuadratic Arithmetic Program (QAP)

Q = (A,B,C, t(Z)) of size m and degree d over a finite field F
is defined by three sets of polynomials A := {ai (Z)}

m
i=0,B :=

{bi (Z)}
m
i=0,C := {ci (Z)}

m
i=0 of degree ≤ d − 1, and a target degree-

d polynomial t(Z). Given Q we define a relation RQ over pairs

(®x , ®w) ∈ Fn × Fm−n that holds iff there exists a polynomial h(X)

(of degree at most d − 2) such that:(m∑
k=0

yk · ak (Z)

)
·

(m∑
k=0

yk · bk (Z)

)
=

(m∑
k=0

yk · ck (Z)

)
+ h(Z)t(Z)

(1)

where y0 = 1, yk = xk for all k = 1 to n, and yk = wk−n for

k = n + 1 tom.

K.1 “Adaptive Pinocchio” [65]
The Adaptive Pinocchio scheme proposed in [65] yields a CP-

SNARK for QAP relations RQ (®x , ®u, ®ω). First, note that [65] already
presents the scheme as a commit-and-prove SNARK for QAP re-

lations RQ (®u1, . . . , ®uℓ , ®ω), and for an extractable trapdoor com-

mitment scheme, which is the one proposed by Groth in [40].

Second, observe that the commitment key consists of two vec-

tors ®S := [1, s, s2, . . . , sd]1, ®S
′
:= [α ,αs,αs2, . . . ,αsd]2, for ran-

dom s,α ←$Zq , and the commitment to ®uj is a pair (C,C ′) =

(r , ®u⊤j) · (
®S, ®S ′). To see how this implies a CP-SNARK for RQ (®x , ®u, ®ω),

consider ℓ = 2 so that the first input ®u1 is used for the public input

®x (the corresponding commitment can be a dummy one) and the

second one for the actual committed value ®u. Also, to fit our syntax
let C be the actual commitment whereas C ′ is part of the proof.

K.2 Lipmaa’s Hadamard Product Argument
[51]

The product argument proposed by Lipmaa in [51] is a commit-and-

prove SNARK for the Hadamard product relation Rhad(®a, ®b, ®c). In

this case the commitment key ck are two vectors ®S := [Z (χ), ℓ1(χ),

. . . , ℓm (χ)]
⊤
1
and ®S ′ := [γZ (χ),γ ℓ1(χ), . . . ,γ ℓm (χ)]

⊤
2
, for random

χ ,γ ←$Zq , where, form a power of two and ω them-th root of

unity modulo q, Z (X) =
∏m

i=1(X − ω
i−1) and ℓi (X) is the i-th La-

grange basis polynomial (such distribution of ck guarantees binding

under them-PDL assumption [50, 51]). A commitment to ®a is a pair

(A1,A2) = (ra , ®a
⊤) · (®S, ®S ′) (and similarly to

®b, ®c). As in the previous

section, to fit our CP-SNARK syntax we can think of A1,B1,C1 as

the actual commitments and let their “knowledge components” as

part of the proof.

K.3 zk-vSQL [71]
The zk-vSQL protocol [71] is a CP-SNARK for relationsR((uj)j ∈[ℓ])

22

where R is an arithmetic circuit (that we assume to output some

constant, e.g., 0, on acceptance), and for the commitment scheme

PolyCom introduced in [71] and recalled in Appendix G.
23

The

commit and prove capability is immediate by the construction and

security of [71]. In what follows we observe that their commitments

can also be seen as a variant of extended Pedersen commitment.

This observation is crucial to see that we can apply our lifting

transformation using our CPlink scheme to zk-vSQL. Let us recall

that for an input ®u ∈ Zmq (for some m = 2
µ
), its commitment is

ComPoly(ck, ũ) where ũ is the multilinear extension of ®u (cf. sec-

tion 5.1 about multilinear extensions). In particular, such MLE is

22
Precisely, although the scheme in [71] is describedwith a singleu , the same technique

used in its predecessor [70] trivially allows to let it work with multiple commitments.

23
Here we are considering the non-interactive version in the random oracle model

obtained after applying the Fiat-Shamir transform.

31

the following µ-variate multilinear polynomial

ũ(X1, . . . ,Xµ) =

m−1∑
i=0

χi (X1, . . . ,Xµ) · ui+1

Since c returned by ComPoly(ck, ũ, ρ) is defined as [ũ(s1, . . . , sµ)+
ρsµ+1]1 and the common reference string includes the monomials

[
∏

j ∈W sj]1 for all possible subsets of indicesW needed to evaluate

such a ũ, c can also be seen as a Pedersen commitment c = (ρ,u⊤) ·
[sµ+1, χ0(s1, . . . , sµ), . . . , χm−1(s1, . . . , sµ)]

⊤
1
= (ρ,u⊤) · ck, where

the elements [χi (s1, . . . , sµ)]1 can be publicly computed from the

existing key. Note that this commitment is binding. This can be

seen via a simple reduction to the soundness of the polynomial

delegation protocol in [71]. The idea is that from an adversary that

opens the commitment to two different polynomials ũ1, ũ2 one can
sample a random t such that with overwhelming probability y1 =
ũ1(t) , ũ2(t) = y2, honestly compute a proof for the evaluation of

y1 = ũ1(t) and then claim this is an evaluation for ũ2(t).

K.4 Geppetto [28]
The Geppetto scheme [28] yields a cc-SNARK for QAP relations

RQ (®x , ®w) where ®x ∈ Z
n
q and ®w = (®u, ®ω) with ®u ∈ Zn

′

q , ®ω ∈ Z
m−n−n′
q

for some integers n,n′. We recall that Geppetto is a SNARK for

MultiQAP relations. A polynomial MultiQAP is a tuple MQ =

(ℓ,J ,A,B,C, t(Z)) such that (A,B,C, t(Z)) is a QAP, and J =
{I0, . . . , Iℓ−1} is a partition of [m]. Let RMQ denote the relation

corresponding toMQ. To model RQ (®x , ®u, ®ω) we consider a Multi-

QAP where ℓ = 3 and where the partition J consists of I0 = [n],
I1 = {n + 1, . . . ,n + n

′} and I2 = {n + n
′ + 1, . . . ,m} such that I0

and I1 are in the binding subset S .
To see how Geppetto yields a cc-SNARK for such family of

relations, we consider the following straightforward modification:

ccGep.KeyGen(RQ) → (ck, ek, vk): run (EK ,VK) ← Geppetto.
KeyGen(RMQ); set ek = EK , vk = VK and let ck be subset of

EK consisting of [ryt(s), rccn+1(s), . . . , rccn+n′(s)]
⊤
1
∈ Gn

′+1
1

.

ccGep.VerCommit(ck, c, ®u,o) → b: output 1 iff (o, ®u⊤) · ck = c .
ccGep.Prove(ek, ®x , ®u, ®ω) → (c,π ;o): compute commitments

C0 ← Geppetto.Commit(EK0, ®x , 0),
24

C1 ← Geppetto.Commit(EK1, ®u,o1),
C2 ← Geppetto.Commit(EK2, ®ω,o2); compute the proof

π ′ ← Geppetto.Prove(EK , (®x , ®u, ®ω), (0,o1,o2)).
Parse C1 as (C1,1,C1,α ,C1,β) ∈ G

3

1
.

Output c = C1,1, π = (C1,α ,C1,β ,C2,π
′), and o = o1.

ccΠ.VerProof(vk, ®x , c,π) → b: recompute C0 ← Geppetto.
Commit(EK0, ®x , 0); reconstruct C1 ← (c,C1,α ,C1,β); for j = 1, 2

check Geppetto.Verify(VKj ,Cj); check Geppetto.Verify(VK ,C0,

C1,C2,π
′).

We claim that assuming Geppetto is a commit-and-prove SNARK

for MultiQAPs (according to the commit-and-prove definition in

[28]), then the scheme ccGep described above is a cc-SNARK for

QAP relations RQ (®x , ®u, ®ω).
The correctness of ccGep immediately follows from the one of

Geppetto, and the same holds for knowledge soundness. Indeed,

24
Setting randomness 0 here is essentially a trick to let this commitment correspond

to the public input of the relation.

notice that the knowledge soundness satisfied by Geppetto pro-

vides extractability of the commitment’s openings. The perfect

zero-knowledge of ccGep follow from the zero-knowledge of Gep-

petto and the perfect hiding of its commitments. Finally, we observe

that by Def. 10 in [28] the polynomials {ck (x)}k ∈I1 are linearly in-

dependent; thus for a random s , the vector [rc t(s), rccn+1(s) , . . . ,
rccn+n′(s)]1 defines a Pedersen commitment keywhose distribution

guarantees the binding property under the d-SDH assumption.

K.5 cc-SNARKs based on Groth’s SNARK
In this section we show that the SNARK of [41] is aweak cc-SNARK,
and then that it can be modified to obtain an efficient cc-SNARK

(with binding commitments). Below we start by giving a back-

ground on non-interative linear proofs, that are instrumental for

presenting the scheme.

Split Non-Interactive Linear Proofs of Degree 2. This notion,
dubbed NILP for brevity, was introduced by Groth [41] as a re-

finement of the linear interactive proofs defined in [17]. A NILP

is a triple of algorithms (LinSetup,ProofMatrix, Test) working as

follows. LinSetup takes in a relation R (e.g., a QAP) and outputs

two vectors ®σ1 ∈ F
µ1 , ®σ2 ∈ F

µ2
. ProofMatrix on input a relation R

and a pair (x ,w) outputs two matrices (Π1,Π2) ∈ F
k1×µ1 × Fk2×µ2

so that a proof (®π1, ®π2) is computed as (Π1 · ®σ1,Π2 · ®σ2). Test on
input a relation R and a statement x outputs a collection of matrices

T1, . . .Tη ∈ F
(µ1+k1)×(µ2+k2)

such that a proof (®π1, ®π2) is accepted

iff (®σ⊤
1
, ®π⊤

1
) ·Ti · (®σ

⊤
2
, ®π⊤

2
) = 0 for all i = 1 to η. A NILP is required

to satisfy completeness, statistical knowledge soundness and zero-

knowledge. Informally, completeness says that honestly computed

proofs for true statements are accepted. Knowledge soundness says

that there must exist an extractor algorithm that on input R,x
and a prover strategy (Π1,Π2) outputs a witness w such that the

probability that (Π1 · ®σ1,Π2 · ®σ2) is accepted while R(x ,w) = 0

is negligible (over the random choices of LinSetup). Finally, (per-
fect) zero-knowledge states requires to show a simulator that with

knowledge of (®σ1, ®σ2,R,x)) outputs proofs (®π1, ®π2) that have the
same distribution as honestly generated ones.

Groth’s zkSNARK [41] is a weak cc-SNARK for QAP rela-
tions RQ (®u). First, we recall the scheme from [41], which is the

one obtained by applying the construction of Figure 18 to the Non-

Interactive Linear Proof (NILP) in Figure 19.

Recall that we consider the case when ®x is void and the witness

®w = ®u (i.e., the commitment is to the entire witness). To see why

this scheme is a weak cc-SNARK for QAP relations RQ (®u) we make

the following observations.

First, let the commitment c to ®u be the value [A]1 = r [δ]1 +∑m
k=0 uk · [ak (τ)]1 + [α]1; this means that ck is [δ , {ak (τ)},α]1

where α ,δ ,τ are random. Second, for knowledge soundness we

observe that from the existing security proof we can also extract

the opening r of [A]1. What is left to argue is the binding of such

commitment. Since the {ak (Z)}k polynomials are not necessarily

linearly independent (see, e.g., [57]) the commitment key ck does

not guarantee binding. However, we can show that the scheme

satisfies weak binding. In a nutshell, this means that it is computa-

tionally infeasible to open [A]1 to two different witnesses ®u and ®u ′

such that RQ (®u) , RQ (®u
′). We show this as follows.

32

KeyGen(RQ)

(®σ1, ®σ2) ←$ LinSetup(RQ)

return σ := ([®σ1]1, [®σ2]2)
Prove(σ ,RQ ,x ,w)

(Π1, Π2) ←$ ProofMatrix(RQ, x, w)

[®π1]1 ← Π1 · [®σ1]1
[®π2]2 ← Π2 · [®σ2]2
return π = ([®π1]1, [®π2]2)

VerProof(σ ,x ,π)

T1, . . . , Tη ←$ Test(RQ, x)

return 1 iff ∀i ∈ [η] :(
[®σ1]1
[®π1]1

)
· Ti ·

(
[®σ2]2
[®π2]2

)
= [0]T

Figure 18: Groth’s generic SNARK in asymmetric groups
from a split NILP.

LinSetup(RQ) → (®σ1, ®σ2)

α, β, γ , δ, τ ←$F∗

®σ1 :=
(
1, α, δ, {τ i }d−1i=0 ,

{
1

γ
(βai (τ) + αbi (τ) + ci (τ))

}n
i=0

,{
1

δ
(βai (τ) + αbi (τ) + ci (τ))

}m
i=n+1

, {
1

δ
τ i t (τ)}d−2i=0

)
®σ2 :=

(
1, β, γ , δ, {τ i }d−1i=0

)
ProofMatrix(RQ , ®x , ®w) → (Π1,Π2)

Compute h(Z) and define ®y from (®x, ®w) as in (1)

r, s ←$F

Let Π1 ∈ F
3×(m+2d+3), Π2 ∈ F

1×(d+4)
s.t.

(A, C)⊤ = Π1 · ®σ1, B = Π2 · ®σ2 with

A := α +
m∑
k=0

yk · ak (τ) + rδ ; B := β +
m∑
k=0

yk · bk (τ) + sδ

C :=

m∑
k=n+1

yk ·
βak (τ) + αbk (τ) + ck (τ)

δ
+

+

d−2∑
i=0

hi
τ i t (τ)
δ

+ As + Br − r sδ

Test(RQ , ®x) → T

Define T ∈ F(m+2d+5)×(d+5) encoding the following quadratic test

A · B = α · β +C · δ + (
n∑
k=0

xk ·
1

γ
(βak (τ) + αbk (τ) + ck (τ))) · γ

Figure 19: Groth’s NILP for a QAP relation RQ (®x , ®w).

Notice that from the two different valid openings (®u,r) and (®u ′,r ′)
of [A]1 we can easily rule out two cases. The first case is the one

where r , r ′: this can be immediately reduced to finding the discrete

log δ . The second case is the one when r = r ′ and
∑
k (uk −u

′
k)ak (Z)

is a nonzero polynomial: this can be reduced to finding the discrete

log τ (which is known as PDL problem [50]), as τ can be computed

by factoring this polynomial. Therefore we are left with the case

when

∑
k (uk−u

′
k)ak (Z) is the zero polynomial, yet ®u , ®u ′.We argue

that it cannot be that RQ (®u) , RQ (®u
′). Indeed, the existing proof

[41][Theorem 1] shows that equalitiesA = α +rδ +
∑m
k=0Ck ·ak (τ)

and B = β + sδ +
∑m
k=0Ck · bj (τ) hold, where {Ck }

m
k=0 are the

same coefficients of the term

∑m
k=0Ck ·

αbk (τ)+βak (τ)+ck (τ)
δ in C .

Therefore, if the commitment A opens to ®u ′ then it must be the

case that Ck = u
′
k , but in this case the QAP would be satisfied (i.e.,

RQ (®u
′) = 1) contradicting that u ′ is an invalid witness for RQ .

A new cc-SNARK for QAP relations RQ (®u, ®ω). Here we show

how we can modify the zkSNARK of [41] in order to obtain a cc-

SNARK for proving the satisfiability of QAP relations of the form

RQ (®u, ®ω), that is a scheme where the commitment is to a portion,

®u, of the witness and where the public input is void.

In our construction we consider an augmented QAP (in the sense

of [13]), which is a QAP as in Definition K.1 with the additional

property that the polynomials ak (X) for k = 0 to n are linearly
independent.

Our new cc-SNARK is the scheme obtained by applying the

generic SNARK construction of [41] recalled in Figure 18 to theNILP

in Figure 20. To match the cc-SNARK syntax we let the commitment

be the proof element [D]1. Clearly, [D]1 can be seen as a Pedersen

commitment for the key ck = [ηγ , {
1

γ (βai (τ)+αbi (τ)+ci (τ))}
n
i=0]1.

By the linear independence of the ai (Z) polynomials the binding of

this commitment can be reduced to the PDL assumption. Correct-

ness and knowledge soundness follow from the proof of the generic

construction in [41], assuming that the construction in Figure 20 is

a NILP. We show that this is the case in the following theorem.

Theorem K.2. The construction in Figure 20 is a NILP with per-
fect completeness, perfect zero-knowledge and statistical knowledge
soundness against affine provers.

Proof Perfect completeness is easy to verify. For perfect zero-

knowledge, we define the simulator that samples A,B,D ←$F at
random and then findsC so that the verification test is satisfied. This

shows that real and simulated proofs are identically distributed.

For knowledge soundness, let (Π1,Π2) ∈ F
3×(m+2d+5)×F1×(d+4)

be an affine prover strategy. First, we define the extractor as the one

that returns aswitness component ®ω the entries of the second row of

Π1 corresponding to the terms

{
1

δ (βai (τ) + αbi (τ) + ci (τ))
}m
i=n+1,

and as witness component ®u the entries in the third row of Π1 cor-

responding to the terms

{
1

γ (βai (τ) + αbi (τ) + ci (τ))
}n
i=1

. For the

cc-SNARK knowledge soundness, we need to additionally extract

the commitment opening that can be taken from the entry in the

third row of Π1 corresponding to the term
η
γ .

Once defined the extractor, we need to show that the probability

that the proof verifies and the relation RQ (®u, ®ω) does not hold is

negligible. This proof is essentially identical to the one used for the

NILP of [41]; we defer a complete proof to an extended version of

the paper. □

33

LinSetup(RQ) → (®σ1, ®σ2)

α, β, γ , δ, η, τ ←$F∗

®σ1 :=
(
1, α, δ, {τ i }d−1i=0 ,

{
1

γ
(βai (τ) + αbi (τ) + ci (τ))

}n
i=0

,
η
γ
,{

1

δ
(βai (τ) + αbi (τ) + ci (τ))

}m
i=n+1

, {
1

δ
τ i t (τ)}d−2i=0 ,

η
δ

)
®σ2 :=

(
1, β, γ , δ, {τ i }d−1i=0

)
ProofMatrix(RQ , ®w) → (Π1,Π2)

Let ®w := (®u, ®ω). Compute h(Z) as in (1)

r, s, v ←$F

Let Π1 ∈ F
3×(m+2d+5), Π2 ∈ F

1×(d+4)
s.t.

(A, C, D)⊤ = Π1 · ®σ1, B = Π2 · ®σ2 and

A := α +
m∑
k=0

wk · ak (τ) + rδ ; B := β +
m∑
k=0

wk · bk (τ) + sδ

C :=

m∑
k=n+1

wk ·
βak (τ) + αbk (τ) + ck (τ)

δ
+ v

η
δ
+

+

d−2∑
i=0

hi
τ i t (τ)
δ

+ As + Br − r sδ

D :=

n∑
k=0

wk ·
1

γ
(βak (τ) + αbk (τ) + ck (τ)) + v

η
γ

Test(RQ) → T

Define T ∈ F(m+2d+7)×(d+5) encoding the following quadratic test

A · B = α · β +C · δ + D · γ

Figure 20: NILP for a QAP relation RQ (®w).

L EXPERIMENTS DETAILS
In this section we provide more detailed data on our experiments.

L.1 LegoGro16 for Commit-and-Prove.
The following table shows our experimental results that compare

the schemes LegoGro16 and CPGro16 with respect to the overhead

for dealing with data committed using a Pedersen vector commit-

ment. The experiments considered vectors of different length n.
In the case of LegoGro16, such overhead in proving time is es-

sentially that of creating the additional element D of the proof that

contains a commitment to to the data (see Appendix K.5) and to

create a CPlink proof to link D to the external commitment. The

LegoGro16 proof is longer because of these two additional elements

ofG1. And for verification, the CPlink verification must be executed.

With respect to the CRS, in LegoGro16 we have the additional el-

ements of the CRS needed to create D and the CPlink CRS, that

is essentially one vector of n elements of G1. In CPGro16, all the
overhead in proving time and CRS is related to the size and degree

of the QAP that models the computation of the Pedersen commit-

ment. This was done by selecting an appropriate gadget in libsnark,

which optimizes the task by selecting a suitable elliptic curve.

CPGro16 LegoGro16

n

KG

(s)

P

(s)

crs
(MB)

KG

(ms)

P

(ms)

crs
(KB)

8 3.928 1.185 3.653 3.677 3.044 0.51

16 7.307 2.252 7.305 5.949 4.202 1.02

32 13.78 4.461 14.61 10.90 5.201 2.04

64 26.04 8.685 29.22 19.37 8.979 4.08

128 50.69 16.50 58.44 32.49 15.58 8.16

256 102.8 33.02 116.9 57.76 19.50 16.32

512 292.0 65.42 233.7 117.8 30.84 32.64

1024 876.3 133.3 467.5 241.2 55.35 65.28

2048 1011 428.7 935.0 466.6 84.09 130.6

|π | (B) 127.38 191.13

V (ms) 3.4 4.129

Table 2: Performance of CPGro16 in comparison to
LegoGro16. We remark that the numbers for the two
schemes are in different units and that those for CPGro16
are three orders of magnitude larger.

L.2 LegoAC1 for Arithmetic Circuits.
Here we show our experimental results that compare our LegoAC1
commit-and-prove zkSNARK against the Groth16 scheme, in the

SHA256 and matrix factoring applications explained in Section 7.

For SHA256, Groth16 needs 1.9s for key generation of a CRS of

5.1MB, 0.7s for proving and 0.9ms for verification; LegoAC1 needs

7.9s for key generation of a CRS of 6.2MB, 0.9s for proving and

1.8ms for verification.
For matrix factoring, we used n × n matrices of 32-bit integers

with n ∈ {16, 32, 64, 128}. Detailed timings appear in the table

below.

Overall, these experiments show that LegoAC1 is about 5 − 6×

slower in key generation and 1.5 − 1.8× slower in proving; verifica-

tion is nearly the same and improves with larger inputs. Noteworthy

that most of LegoAC1 key generation time (about 70%) is taken by

the corresponding algorithm for CPPed
lin ; this is mainly due to an un-

optimized technique for dealing with sparse matrices like the ones

that encode the linear constraints WL ,WR ,WO , and we expect

this to be improved in the future.

Finally, we remark that LegoAC1 is commit-and-prove, which

means its proofs are done with respect to matrices that committed

in a Pedersen commitment (in a canonical vectorized form).

Groth16 LegoAC1

n

KG

(s)

P

(s)

V

(ms)

KG

(s)

P

(s)

V

(ms)

16 0.210 0.1496 1.662 1.105 0.2779 3.097

32 1.227 0.9568 3.696 7.569 1.6803 4.697

64 8.848 7.1774 9.686 52.86 11.904 10.73

128 69.21 58.60 34.83 419.8 89.704 35.71

|π | (B) 127.38 350.25

Table 3: Performance of LegoAC1 in comparison to Groth16

34

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Zero-Knowledge SNARKs

	3 Building the LegoSNARK Framework
	3.1 Commit and Prove SNARKs
	3.2 Composition Properties of CP-SNARKs
	3.3 Commit-Carrying SNARKs
	3.4 Existing CP-SNARKs and cc-SNARKs
	3.5 Bootstrapping our Framework

	4 CP-SNARKs for Pedersen-like Commitments
	4.1 CP-SNARK for Pedersen Verification
	4.2 CP-SNARK for linear properties

	5 Efficient CP-SNARKs for Polynomial Commitments
	5.1 Preliminaries and Building Blocks
	5.2 A CP-SNARK for Sum-Check
	5.3 A CP-SNARK for Hadamard Products
	5.4 A CP-SNARK for Self Permutation

	6 LegoSNARK Applications and Evaluation
	7 Experimental Evaluation
	7.1 Commit-and-Prove SNARKs
	7.2 Parallel Checks on Joint Inputs
	7.3 LegoAC1 for Arithmetic Circuits

	8 Conclusions
	References
	A Formal definitions
	A.1 Properties of Commitment Schemes
	A.2 Properties of SNARKs
	A.3 zkSNARKs with Universal CRS
	A.4 Properties of cc-SNARKs

	B Security proof of CP-SNARK composition
	B.1 Proof of Knowledge Soundness
	B.2 Proof of Zero-Knowledge

	C Proofs for the General Compiler
	C.1 Proof of Knowledge Soundness
	C.2 Proof of Zero-Knowledge

	D Supplementary Results on CPlink
	D.1 Proof of CPlink Security
	D.2 An extension of CPlink for Prefixes of a Committed Vector

	E Description of CPlinPed
	F A zkSNARK for linear subspaces
	G A Construction of PolyCom and CPpoly from zk-vSQL
	H More on CP-SNARKs for PolyCom
	H.1 Our CP-SNARK for Sum-check
	H.2 Proof of security of CPhad
	H.3 Full description and proof of CPsfprm
	H.4 A CP-SNARK for Linear Properties of Committed Vector
	H.5 A CP-SNARK for data-parallel computations

	I A CP-SNARK for Internal Products from Thaler's Protocol
	I.1 CMT Protocol
	I.2 Thaler's Protocol for Trees of Multiplications
	I.3 Adapting zk-vSQL to Thaler's Protocol

	J CP-SNARKs for Circuits
	J.1 Arithmetic Circuit Satisfiability
	J.2 Parallel Computation on Joint Inputs

	K Commit and Prove SNARKs from existing schemes
	K.1 ``Adaptive Pinocchio'' AFRICACRYPT:Veeningen17
	K.2 Lipmaa's Hadamard Product Argument AFRICACRYPT:Lipmaa16
	K.3 zk-vSQL zk-vSQL
	K.4 Geppetto SP:CFHKKN15
	K.5 cc-SNARKs based on Groth's SNARK

	L Experiments details
	L.1 LegoGro16 for Commit-and-Prove.
	L.2 LegoAC1 for Arithmetic Circuits.

