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Abstract

While there have been many successes in verifying cryptographic security proofs of noninter-
active primitives such as encryption and signatures, less attention has been paid to interactive
cryptographic protocols. Interactive protocols introduce the additional verification challenge of
concurrency, which is notoriously hard to reason about in a cryptographically sound manner.

When proving the (approximate) observational equivalance of protocols, as is required by
simulation based security in the style of Universal Composability (UC), a bisimulation is typ-
ically performed in order to reason about the nontrivial control flows induced by concurrency.
Unfortunately, bisimulations are typically very tedious to carry out manually and do not capture
the high-level intuitions which guide informal proofs of UC security on paper. Because of this,
there is currently a large gap of formality between proofs of cryptographic protocols on paper
and in mechanized theorem provers.

We work towards closing this gap through a new methodology for iteratively constructing
bisimulations in a manner close to on-paper intuition. We present this methodology through
Interactive Probabilistic Dependency Logic (IPDL), a simple calculus and proof system for
specifying and reasoning about (a certain subclass of) distributed probabilistic computations.
The IPDL framework exposes an equational logic on protocols; proofs in our logic consist of a
number of rewriting rules, each of which induce a single low-level bisimulation between protocols.

We show how to encode simulation-based security in the style of UC in our logic, and
evaluate our logic on a number of case studies; most notably, a semi-honest secure Oblivious
Transfer protocol, and a simple multiparty computation protocol robust to Byzantine faults.
Due to the novel design of our logic, we are able to deliver mechanized proofs of protocols which
we believe are comprehensible to cryptographers without verification expertise. We provide a
mechanization in Coq of IPDL and all case studies presented in this work.

1 Introduction

With new decentralized computing paradigms such as blockchains and cloud outsourcing, the com-
munity’s pace at designing and rolling out new, efficient cryptographic protocols has accelerated.
Many of the protocols being deployed involve rich building blocks such as commitment schemes,
zero-knowledge proofs, oblivious transfer, and multi-party computation. As a result, it has become
increasingly important to scale up the effort of proving cryptographic protocols secure. An impor-
tant and necessary step towards this goal is to enable easy-to-use computer-aided proof systems for
general and possibly complex cryptographic protocols.
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Existing systems for mechanically verifying cryptography are either symbolic in nature [BSCS18,
MSCB13, DY83, Cre08] and therefore do not exactly match the computational reduction-style of rea-
soning that underlies the mathematical foundation of cryptography, or do not provide much support
for encoding general protocols (e.g., EasyCrypt [BGHZ11], CryptVerif [Bla06], and FCF [PM15]).
Moreover, except for a few recent/concurrent endeavors [CSV19, LSBM19], most prior systems do
not provide good support for reasoning about general multi-party cryptographic protocols and their
composition.

In the cryptography literature, Universal Composition (UC) [Can01] is the de facto framework
for modeling distributed cryptographic protocols and conduct compositional security reasoning. To
prove a protocol secure in the UC framework, one must prove it approximately equivalent to a
particular idealization. This is typically done through a number of low-level (approximate) equiva-
lences to intermediate protocols, each of which either simplifies the protocol in some way or applies
a cryptographic hardness assumption.

In order to formally prove one of these low-level protocol equivalences correct, the formal meth-
ods community typically employs a bisimulation argument (e.g., as seen in EasyUC [CSV19],
FCF [PM15], and CryptHOL [LSBM19]), which requires one to construct a particular relational
invariant between (distributions of) states of the two protocols which satisifes certain behavioral
properties. Unfortunately, it is quite unsatisfactory to use bisimulations directly to reason about
cryptographic protocols, since bisimulations induce overly technical proofs which do not match
cryptographers’ style of reasoning.

1.1 Our Contributions

Our goal is to design a new technique for proving approximate equivalences of cryptographic pro-
tocols that is easy-to-use and matches the style of on-paper cryptographic proofs. We do so by
constructing a new methodology based on channel dependency which does not require the end user
to manually construct bisimulations. Instead, the end user inteacts with an equational logic in order
to conduct cryptographic proofs. In this work, we introduce Interactive Probabilistic Dependency
Logic (IPDL), one such equational logic for cryptographic protocols.

For simplicity, we currently only consider a certain important subclass of protocols (those which
do not make use of nontrivial control flow); however, we believe our proof technique can be readily
extended to more complicated scenarios. More detail about this limitation (and others) can be
found in Section 9.

A probabilistic logic capturing reactions and dependencies IPDL encodes a distributed
computation using channels and reactions: when all inputs to a reaction have been collected, the
reaction is triggered and a value is written to its output channel. This style of encoding features
dependency among channels (both dependency in timing and value) as a first-class citizen, since each
reaction effectively captures the dependency of the output events on the input events. Since many
cryptographic proofs are fundamentally about removing dependencies (e.g., removing a message
from a ciphertext), we believe our dependency-centric perspective enables proofs which are often
preferable to manually constructing bisimulations. Our perspective can be seen as following in the
spirit of equational security [MT13].

In IPDL, a protocol π is expressed as the collection of code for each protocol participant. Chan-
nels that are not internally consumed by π form the interface of π to the outside world, including
interfaces to an external environment who provides inputs to the protocol and receives outputs and
interfaces to the adversary. In this way, IPDL allows us to capture UC-style protocol proofs: to
show that πR implements πI , we can define a simulator Sim in IPDL which converts attacks on
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πR to attacks in πI . We can then ask in IPDL whether the execution of πR is (approximately)
equivalent to the execution of πI ||Sim, where the notion of equivalence implicitly and universally
quantifies over the environment that connects to the external interfaces of the protocol.

A compositional semantics for IPDL Proofs in IPDL can be obtained by applying a set of
high-level rewrite rules defined over channels and dependencies. The main judgement in IPDL is
that Σ!ε Σ′, meaning that (informally) no environment interacting with Σ can distinguish it from
Σ′ with probability better than ε. We prove the equational logic of IPDL sound for approximate
protocol equivalence through corresponding each rewrite rule to a low-level bisimulation.

The semantics for protocols in our setting is quite subtle, since concurrency is usually formalized
using nondeterminism. In the presence of cryptography, however, reasoning about nondeterminism
is undesirable, since it intuitively corresponds to demonic choice, which leads to an unrealistic
attacker model. We take an approach similar to CryptHOL [LSBM19] and UC [Can01], in which
all internal computations which usually are resolved through nondeterminism are instead resolved
by the protocol agents themselves. Unlike previous approaches, however, the user of our system is
not exposed to the technical formalities this solution induces in resolving this internal choice.

Implementation in Coq We have implemented the IPDL logic in Coq as well as mechanized
proofs for all of the case studies considered in this paper. Our Coq implementation is publicly
available at https://github.com/ipdl/ipdl. To enable succinct mechanized proofs, we provide a
library of tactics which automatically apply our rewriting rules, hiding low-level details of the proof
from the user.

Case studies To illustrate the usefulness of IPDL, we present case studies for several crypto-
graphic protocols, including 1) realizing a secure channel from an authenticated channel under
trusted setup and an encryption scheme with suitable security; 2) the ElGamal encryption sys-
tem; 3) a UC-secure rock-paper-scissors protocol which employs UC-secure commitments; and 4)
an oblivious transfer (OT) scheme realized from trapdoor permutations. All case studies have been
mechanized in Coq and come with our open source repository. We demonstrate in Section 7 that
IPDL delivers proofs which scale well with the complexity of the protocol in question.

In summary, we provide a mechanized proof system for cryptographic protocols expressed natu-
rally as an equational logic on protocols. IPDL is distinctive in that channel dependency is captured
as a first-class notion. Such a dependency-centric design allows every step of a cryptographic proof
to be expressed using a simple and concise rewrite rule. We believe that our dependency-based
perspective has the potential to deliver concise and easy-to-understand proofs. As an example, for
the most sophisticated case study we consider, Oblivious Transfer, the full definitions and proofs
contain 926 lines of Coq code; we argue this is a quite reasonable number, given the complexity of
the protocol.

The full version, containing all IPDL examples and proofs, can be found at https://github.com/ipdl/ipdl.

2 IPDL by Example: Authenticated to Secure Channel

As an introductory example, we will consider a simple protocol that constructs a one-time use
secure communication network between a sender S and a receiver R from an authenticated network
and a trusted setup for a symmetric encryption key. (This example is similar to the main example
in [Mau11].) For simplicity, we do not model message size, but instead only consider messages of
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some arbitrary but fixed length. It is straightforward to extend this example to support a dynamic
message length.

The construction is modeled as an interactive protocol πR between participants S, R, the actual
network Fauth, a key functionality Fkey, and an implicit external context. The context is thought
of as serving two roles: an environment, supplying and receiving external inputs and outputs from
the parties, and an attacker, who interacts with the attack surface of the protocol. Channels meant
for the attacker are written in red, while those for the external environment are written in blue.
The sender receives an input message m from the external environment, a key k from the trusted
setup, and sends the value c $← Enc(k,m) to the network. The network leaks this ciphertext c to
the attacker, and waits for a confirmation ansR from the attacker before delivering the ciphertext
to the receiver, who may decrypt the ciphertext using k, and output the decrypted message.

In Figure 1, we see the protocol πR encoded in IPDL. (Strictly speaking, we see the uncorrupted
execution of πR. This terminology is described in Section 4. In this section, we use the term
“protocol” loosely, but define it formally later.) Protocols in IPDL are collections of inputs and
reactions, which interact through channels. Channels are used for external input, output, as well
as internal hidden computations. The first line, inS : msg inp, names a hidden channel inS of type
msg, and declares it an external input to the protocol. All channels may only be assigned to once.
Lines 2-4 implement the trusted setup Fkey through three reactions: the first samples from the
distribution Rnd(K) and assigns the result to a local channel keygen, while the next two simply copy
this result to keyS and keyR. Reactions may fire only when all input to the reaction is available and
the output channel of the reaction has not been assigned to yet. When this is the case, we sample
from the corresponding distribution and assign the return value to the output channel.

Line 5 corresponds to the code of the sender: when the input message m and the key k are
available, the local channel sendSR is probabilistically assigned to from the distribution Enc(k,m).
This ciphertext is then copied to the channel leak on the next line. This channel leak is tagged with
a visibility label vis, meaning that the external adversary is able to read from this channel. Channels
without a visibility label are implicitly tagged with hid, meaning that the channel is hidden from
the context.

Next, we wait for an answer from the adversary on channel ansR. (If no type is present, it is
implicitly of unit type.) This channel models a network adversary that can control if and when the
message gets delivered. Once the adversary has given ansR, we deliver the ciphertext on sendSR to
the sender through the channel deliv. The sender may now decrypt the ciphertext, using the input
from deliv and the key keyR.

Our main goal of IPDL is to keep the formal framework surrounding protocols as simple as
possible, while still maintaining enough expressive power to do interesting cryptographic proofs.
This is done by restricting our scope in two ways: first, as discussed above, channels may only be
written once. This keeps the value of all channels unambiguous, and guarantees that our protocols
will terminate. Second, all behaviors on channels are constrained to only be a function of the input
values of the channel. Thus, we do not consider protocols in which a channel’s value depends on
the order in which input arrives.

Reactions are generally of the form Γ ` c ` : τ ← D, read as “once all input channels in Γ have
been set, if c has not been set, sample from D and write its value of type τ to c.” As discussed
above, ` ∈ {hid, vis} controls whether the channel is visible to the outside world. We model non-
probabilistic assignments through the syntactic sugar Γ ` c ` : τ := e, which is an abbreviation for
Γ ` c ` : τ ← δ(e), where δ(e) is the point mass distribution which assigns probability 1 to the value
at e.
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1. inS : msg inp

2. · ` keygen : key← Rnd(K)

3. k : keygen : key ` keyS : key := k

4. k : keygen : key ` keyR : key := k

5. m : inS : msg, k :keyS : key

` sendSR : ct← Enc(m, k)

6. c : sendSR : ct ` leak vis := c

7. ansR inp

8. c : sendSR : ct, ansR ` deliv : ct := c

9. c : deliv : ct, k :keyR : key

` outR vis : msg := Dec(c, k)

Figure 1: The (uncorrupted) execution of the secure network protocol πR expressed in IPDL. Each
line is either a locally controlled reaction of the form Γ ` c : τ ← D, or an input of the form c : τ inp.
Locally controlled reactions are hidden by default; visible reactions are marked vis.

Reasoning in IPDL The main feature in IPDL is that protocol events are naturally structured
according to their dependency on other events. This is in contrast to more conventional program
logics, which impose a linear order on the statements in programs. Structuring our protocols in
terms of their dependency allows us to reason easily about equivalence of protocols.

Since we know exactly what distribution the values of a channel may take given its input, we are
able to manipulate channels not only by rewriting their output distributions to equivalent ones, but
by rewriting their dependency to equivalent ones. Consider the channel outR in Figure 1: it decrypts
a ciphertext c coming from the channel deliv, where deliv is simply copied from the channel sendSR.
Additionally, we know from the protocol that keyS and keyR are equal, when both are defined. We
may reflect this information in the protocol by performing a sequence of rewrites to obtain that
outR is equivalent to the reaction

c : sendSR : ct, k :keyS : key, ansR

` outR vis : msg := Dec(c, k),

thus essentially performing a partial evaluation of the protocol in order to propagate the value of
sendSR to outR. We may then perform additional rewrites on the protocol to obtain that this reaction
is equivalent to

m : inS : msg, k :keyS : key, ansR

` outR vis : msg := m,

by using the correctness property of the encryption scheme. Now, we see that outR no longer uses
the value of k: in certain cases, we may then soundly remove dependencies from reactions, producing
the following simplified reaction for outR:

m : inS : msg, ansR ` outR vis : msg := m.
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Protocol Simulation We express protocol security in the style of UC [Can01] by using IPDL to
express and prove equivalence of protocols. In Figure 2 we have an idealized version of a secure
channel. The sender and receiver do not communicate using an encryption scheme, but instead in
cleartext. However, the network functionality only reports the message query to the adversary, and
does not leak any information about the ciphertext. Similarly to πR, the network here waits for the
adversary to send ansI before delivering the message.

inS : msg inp

m : inS : msg ` sendSI : msg := m

m : sendSI : msg ` query vis

ansI inp

m : sendSI : msg, ansI ` deliv : msg := m

m : deliv : msg ` outR vis : msg := m

Figure 2: The idealized secure network πI expressed in IPDL.

We wish to argue that πR somehow performs the same job as πI . Note that the input and output
channels for the two parties are the same across πR and πI ; the only input and visible channels
that differ are those which correspond to the respective adversaries. In πR, the adversary learns the
ciphertext from leak, and chooses to deliver that ciphertext using ansR; in πI , the adversary only
learns the message has been sent using query, and chooses to deliver the message using ansI .

In order for πR to be as effective as πI , we need a way of converting all adversarial attacks on
πR to attacks on πI . If we can invent a converter Sim (also called the simulator) which converts
attacks on πR to attacks on πI , then we can ask in IPDL whether πR is equivalent to Sim||πI , where
|| is the parallel composition operator in IPDL. Details on our composition operator are given in
Section 3. If such a Sim exists, we say that πR realizes πI . Crucially, this simulator only has access
to the channels designated for the adversary. Following UC, we may also corrupt certain parties
in both protocols, and require the corrupted protocols also satisfy this realization property. More
details on simulators, corruption, and protocol realization is in Section 4.

In the case when neither party is corrupted, the simulator is standard: for Sim to convert
an attack on πR to an attack on πI , it will receive a query message from πI and need to deliver
a corresponding leak message to πR. It does not have access to the key nor the message, so it
will generate a fresh key k′ from Rnd(K) and output a ciphertext from Enc(0, k′), where 0 is any
distinguished message from the message space. More details on this simulator are given in Section
5.

Approximate compositional reasoning In order to show that πR is equivalent to Sim||πI ,
we must apply a cryptographic assumption about the encryption scheme; namely, that over the
randomness of k, ciphertexts coming from Enc(m, k) look identical to ciphertexts coming from
Enc(0, k) for all m. In Figure 3, we express this cryptographic assumption as an approximate
equivalence of two reaction sets OSSR and OSSI (OSS standing for one-shot security). In order to
apply this assumption to πR and Sim||πI , we first must rewrite πR to be equivalent to π′R||OSSR.
Thus, we “factor out” the encryption performed in πR to OSSR. This rewrite is made possible by
our simplifications on channel outR from above, wherein we use the correctness property of the
encryption scheme to essentially give the plaintext value directly to the receiver.
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Once this factoring is done, we make use of a general rule in IPDL which states that the equiva-
lence notion! is a congruence: since OSSR is (approximately) equivalent to OSSI by assumption,
we know that πR ! π′R||OSSR is approximately equivalent to π′R||OSSI , where the encryption is
replaced with a dummy ciphertext. We may then use the logic to deduce that π′R||OSSI is equivalent
to Sim||πI , which concludes our proof. More detail about this proof (as well as a security proof
when the sender is malicious) is given in Section 5.

In Section 3, we describe IPDL and its equational logic in detail; in Section 4, we present a general
framework for expressing cryptographic security in IPDL, including both semi-honest and malicious
corruption models; in Sections 5 and 6, we present multiple case studies of cryptographic proofs in
IPDL. Finally, in Section 7, we discuss our mechanization of IPDL in Coq.

inOSS : msg inp

· ` keygen : key← Rnd(K)

m : in : msg, k :keygen : key

` outOSS vis : ct← Enc(k,m)

inOSS : msg inp

· ` keygen : key← Rnd(K)

m : in : msg, k :keygen : key

` outOSS vis : ct← Enc(k, 0)

Figure 3: Definition of one-shot security of an encryption scheme in IPDL. The top reaction set,
OSSR, is approximately equivalent to OSSI . (Our definition of approximate equivalence is given in
Section 3.)

3 Logic

Protocols in our logic are modeled as reaction sets, whose syntax is shown in Figure 4. Reaction sets
operate on a set of channels, which may model I/O communication with the environment as well
as internal computation through hidden channels. Input channels are defined through the syntax
c inp : τ , which declares the channel c as an external input of type τ . Output and hidden channels
are modeled through reactions of the form x1 : c1 : τ1, . . . , xn : cn : τn ` c ` : τ ← D, which says
that if for all i ∈ {1, . . . , n}, ci is bound to a value xi of type τi, and if c is not yet bound to a
value, then sample from the distribution D, ranging over values of type τ , and bind the result to c.
Thus, once a value is set to a channel, it remains set on the channel for the entire execution. The
left side x1 : c1 : τ1, . . . , xn : cn : τn is called the context of the channel c. The label ` may be either
out or hid, denoting if the channel is a hidden internal computation, or an output to an external
environment. Reactions written without a label are implicitly marked hidden.

Our logic is parameterized over a universe of types τ including products and probability distri-
butions. All probabilistic reasoning in IPDL is factored out into an equational theory E supporting

τ := · · · | τ × τ | D(τ) types
` := out | hid output/hidden channels
Γ := ∅ | x : c; Γ reaction context
Σ := ∅ | Γ ` c `← D; Σ locally controlled reactions

| c : τ inp; Σ inputs

Figure 4: Main Syntax of IPDL.
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the judgement Γ �E D = D′, meaning that for all valuations of the variables in Γ, the distributions
D and D′ are equivalent. A channel c is defined in reaction set Σ if it appears in Σ as an input,
output, or hidden channel. Given a reaction set Σ, we define the sets out(Σ) to be the output
channels set in Σ, and similarly for in(Σ) and hid(Σ). We assume the following well-formedness
conditions on reaction sets Σ and contexts Γ:

1. All variable names xi in Γ are distinct.

2. No duplicate channels exist in Σ.

3. All appearances of a channel in Σ have the same type.

In particular, the above conditions imply that the sets out(Σ), in(Σ), and hid(Σ) are pairwise
disjoint.

We now define a parallel composition operator for reaction sets. Two reaction sets Σ and Σ′ are
compatible if their output channels are disjoint, and no hidden channel in one reaction set appears
in the other. For compatible Σ and Σ′, we define the union Σ∪Σ′ to be the union of all the hidden
and output channels in Σ∪Σ′, plus all the input channels of Σ and/or Σ′ that do not simultaneously
appear as outputs of the other reaction set. If c is an output channel of a reaction set Σ, we denote
by Σ hide c the reaction set that defines c to be a hidden, rather than an output channel. Finally,
for compatible Σ and Σ′ we denote by Σ ‖ Σ′ the union of Σ and Σ′ followed by a successive hiding
of all the output channels of Σ and/or Σ′ that simultaneously appear as inputs to the other reaction
set.

3.1 Semantics

We model IPDL protocols in a manner similar to CryptHOL [LSBM19] and UC [Can01]. Similarly
to an IPDL protocol, a protocol agent has a set of typed input and output channels. Input channels
are partitioned into two kinds: token input channels and listener input channels; the latter allow a
certain form of broadcast in our semantics. A listener input IL is a pair of a listener input channel
I and a value v of the type τ associated to the channel I; similarly, we define token inputs IT and
outputs O to be pairs of channels and values on that channel.

Unlike an IPDL protocol, a general protocol agent does not have any explicit hidden channels.
Instead, the behavior of a protocol agent is completely determined by a set S of states (with a
distinguished start state s) and two transition functions µ and ν:

• The transition function µ for listener inputs associates to each state e and each listener input
IL a distribution D(S) on states. Intuitively, this models the fact that the protocol agent
learns the value v sent on the channel I but does not take control of the computation.

• The transition function ν for token inputs associates to each state e and each token input IT a
distribution D

(
S × (1 +O)

)
on states and, optionally, outputs. This models the fact that the

protocol agent learns the value v sent on the channel I and takes control of the computation,
optionally executing an output.

Similarly to IPDL programs, we say that two protocol agents are compatible if their respective token
input channels and their respective output channels are disjoint, and all appearances of the same
channel common to both have the same type. The same channel C of type τ can appear, e.g., as
a listener input to both protocol agents, as a listener input to one and a token input to the other,
or as an input (of either kind) to one and an output of the other. A protocol σ is a finite family of
pairwise compatible protocol agents. Every channel appearing in σ can be classified as one of three
kinds:
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• a free input channel is a channel that does not appear as an output of any protocol agent of σ

• a free output channel is a channel that does not appear as a token input of any protocol agent
of σ

• an internal channel is a channel that appears as both an output and a token input channel
of some protocol agent(s) of σ

Two protocols are comparable if their respective sets of free input channels, free output channels,
and internal channels coincide. Two protocols σ and σ′ are compatible if the protocol agents selected
from each protocol are pairwise compatible, no internal channel of σ appears in σ′ and vice versa,
and no free output of σ appears as a free output of σ′. In this case the union σ ‖ σ′ of σ and σ′

forms a new protocol.
In contrast with other formalisms such as Task PIOA [CCK+18], this form of modeling protocols

does not involve any nondeterministic choice; instead, the control flow of the protocol is entirely
determined by the protocol agents themselves who decide which message to send next. To deter-
ministically execute a protocol σ consisting of n protocol agents P1, . . . , Pn, we assume a context C,
specified by the following data:

• A protocol agent A (“adversary”) that has no listener inputs, whose token input channels
are a subset of the free output channels of σ, and whose output channels are a subset of
the free input channels of σ. This in particular means that A does not have access to any
communication happening on the channels internal to σ.

• An initial distribution D
(
S × (1 +O)

)
on the states and possible outputs of A.

• A yield transition function ξ associating to each state e and each (token) input IT of A a
distribution D

(
S × (1 +O)

)
on the states and possible outputs of A.

The adversary A thus adaptively generates free inputs to σ while observing the communication on
the free outputs of σ. The initial distribution specifies how to start the execution of σ, whereas
the yield transition function ξi specifies how to continue the execution of σ in the case when some
protocol agent (but the adversary does not learn which) received a token input but has not followed
by an output (hence yielded to the adversary). The effects of the initial distribution and the yield
transition functions do not factor into the trace of the execution since they do not exist as inputs
to A.

If σ has a free input channel that does not appear as an output channel of A, then no commu-
nication on this channel is possible. On the other hand, if there is a free output channel of σ that
does not appear as an input channel to σ, then any message sent on this channel will necessarily
terminate the protocol. Likewise, if an agent Pi yields to A and A does not follow by an output,
the protocol terminates. This is also the case if the initial distribution does not induce an output
(this case is the least interesting but we allow it for consistency).

A context C for a protocol σ deterministically induces a distribution on executions of length
≤ k, and thus on execution traces of length ≤ k (which we denote by trDistk(σ)), by executing
σ for k steps for each k ∈ N. Following [CCK+06a, CCK+06b, CCK+18], we compare protocols
by comparing their trace distributions: let ε(τ, C, n) be a mapping from protocols, contexts, and
natural numbers to real numbers in [0, 1]. Then, given two comparable protocols σ and σ′, we say
that σ!ε σ

′ if for all compatible protocols τ and contexts C for σ ‖ τ (or σ′ ‖ τ), and all k ∈ N,
d(trDistk(σ), trDistk(σ

′)) ≤ ε(τ, C, k) where d(D1, D2) = supx |D1(x)−D2(x)| is the TV-distance on
distributions.
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We call this ε(τ, C, k) an error, and will write 0 for the error that maps all protocols, contexts,
and trace lengths to zero. It is easy to see that this notion of protocol equivalence is an equivalence
relation and a congruence.

3.2 Reaction sets as protocol agents

We present a translation from reaction sets Σ to protocol agents JΣK, as described above. As an
intermediate step, we first describe a natural semantics for reaction sets as a certain kind of prob-
abilistic I/O automaton [CCK+06a, CCK+06b, CCK+18]. The state space is a function mapping
each channel c : τ of Σ to a value of type 1+τ , i.e., the channel c has either not been set yet or is set
to a value of its assigned type. The start state is when each channel is undefined. Given a state s,
a channel c defined by the reaction x1 : c1 : τ1, . . . , xn : cn : τn ` c ` : τ ← D induces a distribution
on states as follows. If c is already set in s, it leaves s unchanged; if any of the channels c1, . . . , cn
are not yet set, it leaves s unchanged; otherwise we draw v from the distribution D(v1, . . . , vn),
where vi is the value of channel ci, and set the value of c to v. A schedule is a sequence of hidden
or output channels and any schedule deterministically induces a distribution on states.

To turn this automaton into a protocol agent, we proceed as follows. The listener input channels
are the input channels of the reaction sets. The effect of an input v arriving on an input channel i
of type τ has the effect of setting the value of i in the state s to v if it has not yet been set, and
leaving s unchanged otherwise. For each output channel o, we have one token input get_o, and
one output o. To describe the effect of get_o on a state s, we proceed as follows. Call a schedule
proper for the pair (s, o) if it has the following properties:

• Each channel in the schedule is a hidden channel that o transitively depends on.

• Whenever o depends on a hidden channel h, then either h has already been set in s or h is in
the schedule.

• Whenever h2 transitively depends on a hidden channel h1 and h2 is in the schedule, then
either h1 is already set in o or h1 precedes h2 in the schedule.

Proper schedules have some important properties:

• If all the visible channels that o transitively depends on have been set in s, a proper schedule
guarantees that o will be set after the schedule has been executed.

• Without loss of generality we can assume that every channel h appears at most once in a
proper schedule.

• If h1 immediately precedes h2 in a proper schedule, and h2 does not depend on h1, then we
can swap the order of h1 and h2 in the schedule without altering the resulting distribution on
states.

• Any two proper schedules induce the same distribution on states.

To execute get_o, we first check whether o is already set in the state s; if so, we return the value of
o. Otherwise we check whether every visible channel that o transitively depends on has been set in
s; if not, we leave the state unchanged and yield as there is no way for us to compute o. Otherwise
we select an arbitrary proper schedule for (s, o); if such a schedule does not exist (perhaps due to a
circular dependency on channels such as h ` h) then we again leave the state unchanged and yield.
Otherwise we execute this proper schedule followed by o to induce a distribution on states, and for
each state s′ in the support we output the value of the channel o in s′.
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Σ,Σ′ permutations
Σ! Σ′

[Perm-Σ]
Γ,Γ′ permutations

Σ{Γ ` c `← D}! Σ{Γ′ ` c `← D}
[Perm-Γ]

Σ!ε Σ′ and Σ′!ε′ Σ′′

Σ!ε+ε′ Σ′′
[Trans]

Γ �E D = D′

Σ{Γ ` c `← D}! Σ{Γ ` c `← D′}
[Ext]

h /∈ Σ

Σ{Γ ` h hid← D; Γ′,Γ, x : h ` c `← D′}! Σ{Γ′,Γ ` c `← (x← D;D′)}
[Fold]

x /∈ FV (D′)

Σ{Γ, x : c ` c′ `← D; Γ′, y : c′ ` c′′ `′ ← D′}! Σ{Γ, x : c ` c′ `← D; Γ′, x : c, y : c′ ` c′′ `′ ← D′}
[Dep-Trans]

Σ{Γ ` c ` := e; Γ′,Γ, x : c ` c′ `′ ← D}! Σ{Γ ` c ` := e; Γ′,Γ, x : c ` c′ `′ ← D[x := e]}
[Subst]

x /∈ FV (D′)

Σ{Γ ` h hid← D; Γ′,Γ, x : h ` c `← D′}! Σ{Γ ` h hid← D; Γ′,Γ ` c `← D′}
[Hidden Resource]

h /∈ Σ

Σ{Γ ` h hid← D}! Σ
[Add/Rem]

h /∈ Σ

Σ{Γ ` c `← D}! Σ{Γ ` h hid← D;x : h ` c ` := x}
[Rename]

Σ!ε Σ′ P compatible with Σ and Σ′

Σ ∪ P !ε(JP K||·,·,·) Σ′ ∪ P
[Congr]

Σ!ε Σ

hide(Σ, c)!ε hide(Σ
′, c)

[Hiding]

Figure 5: The IPDL Proof System.

3.3 Proof System

We present a proof system for reasoning about reaction sets. The main judgement of the logic is
Σ!ε Σ′, meaning that the protocol represented by Σ is indistinguishable from Σ′, up to error ε.
We read Σ!ε Σ′ as Σ rewrites to Σ′ (and vice versa) with error ε. Recall from Section 3.1 that we
measure cryptographic error with a function, which takes as input an automata and natural number
and outputs a real number in [0, 1]. The automata we give as an argument to the error function
corresponds to the simulator of the approximate rewrite. We say the judgement Σ!ε Σ′ is valid
if JΣK!ε JΣ′K, as defined in Section 3.1. When the error is zero, we leave it out of the judgement;
i.e., Σ! Σ′ is an abbreviation for Σ!0 Σ′.

The proof system of IPDL is defined by the rules in Figure 5. The rules [Perm-Σ] and [Perm-Γ]
state that reaction sets and contexts of individual reactions are equivalent up to reordering, and in
particular imply that! is reflexive, and that || is symmetric and associative. Rule [Ext] states
that we may replace one distribution by another if the underlying equational theory proves them
to be the same. The [Trans] rule states that approximate equivalence is transitive, except that we
accumulate error.

The [Fold] rule states that sampling a channel c from a monadic bind (x
$← D;D′) where x

is free in D′ is equivalent to generating a fresh hidden channel h for x, sampling D in this fresh
channel, and passing the result to c. The context for h may be any subcontext of c that allows D
to be defined. This rule connects the syntax of the underlying monadic language of distributions to
IPDL. In particular, we may use the [Fold] rule to decompose a channel which carries a product
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distribution into two different channels.
The [Dep-trans] rule states that dependence between channels is transitive. The rule [Subst]

deals with non-probabilistic assignments: it says that if channel c is assigned to value e under
context Γ, then any channel with a context that includes c and its context may propagate this value
e in for c.

The rule [Hidden Resource] states that if a hidden channel h depends on the context Γ, and
c is a channel with context Γ′ such that all of Γ appears in Γ′, then we may add or remove h from
Γ′ at will. Rule [Add/Rem] states that unused hidden channels may be removed from the reaction
set. Rule [Rename] allows us rename internal computations using hidden channels. Rule [Congr]
states that !ε is a congruence for ∪; we appropriately modify the error ε to take into account
the common context P . Note that this implicitly allows us to reason about execution time, since
the error ε may take into account the context P . Finally, rule [Hiding] allows us to hide output
channels of the protocol.

We have proven our logic to be sound:

Theorem 1. If the judgement Σ !ε Σ′ is derivable in IPDL, then it is valid; i.e., that JΣK !ε

JΣ′K.

The proof of Theorem 1 can be found in the appendix, in Section A. We stress that the soundness
proof quantifies over adversaries which have the power of general probabilistic (polytime) algorithms,
and are not limited to the IPDL language.

4 Encoding Protocol Security

The primary function of our logic is to show when two reaction sets, Σ and Σ′, behave (nearly)
identically on their external I/O channels. This problem is orthogonal to many of the tasks per-
formed by protocol security frameworks, such as Universal Composability [Can01]. We now detail
how protocol security may be encoded in our logic in a way compatible with UC.

An interface for a reaction set Σ is a set of I/O channels between Σ and the outside context.
Each security protocol π is defined to be a set of parties {Pi | i ∈ 1 . . . n} and a set of trusted
functionalities {Fi | i ∈ 1 . . . k}, both of which are specified as reaction sets. Protocols may be used
to express real, runnable code which performs cryptography, or they may be used to express idealized
executions which replace cryptography with trusted third parties. Each protocol π has two kinds
of I/O interfaces: the first is the external interface Ext(π), which is used for specifying high-level
I/O behaviors of the protocol; the second is the attacker interface Att(π), used for specifying the
attacks by which the outside world can influence the protocol. The external interface is supplied by
the parties, while the attacker interface can be supplied by both parties and trusted functionalities.

We now specify how these interfaces are defined for protocols. First, we describe in more detail
the role of parties and trusted functionalities:

Parties Each party Pi participates in a protocol as an independent agent with possibly distinct
roles in the protocol. The I/O channels of each party Pi are partioned into the following disjoint
sets:

• Fun(Pi), the interface between Pi and the set of trusted functionalities in the protocol;

• Att(Pi), the interface between Pi and the attacker, and

• Ext(Pi), the set of external I/O channels of Pi.
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The functionality interface Fun(Pi) specifies the channels along which a party may invoke a
trusted functionality. These may be used for a variety of tasks, such as sending a message over a
network, sampling a key in a trusted manner, invoking an abstract commitment, etc. The attacker
interface Att(Pi) specifies the ways in which an attacker may influence Pi. (Strictly speaking, the
attacker is not separate from the context which influences Ext(Pi). The attacker interface is used
to constrain how the simulator is constructed. This is discussed in more detail below.) The way
in which the attacker interface is constructed depends on the corruption model, which we describe
below in Section 4.2. The external interface is the intended external I/O behavior of the party in
the protocol. (In UC-style protocol composition, the caller and callee of a subprotocol communicate
along this external interface.) Note that we do not allow parties to communicate directly with one
another; they may only indirectly communicate through functionalities which act as a network.

Functionalities Each functionality Fi specifies a trusted third party which is uncorruptable.
Functionalities are used for specifying everything that is not a party, including the network by
which parties communicate. The I/O channels of each functionality are partitioned into disjoint
sets:

• Att(Fi), the interface between Fi and the attacker;

• Fun(Fi), the interface between Fi and other functionalities.

• Par(Fi), the interface between Fi and the parties in the protocol.

Channels in Fun(Fi) may only be matched with their dual channel in Fun(Fj) for some j. (Thus,
functionalities may not directly communicate with the attacker interface of another functionality.)
Channels in Par(Fi) may only be matched with channels in Fun(P ) for some P . The channels in
Fun(P ), Fun(F ) and Par(F ) for all P and F are called internal. A protocol π consisting of parties
Pi and functionality Fi is fully specified if all internal channels are matched with their dual. If this
is the case, composing all parties and functionalities together using the hiding composition operator
|| will eliminate all internal channels. This operation, called the execution of π, is denoted by Σ(π).
When we do so, we are left with the attacker interface Att(π) and the external interface Ext(π)
consisiting of the union of all attacker and external interfaces in π respectively.

4.1 Comparing protocols

Given this setup, we now describe how we may compare two protocols through their external and
attacker interfaces. There are two ways to do so, corresponding to malicious and semi-honest
security. Common to both is the notion of a simulation: given two protocols π and π′ with identical
external interfaces, a simulator Sim is a reaction set which converts the attacker interface of π′ to
that of π by closing off all channels in Att(π′), and exposing exactly those channels in Att(π). (Thus,
Sim supplies inputs to Att(π′), while it consumes inputs from Att(π); dually, Sim consumes outputs
from Att(π′), and supplies outputs to Att(π).)

Two protocols π and π′ are comparable if they have the same number of parties and the ith
party of each protocol has the same external interface. If this is the case, we say that π reduces
from π′ if there exists a simulator Sim such that in IPDL, Σ(π) ! Σ(π′)||Sim, where Σ(π), the
execution of π, is equal to the composition of all parties and functionalities in π. (Note that both
attacker and external interfaces of π and π′||Sim are the same.)
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4.2 Corrupting protocols

When proving security of a protocol π relative to an idealized protocol π′, we do so relative to a
corruption model, which specifies the way in which parties can be corrupted by the adversary. We
consider two corruption models here: semi-honest and malicious security. In both cases, given a
corruption model C ∈ {sh,mal} and an index set J ⊆ {1, . . . , n} of parties to corrupt, we construct
derived protocols πJC and π′JC , and say that π C-realizes π′ if for all J , πJC reduces from π′JC . (Note
that there is a separate proof of reduction for each index set J , so there exists a simulator SimJ for
each J . Differing choices of J will give in general very different information to the simulator, and
may require differing proof techniques to prove security.)

Below, we detail both corruption models, and show how to derive protocols in these two models.

4.2.1 Semi-honest security

In semi-honest security, the adversary has no control over the behavior of the corrupted party, but
learns its internal state including any messages sent and received. This is modeled by appropriately
instrumenting the code of each party Pi, i ∈ J to leak all probabilistic channels as well as any
input channels. (A channel is probabilistic when it is not of the form Γ ` c ` := e; i.e., when it
is associated to a nontrivial probability distribution.) Thus, the attacker interface of Pi grows to
include these leaked channels.

4.2.2 Malicious Security

In malicious security, the adversary has full control over the party. This is modeled by performing
the following modifications to π, for each i ∈ I:

• Remove the code for Pi from π.

• Move all channels in Fun(Pi) to the adversary interface on their respective functionality.

• Disregard all channels in Ext(Pi) and Att(Pi).

The most surprising modification is perhaps the third one, stating that we do not consider the
channels in Ext(Pi) and Att(Pi) if Pi is corrupted. The intuition behind this is that we do not need
to reason about the context’s outputs to the corrupted party along either the external or attacker
interface, since the context and corrupted party are one and the same; for a similar reason, we need
not reason about the inputs from a corrupted party to the context.

4.3 Comparison with UC

Our formalism is restricted compared to full UC; in UC, corruption may happen dynamically, while
in our setting we currently reason only about static corruption. The other major difference from UC
is how we model the attacker. In UC, the adversary and environment play two differing but similar
roles: the adversary provides an attack on a system, while the environment attempts to distinguish
two protocols through their external channels.

We choose to model a simpler but equally expressive model, where the “adversary” and “environ-
ment” are both played by the context. The simulator, which in full UC is simply another adversary, is
instead a “converter” of attacks between one protocol and another. This converter is constrained by
the choice of channels which appear in the attacker interfaces of the two protocols. This viewpoint is
supported by two theorems in the theory of UC: the first is black-box simulatability [Can01], which
states that it suffices to consider UC-simulators which behave the same for all adversaries, and have
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only black-box access to the adversary; the second is the dummy adversary theorem [Can01], which
states that it suffices to consider a “dummy” UC-adversary which simply forwards all messages to
and from the UC-environment. By combining these two theorems, we collapse the “adversary” and
“environment” together, and only consider simulators which attach to the attacker interfaces of the
two protocols (which formerly would have been meant for the UC-adversary.)

5 IPDL Proofs for Running Example

We continue our discussion of the running example from Section 2 in this section. We first study
the case when neither party is corrupted. Remember that Figure 1 and 2 describe the real and
ideal protocol executions in this case. In the no-corruption case, when the simulator Sim receives
message query from the protocol πI , it internally generates a symmetric key k and sends Enc(k, 0)
along channel leak to πR. The message ansR is then forwarded to πI as message ansI . Thus, we get
the simulator in Figure 6.

query inp

q : query ` keygen : key

k : keygen : key ` leak vis : ct := Enc(0, k)

ansR inp

ansR ` ansI := ansR

Figure 6: Definition of the simulator for the secure channel example when neither party is corrupted.

The security argument is based on semantic security of the symmetric key encryption, as for-
malized in Figure 3, which says the encryption of a specified message is indistinguishable from
encryption of message 0, which means the adversary cannot distinguish whether the ciphertext
comes from simulator Sim or the real protocol πR. The proof follows our description given in
Section 2.

In order to get a feel for conducting a proof in IPDL, we will detail the most important step
of this proof. Our goal is to obtain a factoring πR ! π′R|||OSSR. We first simplify out the keyS
and keyR channels of πR. Note that both channels simply copy the value of keygen onwards, and
are only used by the sendSR and outR channels, respectively. We thus use the [Dep-Trans] rules
to move keygen into the contexts of both sendSR and outR. Now, we may use the [Subst] rule to
substitute the value of keyS into sendSR, and similarly for keyR and outR. At this point, we have the
following channels (suppressing unused variable names and types):

k : keygen ` keyS := k

k : keygen ` keyR := k

m : inS , k : keygen, keyS ` sendSR ← Enc(m, k)

c : deliv, k : keygen, keyR ` outR vis := Dec(c, k).

Because the context of keyS is fully contained within sendSR and sendSR does not use the value of
keyS , we now may remove keyS from the context of sendSR. At this point, keyS is a hidden channel
not used anywhere, so we use the [Add/Rem] rule to remove it from the reaction set. We do the
same for keyS , removing it from the context of inS and then from the protocol.
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At this point, we need to reason about the value of Dec(c, k) in outR. We will first rename the
channel sendSR to outOSS using [Rename], in anticipation for later in the proof. We first use the
[Dep-Trans] rule to add keygen to the dependencies of leak, which we may do since leak depends
on outOSS which depends on keygen. The relevant channels are now below:

· ` keygen← Rnd(K)

m : inS , k : keygen ` outOSS ← Enc(m, k)

c : outOSS, k : keygen, ansR ` outR vis := Dec(c, k)

k : keygen, c : outOSS ` leak vis := c

We need to somehow connect the value of Enc(m, k) to the value of Dec(c, k). This is typically
done using the [Fold] rule. However, we cannot fold the value of outOSS directly into outR, since
the channel leak also needs to use this ciphertext. This is complicated by the fact that outR needs
to wait on ansR from the adversary, but leak needs to happen before. Thus, the first thing we do
is separate out the computation of Dec(c, k) from the firing of outR. This is done by rewriting
Dec(c, k) ≡ (m ← Dec(c, k); ret m) (by the basic monadic identities), and using [Fold] to unfold
the computation of Dec(c, k). This gives us a new channel, tmp, such that we get the two below
reactions:

c : outOSS, k : keygen ` tmp := Dec(c, k)

m : tmp, ansR ` outR vis := m

(We also used the [Dep-trans] rule in reverse to remove the dependencies of tmp from outR).
At this point, we can see that the dependencies of tmp and leak are the same, so we will use the
[Fold] rule to combine them together. This will construct a new hidden channel, P, that outputs
the pair (c,Dec(c, k)) given the ciphertext c and key k. By properly removing channels from leak
and tmp, we now get that the only channel which uses outOSS is this new channel P. Thus, we may
fold the Enc(m, k) distribution into outOSS. After removing some redundant dependencies using
[Dep-Trans] ins reverse, the situation is shown below:

· ` keygen← Rnd(K)

m : inS , k :keygen

` P← (c← Enc(m, k); ret (c,Dec(c, k)))

p : P ` leak vis := p.1

p : P, ansR ` outR vis := p.2

At this point, we can see that by the correctness of decryption, (c← Enc(m, k); ret (c,Dec(c, k))) ≡
(c← Enc(m, k); ret (c,m)); thus we use the [Ext] rule to perform this rewrite. By carrying out the
above operations in reverse (i.e., unfolding the monadic bind in P to obtain outOSS, and substituting
in the value of P into leak and outR), we finally get a simplified protocol πsimp

R containing the channel

m : inS , ansR ` outR := m

as shown in Section 2. The corresponding mechanized proof that πR ! πsimp
R is shown in the

Appendix, in Figure 11.
What the above protocol simplification allows us to do is express the real protocol in a way

such that only the ciphertext is needed to carry out the protocol, and not the decryption key. In
this simplified protocol πsimp

R , the channel outOSS is used to generate the ciphertext. In order to
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carry out the security argument, we may now factor πsimp
R into the reaction set π′R||OSS0. This π′R

is equal to πsimp
R , except that we remove the keygen channel and turn the channel outOSS into an

input, which is output by OSS0. This factored protocol π′R can be thought of as the simulator for
the encryption scheme.

At this point, we now use the [Congr] rule to rewrite to π′R||OSS1, where the ciphertext is
now equal to Enc(0, k). It is now a straightforward series of substitutions to see that π′R||OSS1!
Sim||πI . Altogether, by applying [Trans] we receive that πR!εOSS(Jπ′

RK||·,·,·) πI , where εOSS is the
error incurred from rewriting from OSS0 to OSS1. We are able to concretely track which simulator
we used for the rewrite involving OSS0 and OSS1. By inspecting this simulator π′R, we see that no
inefficient computations are performed; thus, we remain computationally sound.

We also analyze the case when the sender is corrupted. We follow the framework in Section 4
to derive corrupted protocols π{S}Rmal

and π{S}Imal
. In the real protocol, when we corrupt the sender we

expose the channels keyS and sendSR to the sender as an input and output channel respectively. In
the ideal protocol, the adversary obtains the channel sendSI .

Thus when the sender is corrupted, the simulator needs to provide the real-world adversary
with a key by running the key generation algorithm itself. When the real-world adversary outputs a
ciphertext on sendSR, the simulator decrypts it using this key and sends the decrypted message along
sendSI . (We may assume wlog that the adversary is constrained to send well-formed ciphertexts.)
The simulator then handles query, leak, ansR, and ansI as before, except now the value of leak is
not generated randomly but comes from sendSR from the adversary. Since the adversary is the one
providing the ciphertext and the simulator knows the key, we do not need to apply the security
assumption about the encryption scheme here. The proof is a straightforward sequence of rewriting
steps.

6 Case Studies

In this section, we describe more case studies.

6.1 The ElGamal Cryptosystem

We replicate in IPDL the standard security of the ElGamal cryptosystem [ElG85], which constructs
a CPA-secure public key encryption scheme from the Decisional Diffie Hellman (DDH) assumption,
which states that two certain distributions, DDH0 and DDH1 are computationally indistinguishable.
This assumption is interpreted as an axiom ΣDDH0 !εDDH

ΣDDH1 in IPDL. We define the security
of the ElGamal scheme similar to Figure 3, comparing a functionality which takes a message as
input and encrypts it to one which disregards the message and instead encrypts a dummy message.
Since we are proving semantic security, we additionally insert reactions which leak the public key
of the encryption scheme to the adversary. Conducting this proof in IPDL requires us to “factor”
the real ElGamal execution ΣEG

real into two reaction sets Σfactor||ΣDDH0. We then apply the [Congr]
rule to rewrite ΣDDH0 into ΣDDH1. The security of the cryptosystem follows, since doing this rewrite
essentially rerandomizes the ciphertext so that it no longer depends on the message.

6.2 MPC in the Fcomm-hybrid Model

We prove secure a two party secure multiparty computation protocol for Rock-Paper-Scissors (RPS)
using an idealized commitment scheme. In the ideal protocol, each party sends its input to the ideal
functionality who computes the result of the computation and sends it back to the two parties.
The real protocol for RPS is implemented using two trusted functionalities Fcomm implementing
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commitment schemes: (1) Both parties send (commit, input) to Fcomm; (2) When Fcomm collects
(commit, input) from both parties, it sends committed to both parties and ready to adversary;
(3) Upon receiving commit from Fcomm, both party send open to Fcomm; (4) Upon receiving open
from one party and ok from adversary, Fcomm send one party’s input to the other party. The ideal
functionality can be appropriately modified to allow adv to schedule message delivery

We prove security in the malicious corruption model. There are no adversarial channels exposed
when neither party is corrupted; thus, in this case, to prove security we let the simulator be empty,
and prove directly that the real protocol rewrites under! to the ideal one. Since the only exposed
channels are the parties’ external channels, this amounts to proving functional correctness of the
real protocol; this proof is a straightforward application of the rewriting rules.

When one of the parties (wlog, party B) is corrupted, the simulator sends a fake commitment
message to the adversary, who then responds with their input. The simulator forwards this input to
the trusted functionality in the ideal world, who responds back with the result of the computation.
Now that the simulator has party B’s input as well as the result of the computation, it can deduce
party A’s input and that input to the adversary. Once this simulator is specified in IPDL, it is a
straightforward exercise to see that the real world simplifies to the same reaction set as the ideal
world with this adversary. We describe more details on the RPS protocol in Appendix B.

6.3 Semi-honest Oblivious Transfer Protocol

Our final case study is the classic oblivious transfer (OT) protocol of [GMW87], which constructs
an OT protocol from any hard-core predicate associated to a trapdoor permutation family. 1The
protocol consists of two parties, the transmitter and receiver, communicating over an authenticated
network. The network is modeled similarly to Section 2, where we instrument the network with
explicit leak channels. The transmitter takes as input two bits, m0 and m1, while the receiver takes
an input an index bit i. The goal is for the receiver to learn mi, while the receiver learns nothing.

We briefly describe the 1-out-of-2 OT protocol with message space {0, 1}, using trapdoor permu-
tation family F associated with hardcore predicate b(·). On input of two messaage m0,m1 ∈ {0, 1},
the transmitter samples a random permutation (f, f−1) from family F , and sends the permuta-
tion description f to receiver. On input index i and permutation f from transmitter, the receiver
computes yi = f(ri) and y1−i = r1−i, where (ri, r1−i) are sampled randomly from the domain of
permutation f . The receiver then sends (yi, y1−1) to the transmitter. Next, transmitter first uses
trapdoor f−1 to invert (yi, y1−1) and xor the message (mi,m1−i) with hardcore predicate b(·), i.e.
ci = mi ⊕ b(f−1(yi)). Upon message (ci, c1−i) from transmitter, the receiver can recover message
mi by computing mi = ci ⊕ b(ri).

The protocol is secure in the semi-honest corruption model, as described in Section 4. The
protocol is modeled similarly to our previous example, where the two ideal parties send their inputs
(m0,m1) and i to a trusted functionality who securely communicates mi to the ideal receiver.
We focus on the case where the receiver is corrupted. Following Section 4, this is modeled by
instrumenting the code of both the real and ideal world receivers in order to leak to the adversary all
secret state and input from other parties. The interesting aspect of this case study is its complexity;
while this OT protocol has been studied before in formal cryptography frameworks [CCK+05], we
have found that our abstraction of dependency leads to a very manageable proof. While expressible
on paper, this proof is further enhanced by the proof automation capabilities of our mechanization,
which we present in Section 7.

1An on-paper description of our formal proof can be seen at https://github.com/ipdl/ipdl.

18

https://github.com/ipdl/ipdl


7 Mechanization

In this section, we describe our mechanization of IPDL as a logic shallowly embedded in Coq, pub-
licly available at https://github.com/ipdl/ipdl. All IPDL proofs in this paper have been mechanized.
The soundness proof of IPDL using probabilistic automata is not yet mechanized.

Our embedding of IPDL in Coq is shallow, in the sense that individual reactions of IPDL are
encoded using Coq functions. By doing so, we are able to turn our rewriting rules of Figure 5 into
rewriting tactics in Coq. In order to assist proof automation, we also make heavy use of Ltac,
Coq’s native proof automation mechanism. We use a shallow embedding in order to encode IPDL
reactions into Coq. By doing so, we are able to write reactions that look very close to their on-paper
counterpart: for example, the reaction c : sendSR : ct, k : keyS : key, ansR ` outR vis : msg := Dec(c, k)
is encoded in Coq using the concrete syntax

[:: ("sendRS", tyCtx); ("keyS", tyKey);
("ansR", tyUnit)] ∼>
("outR", tyMsg) dvis
(fun ct k _ => dec (c, k)).

Each rule in our logic corresponds (roughly) to a single Coq tactic. The main proof goal in Coq
is written S1 <~~> S2, corresponding to the ! judgment. 2Most of our tactics work on either
side of this proof goal. For example, the tactic r_move_at pos c1 c2 takes a boolean flag pos
indicating which reaction set to operate on (either leftc or rightc, borrowing this design from
FCF [PM15]) and two channel names c1 and c2, and swaps the position of c1 with c2. Doing so
automatically applies the [Perm-Σ] rule. We have a similar tactic for permuting the elements of a
reaction’s context.

While doing these proofs, we found the most often used tactic was autosubst_at pos c1 c2,
which given a non-probabilistic channel c1 automatically fills the context of c2 with the the context
of c1, substitutes the value of c1 into c2, and removes c1 from the context of c2. This rule is often
paired with the tactic remove_at pos c, which removes unused hidden actions from the reaction
set.

The tactic r_ext_at pos c D (corresponding to the rule [Ext]) replaces the value of c with
the distribution D. When this tactic is called, a subgoal is generated that states for all possible
interpretations of the context of c, the distribution currently in c is equal to the distribution D.
We use a custom library for representing probability distributions. Our library has the feature that
representations of distributions are naturally extensional, meaning that equality of the distribution
coincides with Coq equality. This feature is not essential for the mechanization, but is very important
for reducing the complexity of the proof engineering.

Our proof development is overviewed in Figure 7. Only the file Logic.v contains trusted def-
initions; all others are either derived tactics, auxiliary lemmas, or our case studies. The longest
proof is of the Oblivious Transfer protocol, at 816 lines total; our other proofs are small in size, at
about 300-400 lines each. An example excerpt from our mechanization of the running example from
Section 2 is given in the Appendix, in Figure 11. Our mechanized proof sizes are either favorable or
on par with relevant work. For protocols, we compare with the recent prior work EasyUC [CSV19]
(which uses EasyCrypt as the proof assistant) and the independent work CryptHOL [LSBM19].
EasyUC encoded a secure channel example with more than 10,000 lines of code, while CryptHOL
encoded one-time pad with 347 lines of code. For non-interactive primitives, we have 244 lines of

2We do not currently reason about approximate error in the mechanization; i.e., our mechanization can be seen
as manipulating statements of the form ∃ε, s!ε s′.
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code for ElGamal encryption whereas FCF [PM15] is at 249 lines (although FCF does not pro-
vide an easy-to-use logic for expressing protocols). Our most complicated example, OT, was not
implemented by these other systems — however, we can compare with the on-paper proof in the
Task-PIOA paper [CCK+18] which proved OT in 24 pages (c.f. ours is 816 lines of actual code).
We conclude that our framework delivers proofs of succinct size3.

Section LoC
Core Logic 338
Tactics and Lemmas 802
Secure Channel 307

Section LoC
RPS 372
ElGamal 244
OT 816

Figure 7: Lines of code for our IPDL Coq development.

8 Related Work

Symbolic techniques for protocol verification. A long line of research in the verification of
cryptographic protocols has been done in the so-called Dolev-Yao model [DY83], where all cryptog-
raphy is assumed to be perfectly secure. While admitting simple and effective proof methods and
supported by multiple mechanized provers ([BSCS18, MSCB13, Cre08]), this technique is limited
by requiring complicated computational soundness arguments, which prove that a symbolic attacker
is equivalent in power to a corresponding computational one which interacts with instantiations of
the idealized cryptographic primitives.

A promising direction ([BCL12], [BCL14], [BCEO19]) in this space is initiated by Bana and
Comon, where the attacker is not limited by interacting with idealized cryptography, but instead
constrained by a number of axioms which state what the attacker is not able to do. By considering
the most powerful attacker which does not violate the axioms, it is easy to see such attackers are
equivalent to their computational counterparts, if the axioms are sound. The soundness of these
axioms are subtle and require careful expert analysis.

In comparison, our work aims to match the computational reduction model of reasoning from
the ground-up, and therefore match the mathematical foundations of cryptography. While systems
based on symbolic systems like Bana and Comon would require an additional soundness proof
outside the system, systems based on computational cryptography are intrinsically sound. This
difference reflects a tradeoff between the two approaches: while symbolic systems generally support
automatic reasoning, computational systems support more general forms of reasoning. Because of
this tradeoff, it is likely most profitable to combine aspects of both systems into one, such as partially
automating computational verification tools using symbolic techniques [BGJ+19]. We additionally
point out that a design goal of IPDL is to enable human-readable formal proofs (either on paper on
in a theroem prover), while symbolic systems generally favor computer-generated proofs.

Computational mechanized security proofs. To avoid some of the limitations of the symbolic
approach, a separate line of work instead chooses to reason directly in the computational model;
i.e., with explicit reasoning principles about computation time, computational error, and probabil-
ity. CryptoVerif [Bla06] reasons in the computational model about security protocols in a manner

3We did not directly compare succinctness with Bana and Comon [BCL12, BCL14, BCEO19], Micciancio and
Tessaro [MT13], and other related systems which either do not have an implementation or we did not find an open-
source implementation.
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similarly to symbolic systems such as ProVerif [BSCS18], thus mainly aims for automated proofs
for a well-chosen set of cryptographic primitives.

There are a number of successful verification tools for computational cryptographic proofs, such
as Easycrypt[BGHZ11] and FCF [PM15], which focus on noninteractive primitives and thus do not
reason about concurrency explicitly. These tools are capable of nontrivial probabilistic reasoning
which is currently not captured directly in IPDL, such as explicit reasoning about the security
parameter, and up-to-bad reasoning for bounding the kinds of attacks the adversary may perform.
It is interesting future work to combine these advanced forms of cryptographic reasoning with IPDL.

Frameworks for cryptographic protocols. In the cryptography literature, Universal Compos-
ability [Can01] and Constructive Cryptography [Mau11] are the two dominant definitional frame-
works for simulation-based security. Several automata-based frameworks also exist, such as [BPW07]
and [CCK+18], which, while similar in spirit, aim for a more formal treatment. Additionally, some
works use process calculi to model computational cryptographic protocols, such as [MRST01]. Our
basic semantic framework is closest to that of UC, since we semantically model a protocol as a
configuration of multiple agents, each of which may send at most one message after becoming ac-
tivated. This requirement that only one message is sent when each protocol agent is activated is
naturally captured through a linear typing judgement in ILC [LHM19], a recent effort to formalize
the semantics of UC in a process calculus. While ILC does not yet offer formal proofs, it would be
a natural next step to formalize the semantics of IPDL using ILC.

An interesting alternative framework is given in Micciancio and Tessaro [MT13] (hereafter
M&T), where they use complete partial orders to represent cryptographic protocols as the least
fixed point of a recursive set of equations. Each communication channel induces a stream of val-
ues, which are recursively interrelated through the protocol’s execution. We follow a number of
intuitions made by M&T: both IPDL and M&T choose to view communication channels as pure
values which may be related through equational rewrites. In both systems, these rewrites are sound
under the assumption that the protocols in question do not make use of timing information, but
only the values taken on the channels. However, we prove soundness in a more general semantic
framework which allows for general adversaries which do make use of timing information. We point
out that the monotonicity requirement in M&T (that further inputs can only create more outputs)
is naturally captured through our semantic framework, since protocol agents in our framework only
operate on single messages at a time.

Computational proofs of simulation-based security. Two recent concurrent works, EasyUC
[CSV19] and CryptHOL [LSBM19], deliver mechanized computational proofs of simulation-based
security of cryptographic protocols. EasyUC does so by directly encoding the coroutine-based
semantics of UC in EasyCrypt. As the authors acknowledged in their paper, encoding proofs of
cryptographic protocols in EasyUC is highly non-trivial, which is largely due to EasyCrypt not
natively supporting reasoning about concurrency. The EasyUC work points out a need for a DSL
for specifying and reasoning about cryptographic protocols in EasyCrypt; future work on IPDL
could potentially allow it to fill this gap.

CryptHOL is a formalization of the Constructive Cryptography framework [Mau11] in Isabelle.
While superficially similar to our work, CryptHOL (and EasyUC) serve a complementary purpose
to IPDL: while the former works serve to formalize the semantics of cryptographic protocols in a
mechanized theorem prover, IPDL explores the space of appropriate abstractions for conducting
cryptographic proofs. We believe that the reaction-based equational logic of IPDL could poten-
tially benefit proofs in EasyUC and CryptHOL, both of which employ handcrafted bisimulations to
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conduct equivalence proofs.

9 Limitations and Future Work

Given our focus on simplicity and ease-of-use, IPDL currently imposes some restrictions on the
cryptographic proofs it can model. We believe, however, that the scope of IPDL nonetheless covers
a a wide and interesting class of commonly encountered cryptographic proofs.

First, IPDL currently does not explicitly encode and reason about the security parameter. This
does not harm any computational reasoning, since proofs in IPDL consist of a finite number of
rewrites. Thus, the error incurred in an IPDL proof will be upper bounded by nε, where n is the
size of the proof, and ε is the largest error incurred during the proof. By thinking of the security
parameter as implicit in the IPDL protocol, we see that the error incurred by any proof is negligible,
assuming that ε is. However, if extensions to IPDL enable a way to encode loops, then this reasoning
breaks down and an explicit security parameter is required.

Second, IPDL currently does not capture protocols where events are triggered based on nontrivial
properties about their dependencies. Thus, we do not yet consider protocols which make nontrivial
use of control flow, such as certain consensus protocols. We note that this has previously been argued
by Micciancio and Tessaro [MT13], who have a similar restriction in their work, to nevertheless
represent an expressive class of cryptographic protocols. This restriction also means that for UC-
style simulation proofs, we currently support only straightline, blackbox notions of simulation.

Third, it would not be too hard to extend IPDL to support a parametrized number of parties
and a parameterized number of executions (as long as the number of parties or sessions are fixed
a-priori). We plan to extend IPDL in this direction in the near future. We point out that since
IPDL adopt UC-flavor security definitions, just like UC [Can01], the security notion allows us to
reason about a single protocol instance while guaranteeing concurrent or sequential composition
with polynomially unbounded instances/sessions.

We stress that we do not require that the adversary be an IPDL program — the adversary is
assumed to be a probabilistic polynomial-time algorithm. It would be an interesting direction to
extend IPDL and allow the syntax to describe a family of channels, with a uniform description of
their values and dependencies. This would allow us to describe protocols and security games which
operate over many queries, up to some (publicly known) parameter q. Security analysis in this
setting would require explicit security parameter analysis, since handling an arbitrary number of
queries is similar to handling loops.

We currently capture only static security, in which parties are corrupted a-priori, rather than
becoming so in the middle of the protocol. We leave adaptive corruption to later work.

An exciting future direction is to integrate IPDL with an underlying battle-hardened crypto-
graphic proof system (such as EasyCrypt) which may enable more expressiveness, thus achieving
ease-of-use and generality simultaneously. Other exciting future directions include to provide a
greater degree of proof automation, compiling IPDL programs to executable code (e.g., in C) and
proving the correctness of the compilation. As discussed in Section 8, there are a number of directions
in which our work can potentially intersect with other concurrent work in formalized cryptography
proofs. Integrating our method for constructing bisimulations into EasyUC [CSV19] or CryptHOL
[LSBM19] may allow for more accessible proofs for a certain class of protocols. Additionally, it
would be interesting to prove our bisimulation methodology sound in ILC [LHM19], a formalization
of UC semantics which is likely compatible which our own semantics.
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A Soundness proof for IPDL

We proceed by case analysis on the proof rules. In each case, we need to provide a bisimulation that
relates distributions of states in the first protocol to distribution of states in the second, such that
related distributions of states exhibit the same behavior. (This distribution bisimulation is similar
to that proposed in [LSBM19].)

We proceed by case analysis on the proof rules:

• Cases [Perm-Σ], [Perm-Γ], [Ext], [Trans], [Subst] are clear, since the two protocol agents
considered are equal.

• Case [Add/Rem]: The corresponding bisimulation relates a Dirac distribution on state s1 of
the reaction set on the left to a Dirac distribution on state s2 of the reaction set on the right
iff the value of h in s1 is undefined and the values of s1 and s2 for all remaining channels
agree.

• Case [Rename]: The corresponding bisimulation relates a Dirac distribution on state s1 of
the reaction set on the left to a Dirac distribution on state s2 of the reaction set on the right
iff the value of h in s2 is equal to the value of c in both s1 and s2, and the values of s1 and s2

for all remaining channels agree.

• Case [Hidden Resource]: The corresponding bisimulation relates a distribution η on states
of the reaction set on the left to a Dirac distribution on state s of the reaction set on the right
iff either

– η is a Dirac distribution on the same state s, or
– η is the result of applying h to the state s

• Case [Fold]: The corresponding bisimulation relates a distribution η1 on states of the reaction
set on the left to a distribution η2 on states of the reaction set on the right iff either

– η1 is a Dirac distribution on state s1, η2 is a Dirac distribution on state s2, the values of
h and c in s1 are undefined, the value of c in s2 is undefined, and s1 and s2 agree on all
remaining channels, or

– there are Dirac distributions on states s1 and s2, respectively, that satisfy the conditions
of the previous point, such that η1 is the result of applying h and then c to s1 and η2 is
the result of applying c to s2.

• Case [Congr]: This follows from the observation that the protocol consisting of the single
IPDL program P ∪ Q is equivalent to the protocol consisting of the two IPDL programs P
and Q. The bisimulation for this observation relates a Dirac distribution on state s1 to the
Dirac distribution on the combined state (s2, s3) iff s1 agrees with s2 and also with s3 on any
common channels.

• Case [Hiding]: This follows from the observation that given a protocol σ compatible with the
protocol agent P hide c, we can extend σ by another protocol agent Q whose (token) inputs
are requests to execute outputs o of P (i.e., inputs of the form get_o). If o does not depend
on c, Q forwards this request to P . Otherwise it first asks P to execute h and if it receives a
value back from P , it forwards to P the request to execute o. If instead of a value for h the
protocol Q receives another execution request ,e.g., for a channel l, this means the previous
attempt to execute h was unsuccessful and the effort to execute o is abandoned.
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commP : play inp

cP : commP : play ` committedP vis

openP inp

cP : commP : play, openP ` valP vis : play := commP

inP : play inp

iP : inP : play ` commP vis : play := inP

committedP̄ inp

cP : commP : play, c′P̄ : committedP̄ ` openP vis

valP̄ : play inp

iP : inP : play, vP̄ : valP̄ : play

` outP vis : ans := frps(inP , valP̄ )

Figure 8: The real protocol for RPS. Left: the commitment functionalities Fcomm, for parties
P ∈ {A,B}. Right: the code for party P . We use the notation P̄ to denote B if P = A, and A if
P = B.

B More on RPS Protocol

The ideal protocol is implemented in IPDL as having each party P ∈ {A, B} listen on input
channel inP , forward this input to sendP , receive a reply on recvP , and forward this value on
outP ; correspondingly, the ideal functionality listens on both sendA and sendB, and sends the value
frps(x, y) on both recvA and recvB, where x and y are the two parties’ inputs. We say the real
protocol is secure when it reduces from the ideal protocol, in the terminology of Section 4. In
particular, this means input privacy (no party can learn more about another party’s input than
what the function outputs), and input independence (no party can correlate its input with the
input of another party).

The real protocol for RPS is implemented using two trusted functionalities implementing com-
mitment schemes. In UC terminology, this means we are operating in the Fcomm-hybrid model. The
commitment functionality operates by receiving a value x ∈ {rock, paper, scissors} on input commP ,
and sending an indication to the other party P̄ that a value has been committed. Once P sends
openP to the functionality, it then reveals the commitment to the other party via the valP channel.

Informally, the protocol is secure since the commitment functionalities enforce this input inde-
pendence property described above. The input privacy requirement for this protocol is degenerate,
since each party can deduce the other’s private input, given its own private input and the output
value of the protocol.

There are no adversarial channels exposed when neither party is corrupted; thus, in this case, to
prove security we let the simulator be empty, and prove directly that the real protocol rewrites under
 to the ideal one. Since the only exposed channels are the parties’ external channels, this amounts
to proving functional correctness of the real protocol; this proof is a straightforward application of
the rewriting rules.

When one of the parties (wlog, party B) is corrupted, the simulator gets access to the real world
channels commB (coming from the adversary); committedA (coming from the simulator); openB
(coming from the adversary); and valA (coming from the simulator). In the ideal world, it gets
access to the channels sendB (coming from the simulator) and recvB (coming from the functionality.)
This situation is shown in Figure 9.
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T and A Sim ArecvB

sendB committedA

commB

openB
valA

Figure 9: Illustration of Corrupted Bob

The simulator operates as follows: it may immediately fire committedA, indicating that the other
party has committed its input. On input commB from the adversary, the simulator forwards this
input to sendB in the ideal protocol. The simulator receives the value openB from the adversary,
but does nothing with it. After receiving recvB from the ideal protocol, Sim can compute and send
valA := f−1

rps (recvB, sendB), where the function f−1
rps computes A’s input based on the result recvB

and B’s input sendB.

commB : play inp

cB : commB : play ` sendB : play := commB

· ` committedA

recvB : ans inp, openB inp

sB : sendB : play, rB : recvB : ans ` valA : play := f−1
rps (sB, rB)

Figure 10: Formalization of Simulator Sim

Once we describe the simulator, this proof is similar to the honest case and only requires one
to compute that the real protocol and the ideal protocol with the simulator simplify to the same
reaction set.
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Theorem noCorr_real_simp : realNoCorr < ~ > realSimp.
rewrite /realNoCorr /realSimp /rlist_comp_hide; vm_compute RChans; simpl.
autosubst_at leftc "keyR" "outR".
remove_at leftc "keyR".
autosubst_at leftc "keyS" "sendSR".
remove_at leftc "keyS".

autosubst_at leftc "deliv" "outR".
remove_at leftc "deliv".

rename_at leftc "sendSR" "outCPA".
arg_move_at leftc "outCPA" "inS" 0.
trans_at leftc "outCPA" "leak" "keygen" tyKey.

arg_move_at leftc "outR" "keygen" 0.
r_ext_at leftc "outR" (rbind [:: ("keygen", tyKey ); ("outCPA", tyCtx )]

[:: ("ans", tyUnit )] ("tmp", tyMsg) ("outR", tyMsg)
(fun x y => ret (dec y x)) (fun (x : msg) _ _ _ => ret x)).

intros; unlock rbind; rewrite //=.
msimp; done.

unfold_at leftc "outR".

trans_rev_at leftc "tmp" "outR" "keygen".
trans_rev_at leftc "tmp" "outR" "outCPA".
pair_at leftc "leak" "tmp" "X".
trans_rev_at leftc "X" "leak" "outCPA".
trans_rev_at leftc "X" "tmp" "outCPA".
trans_at leftc "outCPA" "X" "inS" tyMsg.
r_move_at leftc "outCPA" 0.
r_move_at leftc "X" 1.
arg_move_at leftc "X" "outCPA" 0.
fold_at leftc.
r_ext_at leftc "X" (fun m k => n2 <- enc m k; ret (n2, m)).

intros.
apply mbind_eqP.
intros; msimp.
erewrite dec_correct.
apply: erefl.
done.

unfold_bind2_at leftc "X" "outCPA" tyCtx.
unfold_at leftc "X".
autosubst_at leftc "X" "leak".
autosubst_at leftc "X" "tmp".
remove_at leftc "X".
autosubst_at leftc "tmp" "outR".
remove_at leftc "tmp".
trans_rev_at leftc "outCPA" "leak" "keygen".
trans_rev_at leftc "outCPA" "leak" "inS".
hid_str_at leftc "outCPA" "outR".
hid_str_at leftc "keygen" "outR".
align.
reflexivity.

Qed.

Figure 11: Example proof from our mechanization, showing that πR! πsimp
R , from Section 2. Our

library is generic over a type for names of channels (here, strings) and a universe of types (here, in-
cluding a type for messages, ciphertexts, and keys). Each tactic invocation soundly edits the current
goal state, thus enabling the user to reason about protocols through interactive transformations.
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