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HIBEChain: A Hierarchical Identity-based
Blockchain System for Large-Scale IoT

Zhiguo Wan, Wei Liu, Hui Cui

Abstract—Internet-of-Things enables interconnection of bil-
lions of devices, which perform autonomous operations and
collect various types of data. These things, along with their
generated huge amount of data, need to be handled efficiently
and securely. Centralized solutions are not desired due to
security concerns and scalability issue. In this paper, we pro-
pose HIBEChain, a hierarchical blockchain system that realizes
scalable and accountable management of IoT devices and data.
HIBEChain consists of multiple permissioned blockchains that
form a hierarchical tree structure. To support the hierarchical
structure of HIBEChain, we design a decentralized hierarchical
identity-based signature (DHIBS) scheme, which enables IoT
devices to use their identities as public keys. Consequently,
HIBEChain achieves high scalability through parallel process-
ing as blockchain sharding schemes, and it also implements
accountability by use of identity-base keys. Identity-based keys
not only make HIBEChain more user-friendly, they also allow
private key recovery by validators when necessary. We provide
detailed analysis of its security and performance, and implement
HIBEChain based on Ethereum source code. Experiment results
show that a 6-ary, (7,10)-threshold, 4-level HIBEChain can
achieve 32,000 TPS, and it needs only 9 seconds to confirm a
transaction.

Index Terms—Blockchain, IoT, Key Management, Identity-
based Signature

I. INTRODUCTION

IoT connects various types of physical devices, ranging from
wireless temperature sensors, smart meters, and intelligent
appliances to connected vehicles. According to Gartner and
ABI Research, over 20 billion IoT devices will be deployed
by 2020 [1]. However, secure and efficient management of a
large number of devices for such a huge network turns out to
be an extremely challenging task.

The traditional approach to manage IoT devices with a
centralized server, e.g. a dedicated cloud, has a number of
drawbacks. First, the centralized mode leads to the single
point of failure, and the whole system breaks down if the
centralized server is compromised. This mode also makes the
centralized server an attractive attack target. Second, users
place too much trust on the centralized server as a third party,
which can fully control and access the users’ IoT devices.
The centralized server could abuse this privilege by arbitrarily
controlling IoT devices and obtaining sensitive information
from these devices. In addition, centralized servers, e.g. the
cloud, may be far from IoT devices, so they are unable to
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respond quickly to IoT devices. A better strategy is to take
a decentralized approach instead of the centralized one like
cloud computing.

Recently, the decentralized blockchain technology under-
lying Bitcoin [2] has attracted a lot of interests from both
industry and academia. A blockchain is a completely de-
centralized ledger without relying on any trusted party. It is
formed by connecting a block with its predecessor through
hashing. Each block is generated through some consensus
mechanism (e.g. proof-of-work or Practical Byzantine Fault
Tolerance (PBFT) algorithm [3]) by the participants of the
blockchain system. Many blockchain-based cryptocurrencies
and systems have been developed following the similar design.
More importantly, the blockchain, as a decentralized trustwor-
thy infrastructure, has found much more applications in many
areas, including fintech, supply chain, smart manufacturing
and IoT systems.

Blockchain has a number of attractive features that make it
well-suited for IoT. First, blockchain is decentralized without
a single point of failure, so it is more secure and robust than
traditional centralized solutions. Therefore, blockchain can be
used as a decentralized control center for IoT devices, which
take commands from the blockchain instead of a centralized
server. This can effectively prevent emerging attacks aiming to
take control of these IoT devices. Second, blockchain enables
self-enforceable smart contracts, which facilitate cooperation
among IoT devices although they may not fully trust each
other (e.g. robots owned by different organizations collabo-
rate to accomplish some task). Furthermore, blockchain-based
cryptocurrency offers a convenient payment method, and it can
also be used as an incentive mechanism for autonomous IoT
devices.

There are a number of projects attempting to apply
blockchain to IoT systems. A framework ADEPT by IBM [4]
employs the blockchain technology to realize a decentralized,
autonomous data and device control system for large-scale IoT
networks. IBM also integrates blockchain with its Watson IoT
platform [5], so that IoT data can be shared with a private
blockchain. Supply chain tracing can also be implemented us-
ing blockchain on Watson IoT platform. China Unicom, ZTE
corporation, Alibaba and MIIT [6] have recently proposed
a blockchain framework of things as a decentralized service
platform, aiming to improve IoT applications and services.
It is expected that blockchain can help to improve trust,
accountability, transparency and efficiency of IoT systems. A
number of IoT-oriented blockchain projects have been initiated
in recent years, such as Filament [7] and IOTA [8].

Unfortunately, blockchain cannot be directly applied on
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large-scale IoT systems due to its poor scalability, i.e. low
transaction throughput. Currently, the Bitcoin blockchain can
only process at most 7 TPS (transactions per second), and
Ethereum can only process at most 25 TPS. Some improve-
ments have been proposed for Bitcoin blockchain, e.g. increas-
ing the block size from 1MB to 20 MB, but the improvement
is very limited.

Transaction throughput is not the only issue for applying
the blockchain technology in IoT systems. The enormous
transaction data generated by the IoT cannot be processed effi-
ciently by current blockchain systems. Currently, mainstream
blockchain systems like Bitcoin and Ethereum use a single
blockchain to manage transactions, which leads to difficulty in
managing large amount of transaction data. For instance, the
Bitcoin blockchain is of size around 200GB now, and every
full node needs to store a complete copy of the blockchain.
Clearly, an efficient blockchain system is required to deal with
large volume IoT transaction data.

More importantly, cryptographic keys are not well managed
in current blockchain systems, which results in malicious
abuses and difficulties in blockchain management. In public
blockchain systems like Bitcoin, participants generate their
cryptographic keys by themselves, which are not bound to their
real identities. Indeed, Bitcoin has been used for illegal activi-
ties, including money washing, drug trading, ransomwares etc.
Such an approach achieves strong anonymity, but it could be
abused by adversaries to launching attacks. For the sake of
security and accountability, it is important for a blockchain-
based IoT system to have an efficient and secure identity
management scheme.

To tackle the above problems, we propose HIBEChain, a
hierarchical permissioned blockchain system, with the aim
to achieve efficiency, scalability and accountability for IoT
systems. HIBEChain consists of multiple blockchains forming
a hierarchical tree structure, with each blockchain being a
node on the tree structure. Each leaf blockchain is independent
and needs not to synchronize with other blockchains. It is
managed by edge servers as the miners (also called validators),
which process transactions generated by IoT devices within
its domain. Intermediate blockchains do not store transaction
from end devices, but only confirm blocks of their child
blockchains. Similar to the hierarchical domain name system
(DNS), HIBEChain is highly scalable and well-suited for
large-scale IoT systems.

As a permissioned blockchain, HIBEChain adopts a decen-
tralized hierarchical identity-based key management (DHIBS)
scheme, which achieves secure and user-friendly key manage-
ment. For IoT devices, the identities are unique and meaningful
strings, instead of random bit strings. Using these identities
as public keys, HIBEChain is much more user-friendly and
public key verification is not required anymore. Meanwhile,
malicious abuses can be effectively prevented as identities can
be easily traced.

Our contributions can be summarized as follows:
• We propose HIBEChain, a hierarchical blockchain

scheme, to implement decentralized, scalable and efficient
management for IoT systems. To the best of our knowl-
edge, this is the first IoT-oriented hierarchical blockchain

system that contains multiple blockchains. HIBEChain
is well-suited for processing large-scale transactions and
data for IoT systems.

• In accordance with HIBEChain, we design an efficient
and scalable signature scheme DHIBS based on the
hierarchical identity-based encryption algorithm. At every
level of HIBEChain, identity-based private key shares are
generated cooperatively by a group of validators, instead
of a single validator. DHIBS and the PBFT consensus
algorithm of the blockchain can be seamlessly integrated
together by using the same threshold.

• We provide a formal security model and a rigorous secu-
rity proof for the DHIBS scheme. In addition, we provide
in-depth discussion on consistency and liveness of our
PBFT-based consensus mechanism used in HIBEChain.

• We fully implement HIBEChain as well as the digital
signature scheme DHIBS based on Ethereum. We then
conduct comprehensive experiments to evaluate its per-
formance. Experiment results show that a 4-level HI-
BEChain can achieve 32,000 TPS and 9 seconds trans-
action processing latency.

The reminder of this paper is structured as follows. We
review related work on blockchain in the next section, and
then provide preliminaries on cryptographic techniques in
Section III. We then present a decentralized hierarchical
identity-based signature scheme to be used in HIBEChain in
Section IV. We describe HIBEChain in detail in Section V,
and analyze its properties including scalability, accountability
and security in Section VI. Implementation and experimental
results are presented in Section VII, followed by concluding
remarks in the end.

II. RELATED WORK

A. Blockchain Consensus and Sharding

Mainstream consensus mechanisms for blockchains include
proof-of-work (PoW), proof-of-stake (PoS), directed acyclic
graphs (DAG) and Byzantine fault tolerance (BFT). Consensus
consistency and liveness are two key properties to ensure
security and robustness for blockchains.

Bitcoin and Ethereum [9] adopt the PoW mechanism to
establish consensus. Analysis of [10] shows that Bitcoin PoW
mechanism satisfies consistency and liveness. PoW mecha-
nisms have very low transaction throughput (7 and 25 TPS
for Bitcoin and Ethereum respectively). To solve the scala-
bility problem and achieve high transaction throughput, more
efficient consensus algorithms have been proposed. Proof-of-
stake (PoS) consensus algorithm [11] demands peers of the
blockchain to stake their assets to generate the next block, so
the computation cost is significantly reduced. Delegated PoS
(DPoS) consensus algorithm [12] extends PoS by selecting
a group of delegates to execute PoS algorithm, so as to
improve blockchain throughput. DAG is designed for IoT-
oriented blockchain systems [8], but its security has not been
rigorously proved.

Different from PoW/PoS algorithms proposed for public
blockchains, permissioned blockchains have different consen-
sus algorithms. Practical Byzantine Fault Tolerance (PBFT)
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algorithm [3] is used in Hyperledger Fabric [13], and its
safety (consistency) and liveness have been rigorously proved.
Permissioned blockchain Ripple [14] and Stellar [15] also have
their own consensus algorithms.

To improve transaction processing throughput, shard-
ing mechanisms have been proposed for general-purpose
blockchains. It is done by dividing transactions into mutually
disjoint partitions and processing these partitions in parallel.
Luu et al. [16] proposed Elastico, a sharding scheme for public
blockchains like Bitcoin. Each shard is processed by a com-
mittee with a consensus algorithm like PBFT, in parallel with
other shards. Then the consensus results from all committees
are processed by a final committee to reach final consensus.
Ethereum [17] also intends to adopt a PoS algorithm Casper
with sharding to increase throughput.

RSCoin [18] employs a similar sharding approach, but in a
centralized manner. In RSCoin, a mintette is responsible for
collecting transactions from end users and collating them into
lower-level blocks, while a central bank collects lower-level
blocks from these mintettes to produce higher-level blocks and
the blockchain.

A recent proposal RapidChain [19] achieves significantly
higher throughput by sharding public blockchains, and it
tolerates Byzantine faults up to 1/3 of all participants. A shard
is formed by randomly selecting members for each committee,
so that the fraction of corrupted members of each committee
is less than 1/2. A synchronous Byzantine consensus protocol
is then executed in each committee to reach consensus.

Another sharding scheme OmniLedger [20] achieves high
throughput and resilience against corruption up to 1/4 of all
participants for public blockchains. OmniLedger combines
verifiable random function and public-randomness protocol to
randomly select validators for each shard.

Parallel-chains [21] provide a general composition approach
for sharding PoS and PoW blockchains. The idea is for
the same validators (miners) to parallelly maintain multiple
disjoint blockchains, which are then merged into the final
blockchain. It has been rigorously proved that parallel-chains
are robust against adaptive corruptions and can achieve near
optimal throughput. However, parallel-chains do not shard
communication or storage as RapidChain does, so its scal-
ability is limited in this regard.

If the above blockchain sharding schemes are used in IoT
systems, the randomly-chosen validators may be far from the
IoT devices that generate transactions. Thus it will be hard for
the validators to respond to IoT devices timely.

B. Blockchain and IoT

IBM’s ADEPT project [4] investigated how to employ
blockchain to manage large-scale IoT systems early in 2015.
Since then, many blockchain startups have proposed different
ideas and solutions to integrate blockchain with IoT sys-
tems [22]. But these solutions lack theoretic foundations and
rigorous analysis, so their security is still in question. For
example, IOTA [8] has been questioned by researchers [23].

In recent years, how to adopt blockchain in IoT systems
has attracted attention of academic researchers, but research in

this direction is still in the early phase. Some research works
focus on potential opportunities and challenges in adopting
blockchain in IoT systems [24], some describe a blockchain
architecture or platform for specific IoT systems [25], and
some others study specific research problems. For example,
Boudguiga et al. [26] employ blockchain to design an IoT
software/firmware update scheme, which is very important in
the lifetime of IoT systems. Hammi et al. [27] design an
efficient decentralized authentication scheme for IoT devices
using blockchain.

All the above works demand a scalable and highly efficient
blockchain system, which is a challenging problem our paper
attempts to address.

C. Hierarchical Identity-based Encryption and Decentralized
Key Generation

The core component of our proposed scheme is a decen-
tralized hierarchical identity-based signature scheme (DHIBS),
which is related to hierarchical identity-based encryption
(HIBE) and decentralized key generation. Here we review a
number of schemes that are closely related to our proposal.
HIBE schemes generalize from IBE to realize an organiza-
tional hierarchy. Boneh et al. [28] proposed a HIBE scheme
with constant size ciphertexts, which is the starting point of
this work. But this HIBE scheme is not a signature scheme, as
required by our proposal. To realize hierarchical identity-based
signature (HIBS), Chow et al. [29] has proposed an efficient
scheme. However, both the HIBE scheme by Boneh et al. and
the HIBS scheme by Chow et al. are in centralized mode, not
fitting into the decentralized scenario of blockchain.

To decentralize identity-based encryption (IBE), several
schemes with distributed private-key generation have been
proposed in [30]. In these decentralized IBE schemes, only
the master key is shared among a set of authorities, and they
just need to generate a private key for an end user. However,
for a decentralized HIBS scheme, the private key at each level
is required to be shared among the corresponding authorities.
To the best of our knowledge, there is no DHIBS scheme
proposed in the literature, and how to design such a scheme
and prove its security remains an open problem.

III. PRELIMINARIES

A. Bilinear Map and Bilinear Diffie-Hellman Assumptions

Let G and G1 be two multiplicative cyclic groups of prime
order p, g be a generator of G. Then an efficiently computable
bilinear map e is defined as G×G→ G1.

Computational Bilinear Diffie-Hellman (BDH) Assump-
tion. Let g ∈ G, and α, β, γ ∈ Z∗p where p is a prime number,
the BDH problem is defined as follows:

BDH : given g, gα, gβ , gγ , compute e(g, g)αβγ ∈ G1.

Computational Bilinear Diffie-Hellman Inversion
(BDHI) Assumption. Let g ∈ G be a generator and β ∈ Z∗p,
the l-BDHI is defined as follows:

l-BDHI : given g, gβ , g(β
2), ..., g(β

l), compute e(g, h)1/β .
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Computational weaker Bilinear Diffie-Hellman Inver-
sion (wBDHI) Assumption. Let g, h ∈ G and α ∈ Z∗p, the
weak BDHI assumption is defined as follows:

l-wBDHI : given g, h, gα, g(α
2), ..., g(α

l), compute e(g, h)1/α.

Computational wBDHI∗ Assumption. Let g, h ∈ G and
α ∈ Z∗p, the weak BDHI assumption is defined as follows:

l-wBDHI∗ : given g, h, gα, g(α
2), ..., g(α

l), compute e(g, h)(α
l+1).

B. Hierarchical Identity-based Signature

Below we briefly describe the hierarchical identity-based
signature (HIBS) scheme, which is built on the hierarchical
identity-based cryptosystem proposed in [28] and comple-
mented with the signature generation technique in [31].

Let G be a bilinear group of prime order p and e is a bilinear
map. Let the identity ID of depth k be (ID1, ID2, ..., IDk),
where IDi ∈ {0, 1}∗, and Ii = H(IDi) for i ∈ [k]. H :
{0, 1}∗ → Z∗p is a cryptographic hash function.
• HIBS.Setup(l): For a given maximum depth l, the public

parameters are params = (g, g1, g2, g3, h1, ..., hl), and
the master secret is mk = gα2 . Here g, g2, g3, h1, ..., hl
are random elements in G, and g1 = gα where α is a
random element in Z∗p.

• HIBS.KeyGen(dID|k−1
, ID|k): The private key for

ID|k−1 = (ID1, ID2, ..., IDk−1) is

dID|k−1
= (gα2 · (h

I1
1 · · ·h

Ik−1

k−1 · g3)
r, gr, hrk, ..., h

r
l )

= (a0, a1, bk, ..., bl),

where Ii = H(IDi) for i ∈ [k] and r ∈ Z∗p is a random
number. Then the private key for ID|k = (ID1, ID2, ...,
IDk) is generated as:

dID|k = (a0 · bIkk · (h
I1
1 · · ·h

Ik
k · g3)

t, a1 · gt, bk+1 · htk+1,

..., bl · htl)
= (gα2 · (h

I1
1 · · ·h

Ik
k · g3)

r+t, gr+t, hr+tk+1, ..., h
r+t
l ).

• HIBS.Sign(dID|k ,M): To sign a message M ∈ {0, 1}∗
with the private key dID|k = (a0, a1, bk+1, ..., bl),
it chooses a random number s ∈ Z∗p, computes h =
H ′(M) and x = a0 · hs where H ′ : {0, 1}∗ → G is
a cryptographic hash function. Then it obtains y = a1, z
= gs, and outputs the signature σ = (x, y, z, yk+1, ...,
yl), where yi = bi for i = k + 1, . . ., l.

• HIBS.Verify(ID|k,M, σ): To verify a signature σ = (x,
y, z, yk+1, . . ., yl), it computes h = H ′(M) and verifies
the following equation:

e(g, x) = e(g1, g2) · e(y, hI11 · · ·h
Ik
k · g3) · e(z, h).

The security of the above HIBS scheme is similar to that
in [28], which is sketched in the Appendix.

C. Pedersen’s Verifiable Secret Sharing

Pedersen’s verifiable secret sharing scheme [32] enables n
participants to obtain a share xi corresponding to a (t, n)-
secret sharing of a random value x. At the end of the protocol,
the random value x is kept secret from all participants, and

xi is known by participant i only. Pedersen’s VSS scheme
does not need any trusted third party and it is completely
decentralized. More importantly, the participants can verify
validity of received shares, so as to detect invalid messages
sent by malicious participants. Later we will use Pedersen’s
VSS scheme as a building block in our protocol, and use
(t, n)-Pedersen-VSS to denote a Pedersen’s VSS scheme for
threshold (t, n).

IV. DHIBS: DECENTRALIZED HIERARCHICAL
IDENTITY-BASED SIGNATURE

In this section, we describe DHIBS that implements a de-
centralized hierarchical identity-based cryptosystem. DHIBS
is used in our hierarchical blockchain system to realize effi-
cient key management and block consensus for IoT devices.
Different from aforementioned HIBS schemes, the master key
and each private key of DHIBS are shared among a set of
authorities, instead of being held by a single authority. Holding
only a secret share (referred to as shadow from now on), an
authority can generate either a partial signature or a private key
share. The higher-level authorities can collaborate to generate
(authorize) shadows for authorities at the lower level, and the
IoT devices can obtain their private identity-based keys from
their direct parent authorities.

However, it is challenging to generate lower-level secret
shadows from higher-level shadows in a decentralized manner
without reconstructing the private key, because the higher level
may have a different threshold value than the lower level. It is
important to note that generating private keys from shadows
is much easier, since there is no need for re-randomization
which is required for shadow generation.

TABLE I
NOTATIONS FOR DHIBS

ID|k Hierarhical identity for level k, i.e. (ID1, ID2, ...IDk),
where IDi ∈ {0, 1}∗

(tk, nk) Threshold secret sharing parameter for level k
Tk Set of indexes of k-level authorities of size tk

L(i) Lagrange interpolation coefficient,
∏

j 6=i,j∈T

j
j−i for some T

d
(i)
ID|k

Key share of authority with index i and identity ID|k
d
(i,j)
ID|k

Key share generated by authority i for j with identity ID|k
v
(j)
ID|k

Verification key for partial signature by authority j with
identity ID|k

JxKitk Threshold secret share for authority i with threshold tk

A. The Key Technique: Randomize-then-Reconstruct

It is straightforward to reconstruct the private key at the
higher level and then generate shadows for lower-level au-
thorities. But this will lead to disclosure of the private key of
the higher level, thus losing the advantage of decentralization.
In DHIBS, we re-randomize the shadow at the higher level
and then reconstruct the private shadow at the lower level, so
the generated partial shadow is masked by random numbers.

A valid HIBS private key is in the form of

dID|k−1
= (gα2 · (h

I1
1 · · ·h

Ik−1

k−1 · g3)
r, gr, hrk, ..., h

r
l ),
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DHIBS.Setup(l, n0, t0)
1. Select G,G1, p and g, where p is the group order and g is the generator;
2. Root authorities follow (t0, n0)-Pedersen-VSS to share a master secret α. Root authority i obtains its secret shadow αi of α,

denoted as αi = JαKit0 , and its master secret shadow is generated as d(i)ID|0 = (gαi
2 , 1, 1, ..., 1) ∈ Gl+2. Each authority also

generates and pubishes a public verification key v(i)ID|0 = gαi .
3. Generate public parameters params = (g, g1, g2, g3, h1, · · · , hl) where g1 = gα and g2, g3, h1, · · · , hl are randomly selected

from G.
DHIBS.PartialShadowGen(d

(i)
ID|k−1

, IDk, j,Tk−1)

1. All (k−1)-level authorities from Tk−1 follow (tk−1, nk−1)-Pedersen-VSS to share a secret r′, with authority i holding a private
share r′i. According to Pedersen-VSS, r′ is kept secret from everyone while only authority i knows r′i.

2. All (k−1)-level authorities from Tk−1 determine the threshold tk for ID|k, select tk−1 coefficients c1, c2, · · · , ctk−1 ∈ Zp for
f(x) = c1x+ c2x

2 + · · ·+ ctk−1x
tk−1, and compute f(j). The authority also computes gf(j) for verification key calculation.

3. Authority i, holding a private shadow d
(i)

ID|k−1
= (a0, a1, bk, · · · , bl), computes d

(i,j)

ID|k
= (a0g

f(j)
2 ·

(hI11 · · ·h
Ik−1

k−1 g3)
f(j)(hI11 · · ·h

Ik
k g3)

r′ib
Ik
k (h

Ik
k )f(j), a1g

f(j)gr
′
i , bk+1h

f(j)
k+1h

r′i
k+1, · · · , blh

f(j)
l h

r′i
l ).

4. Authority i outputs d(i,j)ID|k
and gf(j).

DHIBS.ShadowRecon({d(i,j)
ID|k

}i∈Tk−1
, gf(j))

1. The j-th authority at k-level uses Lagrange interpolation to reconstruct its secret shadow.
From d

(i,j)

ID|k
= (a

(i)
0 , a

(i)
1 , b

(i)
k+1, ..., b

(i)
l ), i ∈ Tk−1, the j-th authority computes d

(j)

ID|k
=

(
∏

i∈Tk−1

(a
(i)
0 )L(i),

∏
i∈Tk−1

(a
(i)
1 )L(i),

∏
i∈Tk−1

(b
(i)
k+1)

L(i), ...,
∏

i∈Tk−1

(b
(i)
l )L(i)) = (gα

′′
2 (hI11 · · ·h

Ik
k g3)

r′′ , gr
′′
, hr
′′
k+1, · · · , hr

′′
l ),

where α′′ = JαKjtk and r′′ = Jrk−1 + r′Kjtk .
2. The j-th authority at k-level computes and publishes the verification key v(j)ID|k

= gα
′′
= gα+f(j).

DHIBS.ShadowSign(d
(i)
ID|k

,M)

1. The k-level authorities follow (tk, nk)-Pedersen-VSS to generate a random number s ∈ Zp, and each holds a secret share
si = JsKitk . They also compute h = H ′(M).

2. Authority i, with private share d(i)ID|k
= (a0, a1, bk+1, ..., bl), computes xi = a0 · hsi , yi = a1 and zi = gsi .

3. Output the partial signature σi = (xi, yi, zi).
DHIBS.PartialSigVerify(σi, v

(i)
ID|k

)

1. Parse σi as (xi, yi, zi), and check if e(g, xi) = e(v
(j)

ID|k
, g2)e(yi, h

I1
1 · · ·h

Ik
k g3)e(zi, h).

DHIBS.SignRecon({σi}i∈T )

1. Use Lagrange interpolation to reconstruct the final signature σ = (
∏
i∈Tk

(xi)
L(i),

∏
i∈Tk

(yi)
L(i),

∏
i∈Tk

(zi)
L(i)) = (x, y, z).

DHIBS.Verify(ID|k,M, σ)
1. For a signature (x, y, z), compute h = H ′(M) and verify the following equation:

e(g, x) = e(g1, g2) · e(y, hI11 · · ·h
Ik
k · g3) · e(z, h).

Fig. 1. The Decentralized HIBS Scheme

so we use the Pedersen-VSS scheme to share it among a group
of authorities. Authority i’s share (shadow) is

d
(i)
ID|k−1

= (g
α∗i
2 · (h

I1
1 · · ·h

Ik−1

k−1 · g3)
r∗i , gr

∗
i , h

r∗i
k , ..., h

r∗i
l ),

where α∗i and r∗i are shares of α and r respectively, with regard
to the same threshold value tk−1.

The key idea is for each authority at level k−1 to generate
a partial shadow, i.e. a share of its shadow, with regard to
the threshold tk of level k. For instance, the share of α∗i
for authority j at level k is generated as α∗i + f(j) where
f(j) = c1x + c2x

2 + ... + ctk−1x
tk−1 for some randomly

chosen coefficients c1, ...ctk−1. After the lower-level authority
j receives enough partial shadows, it can reconstruct its own
shadow

α′′j =
∑
i

L(i)(α∗i + f(j)) = α+ f(j), (1)

where L(i) =
∏
j 6=i

j
j−i is the Lagrange coefficient for level

k. Equation (1) holds because of an important property of
Lagrange coefficients, i.e.

∑
i

Lk(i) = 1.

Since f(j) is known by other authorities, it is crucial to
protect the private shadow as well as α∗i from others. HIBS
protect the private keys by re-randomization using a random
number, and we decentralize this process and protect α∗i using
a share of the random number.

Finally, the shadow of authority j at k-level can be recon-
structed following the above approach:

d
(j)
ID|k = (g

α′′j
2 · (h

I1
1 · · ·h

Ik
k · g3)

r′′j , gr
′′
j , h

r′′j
k+1, ..., h

r′′j
l ),

where α′′j and r′′j are shares of α and r′ respectively, with
regard to the threshold value tk. As a result, DHIBS real-
izes decentralized private key resharing from shares without
recovering the private key. It enables HIBEChain to manage
identity-based keys and carry out cryptographic operations in
a decentralized way.

B. The Construction of DHIBS
DHIBS consists of the following 7 algorithms, while the

concrete construction is given in Fig. 1:
• DHIBS.Setup: This algorithm generates public parame-

ters and master secret shares (shadows) for authorities
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at the root for a given threshold and a given maximum
depth. The master secret is shared between root authori-
ties, and it is unknown to any coalition of authorities less
than the threshold.

• DHIBS.PartialShadowGen: This algorithm enables an
upper-level authority to generate a partial shadow for a
lower-level authority. With multiple partial shadows from
a set of indexes of upper-level authorities, denoted T , a
lower-level authority can reconstruct its complete shadow.
The size of T is exactly the threshold value of the upper
level.

• DHIBS.ShadowRecon: This algorithm enables an au-
thority that has obtained all partial shares from the set
of upper-level authorities T to reconstruct its complete
secret share.

• DHIBS.ShadowSign: This algorithm enables an authority
holding a secret shadow to generate a partial signature
on M .

• DHIBS.PartialSigVerify: This algorithm verifies a partial
signature on M generated by an authority.

• DHIBS.SignRecon: This algorithm reconstructs a com-
plete signature from multiple partial signatures.

• DHIBS.Verify: This algorithm verifies a complete signa-
ture reconstructed from partial signatures, same as the
verification algorithm presented in the last section.

The security proof of the above DHIBS scheme is provided
in Section VI.

V. HIBECHAIN: HIERARCHICAL IDENTITY-BASED
BLOCKCHAIN SYSTEM

In this section we first provide an overview of HIBEChain,
and then present the system model and security model. After
that, we describe the design of HIBEChain, including its
hierarchical system structure, transaction management, and
hierarchical identity management.

A. Overview of HIBEChain

We abandon the single blockchain design for the entire
IoT system, which is the approach taken by current solutions.
Instead, we propose a hierarchical blockchain structure for IoT,
inspired by the hierarchical systems like DNS and PKI. HI-
BEChain aims to achieve scalable, real-time and autonomous
device and data management for IoT systems.

As illustrated in Fig 2, HIBEChain is a tree structure of
blockchains, very similar to the tiered Internet structure. Each
blockchain is given an ID except the root blockchain, and
its private key is shared via (t, n)-threshold secret sharing
among a group of validators. For example, the blockchain with
ID “Beijing” at level 1 is maintained by 13 validators, who
share the private key through (9,13)-threshold secret sharing
scheme. That is, 9 out of these 13 validators can recover the
private key corresponding to “Beijing”. IoT devices, like the
one with ID “Beijing, Haidian, ID1”, have a complete private
key corresponding to their IDs.

HIBEChain involves two different participants, whose roles
and responsibilities are explained as follows:

ID: (Beijing) ID: (Shanghai)

ID: (Beijing, Haidian) ID: (Beijing, Chaoyang) ID: (Shanghai, Pudong)

(Beijing, 

Haidian, 

ID1)
(Beijing, 

Chaoyang

, ID2)

(Beijing, 

Chaoyang

, ID1)

(Beijing, 

Chaoyang

, ID3)

(Shanghai

, Pudong, 

ID1)

(Shanghai

, Pudong, 

ID2)

(Shanghai

, Pudong, 

ID3)

Threshold scheme
(15, 21) 

Threshold scheme
(9, 13) 

Threshold scheme

(5, 8) 

Threshold scheme
(7, 11) 

Threshold scheme

(4, 9) 

Threshold scheme

(4, 7) 

......

... ... ...

(Beijing, 

Haidian, 

ID2)

(Beijing, 

Haidian, 

ID3)

Level 0

Level 1

Level 2

Level 3

Fig. 2. An illustrated example of HIBEChain of depth 3. Each blockchain
has an ID except the root blockchain, and its private key is shared via (t,
n)-threshold secret sharing among a group of validators. Each IoT device has
a complete private key corresponding to its identity.

• Validators: Each leaf blockchain is managed by a group
of validators, like the miners in Bitcoin or Ethereum.
They are edge servers of the edge computing and they are
close to IoT devices, so they can respond to IoT devices
quickly. Their responsibility is to verify transactions and
maintain the decentralized consensus ledger. Validators
of higher-level blockchains also serve as authorities to
generate identity-based key shares for validators of lower-
level blockchains.

• IoT Devices: They are clients at the bottom level of
the hierarchy, and it does not store the blockchain data.
They register with leaf blockchains with their identities,
and then obtain corresponding private keys. Each IoT
device is assumed to have a credential associated with
their unique identities issued from some authority. IoT
devices interact the corresponding leaf blockchain by
sending transactions to and taking commands from the
leaf blockchain.

HIBEChain relies on DHIBS to manage identity-based keys.
This function of validators is equivalent to that of authorities in
DHIBS. The root validators (validators at the root blockchain)
of HIBEChain establish and share a master secret using
Pedersen-VSS, but none of them know the master secret.
Then they use their secret shares to generate identity-based
private key shares (shadows) for each second-level validator
without recovering the master secret. These validators can in
turn generate private shadows for even lower-level validators,
and so on and so forth. It is important to note that the master
secret and private keys are never recovered by validators in
this process.

Each leaf blockchain is in charge of IoT devices within a
local domain, e.g. a smart campus, a smart community or even
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a smart city. Periodically, the validators of a leaf blockchain
collect and verify transactions submitted by things within the
domain, and run the PBFT consensus algorithm to create a
new block for the blockchain. During execution of PBFT,
they also broadcast partial signatures over the new block, and
enough partial signatures (more than the threshold value) can
be combined into a complete signature. Then the signed block
header is submitted to the higher blockchain as a transaction,
which is called header transaction. The higher-level blockchain
checks the signed header transactions sent from lower-level
blockchains, and run the PBFT consensus algorithm to form
a higher-level block from these block headers. This process
continues until the root validators reach consensus.

As such, each leaf blockchain only process and record a
very small fraction of transactions of the whole IoT, while
non-leaf blockchains do not process transactions from IoT
devices. A large number of transactions are distributed among
different blockchains, instead of recording everything in a
single blockchain. For this approach, it is critical to keep
consistency of transactions among blockchains. In HIBEChain,
we design a special mechanism to ensure consistency like the
single blockchain system.

HIBEChain relies on DHIBS to manage identity-based keys
and uses them to realize scalable and accountable blockchain
management with 5 phases: system initialization, validator
authorization, IoT device registration, transaction processing
and hierarchical consensus establishment. Details about these
steps will be provided soon in this section.

B. Threat Model, Assumptions and Design Goals

We assume a Byzantine threat model in which the adver-
sary can compromise no more than 1/3 validators of each
blockchain. The compromised validators will act arbitrarily,
instead of following the specified protocol. They may collude
with each other to coordinate their attacks, including injecting,
modifying and dropping messages during participating the
protocol. The underlying network communication is semi-
synchronous with bounded transmission delay, and the net-
work may drop, delay, duplicate messages or deliver them out
of order.

For a consensus algorithm to achieve agreement among a
set of validators, it should satisfy consistency and liveness as
defined below.

Definition 1. (Consistency of HIBEChain) If a correct val-
idator of a blockchain in HIBEChain outputs a sequence
of blocks bi, (i = 0, ..., l), then all correct validators of
the same blockchain output the same sequence of blocks
bi, (i = 0, ..., l).

Definition 2. (Liveness of HIBEChain) If all correct validators
of a blockchain in HIBEChain initiate the consensus algo-
rithm, then all correct validators of this blockchain output
some block eventually.

The design goals of HIBEChain include:
• Scalability: The system should scale to the IoT network

size in terms of communication, computation and storage.

Namely, the required resources (communication, compu-
tation and storage) for maintaining the IoT network is
linear to the network size n.

• Accountability: Whenever there is a repudiation or abuse
of the system, the system should be able to identify the
thing(s) according to the corresponding transaction(s).

• Agreement: The consensus algorithm of HIBEChain
should satisfy the consistency and liveness property given
more than 2/3 of the validators are honest and correct.

• Security: The signature scheme of HIBEChain should
satisfy unforgeability and robustness against adaptive
identity and chosen message attacks.

• Recoverability: The private keys should be recoverable
when they are lost.

C. HIBEChain

HIBEChain consists of 5 phases: system initialization,
validator authorization, IoT device registration, transaction
processing and hierarchical consensus. The root blockchain
is at level 0, the blockchains of the next level are at level 1,
and so on and so forth. Each blockchain is denoted as CID|k
where k is the level and ID|k is the blockchain identity. We
use the identity format in DHIBS, i.e. the identity at depth k is
ID|k = (ID1, ID2, ..., IDk). ID|k is a globally unique string,
just like a domain name in the DNS system.

Within blockchain CID|k , there are nID|k validators and
each one is denoted as VID|k,i where i is the validator’s
index. Validators are equivalent to authorities in DHIBS.
Each blockchain also has a threshold tID|k which is d 23nID|ke
by default. It means at least tID|k validators can establish
consensus, so as to be compatible with PBFT.
System Initialization. This step initializes public system
parameters and keys for validators of the root blockchain as
follows:
(1) n0 validators of the root blockchain are selected as root

validators and they determine the hierarchy depth l and
threshold t0.

(2) The root validators run DHIBS.Setup(l, n0, t0) to gener-
ate public parameters params = (g, g1, g2, g3, h1, ..., hl)

and private shadows d(0)ID|0 = (gαi
2 , 1, 1..., 1) ∈ Gl+2.

(3) The public keys are published throughout the whole
system, while the private shadows (secret shares) are kept
secret by each validators. No one knows the master secret
α.

Validator Authorization. Similar to the domain name system,
each blockchain obtains its identity from its parent blockchain
in this phase. A candidate validator with index j of a
blockchain CID|k needs to obtain authorization from multiple
validators of the parent blockchain CID|k−1

.
(1) The candidate validator indexed by j selects Tk−1, a

set of validators of size tID|k−1
of CID|k−1

, to request
authorization.

(2) Each validator from Tk−1 runs DHIBS.ShadowGen
(d

(i)
ID|k−1

, IDk, j, Tk−1), and returns the results d(i,j)ID|k to
the requester. This is done with a secure channel or off-
line.
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(b) Inter-Chain transaction processing

Fig. 3. Transaction Processing in HIBEChain. (a) shows intra-chain transaction processing, and (b) shows inter-chain transaction processing.

(3) After having received all partial shadows from upper-level
validators, the candidate validator reconstructs its private
shadow by running DHIBS.KeyRecon({d(i,j)ID|k }i∈Tk−1

).
With a valid private shadow, the validator can collaborate
with other validators to authorize validators at the next
lower level.

IoT Device Registration. An IoT device with identity IDk

can register itself with a leaf blockchain (e.g. CID|k−1
) to join

HIBEChain as follows.

(1) The IoT device sends its identity ID|k along with the
credential to a set of validators Tk−1 of size tID|k−1

of
the leaf blockchain CID|k−1

to request registration.
(2) Each validator verifies the device’s credential, and runs

DHIBS.ShadowGen(d(i)ID|k−1
, IDk, j, Tk−1) with thresh-

old tID|k = 1.
(3) The IoT device reconstructs its private key corresponding

to its full identity using DHIBS.KeyRecon({d(i,j)ID|k }i∈T ).
Note: the IoT device is able to reconstruct the complete
private key, while validators can only reconstruct private
shadows, which are shares of the private key of the
corresponding blockchain.

Transaction Processing. HIBEChain has three types of trans-
actions: intra-chain, inter-chain and header transactions. An
intra-chain transaction’s sender and recipient are from the
same leaf blockchain, whereas an inter-chain transaction’s
sender and recipient are from different leaf blockchains. The
header transaction is composed of a block header with a
signature generated by validators at a lower-level blockchain,
and is submitted to the higher-level blockchain like a normal
intra-chain transaction.

Both intra-chain transactions and header transactions are
processed in the same way as Ethereum, except that DHIBS
is used instead of ECDSA. As illustrated in Fig. 3(a), they are
processed as follows:

(1) Sender submits an intra-chain payment transfer transac-
tion.

(2) Each validator checks whether the sender has enough

balance to make the transfer according to the local leaf
blockchain (for intra-chain transactions only).

(3) Then each validator invokes DHIBS.Verify to check the
signature in the transaction.

(4) If both checks are successful, the transaction is deemed
valid and inserted into the next block to be assembled to
the local blockchain.

(5) The sender’s account and the recipient’s account are
updated according to this transaction.

As for the inter-chain transaction, we adopt an approach
similar to OmniLedger’s Atomix protocol [20] to achieve
atomicity, but under the account model (in contrast to Om-
niLedger’s UTXO model) as illustrated in Fig. 3(b):
(1) Sender submits an inter-chain payment transfer transac-

tion to deposit a amount to sender blockchain.
(2) Each validator of the sender blockchain checks whether

the sender has enough balance to make the transfer
according to the sender blockchain.

(3) Each validator of the sender blockchain invokes
DHIBS.Verify to check the signature in the transaction.

(4) If both checks are successful, the transaction is deemed
valid and inserted into the next block to be assembled to
the sender blockchain.

(5) The sender’s account is updated according to this trans-
action.

(6) The recipient submits another inter-chain payment trans-
fer transaction, containing a Merkle proof for the sender’s
inter-chain transaction, to the recipient blockchain, in-
tending to withdraw the received amount to the recipient’s
account.

(7) Each validator of the recipient blockchain checks validity
of the Merkle proof and the withdraw transaction.

(8) If the check is successful, the recipient’s account is
updated accordingly.

More explanation for Fig. 3 is provided later in this section.
Hierarchical Consensus Establishment. HIBEChain estab-
lishes consensus layer-by-layer, from leaf blockchains up until
the root blockchain.
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First, validators of each leaf blockchain synchronize trans-
actions and compose a candidate block. Then they execute the
PBFT algorithm to establish consensus on this block. During
execution of the PBFT algorithm, validators generate partial
signatures for the block after verifying all transactions inside
it, using DHIBS.ShadowSign. The partial signatures σi are
broadcast along with the block. When enough partial signa-
tures are received, a complete signature can be reconstructed
and then the corresponding block is deemed valid.

After the consensus is reached for a leaf blockchain, the
validators report the resultant block header to the validators
of the parent blockchain. The parent validators also receive
the block headers from other children, and check validity of
the block headers using DHIBS.Verify. Then they execute the
PBFT algorithm on the received block headers to generate a
new block. This process continues until the consensus is also
reached at the root blockchain.

VI. DISCUSSION AND ANALYSIS

In this section we discuss scalability, accountability, security
and recoverability of HIBEChain. Then we present possible
optimization and improvement techniques for HIBEChain.

A. Scalability
HIBEChain achieves scalability by employing a hierarchical

structure of blockchains, with each blockchain handling a
small part of transactions of the system. Essentially, this strat-
egy is a type of sharding, similar to the sharding schemes stud-
ied by Elastico [16] and RapidChain [19]. Thus, HIBEChain is
highly scalable as all leaf blockchains can process transactions
in parallel. Transaction processing throughput (TPS, transac-
tions per second) of HIBEChain is roughly proportional to
the number of blockchains, so it can be increased infinitely
theoretically. Meanwhile, HIBEChain is also highly scalable
in data storage. A transaction is only stored by the validators
in the corresponding leaf blockchain, instead of spreading to
validators of other blockchains.

We analyze communication and computation costs of a full
k-ary L-level HIBEChain (excluding the end-device level), in
which each blockchain is maintained by n validators. Then
this HIBEChain has (kL− 1)n/(k− 1) validators in total and
kL−1 leaf blockchains.

From the perspective of key management, the computation
and communication costs are listed in Table II. According
to this table, both computation and communication costs of
HIBEChain are modest, determined by the level, thresholds
and the number of validators.

As for transaction processing, HIBEChain has an obvious
advantage over singleton blockchains like existing sharding
schemes: leaf blockchains can process a part of transactions in
parallel. Different from existing sharding schemes, HIBEChain
adopts a hierarchical structure, on which non-leaf blockchains
do not process transactions from IoT devices. Assume the
same parameters as in Table II and T TPS for each blockchain.
Then HIBEChain’s TPS is kL−1T whereas existing sharding
schemes’ TPS is (kL − 1)T/(k − 1), and their ratio is

kL − kL−1

kL − 1
.

TABLE II
COMPUTATION AND COMMUNICATION COSTS OF HIBECHAIN

Computation Communication

Setup - O(n2)
ShadowGen 2(L− l + 2) Exp. O(n2)
KeyRecon (L− l + 2) · t Exp. -

ShadowSign 2 Exp. O(n2)
SignRecon 3t Exp. -

Verify 4 Pairings -

Note: Assume all blockchains have the same number of validators and
the same threshold. L denotes maximum hierarchy level, l denotes
current level, t denotes threshold value, n is the number of validators
of a single blockchain. Exp denotes exponentiation and pairing denotes
bilinear pairings.

For an IoT network with L = 5 and k = 10 (consists of
∼10000 shards or leaf blockchains), this ratio is 0.90, and it
is close to 1 for large IoT systems. This means HIBEChain’s
TPS is very close to that of a sharding scheme for large-scale
systems.

It is important to reduce inter-chain transactions for sharding
schemes, as inter-chain transactions involves additional verifi-
cation. HIBEChain naturally achieves it since a leaf blockchain
is in charge of devices in a local domain. As IoT devices
interact most with others nearby, inter-chain transactions are
significantly reduced.

B. Accountability

In HIBEChain, every participant must prove its identity on
registration, so as to obtain an identity-based private key. The
identities are used as public keys, and thus every transaction
can be traced back to responsible parties. Therefore, HI-
BEChain explicitly achieves accountability with the identity-
based cryptosystem, in contrast to anonymous public/private
key pairs used in existing blockchain systems. Because of
lack of accountability of current blockchain systems, Know
your customer (KYC) regulation has to be enforced to ensure
accountability off-chain.

Note that the higher-level validators can collaborate to
recover a private key or generate a valid signature, which is
the inherent key escrow problem of IBE. Nevertheless this
problem is largely mitigated since at least t validators must
collaborate to do it.

A drawback of HIBEChain would be lack of anonymity,
but mitigation measurements can be used to preserve privacy.
One way to protect privacy of transactions is through access
control as Hyperledger Fabric [13] does. As HIBEChain is
a permissioned blockchain system, managed by validators
at different levels, the blockchain data can be encrypted by
the managing validators to prevent eavesdropping. Different
blockchains can be encrypted by different keys to achieve
flexible access control.

Another potential solution is ZK-SNARK (Zero Knowl-
edge Succinct Non-interactive ARgument of Knowledge). This
technique has been successfully used in ZeroCash [33] to hide
the sender, the recipient and the amount of a transaction. So
similarly, ZK-SNARK can be used in HIBEChain to protect
sender, recipient and amount privacy of transactions.
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C. Security

1) Adversarial Model: The Security requirement of a
decentralized hierarchical identity-based threshold signature
(DHIBS) scheme includes both unforgeability and robust-
ness [34]. To begin with, we briefly review the notion of
unforgeability against selective identity and chosen message
attacks for DHIBS schemes (i.e., the UF-sID-CMA security)
between an adversary algorithm A which is assumed to be a
probabilistic Turing machine and a challenger algorithm C.
• Initialization. A outputs a target identity ID∗ =
(ID1, ID2, ..., IDm) where m 6 l. A intends to forge a
signature of ID∗.

• Setup. C runs DHIBS.Setup with a given (l, n0, t0) to
generate the public parameters params and the master
secret mk. C sends the public parameters params to A.

• Query. A issues a number of queries to C, and C answers
as follows.
– On receiving a partial shadow generation query on an

identity ID|k with parameters (i, j), algorithm C runs
DHIBS.PartialShadowGen to produce a partial shadow
d
(i,j)
ID|k for the identity ID|k. C sends the private shadow
dID|k to A.

– On receiving a shadow reconstruction query on an
identity ID|k with parameter i, algorithm C runs
DHIBS.ShadowRecon to produce a shadow d

(i)
ID|k for

the identity ID|k. C sends the private shadow dID|k to
A.

– On receiving a partial signature query on an
identity ID|k with parameter (i,M), C runs
DHIBS.ShadowSign to produce a partial signature σi
for M . C sends the partial signature σi to A.

– On receiving a signature query on an identity ID|k,
algorithm C runs DHIBS.SignRecon to produce a sig-
nature σ for M . C sends the signature σ to A.

• Forge. A outputs a tuple (ID∗, σ∗, M∗) for σ∗ being a
valid signature for the message M∗ under the identity
ID∗. The restriction is that A must not have made
more than tk (the corresponding threshold value) shadow
generation queries for the challenge identity ID∗ or any
prefix of the challenge identity ID∗. Also it must not
have made more than tk (the corresponding threshold
value) partial signature queries for the message M∗ on
the challenge identity ID∗. Otherwise, it is trivial for A
to forge the required signature, because it can recover the
corresponding private key or the required signature.

The advantage of algorithm A in the UF-sID-CMA game
is defined to be AdvA = Pr[DHIBS.Verify(params, ID∗, σ∗,
M∗) = 1].

Definition 3. (UF-sID-CMA) A DHIBS scheme is said to be
UF-sID-CMA secure if algorithm A’s advantage in the UF-
sID-CMA game is negligible, i.e., AdvA < ε.

Now we define the robustness of the DHIBS scheme.

Definition 4. (Robustness) A DHIBS scheme is said to be
robust if it computes a correct output even in the presence
of a malicious attacker that makes the corrupted signature

generation servers deviate from the normal execution.

2) Security Analysis:

Theorem 1. Assuming that nk ≥ 2tk − 1 for every level k in
the proposed DHIBS scheme, then it is robust in the presence
of up to tk − 1 corrupted signature generators.

Proof: Regarding the DHIBS.PartialShadowGen algo-
rithm, it is straightforward to see that tk honest signature
generators are required for the signature generation and at
most tk − 1 signature generators can be corrupted, which
requires that n ≥ 2tk − 1. In addition, the corrupted sig-
nature generators cannot destroy the functionality of the
DHIBS.PartialShadowGen algorithm, and consequently the
status of all the uncorrupted signature generators. Therefore
the DHIBS.PartialShadowGen algorithm is robust if nk ≥
2tk − 1.

Concerning the DHIBS.ShadowSign algorithm, suppose that
there are at most tk−1 signature generators corrupted and the
number of uncorrupted signature generators is at least nk −
(tk − 1) ≥ tk. Every corrupted signature generator can either
be halted or issues an invalid partial signature. For the first
case, the corrupted signature generators do not generate any
signature and will not harm the execution of the uncorrupted
signature generators. In the second case, if a partial signature is
invalid, then it should be detected and excluded from the final
signature as in the definition. Therefore, all the uncorrupted
signature generators (at least tk) are still able to output a valid
signature in the presence of up to tk − 1 corrupted signature
generators, and the proposed DHIBS scheme is robust if nk ≥
2tk − 1.

Theorem 2. Assuming that the underlying HIBS scheme is
UF-sID-CMA secure, then the proposed DHIBS scheme is UF-
sID-CMA secure.

Proof: Assume that there exists an adversary algorithm
A0 that breaks the UF-sID-CMA security of the given DHIBS
scheme. Then we can build an adversary algorithm A1 that
breaks the UF-sID-CMA security of the underlying HIBS
scheme. Let C1 be the challenge algorithm in the UF-sID-
CMA security game of the underlying HIBS scheme.

• Initialization. A1 initializes A0, which outputs a target
identity ID∗ = (ID1, ID2, ..., IDm) where m 6 l. Then
A1 forwards ID∗ to C1.

• Setup. A1 receives the public parameters params from
C1, and forwards them to A0.

• Query. A0 issues a number of queries to A1, and A1

answers as follows.
– Shadow query on identity ID|k with parameter i:

I If ID|k � ID∗ (i.e. ID|k is not equal to or a prefix
of ID∗), A1 makes a private key query on an
identity ID|k−1 to C1. After receiving the private
key dID|k−1

= (a0, a1, bk, ..., bl) from C1, A1

selects a random functions f(x) = c1x + c2x
2 +

... + ctk−1x
tk−1−1. Then A1 computes d

(i)
ID|k =

(a0g
f(i)
2 (hI11 ...h

Ik
k g3)

f(i), a1g
f(i), bk+1h

f(i)
k+1, ..., blh

f(i)
l )

= (a′0, a
′
1, b
′
k, ..., b

′
l), and answers the query with
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d
(i)
ID|k .

I Otherwise, ID|k � ID∗, then A0 can only ask
for tk − 1 shadows. Suppose the set of in-
dices A0 wants to query is IdxSet. For i ∈
IdxSet, A1 can generate the shadow as d

(i)
ID|k =

(g
α†i
2 (hI11 ...h

Ik
k g3)

r†i , gr
†
i , h

r†i
k+1, ..., h

r†i
l ), where α†i

and r†i are random numbers chosen by A1. The
corresponding verification key is v(i)ID|k = gr

†
i .

For an index j /∈ IdxSet, A1 only publishes a ver-
ification key v(j)ID|k . According to the scheme spec-

ification, g1 = gα =
∏

i∈IdxSet
(gα

†
i )L(i) · (gα

†
j )L(j)

=
∏

i∈IdxSet
(v

(i)
ID|k)

L(i) · (v(j)ID|k)
L(j). So A1 can com-

putes and outputs the verification key for j as(
g1∏

i∈IdxSet
(v

(i)

ID|k
)L(i)

) 1
L(j)

.

– Partial shadow generation query on identity ID|k with
parameters (i, j):
I If ID|k � ID∗, A1 does the same in an-

swering the shadow query to obtain a private
shadow d

(i)
ID|k = (a′0, a

′
1, b
′
k, ..., b

′
l). Then A1 runs

DHIBS.PartialShadowGen to produce a partial
shadow d

(i,j)
ID|k for the identity ID|k. C sends the

partial shadow d
(i,j)
ID|k to A0.

I Otherwise, ID|k � ID∗, then A0 is allowed to ask
for only tk−1− 1 partial shadows. In this case, A1

composes the tk−1 − 1 shadows in the same way
of answering shadow reconstruction queries, then
A1 can generate partial shadows as required by
invoking DHIBS.PartialShadowGen with the secret
shadows.

– Signature query on identity ID|k on message M : A1

forwords the query to C1, and answers the query with
the result received from C1.

– Partial signature query on identity ID|k with parameter
(j,M):
I If ID|k � ID∗, A1 computes the required shadow as

above and uses it to generate the partial signature
for A0.

I If ID|k � ID∗ but M 6= M∗, A1 composes a
signature query over M and forwards it to C1.
Suppose C1’s answer is σ = (x, y, z), and IdxSet
(|IdxSet| = tk − 1) is the set of authorities whose
shadows have been leaked to A0. A1 generates a
random number s and shares it among authorities
IdxSet and any j /∈ IdxSet with (tk, nk)-secret
sharing scheme. For i ∈ IdxSet, A1 generates
the partial signature as σi = (xi, yi, zi) using
authority i’s shadow. For the partial signature σj =
(xj , yj , zj), the first component xj (same for yj and

zj) can be generated as

(
x∏

i∈IdxSet
x
L(i)
i

) 1
L(j)

.

I If ID|k � ID∗ and M = M∗, A0 is allowed

to ask for only tk − 1 partial signatures in this
case (otherwise A0 can reconstruct the complete
signature). SoA1 can use the tk−1 private shadows
to generate the partial signatures as required.

• Forge. A0 outputs a tuple (ID∗, σ∗, M∗) for σ∗ being
a valid signature for the message M∗ under the identity
ID∗. A1 forwards (ID∗, σ∗, M∗) to C1.

To sum up, if algorithm A0 can break the UF-sID-CMA
security of the proposed DHIBS scheme with non-negligible
probability, then algorithm A1 can break the UF-sID-CMA
security of the underlying HIBS scheme with non-negligible
probability.

D. Agreement

Theorem 3 (Consistency of HIBEChain). HIBEChain
achieves consistency for asynchronous networks if corrupted
validators within each blockchain of HIBEChain are no more
than f < 1/3 of all validators.

Proof: It is easy to see that all leaf blockchains of
HIBEChain achieve consistency since they run the PBFT algo-
rithm, whose safety (consistency) has been rigorously proved.
As a result of the PBFT algorithm, each leaf blockchain
outputs a new block with a complete HIBS signature in the
block header. The higher-level validators collect blocks with
HIBS signatures from lower-level blockchains, and then run
the PBFT algorithm again to produce a higher-level block
with a new HIBS signature. So the higher-level blockchain
also achieves consistency for the same reason. This procedure
continues until the root blockchain reaches consensus using
the PBFT algorithm. That is, consistency is achieved at all
levels of HIBEChain.

Theorem 4 (Liveness of HIBEChain). HIBEChain achieves
liveness for semi-synchronous networks if corrupted validators
within each blockchain of HIBEChain are no more than f <
1/3 of all validators.

Proof: All leaf blockchains of HIBEChain also achieve
liveness due to liveness of the PBFT algorithm in semi-
synchronous networks. Then the leaf validators submit block
headers to higher-level blockchains, which also use the PBFT
algorithm for consensus establishment. This procedure con-
tinues until the root blockchain, so every blockchain of HI-
BEChain achieves liveness.

E. Recoverability

A desirable feature of DHIBS is that the private key of an
end user/device can be recovered by multiple validators re-
executing DHIBS.ShadowGen. That is, the private key can be
regenerated with validators more than the threshold in case
of key lost. In blockchains like Bitcoin or Ethereum, once
the private key is lost, it is infeasible to recover it. The cryp-
tocurrency associated with the lost private key cannot retrieved
anymore. This also implies that the escrow problem in IBE
schemes are also solved by DHIBS with decentralization.

Based on the above analysis, we provide a comparison
between HIBEChain with other sharding schemes in Table III.
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TABLE III
COMPARISON OF HIBECHAIN WITH EXISTING SHARDING SCHEMES

Protocol RSCoin[18] Elastico[16] OmniLedger[20] RapidChain[19] Parallel-Chains[21] HIBEChain((3,4)-threshold)

Type Permissioned Permissionless Permissionless Permissionless Permissionless Permissioned
Key Recoverability No No No No No Yes

Key Management No No No No No Yes
Layers 2 2 2 2 1 L

Latency 1 sec 800 sec 1.5 sec 8 sec N.A. 1.3L sec

VII. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Implementation

We implement HIBEChain based on Ethereum in about
6000 lines of code in Golang. Specifically, we use the Pairing-
Based Cryptography (PBC) library [35] to implement DHIBS
and a Go wrapper to use PBC [36] in our implementation.

In our implementation, we use a symmetric elliptic curve
y2 = x3 + x of order p, where p is 160 bits in length. The
hash function H is instantiated with SHA256, and we use the
first 160 bits of the output; H ′ is realized by using SHA256
to obtain an element h′ ∈ Zp just like H and then output gh

′
.

We connect all blockchains in HIBEChain to form a
tree structure, whose depth can be adjusted as needed.
Each blockchain in the tree can have any number of child
blockchains. In the simplest case, HIBEChain can only consist
of a root blockchain.

A hierarchical identity ID are implemented as a string, and
the identity of a parent is always a prefix of its children. For
easy implementation, a hierarchical ID is in the form like
“123”, with its parent’s ID being “12” and its grandparent’s
ID “1”.

We adopt the PBFT algorithm as the consensus mechanism
of HIBEChain. The primary replica finalizes a block and then
starts the PBFT algorithm for this block. The PBFT algorithm
requires 3f + 1 replicas to be able to tolerate f failed nodes.
This parameter perfectly matches the threshold of DHIBS, so
we can set the threshold as (2f + 1, 3f + 1). Moreover, each
blockchain can have arbitrary thresholds and arbitrary number
of validators.

To support intra-chain transactions, inter-chain transactions
and block header transactions, we design four new transac-
tions: txintraChain, txinterDeposit, txinterWithdraw and txHeader.

B. Experimental Results

We deploy our system on Aliyun ecs.r6.xlarge virtual ma-
chines, each of which has 4 vCPU and 32GB memory. Within
each Aliyun virtual machine, we runs at most 10 independent
docker containers as blockchain nodes. The number of running
nodes of HIBEChain reaches at most 2,600. We develop a suite
of automatic testing tools using python to aid our experiments.
With these tools, we measure the performance of the DHIBS
scheme and evaluate the transaction latency and throughput for
different thresholds, branches (number of child blockchains)
and tree depths.

We first test benchmarks of our DHIBS scheme. We provide
the performance of each algorithm of DHIBS for different
(t, n)-threshold. As showed in Fig. 4, the computation time
for Setup, KeyRecon and SignRecon increases steadily as
the threshold increases, while ShadowGen, ShadowSign and

Verify have almost fixed time costs. This conforms to our
analytical results summarized in Table II.
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Fig. 4. Time costs for algorithms of DHIBS in different threshold settings.
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Fig. 5. Time cost for different number of IoT devices to obtain hierarchical
identity-base private keys in different thresholds settings. It measures the
latency from the moment the IoT devices send shadow requests to their parent
blockchain until they all reconstruct their private keys.

We separately configure four single blockchains with thresh-
old (3, 4), (9, 13), (15, 22) and (21, 31). Then we set their
blockchain ID “HIBE”. Under each single blockchain, we
deploy some independent nodes (their ID is set “HIBE-001”,
“HIBE-002”..., and each has the threshold (1, 1)) as its chil-
dren to simulate different numbers of IoT devices connected to
HIBEChain. All nodes simultaneously send shadow requests
to the parent blockchain and reconstruct their private keys. We
measure the latency for 25, 50, 75 and 100 nodes respectively.
Fig. 5 shows that 100 IoT devices can obtain hierarchical
identity-base private keys in about 1.7 seconds from HI-
BEChain with threshold (21, 31). The time cost increases
uniformly as the number of IoT devices increases, and the
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cost for larger thresholds is slightly larger than the smaller
ones.
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Fig. 6. Transaction confirmation latency for in different thresholds settings
and different system level.

To measure the transaction confirmation latency (from the
transaction is issued by the IoT device until it is confirmed
by the root blockchain), we set four thresholds and for each
threshold we deploy HIBEChain with tree depth from 1 to
7 (each blockchain has only one child blockchain). Fig. 6
shows that the transaction confirmation latency for a 1-ary, 7-
level, (3, 4)-threshold HIBEChain system is about 10 seconds.
For a 1-ary, 7-level, (21, 31)-threshold HIBEChain system, the
transaction latency is about 50 seconds, which is about 5 times
of the (3, 4)-threshold HIBEChain.

Fig. 7 shows detailed processing time costs at each level.
It consists of four parts: block preparation latency, consensus
latency, txHeader generation latency and txHeader processing
latency. One-level processing time with threshold (3, 4) is
about 1.4 seconds and 7.4 seconds for threshold (21, 31).
We should notice that the txHeader processing latency is
influenced significantly by the parent blockchain’s consensus
latency. This is because when the txHeader reaches the parent
blockchain, it has to wait until the parent blockchain’s con-
sensus is finished. Therefore, the average latency is about half
of the parent blockchain’s consensus latency.

We also evaluate how the threshold influences the transac-
tion confirmation latency by setting different t in the (t, n)
threshold. Instead of setting the threshold as (2f +1, 3f +1),
we set t as 10, 12, 14, 16, 18, 20 for a 1-ary, 4-level,
(t, 20)-threshold HIBEChain system. Fig. 8 shows that the
transaction confirmation latency at the (10, 20)-threshold is
about 12.4 seconds, while at the (20, 20)-threshold it is about
20.3 seconds. Because a larger t leads to more time cost
for txHeader generation, consensus and txHeader processing
latency as discussed above.

Fig. 9 shows the throughput for a single leaf blockchain
under different threshold settings. The TPS decreases as the
threshold increases since a larger threshold leads to more
consensus delay. Therefore, we can deploy the leaf blockchain
with a specific threshold according to the actual TPS require-
ment. For example, if IoT devices within a region frequently
communicate with each other, we can deploy a leaf blockchain
with a small threshold. If they communicate with each other
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Fig. 7. The processing latency at each level. It consists of four parts:
block preparation latency, consensus latency, txHeader generation latency
and txHeader processing latency. Block preparation includes transaction
verification, transaction preprocess and block packing. Consensus is to reach
an agreement with the block by running the PBFT algorithm. TxHeader
generation latency is to collect partially-signed txHeaders and reconstruct a
txHeader with a complete signature. Txheader processing latency refers to the
time cost for transmitting the txHeader to the parent blockchain and the latency
before the txHeader is handled by the parent blockchain.
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Fig. 8. How t in threshold (t, 20) influences the transaction confirmation
time of a 1-ary, 4-level HIBEChain system.

infrequently, we can deploy a leaf blockchain with a large
threshold which can enhance the security.

To explore the scalability of the HIBEChain, we fix the tree
depth and the threshold, and we vary the branch number of
the tree. Fig. 10 shows the scalability of a 4-level, (7, 10)-
threshold system when its branch grows from 1 to 6, and
the number of leaf blockchains reaches 1, 8, 27, 64, 125 and
216 respectively. The result implies the HIBEChain is highly
scalable and efficient, as the TPS grows to 32,000 for the 6-ary
case while the transaction confirmation latency stays almost
unchanged at about 9 seconds.

Finally, we measure the time costs to complete the intra-
chain transaction and the inter-chain transaction. Fig. 11 shows
that in a 4-level, (7, 10)-threshold system, the confirmation
latency for txintraChain, txinterDeposit and txinterWithdraw is about
9 seconds. That implies it takes 9 seconds to complete an intra-
chain transaction and 18 seconds to complete an inter-chain
transaction.
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Fig. 9. Throughput for single leaf blockchain under different threshold
settings. The TPS for a leaf blockchain with the (3,4)-threshold setting reaches
170.
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Fig. 10. Scalability for HIBEChain with 4-level, (7, 10)-threshold. TPS
grows as the ary increases (TPS reaches 32,000 at 6-ary), while the transaction
confirmation latency stays unchanged (about 9 seconds).

VIII. CONCLUSION

In this paper we have presented HIBEChain, a hierarchi-
cal blockchain system, which is based on a decentralized
hierarchical identity-based signature scheme for IoT systems.
The hierarchical structure makes HIBEChain highly scalable
and efficient in processing the huge amount of transactions
in large-scale IoT systems. HIBEChain also enjoys great
user-friendliness by using identity-based keys, and private
keys can be recovered by validators when necessary. We
have analyzed performance and security of HIBEChain, and
implemented HIBEChain based on Ethereum source code.
Experiment results showed that HIBEChain is highly efficient
in key management and consensus establishment, and its high
throughput is suitable for IoT system.

Though HIBEChain adopts the permissioned blockchain
using the PBFT consensus algorithm, its design can be easily
extended to permissionless blockchains with other consensus
algorithms.
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M. Vukolić, “Hyperledger fabric proposals: Next consensus architecture
proposal,” 2016.

[14] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consen-
sus algorithm.” https://ripple.com/files/ripple consensus whitepaper.pdf,
2014.

[15] D. Mazières, “The stellar consensus protocol: A federated model
for internet-level consensus.” https://www.stellar.org/papers/stellar-
consensus-protocol.pdf, 2015.

[16] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC CCS, pp. 17–30, 2016.

[17] Ethereum, “Sharding faqs.” https://github.com/ethereum/wiki/wiki/Sharding-
FAQs. Accessed: 2018-07-23.

[18] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

[19] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proc. ACM CCS’18, pp. 931–948, 2018.

[20] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” in Proc. 2018 IEEE Symposium on Security and Privacy
(S&P), pp. 19–34, 2018.
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