Cross-Chain Communication Using Receipts

Arasu Arun and C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
{arasua,rangan}@cse.iitm.ac.in

Abstract. The functioning of blockchain networks can be analyzed and abstracted
into simple properties that allow for their usage as blackboxes in cryptographic pro-
tocols. One such abstraction is that of the growth of the blockchain over time. In this
work, we build on the analysis of Garay et al. [10] to develop an interface of func-
tions that allow us to predict which block a submitted transaction will be added by.
For cross-chain applications, we develop similar prediction functions for submitting
related transactions to multiple independent networks in parallel. We then define a
general “receipt functionality” for blockchains that provides a proof, in the form of a
short string, that a particular transaction was added to the blockchain. We use these
tools to obtain an efficient solution to the Train-and-Hotel Problem, which asks for
a cross-chain booking protocol that allows a user to atomically book a train ticket
on one blockchain and a hotel room on another. We formally prove that our proto-
col satisfies atomicity and liveness. We further highlight the versatility of blockchain
receipts by discussing their applicability to general cross-chain communication and
multi-party computation. We then detail a construction of “Proof-of-Work receipts”
for Proof-of-Work blockchains using efficient and compact zero-knowledge proofs for
arithmetic circuits.

Keywords: Cross-Chain Communication - Sharding - Smart Contracts - Zero-Knowledge
Proofs - Train-and-Hotel

1 Background

A blockchain is a data structure consisting of transaction strings pooled together into blocks
which are chained by hash pointers. Cryptocurrencies, notably Bitcoin launched in 2009, are
generally implemented as an append-only, tamper-resistant blockchain, serving as a public
ledger, that is operated on by a permissionless peer-to-peer network of users who follow a
specified protocol. The protocol specifies the rules of consensus, allowing all users to agree on
the state of the ledger at any time. The validity of each transaction, block and hash pointer
depends on the protocol and correctness can be verified by any user. Blockchain networks
can support smart contracts, which allow for applications beyond simple transfers of funds.
The term “smart contract” comes from them being instructions written in code that are
enforced by the security of the underlying blockchain network without the involvement of a
specific third party. The power of smart contracts range from specifying simple conditions
for fund transfers to implementing entire lotteries.

1.1 Analysis of Blockchains

In our protocols, we would like to treat blockchains as a blackbox to which users submit
transactions and view the blockchain as an append-only data structure, which grows over
time. In order to use blockchains as a primitive in protocols, certain properties and assump-
tions need to defined. There have been many works formalizing the properties of blockchains
[10, 14, 15,13]. Some of these formalizations deal with the rate of growth of blockchains, how
fast transactions can be added onto the blockchain and the underlying assumptions required

2 A. Arun et al.

to guarantee such properties. In particular, we will follow the notation and definitions of
Garay et al. [10], who define properties and prove them with respect to PoW networks. In
Section 2, we define basic properties of blockchains networks and develop an interface of
functions that we can use in our protocols. This interface allows us to abstract away the
implementation specifics of the blockchain and the properties allow us to prove efficiency
and correctness guarantees. We emphasize that these properties can be described for general
blockchain networks regardless of consensus algorithms and implementation details.

1.2 Cross-Chain Communication

The application ecosystem consists of multiple independent blockchain networks with their
own funds and services. Interoperability between such networks, such as the sharing of in-
formation and assets, will lead to more applications. The caveat to any such “cross-chain
communication” is that there is no natural synchronization mechanism between two inde-
pendent networks as the users of one network do not have the data of the other. An example
of a cross-chain communication application is the atomic swap problem [12], which involves
parties who wish to transfer assets on one chain in exchange for assets on another chain.
The problem is solved using protocols that ensure the atomicity of these transfers using
hashlocks. Another general scenario is when a user wishes to employ the services of one
blockchain network in tandem with that of another. An example is the Train-and-Hotel [9]
problem detailed below, for which we develop a protocol that ensures atomicity by using
“receipts”.

Train and Hotel Problem Let there be two independent blockchain networks, one for
booking train tickets and one for booking hotel rooms. The train-and-hotel problem [8] asks
for a protocol that allows a user to atomically book a train ticket and a hotel room. By
atomically, we mean that either both bookings succeed or both fail. A user should not be
left with a train ticket but no hotel room, or vice-versa. We will also refer to this problem
as the atomic cross-chain booking problem.

Sharding: In most blockchain networks, each node must store and verify every single trans-
action and this has serious implications to scalability. Sharding is a solution proposed to
solving the scalability issues of blockchains [8]. Shards allow the network to be split into
smaller blockchains such that a transaction need only be verified by some nodes and not all.
A simple example of sharding is splitting the blockchain into assets, such that each type of
asset has its own shard. Pertaining to this work, we could have a network that deals with
ticket booking and shards are divided by the items to be booked: trains, hotels, theatres and
so on. Cross-shard communication is essential for funds and assets in one shard to interact
with another. A detailed decription of sharding is provided in [8]. All our solutions can be
suitably adapted to work for shards of the same network.

1.3 Receipt Functionality

Transactions and Data We introduce now the notion of certain data being part of a trans-
action. Cryptocurrencies employ scripting languages, which determine the structure of trans-
actions. For example, the standard payment transaction can be described by (pki, pks,v)
which denotes address pk; transferring funds of value v to address pks. Transactions in
Bitcoin additionally offer an optional metadata parameters which can be any string of the
user’s choice. Advanced scripting languages, such as that of Ethereum [16] which is Turing
Complete, allow transactions to have more complex conditions and instructions. Consider a
transaction string txn and any string of data d. The data could be the details of the parties

Cross-Chain Communication Using Receipts 3

involved, the transfer value v, the scripts used, the metadata, or any combination of the
above. In our protocols, we are concerned with data that can be efficiently verified to belong
to a transaction txn by viewing the transaction string alone (that is, without the rest of the
blockchain data structure).

Receipts A receipt allows any user to prove that a specific data d is added to a given
blockchain B. That is, there is a block in the blockchain B that contains a transaction tzn
that contains the data d. For clarity, we will sometimes denote the blockchain data structure
as (B). We let succinct(B8) denote some succinct representation of the blockchain. Examples
of a succinct representation could be the genesis block or the hash of a known block in the
blockchain (discussed further in Section 6).

We represent the receipt functionality as two functions I cceipr = (Generate, Verify). A
(non-interactive) proof is generated as m < Generate'® (succinct(B),d) where the super-
script (B) denotes access to the blockchain data structure. Verification of the proof 7
does not involve access to the entire blockchain and only requires succinct(B) as follows:
{0,1} < Verify(succinct(B),d, 7). We will define the notion of an unforgeable receipt func-
tionality for general blockchains, regardless of the blockchain protocol and its implementation
details, in Def 3.1. The goal of this work is to highlight applications of receipts in cross-chain
communication. We argue the versatility of receipts to synchronizing two independent net-
works. We also discuss other applications of receipts in MPC. In Section 6, we provide a
construction of receipts for Proof-of-Work blockchains (such as Bitcoin, Ethereum) using
zero-knowledge proof techniques for arithmetic circuits

1.4 Zero-Knowledge Proofs

We will give a brief introduction to zero-knowledge proofs-of-knowledge for arithmetic cir-
cuits (see [3] for a detailed description). Let there be a circuit C' that is known to two
parties, Alice and Bob. If Alice possesses a witness w to the circuit such that C'(w) = 1,
a zero-knowledge proof-of-knowledge allows her to produce a non-interactive proof 7 such
that 7 convinces Bob that Alice possesses a valid witness for C. If Alice does not possess
any witness then she can only convince Bob with negligible probability. The zero-knowledge
property says that Bob does not learn anything about the witness. We will use the following
interface to describe such proofs. Let I[Ipx = (ProveZK, VerifyZK) be PPT algorithms such
that:

e Let C is a circuit and w be an input. If C(w) = 1, then 7 < ProveZK(C, w) produces a
proof 7 such that VerifyZK(C, 7) = accept.

e If Alice does not possess a valid witness for C', then the probability that Alice can
generate a proof 7 such that VerifyZK(C,) accepts is negligible.

For ease of notation, we omit details like trusted setups and common reference strings. In
this work, we are interested in such methods not for their zero-knowledge property, but
because of the compact non-interactive proofs they produce. An example of such a proof
technique is zk-SNARKSs [2]. The technique produces constant-sized proofs independent of
the size of the witness (288 bytes). However, one drawback is that it requires a trusted
setup. Proof techniques that don’t require a trusted setup, but have larger proof sizes,
include Bulletproofs [5] and zk-STARKS [1]. We omit a discussion on the verifier and prover
complexities, which is available in the respective references. Our protocol is compatible with
all these techniques.

4 A. Arun et al.

1.5 Related Work

There have been many works formalizing the properties of blockchains [10, 14, 15, 13]. The no-
tion of abstracting these properties as functionalities to be used in other protocols have been
discussed in [4]. Tt is known that strong fairness cannot be attained in general multi-party
computation under standard cryptographic assumptions [7]. That limit can be overcome
by abstracting the blockchain as one trusted third party [4,6]. In [4], a “claim-or-refund”
functionality that allows users to conduct conditional payments is developed and used as a
blackbox to provide fairness-with-penalities for general multi-party computation protocols.
The idea of proving and verifying publication of transations onto public “bulletin boards”
was discussed in [6]. They define the notion of proving that a certain data is published to
a signature-based ledger or blockchain and then use witness-encryption to provide strong
fairness for general MPCs. A formal description and analysis of the atomic cross-chain swap,
along with a solution using hashlocks, is provided in [12]. The train-and-hotel problem was
first stated by Andrew Miller [9]. The authors are not aware of any published solution to the
problem. We are also not aware of any similar detailed construction of efficient Proof-of-Work
blockchain receipts.

1.6 Owur Contributions

We build on the properties and analysis of Garay et al. [10] to develop a blacbox-like interface
of functions that allow us to provably predict which block number a transaction will be added
by. We extend the idea of using receipts on public bulletin boards from [6] to formally define
the notion of an unforgeable receipt functionality for general blockchains. We then use this
interface and receipt functionality to describe a booking smart contract and an atomic cross-
chain booking protocol (the Train-and-Hotel problem) in Section 4. We formally prove the
correctness and atomicity of our protocol. To the best of our knowledge, our work is first
to provide a formal solution to the Train-and-Hotel problem or develop a similar framework
for cross-chain communication. We provide a construction for a receipt functionality in
Proof-of-Work blockchains in Section 6 for which we use zero-knowledge proofs to produce
compact receipts that are computationally intensive to forge. Our receipts can be attached
with transactions and efficiently stored on the blockchain.

2 Abstracting Blockchains

Let B denote an append-only tamper-resistant blockchain data structure that is operated on
by a permissionless peer-to-peer network of users following a specified protocol. Our goal is
to formally abstract the properties of a blockchain network and use it as a primitive in our
protocols. Doing so allows us to treat the entire network as one blackbox that users submit
transactions to and view the blockchain data structure over time. Treating the blockchain as
a trusted third party in this manner allows us to derive stronger guarantees for our protocols.
Specific abstractions we require are bounds on how many blocks are produced over time and
which block a transaction will be added by once submitted. To prove guarantees such as
atomicity and liveness for cross-chain communication protocols, we require blocks to not
be produced too fast or too slow. Many works have formally analyzed the functioning of
blockchains under various protocols and assumptions [10, 14, 15,13].

2.1 Properties of Blockchains

The notation and definitions we use are from Garay et al. [10]. The properties defined
hold for general blockchains. Their analysis is done specific to Proof-of-Work blockchains,

Cross-Chain Communication Using Receipts 5

namely Bitcoin, under standard assumptions on network synchronization and honest major-
ity. We emphasize that the following properties can be applied to all blockchain networks
regardless of the consensus algorithm used and other specific implementation details. Our
new derived functions, protocols and proofs are also general and do not make any further
assumptions.

Notation

Rounds Rounds are a way to establish a unit of time in a decentralized blockchain network.
One round is roughly the time it takes for a message (such as a transaction or a new block)
to be propagated throughout the network. Users will submit transactions each round and
view the resulting blockchain data structure at the end of each round. The blockchain may
grow by 1 block or not grow at all by the end of a round. We will assume that the length
of a round for a given blockchain network be a fixed duration ¢,,nq. Hence, we can talk of
a time duration in terms of rounds counts r and the actual length of time t = r X t,ound-
Specific to PoW blockchains, the analysis of [10] assumes that the number of hash queries
made by each user in a single round is constant.

Added Transactions and Blocks We say that a block is “added” to the blockchain when it can
only get removed from the blockchain (via forking or otherwise) with negligible probability.
Specific to PoW networks, a block is considered added only when it is k& blocks deep into the
chain for some constant & (e.g. 6 in Bitcoin). This term may also be known as “finalized”,
but as we are abstracting specific details of the consensus protocol, we do not distinguish
the two terms.

Security Parameter Let X\ be a security parameter. For the blockchain networks we use, the
properties below will hold, under appropriate assumptions specific to the blockchain protocol,
with probability at least 1 — v(\) for some negligible function v. In PoW blockchains, the
negligible case arises in unlikely scenarios such as a party finding a collision in a hash function
or repeatedly finding multiple Proof-of-Work nonces in consecutive rounds (see [10] for more
details).

2.2 Standard Properties

The following three properties are originally defined as the Chain Growth property, Lemma
13 and Liveness property in [10]. We adapt the names and restate them to hide the specifics
of their analysis. Let b* be a constant number dependent on the blockchain. With probability
> 1—v()), the following three properties will hold for any execution of the blockchain:

Property 1 (Chain Growth - Upper Bound) There exists a constant rypper such that
the blockchain grows by at least b* blocks after rypper consecutive rounds have passed.

Property 2 (Chain Growth - Lower Bound) There exists a constant riower such that
every consecutive stretch of b* blocks was created over a span of at least Tiower consecutive
rounds.

Property 3 (Liveness) There exists a constant Tyqi¢ such that a transaction propagated
at round R will be added to the blockchain by round R + ryqit-

6 A. Arun et al.

growth of b* blocks

r=20 Tlower Tupper

A\ 4

Fig. 1. The blockchain will grow by b* blocks between riower and rupper rounds.

Given an arbitrary value of b, we have upper bounds and lower bounds for the number of
rounds needed for the blockchain to grow by b blocks as follows:

e The minimum number of rounds needed is: ’Vb%—l'rlower
e The maximum number of rounds needed is: (b%]rupper

Given an arbitrary value of r, we have upper bounds and lower bounds for the growth of
the blockchain after r consecutive rounds have passed:

e The minimum growth after r rounds is: fﬁ]b*

e The maximum growth after r rounds is: [———1b"

Tlower

Prediction Functions Thus, using the above relations, we define the following prediction
functions that we can use in our protocol.

b + max_growth_after_round(r)

e For any r, if b < max_growth after round(r), then b is the upper bound on the chain
growth after any r consecutive rounds.

r < max_round_for_growth(b)

e For any b, if r < max_round for_growth(b), then r is the upper bound on the number
of rounds required for the blockchain to grow by b blocks.

We instantiate the functions as follows. The correctness is immediate from the properties
defined above.

r

I

max_growth after_round(r) = [
Tlower

max_round_for_growth(b) = [b—*]rupper

Note that we can equivalently phrase the above functions using time instead of rounds by
converting between round count r and time ¢ using the relation that r consecutive rounds
are equivalent to time duration t = r X t,ound-

Cross-Chain Communication Using Receipts 7

2.3 Transaction Addition Parameters

When we submit a transaction to the network, we would like to know which block the
transaction will be added by. The Liveness property states that it will be added by 7ryqit
rounds, but we do not ezactly how many blocks will be added by then. However, if we know
that the chain will grow by byqq only after ryqi: rounds, then b,qq is our required upper
bound. We can obtain b,4q as follows:

badd < max_growth_after_round(ryaqt)

We can obtain a bound on the the number of rounds r,4q that b,qq will be added by as
follows:

T'add ¢ max_round for_growth(b,qq)

Thus, knowing the current block height, we have a block number and a round number that
our transaction will be added by once submitted. Since these values depend only on the
blockchain, we can denote them as follows: (b5,,,75,,) < addition parameters().

2.4 Analyzing Two Independent Chains

For cross-chain communication, we would like to bound block creation times with respect to
two independent blockchains. As the round durations may be different, we state the following
properties in terms of time as opposed to round counts. Let B!, B2 be two blockchains that
satisfy the above properties for parameter values {b*i, Thwers ’)"ipper, r teoumat fori=1,2
respectively. Let ¢, .. =rl . xt' . the maximum waiting time for a transaction to be
added on blockchain Bf. We define the following functions:

%
wait’

(b1, b2) + max_growths_after_time(t)

e On input numbers by, be, if t < max_time _for_growths(by, b2), then t is the upper bound
on time required for B' and B? to grow by b; and by blocks respectively.

t < max_time_for_growths(by,bs)

e On input time duration ¢, if (b1,bs) < max_growths_after_time(t), then the upper
bound of the growth of blockchains B' and B? after time t has passed are b; and by
respectively.

We instantiate the functions as follows. The correctness is immediate from the properties
defined above.

. t
max_growths_after_time(t) = ‘ma%{max,growth,after,round(f - D}

i=1
’ round

max_time for _growths(by,by) = mzlué{max,round,for,growth(b,;) Xt mdk
i=1,

8 A. Arun et al.

2.5 Simultaneous Addition Parameters

In our protocol, we will simultaneously publish transactions txni, txn, to blockchains By, By
respectively and would like to predict the block numbers they will be added by and what
time both blocks will be added by. Just like the single blockchain scenario, we know that the
transactions will be added by t4ir = max{t. ... t2 .}. Again, just like the single blockchain
scenario, we cannot predict the exact number of blocks added before t,,4i;. Instead, we can
try to predict blocks guaranteed to be added after t,.;; and have these blocks serve as
upper bounds for the addition of our transactions. Since these blocks are added after t,qi¢,
we then need a new upper bound on the time (denoted as t,qq) these blocks will be added
by.

Let (bédd, bidd) + max_growths_after_time(tyaqit)

e This means that when both submitted transactions are added on their respective chains,
the blockchains will grow by length at most b! ;, respectively.

Plugging in the above values b ,,, let t,qq < max_time_for_growths(b!,;,b2,,)

e This means that both transactions will be added into blocks such that both those blocks
will be added to their respective chains by time t,qq.

Figure 2 illustrates the growth of the blockchains over the specified time durations. Now,
when we submit a transaction each to B',B? simultaneously, we can predict the block
numbers both transactions will be added by and the time duration duration by which both
blocks will be added. We will use these functions as an interface to simplify the description
and analysis of our protocols. Since these parameters are only dependent on the blockchains,
we denote them as follows:

(bl yar b2 gas 12) < simultaneous_addition(B', B?)

biaa b2aa
growth growth
]] N
| | | | ~
=0 thai twait = thair tadd
txng txno B! grows by bédd: B? grows by bidd:
chidbeélf(;r; gjds;lf(iz o after twait o after twait
e before t,4q e before t,qq

1 2
twait twait

Fig. 2. Simultaneous Addition Parameters (discussed in Section 2.5): A line depicting trans-
action wait times and block growths over time when submitting two transactions simultaneously to
two independent blockchains. The transactions txn; will be added to the blockchains on or before

they grow by b, respectively. In this example, we have that L., < t2 ..

3 Receipt Functionality

Let B be a blockchain data structure that can be succinctly represented using string succinct(5).
For example, succinct(B) could be the hash of some specific block, such as the genesis block.

Cross-Chain Communication Using Receipts 9

Let d be some data such that it can be efficiently decided whether a given transaction txn
contains data d or not from just the transaction string (that is, the rest of the blockchain
data structure is not required). We will generate a receipt that data d has been added to
blockchain B using a generation function as follows:

74 +— Generate!® (succinct(B), d)

The superscript denotes access to the blockchain data structure. A boolean verification
function works will verify the receipt using just the succinct representation and no access
to the blockchain data structure: {0, 1} + Verify(succinct(B), d, w).. We formally define the
security of such a functionality below.

Definition 3.1 (Unforgeable Receipt Functionality) Let A\ be a security parameter.
Let succinct(B) be a succinct representation of blockchain B. Let (Generate, Verify) be efficient
probabilistic algorithms such that only Generate has access to the blockchain data structure
(B). Let d be some data. II = (Generate, Verify) is an unforgeable receipt functionality if
Generate produces short proofs m such that:

o If there exists a transaction txn with data d in the blockchain succinct(B), then m +
Generate'® (succinct(B), d) is such that Verify(succinct(B), 7) = 1 with probability 1. Else,
L « Generate'® (succinct(B), d).

o If Verify(succinct(B),d, m) = 1, then there exists a transaction txn with data d in the
blockchain succinct(B) with probability > 1 — v(\).

Note that the verification function requires access to just the succinct representation and
not the entire blockchain. It may be possible for the proof to include additional details, such
as the height of the block which the transaction is present in. Section 6 details a construction
for Proof-of-Work blockchains.

4 Train-and-Hotel Protocol

We will now describe our protocol for the Train-and-Hotel problem (stated in Section 1.2).
We refer to the protocol developed as the Atomic Cross-Chain Booking Protocol.

4.1 Single-Item Booking Protocol

We will first describe the protocol for the booking algorithm for a single item on one
blockchain. We will extend this protocol for cross-chain booking in Section 4.2. Let B be
a blockchain where users book items like train tickets or hotel rooms. An item has three
states: (1) available for booking, (2) put on hold for a user, (3) booked by a user. Let a user
wish to book item from blockchain B.

Booking Steps A booking involves two steps of one transaction each:
Step 1: (Conditional) Request
Step 2: Confirm or Refund

A user must first “request” an item by paying a deposit. If the request is successful, the
item is placed on hold for Apeq number of blocks. After which, the item is removed from
hold and the user must send a fresh request to book it. After a successful hold, the user can
then “confirm” the item by paying extra funds, or “refund” the item and receive their initial
deposit back. Confirmation and refunds may require particular conditions to be satisfied

10 A. Arun et al.

(which will be vital for cross-chain booking). The confirmation must be added by Apeid
blocks and refunding can be done anytime. If the user fails to confirm or successfully refund,
then the deposit is lost. This is to penalize users who hold items to just delay its booking
by other users.

Request Conditions Our protocol uses “conditional requests” that have two conditions:
e condconfirm to be satisfied in the confirmation step
e condefund t0 be satisfied in the refund step

The user can confirm the booking by sending a confirm transaction by Apeg blocks, satisfying
the confirm condition. Else, the user can refund the booking anytime by satisfying the refund
condition. Successful requests take some deposit and confirmations cost extra. The refund
will return the original deposit back to the user.

Successful and Failed Requests A request can fail if the item is unavailable for booking.
When added onto the blockchain, the contract will prepend the request transactions with
either “succ/f ail” depending on whether the hold request was successful. A failed request
is still added to the blockchain as its receipt can be used as evidence of a failed booking
attempt.

Transaction Formats Let id be the unique identifier for this booking (provided by the
booking system). The transaction formats are as follows: (we omit metadata and input
pointers)

tXNyequest = (request | id | item | condconfirm | CONdyefund | Ahold)

XNconfirm

(
(confirm | keyeonfirm)
tXNrefund = (refund | keYrefund)

(

(on chain) tXnyequest = (succ/fail | tXNrequest)

The confirm and request transactions point to the request transaction. key, is the string
that is used to satisfy the condition cond,.

Setting Apo1q: By the Liveness property, once the confirmation transactions are broadcasted,
they will be added by 74 rounds. Hence, we must ensure that the blockchain grows by
Apoid blocks only only after 7, rounds from when the request is added.

e Set Apolq = max_growth_after_round(ryqit)

Upon seeing a successful request, the user can now confirm the transaction by sending
tXNconfirm, Which is guaranteed to be added in a further r,,;; rounds by the Liveness property.
By the definition of max_growth_after_round (discussed in Section 2), the blockchain will
grow by Apolg blocks on or after r,4;: rounds with overwhelming probability. Hence the user
will be able to confirm his booking without being penalized.

4.2 Atomic Cross-Chain Booking Protocol

Let T, H be two blockchains that satisfy the Chain Growth and Liveness properties for wait
parameter values {#! ..} for i = T, H (defined in Section 2.5). We will use superscript ¢ to
denote the respective parameters in blockchains i = T,H. Let succinct(T), succinct(H) be

Cross-Chain Communication Using Receipts 11

succinct representations of the blockchains. Let II = (Generate, Verify) be an Unforgeable
Receipt Functionality as per Definition 3.1.

Both blockchains follow the booking protocol detailed in Section 4.1. We now describe the
atomic booking protocol:

Protocol Setting Let a user wish to book items items from 7 and itemy from H. Let
id = idy || idy be the combined unique identifier for the transaction with each part generated
by the booking systems of each blockchain. Let bookid = idy || idy || itemr || itemy.

Atomic Booking Steps The steps of the atomic booking protocol are:
Step 1: Conditionally Request both items
Step 2: Obtain Receipts of successful and failed requests
Step 3: Confirm or Refund bookings
e Confirm if both are successful
e Refund if only one is successful

Below, we will describe the transactions on the 7 blockchain. The transactions for H are
analogous.

Step 1. Request Items If a request with the same id has already been added in the same
blockchain, the booking will be considered invalid. We will discuss an appropriate setting
for A} 4 at the end of the section.

Setting the Conditions We must now set the request and confirm conditions for both book-
ings. All conditions are such that the user must produce a receipt for specific data. Recall
that the booking protocol prepends “succ/fail” to a request transaction depending on
whether it successful or not. The data and conditions are as follows:

e d, = (“x” | request | bookid) for x = succ,fail

H

Ji of a transaction in succinct(H) containing dsycc

e condg,cc: provide a receipt 7

e condg,: provide a receipt wt of a transaction in succinct(#) containing de;
p p fail g

Specifying the Other Blockchain The other blockchain’s succincet representation succinct(H)
is specified by the user in the conditions. The user can choose any valid succinct representa-
tion of any blockchain as long as they can produce valid receipts with respect to it.

The format of bookid is idy || idy || itemy || items. Each blockchain will ensure that the
receipt from the other blockchain contains the id; generated by it. This prevents users from
using the same failed booking on one chain to refund a booking on the other chain. It also
forces the user to produce new receipts and not re-use old ones (discussed further below and
in Section 6).

The format of a request transaction is:

txn’_ .. = (request | bookid | cond] . | condZ, | ALy)

request succ
The train booking can only be confirmed by providing a successful hotel booking. And a
train booking is allowed to be refunded by providing evidence of failed hotel request with
the same bookid.

12 A. Arun et al.

Step 2. Obtain Receipts Recall that failed request transactions are still added as they
serve as evidence of a failed booking. After both requests are added, the receipts can be
obtained as follows:

7t Generate(succinct(H),d,) x=succ,fail

Step 3. Confirm or Refund After obtaining the receipts, the user must now confirm
or refund his bookings. Three cases arise depending on which of the requests were success-
ful:

e Both unsuccessful: no action is required as no confirmation is possible and no deposit
was lost.

e One successful and the other unsuccessful: obtain the receipt of the failed booking from
the unsuccessful blockchain and post txnyefung to refund the successful booking. No action
is required on the failed blockchain as no deposit was taken.

e Both successful: confirm both bookings with the corresponding successful receipts.

The transactions are as below (analogous for H):

= (confirm | key = Wz:fcc)

T
tXnconﬁrm

txncng = (refund | key = 774)

Setting Afwld The crucial requirement is that once successful requests are added, we
must guarantee that confirmations transaction can be added within A} 4 of the request
transaction on each blockchain. Otherwise, the user will be unable to successfully confirm
or refund and the deposit will be lost.

Set (Azold, A?fold) + max_growths_after_time(2tyq;r)

e By the Liveness property, both request transactions will be added by time t,4;; onto
their respective blockchains. If the requests are successful, the user can immediately

obtain the receipts and publish confirmations txniconﬁrm.

e By the Liveness property again, these confirmation transactions will be added in further
time t,qi¢. Thus, the confirmations will require total time 2t to be added to the
blockchain from the start of the protocol.

e This also immediately implies that they will be added within time 2t,,;; from the
addition of the request transactions.

e And by definition of max_growths_after_time , the blockchains will each grow by A} .
on or after time 2¢,,q:¢-

Thus, a user can always successfully confirm an available item. The protocol runtime is
2twait- We will formally prove that this setting of parameters provides atomicity and liveness
below.

Theorem 4.1 (Atomicity and Liveness) Let a user proceed to book itemy on blockchain
T and itemy blockchain H using the Atomic Cross-Chain Booking Protocol from Section
4.2. The user start with funds of value v equal to the total price of the items. We assume that
T, H are secure blockchains that satisfy the Chain Growth and Liveness properties of Section
2. Let A be a security parameter and v a negligible function. With probability > 1 — v(\),
the following Atomicity and Liveness properties hold:

Cross-Chain Communication Using Receipts 13

Atomicity: One of the following conditions will hold at the end of the protocol:
e Both bookings succeed and the user loses funds of value v
e Both bookings fail and the user does not lose any funds

Liveness: If both items are available, then the user will successfully book both items.

Proof of Theorem 4.1

Proof. Let T,H be two blockchains that satisfy the Chain Growth and Liveness proper-
ties for wait parameter values {rl ... thound: tovait = Tiwait X teounat for ¢ = T,H. Let
twair = max{tl .. tH* % Superscripts i,j denotes blockchains i,j = T,H. Let Il =

(Generate, Verify) be an Unforgeable Receipt Functionality as per Definition 3.1.

Let the protocol start at time 0. We have three cases depending on which of the 7, H requests
are successful:

1. Both are unsuccessful.
2. One is successful, the other is unsuccessful.

3. Both are successful.

Case 1: Both Unsuccessful. In this case, the user need not do anything further as no funds
are lost. Atomicity holds.

Case 2: Only One Successful. Without loss of generality, let the successful request be on
chain 7. Since H is unsuccessful, no deposit is taken from that blockchain and no further
action is required there. However, the user needs to be able to refund the booking on 7T to
recover the deposit. This is done by obtaining the failure receipt 7r2;‘” from H and posting
a refund transaction on 7. Since this is a valid refund, it will eventually be added to the
blockchain and we are ensured that the user ultimately loses no funds. Since the hotel
booking is unsuccessful, there only way for the user to satisfy cond] . and confirm the
train booking is by forging a receipt for H,dsycc which can only happen with negligible
probability. Hence, atomicity holds with overwhelming probability as the user loses no funds
and both bookings become unsuccessful.

Case 3: Both Successful. The request transactions will be added by t,,q:t with overwhelming

probability. Since both are successful, the user obtains the two receipts 7, which act as
j

keys for the other blockchain’s confirmation condition cond, />

validating transactions
txnjconﬁrm. Since a valid transaction will always be added to the blockchain, atomicity holds.
What remains to be proved is that the user must always be able to have both confirmations
txn¢m added within Al |, blocks of the addition of the request transactions. Because if that
does not happen, then the user will be unable to successfully confirm or refund and lose his
deposit forever. We will now show that this will happen with overwhelming probability by the

blockchain properties: (the following events will all happen with overwhelming probability)

Setting of Anod: The key requirement is that the value of Aj ,, is far enough to ensure
that, within A¢ . blocks of a successful request on the first blockchain, the following must
all happen: (1) the request will be added on the second blockchain, (2) the receipt can be
obtained and (3) the confirmation transaction will be broadcasted and added on the first
blockchain.

14 A. Arun et al.

e We know that all valid transactions, including successful and failed requests, will be
added by t! for each blockchain. Thus, t,4i; is an upper bound on the times both

waztt
requests will be added by.

confirm transactions imme-

e If the requests are successful, the user will then broadcast txn
diately. These will take a futher t,,q;; time to be added.

e Thus, the total time taken for the request and confirmation is 2t,,4¢-

Let (A] 4, Al ,4) < max_growths_after_time(2t,qi)

e By the property of max_growths_after_time, the blockchains will grow by atmost A¢
each in time 2t,,4it-

e Since the confirmations will be added by time 2¢,,4;+ of the broadcast of the request trans-
actions, both confirmations will definitely be added on or within (A] ,, A%,,) blocks
from the broadcast of the request transactions.

e This immediately implies they will be added on or within (A/,,y, AlL,) blocks from the

addition of the request transactions.

Thus, under that setting of Af ., an honest user will always be able to confirm when
both requests are successful with overwhelming probability, guaranteeing both liveness and
atomicity.

We also have that the total runtime of the protocol is 2t,,4i¢-

5 Other Applications

We informally detail more applications of receipts, highlighting their versatile use in blockchains
protocols and multi-party computation.

5.1 Generalization for Cross-Chain Communication

We used receipts to solve the Train-and-Hotel problem. Although the receipts were for
booking requests, the structure of the receipts and the protocol itself isn’t specific to just
booking items. What we really required was to separate all executions of the protocol into
disjoint conditions and be able to non-interactively verify a condition of one chain on another.
Doing so, we were able to synchronize the two chains and ensure atomicity. That is, following
two components are the key reasons to why receipts were effective:

e We split the protocol into different conditions each with some lockable state.
e Each condition can be verified non-interactively using receipts.

Here, the conditions are which of the parallel booking requests end up successful. And the
verification is the checking of the respective receipt from the other chain. The locking of
state is that of an item being available, booked, or put on hold for a duration. In this
way, we believe that receipts can facilitate cross-chain communication for more general
applications.

Train

broadcast txn?e—quest

request successful

ﬂ';:cc <« Generate(T, dsuce)

broadcast tan;nﬁrm

confirmation successful

+ [succ | txnrzquest} added

— txnl o added

Cross-Chain Communication Using Receipts 15

(tlait)

[succ | txnzquest] added —

(tgait)

txnl cm added —
(t = Qtwait)

(Aloig growth)

broadcast tang'quest

request successful

il Generate(H, dsucc)

H
broadcast txnsnfirm

confirmation successful

Fig. 3. (Atomic Cross-Chain Booking Protocol) The above depicts a possible execution in
the case where both requests are successful. The vertical lines denote the blockchains with time
increasing downwards. The outer message are actions of the user. The inner messages indicate
transactions added onto the blockchain. (¢) indicate the time passed.

16 A. Arun et al.

5.2 Strong Fairness Using Receipts

A multi-party computation (MPC) protocol is said to have strong fairness if either all users
obtain the output or no user obtains the output. It cannot be the case that some user
(malicious or otherwise) learns the output but another user does not. It is known to be
impossible to obtain strong fairness without a trusted third party using standard crypto-
graphic assumptions [7]. As discussed in Section 2, a blockchain network can be treated as
one whole trusted third party, allowing us to overcome this barrier. We now use blockchains,
and receipts in particular, as a primitive to provide fairness for general MPCs.

A receipt can only be generated by adding a transaction to the blockchain. Since the
blockchain is public, the production of a receipt forces parties to reveal certain informa-
tion to the public. Choudhuri et al. [6] use this idea to force participants of an MPC to
produce proofs of publishing data to a public bulletin board. Their idea can be rephrased
in our notion of receipts for general blockchains. An informal overview of their algorithm is
below: (we refer to [6] for a detailed description with proofs). Let there be n parties who
wish to compute a function value of their private inputs.

1. The n participants of the protocol agree on a blockchain B and succinct representation
succinct(B) at the start of the protocol.

2. At the end of the protocol, each party i receives private values y;. A witness-encryption
(see [6] or [11] for a formal definition) of the protocol’s output is also provided to each
user.

3. The witness-encrypted output can only be decrypted using a receipt 73, of a transaction
that posts all n private values onto the blockchain B. That is, the receipt must of be of
data y = (y1 | ... | yn) where the y;’s form a valid set of outputs for the protocol.

4. All users share their private values y; with each other. Even if a malicious party does not
share their value, they must eventually post onto the blockchain to obtain the receipt.
Else, it is impossible to decrypt the output.

5. Once a user posts the correct transaction onto the (public) blockchain, all users can
obtain the receipt and decrypt the computation’s output, ensuring strong fairness.

6 Construction of Proof-of-Work Receipts

We now provide a construction of the receipt functionality for Proof-of-Work blockchains. We
require that forging a receipt be as computationally intensive as the PoW mining process. We
also require the receipts to be compact so they can be stored in transactions efficiently.

Succinct Representation We first explain how a succinct representation of a blockchain B is
created. In our construction, the succinct representation will include the block hash of a given
block in the blockchain. The hash of this “base block” By, hash(By) will serve as the succinct
representation. For efficienct proof generation, this block should be some recently confirmed
block. In PoW consensus, each block hash must start with a prefix of Os of some long length
I. We will also add this value ! to the succinct representation: succinct(8) = (hash(By),).
In cross-chain communication protocols, the user will choose some block By and commit to
succinct representation and must provide all receipts with respect to it.

Proof Content Let the data d be stored in transaction txn which is present in a block By,
of height h from the block By used in the succinct representation. In By, the hash of txn
is stored in the leaf of a Merkle tree of root r. Let p be the set of nodes in the Merkle tree
required to verify the presence of leaf node txn in the tree - that is, its ancestors and their

Cross-Chain Communication Using Receipts 17
siblings. The root r is present in the block header header(B},) whose hash is the block hash
hash(Bp,). Thus, we have the following information:

1. The data d is stored in transaction txn

2. p is the set of nodes in the Merkle tree required to verify the presence of leaf node txn
3. r is the root of the Merkle tree, stored in the header header(Bp,)
4

. The root, the previous block hash, nonce along with other parameters are hashed to-
gether to form the block hash hash(B},).

Let the previous block hash be hash(Bj_1) and that block’s header be header(Bp_1).

ot

6. The header of Bj_; now points to previous block hash hash(Bj_3) whose header is
header(B,—2).

7. This chain continues until block By’s header points to the succinct representation hash(By).

We can now construct the following string !:

w =txn | p|r | header(B},), hash(By) | header(By_1),hash(Bp_1) | ... | hash(By)

This string serves as a witness to the fact that d is present in the blockchain. With & as a
parameter, the verification algorithm will check the following:
VerifyWitnessy, (succinct(B), d, w):

1. Parse w as described above.

2. Verify that txn contains data d.

3. Verify that all hash values, hash pointers are consistent.

4. Verify that the block hashes have a prefix of Os of length I.
Although this could be a valid receipt, the size of w is very long and infeasible to attach
with transactions on the blockchain.
Compressing the Proof Since the verification is done by testing multiple hashes, we can
represent the verification algorithm as an arithmetic circuit as follows:

o Ch(succinct(B), d, w) is an arithmetic equivalent to VerifyWitness, above.

e Note that the structure and input size (w in particular) of C), varies only with h

Now, fixing inputs succinct(B) and d, we get a new circuit Cj, succinct(8),4(w) that only takes
witness strings w as inputs. If w is valid proof constructed by the above method, then
Ch succinct(8),d(w) = 1. This now lets us turn to zero-knowledge proof techniques that non-
interactively prove knowledge of a valid witness (described in Section 1.4).

Let I, = (ProveZK, VerifyZK) be a secure non-interactive zero-knowledge proof-of-knowledge
protocol. The functions for a Proof-of-Work Receipt are now as follows:

I, cceipt = (GenCircuit, Generate, Verify):
GenCircuit(h, succinct(B), d):
1. Generate arithmetic circuit C}, equivalent to VerifyWitness,,

! In PoW, it must also be proved that By is final by showing that it is k blocks deep into the
blockchain. This just requires k additional header-hash pairs.

18 A. Arun et al.

2. Fix the first two inputs of Cj, as succinct(B), d to obtain circuit Cj, syccinct(5),d

3. OUtPUt Ch,succinct(B) ,d

Generate (B, succinct(B), d):

1. Obtain the witness string w as described above.
2. Let C < GenCircuit(h, succinct(B), d)

3. Output (7 < ProveZK(C,w), h)
Verify(succinct(B), d, (7, h)):

1. Let C <« GenCircuit(h, succinct(B), d)

2. Output VerifyNIZK(C,)

Unforgeability A receipt can be forged by either cheating the zero-knowledge proof system
(which can happen with only negligble probability) or creating a witness w without actually
posting to the blockchain. Indeed, it is possible for the user to forge a receipt by producing a
string w of valid hash values that satisfy the verification algorithm above. However, this is as
hard as finding a sequence of Proof-of-Work nonces and hash pointers of long 0-prefix that
start from some hash hash(By) and include a transaction txn containing data d. The difficulty
is further increased when h is required to be large (say, at least 6). Thus, forging a receipt
for a Proof-of-Work blockchain is a computationally intensive task. In our protocols, we will
assume that the users cannot perform such a task, especially under the time constraints
imposed by the protocols.

Ensuring Recent Receipts Various additional protocol-specific constraints can be introduced
to ensure that receipts must be recent and that users cannot use pre-prepared receipts. In
the Atomic Cross-Chain Booking protocol of Section 4.2, the value of bookid will, among
other parameters, include a value idr || idy that is uniquely and newly generated by each
blockchain’s booking system. Since the generation of a valid receipt can only be done after
that point, this limits the time to perform the work required to forge a Proof-of-Work
receipt.

7 Conclusion

In this work, we develop a framework of prediction functions that allow us to develop cross-
chain communication protocol with provable guarantees such as atomicity and liveness. We
also defined a receipt functionality for general blockchain networks. A receipt allows a user to
efficiently and non-interactively prove that a certain transaction was added on a blockchain.
The key application of our receipt functionality is to provide a protocol for the Train-
and-Hotel problem, which allows a user to atomically book items across two independent
chains. To highlight the applicability of receipts, we discussed how receipts can be used to
synchronize two independent blockchain and to achieve strong fairness in MPCs. Finally,
we provide a construction of Proof-of-Work receipts for Proof-of-Work blockchains that are
short and efficient, using zk-SNARKs. The compactness of our receipts allows them to be
efficiently stored in transactions on blockchains.

Cross-Chain Communication Using Receipts 19

References

1.

10.

11.

12.

13.

14.

15.

16.

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted
setup. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology — CRYPTO 2019. pp.
701-732. Springer International Publishing, Cham (2019)

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.C., Virza, M.: Snarks for c: Verifying program
executions succinctly and in zero knowledge. In: IACR Cryptology ePrint Archive (2013)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge
for a von neumann architecture. In: 23rd USENIX Security Symposium (USENIX Security
14). pp. 781-796. USENIX Association, San Diego, CA (Aug 2014), https://www.usenix.org/

conference/usenixsecurityl4/technical-sessions/presentation/ben-sasson

. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro,

R. (eds.) Advances in Cryptology — CRYPTO 2014. pp. 421-439. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs
for confidential transactions and more. 2018 IEEE Symposium on Security and Privacy (SP)
pp. 315-334 (2017)

Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair world: Fair
multiparty computation from public bulletin boards. In: ACM Conference on Computer and
Communications Security (2017)

Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended
abstract). In: STOC (1986)

Ethereum: Ethereum sharding faq. https://github.com/ethereum/wiki/wiki/Sharding-FAQ
(2019), [Online; accessed 21-September-2019]

Ethereum: What is the train-and-hotel problem? https://github.com/ethereum/wiki/
wiki/Sharding-FAQ#what-is-the-train-and-hotel-problem (2019), [Online; accessed 21-
September-2019]

Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015. pp. 281-310.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: IACR
Cryptology ePrint Archive (2013)

Herlihy, M.: Atomic cross-chain swaps. In: PODC (2018)

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure proof-of-stake
blockchain protocol. Cryptology ePrint Archive, Report 2016/889 (2016), https://eprint.
iacr.org/2016/889

Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks.
In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017. pp. 643-673.
Springer International Publishing, Cham (2017)

Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology — ASTACRYPT 2017. pp. 380-409. Springer International Publishing, Cham (2017)
Wood, D.D.: Ethereum: A secure decentralised generalised transaction ledger (2014)

