
Confidential Assets on MimbleWimble

Zheng Yi1, Howard Ye1, Patrick Dai1,
Sun Tongcheng2, and Vladislav Gelfer3

1 Qtum Chain Foundation, zhengyi@qtum.info
2 Peking University, suntongcheng@pku.edu.cn

3 Beam Foundation, valdo@beam.mw

Abstract. This paper proposes a solution for implementing Confiden-
tial Assets on MimbleWimble, which allows users to issue and transfer
multiple assets on a blockchain without showing transaction addresses,
amounts, and asset types. We first introduce the basic principles of Mim-
bleWimble and then describe the implementation in detail.

Keywords: Confidential Assets · MimbleWimble · Blockchain privacy.

1 Introduction

MimbleWimble [1] is a blockchain solution that enables Confidential Transac-
tions, where the transaction addresses and amounts are hidden, providing a high
level of privacy for blockchain users. Validators in MimbleWimble only store Un-
spent Transaction Outputs (UTXOs) instead of the entire transaction history
for the blockchain, enabling space savings and faster sync. The design of Mim-
bleWimble relies on Elliptic Curve Cryptography, which is easy to understand
and audit. Currently this solution is used in Grin [2] and Beam [3] projects.

The concept of Confidential Assets is from [4], which proposes to use a single
blockchain to track multiple types of assets while keeping their privacy. This
technology hides both transaction amounts and asset types, improving the pri-
vacy and fungibility of all assets. With Confidential Assets, users can issue their
own assets on the blockchain for privacy-related applications. Until now, only
the Elements [5] project has implemented it.

In this paper, we propose an implementation of Confidential Assets based
on MimbleWimble. It can hide transaction addresses, amounts, and asset types,
achieving the highest privacy. We first introduce the basic principles of Mim-
bleWimble and then describe the implementation in detail.

2 MimbleWimble

This section presents the main parts of MimbleWimble as an introduction to
our work. Other parts, like the transaction fee, multi-signature, transaction ag-
gregation, cut-through, and details of Bulletproofs, are beyond the scope of this
paper. You can refer to Grin [2] and Beam [3] projects for more information
about them.

2.1 Pedersen commitments

In MimbleWimble, each input or output of a transaction is expressed by a Ped-
ersen commitment:

C = rG+ aH (1)

where C denotes the commitment, and a is the amount. G and H are two
points randomly selected from the elliptic curve E and keep constant for all
transactions. r is a private key chosen by the owner of the input/output, also
called the blinding factor; it stands for the ownership, and makes the value of a
hard to be calculated from the commitment. Through the Pedersen commitment,
the amount and address of each input and output are hidden.

2.2 Signature

We can find that for a transaction with M inputs {Cin,m}Mm=1 and N outputs
{Cout,n}Nn=1, the following equation holds:

N∑
n=1

Cout,n −
M∑

m=1

Cin,m

=

N∑
n=1

(rout,nG+ aout,nH)−
M∑

m=1

(rin,mG+ ain,mH)

=

(
N∑

n=1

rout,n −
M∑

m=1

rin,m

)
G+

(
N∑

n=1

aout,n −
M∑

m=1

ain,m

)
H

= eG

(2)

in which

N∑
n=1

aout,n −
M∑

m=1

ain,m = 0 (3)

N∑
n=1

rout,n −
M∑

m=1

rin,m = e (4)

since a transaction would not create new funds. e is called the excess value.
G and H are random elliptic curve points whose discrete logarithms with

respect to each other are unknown (the “elliptic curve discrete logarithm prob-
lem”). Therefore, the transaction creator can generate a signature sig using e
obtained through Eq. (4) as the private key. Here, the transaction creator refers
to all senders and receivers of the transaction for simplicity, since the transaction
creation process in MimbleWimble requires their participation to complete. The
signature is later verified by the blockchain verifier using eG obtained through
Eq. (2) as the public key. In this way, the creator proves to the verifier that:

– Balance of amounts. The left side of Eq. (2) is a valid public key on the
elliptic curve using the generator point G. That is to say, Eq. (3) holds.

– Ownership of inputs. The transaction creator knows the private key e.
Combined with Eq. (4) and Bulletproofs introduced below, it can be further

proved that the sum input blinding factors
∑M

m=1 rin,m are known.

2.3 Bulletproofs

Bulletproofs [6] are introduced for the transaction creator to demonstrate that
all hidden output amounts are positive. Besides, they prove the ownership of
inputs together with the signature.

The Bulletproof technology is a non-interactive zero-knowledge proof proto-
col with very short proofs and without a trusted setup. For a Pedersen commit-
ment like Eq. (1), the proof system would convince the verifier that a ∈ [0, 2n−1]
without revealing a and r. The transaction creator needs to generate a proof π
for each output commitment C with the knowledge of a, r. Later, π is verified
by the verifier with C but without a, r. The proof generation and verification
algorithms can be expressed as:

π ← Generate(r, a,G,H, n)

{true, false} ← Verify(C,G,H, n)
(5)

Since the knowledge of r is necessary for the proof generation algorithm,
the transaction creator must know all output blinding factors {rout,n}Nn=1 to
generate proofs for all outputs. Combined with Eq. (4) and the fact that the
creator knows e demonstrated by the signature, it proves that the sum of input
blinding factors

∑M
m=1 rin,m are known to the creator; that is, the creator owns

the inputs.

2.4 Putting it all together

Overall, a transaction in MimbleWimble consists of the following three parts:

Input : Cin,1, ..., Cin,M

Output : (Cout,1, π1), ..., (Cout,N , πN)

Kernel : sig

3 Confidential Assets

This section introduces the technology of Confidential Assets to MimbleWimble,
which further allows users to issue and transfer multiple assets on the blockchain.

3.1 Mutiple assets

For Eq. (1), different assets can be assigned with different Hs. Suppose there are
total I assets, the Pedersen commitment for the i-th asset is expressed as:

Ci = rG+ aHi (6)

where i ∈ {1, ..., I} and Hi is called the asset tag.
We should ensure that each asset tag is selected randomly, whose discrete

logarithm is not known with respect to G and any other asset tags. So when
issuing a new asset, a random oracle is needed to map the issuance query to a
random and fixed point on the elliptic curve as its asset tag, which is detailed
in the next subsection.

Signature Eq. (2) can be extended to the case of multiple assets. Suppose a
transaction has inputs and outputs from I assets. For the i-th asset, there are Mi

inputs {Cin,i,m}Mi
m=1 and Ni outputs {Cout,i,n}Ni

n=1. Then the following equation
holds:

I∑
i=1

Ni∑
n=1

Cout,i,n −
I∑

i=1

Mi∑
m=1

Cin,i,m

=

I∑
i=1

Ni∑
n=1

(rout,i,nG+ aout,i,nHi)−
I∑

i=1

Mi∑
m=1

(rin,i,mG+ ain,i,mHi)

=

I∑
i=1

(
Ni∑
n=1

rout,i,n −
Mi∑
m=1

rin,i,m

)
G+

I∑
i=1

(
Ni∑
n=1

aout,i,n −
Mi∑
m=1

ain,i,m

)
Hi

= eG

(7)

in which

I∑
i=1

(
Ni∑
n=1

aout,i,n −
Mi∑
m=1

ain,i,m

)
= 0 for i ∈ {1, ..., I} (8)

I∑
i=1

(
Ni∑
n=1

rout,i,n −
Mi∑
m=1

rin,i,m

)
= e (9)

since no new funds would be created for each asset. It is evident that the excess
value e, public key eG, balance of amounts, and ownership of inputs still follow
the same relationship as Eq. (2) (3) (4). So the signature is also valid for multiple
assets.

Bulletproofs Changing the value of H would not affect the calculation of
Bulletproofs since H is one of the input parameters to the proof generation and
verification algorithms in Eq. (5). But the changed value needs to be publicly
recorded in the output for the verifier to use. As a result, the output is expanded
to the form of (C, π,H).

3.2 Generating asset tags

There has been a lot of research [7] on hash functions that not only can map an
arbitrary bit string to a point on an elliptic curve but also are indifferentiable
from random oracles. Such functions can be used in several places, for example,
in BLS signature [8], the message needs to be hashed to a point in a prime-order
subgroup of a pairing-friendly elliptic curve.

The initial solution is from [9] called MapToGroup. It simply tries hashing
several times by attaching a number to the message and incrementing it on fail.
Let the message be m. Then if hash(0||m) is not the x-coordinate of a rational
point on the elliptic curve, try hash(1||m), hash(2||m) and so on until finally
get one that matches. The probability of success for each try is about 1/2.

However, this solution has an obvious drawback: it cannot execute in con-
stant time, that is, time independent of the hash input. For the blockchain, a
constant-time hash function is necessary. If someone deliberately chooses a mes-
sage difficult to hash and sends it to the blockchain, plenty of time would be
wasted for nodes to verify it.

Several methods have solved the problem of constant-time mapping. Shallue
and van de Woestijne [10] describe a mapping that is computable in deterministic
polynomial time. Fouque and Tibouchi [11] give a concrete set of parameters for
this mapping geared toward BN curves.

We use an extension of [11] as a random oracle for users to generate asset
tags. First, the user needs to create a private key for the new asset. Then, the
corresponding public key and other information for the issuance, such as the
supply, are combined, as the issuance query m. At last, a hash function H(m)
uses m as its input and outputs a point on the elliptic curve E(Fq) as the asset
tag (Fq is the finite field with q elements). The user should also use the private
key to generate a signature sig′ for the issuance query m to demonstrate m is
valid, and the issuance is authorized.

Here, the hash function H(m) is expressed as:

H(m) = f(h1(m)) + f(h2(m)) (10)

where h1(m), h2(m) are independent hash functions as random oracles to Fq,
and f(t) is a mapping from Fq to E. h1(m), h2(m) can be realized by SHA256
as following:

hi(m) = SHA256(i||m) mod q, i ∈ {1, 2}

The results produced by this method have some bias from the uniform random
distribution, but this bias is negligible for most elliptic curves.

Fouque and Tibouchi provide an implementation of f(t) on the elliptic curve
of the form:

E : y2 = g(x) = x3 + b, b 6= −1

over field Fq with q ≡ 7 (mod 12). They prove that at least one of the three
values:

x1 =
−1 +

√
−3

2
−
√
−3 · t2

1 + b+ t2

x2 =
−1−

√
−3

2
+

√
−3 · t2

1 + b+ t2

x3 = 1−
(
1 + b+ t2

)2
3t2

is the x-coordinate of a point on E, denoted xi; that is, g(xi) is a square over
Fq. Then f(t) can be expressed as:

f(t) =
(
xi, χq(t) ·

√
g (xi)

)
, for t ∈ F∗q

where χq(t) is the sign of t which is used as the sign for the y-coordinate. F∗q =
Fq\{0}, and f(0) can be assigned an arbitrary point. They also prove that f(t)
reaches about 9/16ths of all points on the curve.

3.3 Blinding asset tags

The asset tag H in each output can be hidden by replacing it with an asset
commitment A of the form:

A = H + sG

where s is a secret value randomly selected by the output owner and used to
blind the asset tag. Thus, the asset tag of the output is only known to its owner,
which further improves the privacy of assets.

Signature On this basis, the Pedersen commitment for the i-th asset in Eq. (6)
can be derived as:

Ci = rG+ aAi

= rG+ a(Hi + sG)

= (r + as)G+ aHi

where i ∈ {1, ..., I}. It is equivalent to Eq. (6), because only the blinding factor
r is replaced by another secret value (r + as), and other parameters remain un-
changed. With this replacement, Eq. (7) (8) (9) can still hold, and the signature
continues to work.

Bulletproofs A is also a point on the elliptic curve, so that it can replace H as
the input to the proof generation and verification algorithms. Thus, the output
should be recorded as (C, π,A).

Asset surjection proofs Since the asset tag is hidden, the legitimacy of the
tag cannot be guaranteed. Malicious users can use illegal tags to attack the
blockchain, especially tags whose discrete logarithms are known. For example,
consider the asset tag −H and its asset commitment A′ = −H+sG. Any amount
of asset A′ would actually correspond to a negative amount of asset A, thereby
increasing the supply of A.

For solving this problem, the ASP (Asset Surjection Proof) [4] technology
is introduced. It generates a cryptographic proof σ for an asset commitment A
and a set of asset commitments {Ai}Ji=1, proving that A has the same asset
tag H as a commitment AK in the set, without exposing H and AK to the
verifier. In MimbleWimble, we can use a subset of all legal asset tags generated
by Eq. (10), denoted by {Hi}Ji=1, as the asset commitment set. In this way, σ
proves H ∈ {Hi}Ji=1 without revealing the value of H, and thus demonstrates
the legitimacy of A. As a consequence, fields in the output are expanded to
(C, π,A, {Hi}Ji=1, σ).

The ASP technology works as follows. The prover first computes a set of
elliptic curve points {Pi}Ji=1 by

Pi = A−Hi =

{
H + sG−Hi, i 6= K

sG, i = K

where only PK is a point whose discrete logarithm to G is known since H = HK .
Then the prover uses {Pi}Ji=1, s, and G to generate an AOS (Abe-Ohkubo-
Suzuki) ring signature [12], σ. The signature proves to the verifier that the
discrete logarithm of one of the points in {Pi}Ji=1 is known to the prover. This

statement holds only when H ∈ {Hi}Ji=1.

The size of σ is proportional to J+1 in AOS. If we choose a small J , although
the size of σ and {Hi}Ji=1 can be reduced, the value of H is easy to be exposed
because of a small asset set. To optimize this situation, one can use a Bloom
filter to select a random subset from all legal asset tags as {Hi}Ji=1. A Bloom
filter is a space-efficient data structure designed to detect whether an element
is present in a set. Its size is equivalent to the size of an element, which is an
elliptic curve point in our case. It can replace {Hi}Ji=1 to be recorded in the
output, through which the verifier can obtain an asset set with its size shrunk to
J according to some pre-defined logic, where the value of J is obtained from the
size of σ. The Bloom filter is a feasible optimization scheme, but a further design
is also needed for the pre-defined logic. Thus the output becomes (C, π,A, β, σ),
where β is the Bloom filter used.

3.4 Putting it all together

Overall, a transaction for Confidential Assets on MimbleWimble is shown as
follows. Note that there are two types of Kernel to choose from: sig for ordinary

transactions and (sig, sig′,m) for asset issuances.

Input : Cin,1, ..., Cin,M

Output : (Cout,1, π1, A1, β1, σ1), ..., (Cout,N , πN , AN , βN , σN)

Kernel : sig or (sig, sig′,m)

4 Performance

Compared with MimbleWimble, each output for Confidential Assets on Mim-
bleWimble have three more fields, A, β, and σ, to be recorded on the blockchain.
Suppose in the elliptic curve, the size of a point is X, and the size of a scalar is
Y . Then 2X + (J + 1)Y more space is needed for storing an output.

In addition, for verifying an output, an additional process of ASP verification
is needed. It takes two steps: obtaining the asset set through the Bloom filter and
verifying the AOS ring signature. The time consumption of these steps needs to
be evaluated in the future.

5 Future Work

We would like to realize some parts of the proposed solution and conduct several
experiments on them to evaluate the performance. These parts may include
generating asset tags, blinding asset tags, and ASP. Some parts need to be
further designed, such as the issuance query, Bloom filter, and a data structure
for storing all legal asset tags on the blockchain. We are also looking for other
implementations for ASP to reduce its size even more.

References

1. Introduction to MimbleWimble and Grin. https://github.com/mimblewimble/

grin/blob/master/doc/intro.md.

2. The Grin project. https://github.com/mimblewimble/grin.

3. The Beam project. https://github.com/BeamMW/beam.

4. Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Wuille. Confidential assets. In International Conference on Financial Cryptography
and Data Security, pages 43–63. Springer, 2018.

5. The Elements project. https://github.com/ElementsProject/elements.

6. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE,
2018.

7. Hashing to elliptic curves. https://tools.ietf.org/html/

draft-irtf-cfrg-hash-to-curve-04.

8. Riad S Wahby and Dan Boneh. Fast and simple constant-time hashing to the
bls12-381 elliptic curve. IACR Cryptology ePrint Archive, 2019:403, 2019.

https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin
https://github.com/BeamMW/beam
https://github.com/ElementsProject/elements
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04

9. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pair-
ing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 514–532. Springer, 2001.

10. Andrew Shallue and Christiaan E van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In International Algorithmic Number Theory
Symposium, pages 510–524. Springer, 2006.

11. Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to barreto–
naehrig curves. In International Conference on Cryptology and Information Secu-
rity in Latin America, pages 1–17. Springer, 2012.

12. Gregory Maxwell and Andrew Poelstra. Borromean ring signatures, 2015.

	Confidential Assets on MimbleWimble

