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Abstract. Efficient user revocation has always been a challenging prob-
lem in identity-based encryption (IBE). Boldyreva et al. (CCS 2008) first
proposed and formalized the notion of revocable IBE (RIBE) based on a
tree-based revocation method. In their scheme, each user is required to
store a number of long-term secret keys and all non-revoked users have
to communicate with the key generation center periodically to update
its decryption key. To reduce the workload on the user side, Qin et al.
(ESORICS 2015) proposed a new system model, server-aided revocable
IBE (SR-IBE). In SR-IBE model, each user is required to keep only one
private key PrivID and unnecessary to communicate with the key genera-
tion center or the server during key updating. However, in their security
model, the challenge identity ID∗ must be revoked once the private key
PrivID∗ was revealed to the adversary. This is too restrictive since decrypt-
ing a ciphertext requires both the private key PrivID and the long-term
transformation key skID.
In this paper, we first revisit Qin et al.’s security model and propose
a stronger one called SSR-sID-CPA security. Specifically, ID∗ is revoked
only when both skID∗ and PrivID∗ are revealed and the adversary is al-
lowed to access short-term transformation keys oracle. We also prove
that Qin et al.’s scheme is insecure under our new security model. Sec-
ond, we construct a lattice-based SR-IBE scheme based on Katsumata’s
RIBE scheme (PKC 19), and show that our lattice-based SR-IBE scheme
is SSR-sID-CPA secure. Finally, we propose a generic construction of
SR-IBE scheme by combining a RIBE and a 2-level HIBE scheme. The
security of the generic SR-IBE scheme inherits those of the underlying
building blocks.
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1 Introduction

The concept of identity-based encryption was proposed by Shamir [28]. One
practical issue of IBE in real applications is to find an effective revocation method
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to revoke users in multi-user cryptosystems, because users may behave inappro-
priately or their secret keys may be compromised. In 2001, Boneh et al. [6]
proposed a naive identity revocation mechanism, in which the up-to-date revo-
cation list is controlled by a trusted authority called Key Generation Center
(KGC), who issues secret key skid||t for each non-revoked user id in every time
period t. Only non-revoked users can decrypt ciphertext bound to their identity
and the same time slot (i.e., id||t). However, this approach is inefficient since the
KGC has to generate O(N − r) new secret keys in each time period, where N is
the total number of users and r is the number of revoked users in time period t.
The workload of the KGC is proportional to the number of users N .

In 2008, Boldyreva et al. [4] proposed another revocation mechanism based on
the tree-based revocation scheme of [19], and formalized the notion of revocable
IBE (RIBE). In this mechanism, each user keeps O(logN) long-term secret keys
and the KGC broadcasts O(r log(N/r)) update keys for each time period t.
Only non-revoked users can obtain their decryption keys from their long-term
secret keys and the update keys. Compared with Boneh et al. [6], Boldyreva
et al.’s revocation mechanism significantly reduces the total size of update keys
from linear (i.e., O(N − r)) to logarithmic (i.e., O(r log(N/r))) in the number of
users. However, this solution still does not provide an efficient revocation for the
following reasons: (1) the KGC has to stay online regularly and all non-revoked
users need to communicate with the KGC and update their decryption keys
periodically; (2) the sizes of update keys (i.e., O(r log(N/r))) and users’ secret
keys O(logN) are logarithmical in the number of users.

Boldyreva et al. [4] also defined the selective-revocable-ID security for RIBE
scheme, a security model that captures the standard notion of selective-identity
security and formalizes the possible threats as much as possible. Seo-Emura [26]
revisited the Boldyreva et al. security model by considering a realistic threat
which they called decryption key exposure (DKE), and proved that the scheme of
Boldyreva et al. [4] is vulnerable against DKE. Since then, there have been many
follow-up works concerning RIBE scheme with DKE resistance (DKER) [12,16,
23,29,30].

To reduce the workload on the user side in Boldyreva et al. [4] and to resist
against DKE, Qin et al. [23] proposed a novel system model what they call server-
aided revocable IBE (SR-IBE) (depicted in Fig. 1) along with a SR-IBE scheme
with DKER under the decisional bilinear diffie-hellman (DBDH) assumption.
In SR-IBE system, the server is assumed to be untrusted in the sense that it
doesn’t keep any secret data and only performs public storage and computation
operations according to the system specification. The SR-IBE system in [23]
requires no communication between users and the KGC during key updating. In
addition, although the size of update keys from the KGC to the server is still
logarithmic (i.e. O(r log(N/r))), the size of the private key stored by each user
is reduced from O(logN) to a constant (i.e. O(1)). Moreover, Qin et al. defined
semantic security against adaptive-identity chosen plaintext security (SR-aID-
CPA security) for SR-IBE, which captures both adaptive-ID attacks and DKE
attacks. Also, they proved that their SR-IBE scheme is SR-aID-CPA secure



Server-Aided Revocable Identity-Based Encryption Revisited 3

Fig. 1. System model of SR-IBE.

under the DBDH assumption. Following [23], Nguyen et al. [20] proposed the
first lattice-based SR-IBE that satisfies selective-identity security (SR-sID-CPA
security). One application of SR-IBE is encrypted email supporting lightweight
devices in which an email server plays the role of the untrusted server so that
only non-revoked users can read their email messages.

As mentioned above, the SR-IBE security model of [20, 23] has considered
the DKE attack against users’ local decryption keys. But the DKE attack pro-
posed in [26] is actually defined for user’s short-term transformation key. This is
because the decryption key generated by a data user in a normal RIBE scheme
is now created by the server and renamed as short-term transformation key in
their SR-IBE schemes. From now on, in the SR-IBE model, we’ll let DKE specif-
ically refer to the local decryption key exposure, and use “STKE” to indicate
the short-term transformation key exposure. Since the untrusted server could be
operated by anyone, including the adversary, all short-term transformation keys
could be exposed to the adversary.

1.1 Motivations and Contributions

Motivation. In the security model of SR-IBE [20, 23], the challenge identity
ID∗ must be revoked before the challenge time period t∗ once the private key
PrivID∗ was revealed to the adversary. But if we think it more carefully, we
will find that this limitation is too strict for the following reason: as shown in
Fig. 1, a ciphertext issued by the sender is first decrypted by the server into a
partially decrypted ciphertext using a short-term transformation key obtained by
combining the long-term transformation key skID and the update key, and then
decrypted by the recipient into the plaintext using a decryption key delegated
by the private key PrivID. Therefore, it may be only when both the long-term
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transformation key for the first decryption and the private key for the second
decryption are revealed that we need to consider revocation of the challenge
identity ID∗. Noting that SR-IBE was introduced by envisioning the real-world
use of IBE systems, their security definitions should be as close to the practical
scenarios as possible. A more natural and weaker limitation may be: if both the
long-term transformation key skID∗ and the private key PrivID∗ for the challenge
identity ID∗ are revealed to the adversary, ID∗ will be revoked before the challenge
period time t∗.

Now, under the weaker limitation mentioned above, despite the exposure of
the private key PrivID∗ , as long as the long-term transformation key skID∗ is not
revealed to the adversary, the challenge identity ID∗ does not need to be revoked
before t∗. In this case (where ID∗ is not revoked before t∗), the previous SR-
IBE schemes (i.e. [20,23]) are vulnerable to “STKE” attack for the same reason
as mentioned in [26]: if the short-term transformation key tkID∗,t is exposed, the
short-term transformation key tkID∗,t∗ can be obtained by the adversary through
a simple combination of tkID∗,t, ukt and ukt∗ . Then, the adversary obtains both
tkID∗,t and PrivID∗ , and can simply decrypt the challenge ciphertext encrypted
under ID∗ and t∗.

Contribution. Our contribution consists of three parts. First, we revisit Qin et
al.’s security model [23], and enhance it by weakening the limitation on revoking
the challenge identity and capturing both DKE attacks on the local decryption
key and STKE attacks on the short-term transformation key. In our new security
model, ID∗ is revoked before the challenge period time t∗ only when both the
long-term transformation key skID∗ and the private key PrivID∗ are revealed to the
adversary. In addition, the adversary is allowed to issue short-term transforma-
tion key reveal queries. As mentioned above, these modifications are necessary
because the previous schemes (i.e. [20,23]) are vulnerable under our new security
model. In Section 3.2, we describe the formal definitions of our security models,
SSR-sID-CPA security and SSR-aID-CPA security.

Recall that the lattice-based SR-IBE scheme in [20] is constructed by ap-
plying the double encryption technique to combine a RIBE without DKER
scheme [8] and a two-level HIBE scheme [1]. The use of the double encryp-
tion technique makes it necessary to sample a series of gaussian matrices during
the generations of both long-term transformation keys and update keys. In the
end, they transformed the recipient’s workload from decryption of a ciphertext
obtained by encrypting the message M with RIBE [8] to decryption of a ci-
phertext obtained by encrypting the message M with HIBE [1]. However, It is
difficult to measure whether or how much the workload on the recipient side
has been reduced. In this paper, we construct a lattice-based SR-IBE scheme by
combining a RIBE with DKER scheme [12] and a two-level HIBE scheme [1].
Compared with [20], we combine the two building blocks without using the dou-
ble encryption technique, which reduces the amount of sampling required for the
generations of the long-term transformation keys and update keys. In addition,
we reduce the recipient’s workload in a strict sense by transforming the recipien-
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t’s workload from decrypting the ciphertext of message M encrypted by RIBE
with DKER [12] to decrypting the ciphertext of M encrypted by HIBE [1]. This
is because the amount of workload required to decrypt a ciphertext of RIBE
with DKER [12] is strictly greater than that required to decrypt a ciphertext of
HIBE [1]. Moreover, we prove that our lattice-based SR-IBE scheme is secure
under our new security model.

Third, we propose a generic construction of SR-IBE scheme by employing
a RIBE with DKER scheme and a 2-level HIBE scheme, and prove that the
security of SR-IBE scheme inherits those of the underlying building blocks. In
other words, the SR-IBE is SSR-sID-CPA (resp. SSR-aID-CPA) secure if the
underlying RIBE is selective-identity (resp. adaptive-identity) secure and the
underlying 2-level HIBE is selective-identity (resp. adaptive-identity) secure.

1.2 Related Work

Boldyreva et al. [4] proposed the first RIBE scheme from bilinear map. Chen
et al. [8] proposed the first lattice-base RIBE scheme. Seo and Emura [25] in-
troduce the security notion of DKER along with a RIBE with DKER from
bilinear map. Since then, several improvements and variants have been pro-
posed [11, 13, 17, 22, 31]. Recently, Ma and Lin [16] proposed a construction of
RIBE without DKER from IBE, and a generic construction of RIBE with DKER
from IBE and 2-level HIBE. The first SR-IBE scheme was proposed by Qin et
al. [23]. Nguyen et al. [20] proposed the first SR-IBE from lattice.

1.3 Roadmap

The rest of this paper is organized as follows. Section 2 describes some nec-
essary preliminaries. Section 3 introduces our new security model of SR-IBE.
Section 4 presents our constructions of lattice-based SR-IBE. Section 5 presents
a generic construction of SR-IBE. In the end, We give a conclusion in Section 6.

2 Preliminaries

2.1 Notations

For a binary string α, let |α| denote its binary length. For a positive integer
n, Let [n] denote the set {1, · · · , n}. If S is a finite set then x ← S is the
operation of choosing an element uniformly at random from S. For a probability
distribution D, x ← D denotes the operation of choosing an element according
to D. If γ is either an algorithm nor a set then x ← γ is a simple assignment
statement.

Let λ denote the security parameter. A function f(λ) is negligible, denoted
as negl(λ), if for every c > 0, there exists an λc such that f(λ) < 1/λc for all
λ > λc. An algorithm is probabilistic polynomial-time (PPT) computable if it
is modeled as a probabilistic Turing machine whose running time is bounded
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by some polynomial function poly(λ). Two distribution ensembles {Xλ}λ∈N and
{Yλ}λ∈N are computationally indistinguishable, if for any PPT algorithm D, and
for sufficiently large λ, we have |Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| is negligible
in λ.

For notational convenience, we sometimes view a matrix as simply the set
of its column vectors. For a matrix T = [t1 · · · tk] ∈ Rm×k, let ‖T‖ denote
the L2 length of its longest column, i.e., ‖T‖ := maxi ‖ti‖ for 1 ≤ i ≤ k; let
s1(T) denote the largest singular value of T, i.e., s1(T) := supu∈Rk,‖u‖=1 ‖Tu‖.
Further, if t1, · · · , tk in T are linearly independent, let T̃ := [t̃1, · · · , t̃k], where
t̃1, · · · , t̃k denote the Gram-Schmidt orthogonalization of t1, · · · , tk. For two
matrices X ∈ Rn×m1 and Y ∈ Rn×m2 , let [X | Y] ∈ Rn×(m1+m2) denote the
concatenation of the columns of X and Y. For two matrices X ∈ Rn×m and
Y ∈ Rm×k, we have ‖X‖, ‖X>‖ ≤ s1(X), and s1(XY) ≤ s1(X) · s1(Y).

2.2 The Binary Tree Data Structure and the CS method

The complete subtree (CS) method was introduced by Naor et al. [19]. A
binary tree along with the CS method is an efficient revocation mechanism, which
has been widely used in systems [5,12,21,25]. To introduce this mechanism, we
use the following notations: BT denotes a binary-tree. root denotes the root node
of BT. θ denotes a node in the binary tree and η emphasizes that the node θ is
a leaf node. The set Path(BT, ηID) stands for the collection of nodes on the path
from the leaf ηID to the root (including ηID and the root). If θ is a non-leaf node,
then θ`, θr denote the left and right child of θ, respectively.

Before introducing the CS method, we recall the node selection algorithm
KUNodes as in previous RIBE systems [5, 25]. The KUNodes algorithm takes as
input a binary tree BT, a revocation list RL, and outputs a set of nodes Y, such
that the subtrees with root θ ∈ Y cover all leaves ηID in BT for ID /∈ RL and do
not cover any leaves ηID for ID ∈ RL. The description of the KUNodes algorithm
is as follows:

KUNodes(BT,RL):
X,Y ← ∅; ∀ID ∈ RL,add Path(BT, ηID) to X;
∀θ ∈ X, if θ` /∈ X then add θ` to Y , if θr /∈ X then add θr to Y ;
If Y = ∅ then add root to Y ; Return Y ;

We adopt the definition of the CS method given by Katsumata et al. [12],
which consists of the following four algorithms:

CS.Setup(N)→ BT: on input the number of users N , it outputs a binary tree
BT with at least N and at most 2N leaves.

CS.Assign(BT, ID)→ (ηID,BT): on input a binary tree BT and an identity ID,
it randomly assigns the identity ID to a leaf node ηID, to which no other
identities have been assigned yet. Then, it outputs a leaf node ηID and an
“updated” binary tree BT.

CS.Cover(BT,RL)→ KUNodes(BT,RL): on input a binary tree and a revocation
list RL, it outputs a set of nodes KUNodes(BT,RL).



Server-Aided Revocable Identity-Based Encryption Revisited 7

CS.Match(Path(BT, ηID),KUNodes(BT,RL))→ θ/∅: on input Path(BT, ηID) and
KUNodes(BT,RL), it outputs an arbitrary node θ ∈ Path(BT, ηID)∩KUNodes(BT,RL)
if it exists. Otherwise, it outputs ∅.

2.3 Background on Lattice

Let B = {b1 · · ·bm} ⊂ Zm consist of m linearly independent vectors. The
(full-rank-integer) m-dimensional lattice Λ generated by the basis B is Λ =
L(B) := {

∑
i∈[m] xibi | xi ∈ Z}. For any positive integers n,m and q ≥ 2, a

matrix A ∈ Zn×mq and a vector u ∈ Znq , we define Λ⊥q (A) := {z ∈ Zm : A·z = 0n
mod q} and Λu

q (A) := {z ∈ Zm : A · z = u mod q}.

Discrete Gaussian over Lattice. Let Λ be a lattice in Zm. For any vec-

tor c ∈ Rm and any parameter σ ∈ R+, define ρσ,c(x) = exp(−π ‖x−c‖
2

σ2 ) and
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). The discrete Gaussian distribution over Λ with cen-

ter c and Gaussian parameter σ is DΛ,σ,c =
ρσ,c(y)

ρσ,c(Λ) for ∀y ∈ Λ. If c = 0, we

conveniently use ρσ and DΛ,σ.

Lemma 1 ( [10]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ,

and suppose σ ≥ ‖T̃‖ ·ω(
√

logm). Then Pr[‖x‖ > σ
√
m : x← DΛ,σ] ≤ negl(m).

Lemma 2 ( [10]). Let n,m, q > 0 be positive integers with m ≥ 2ndlog qe
and q a prime. Let σ be any positive real such that σ ≥ ω(

√
logm). Then for

A ← Zn×mq and e ← DZm,σ, the distribution of u = Ae mod q is statistically
close to uniform over Znq . Furthermore, for a fixed u ∈ Znq , the conditional
distribution of e ← DZm,σ, given Ae = u mod q for a uniformly random A in
Zn×mq is DΛu

q (A),σ with all but negligible probability.

Sampling Algorithms. Let’s first review two sampling algorithms in the fol-
lowing lemmas. The first algorithm generates a matrix A ∈ Zn×mq that is statis-
tically close to uniform, together with a short trapdoor basis for the associated
lattice Λ⊥q (A). The second algorithm generates a basis for the lattice Λ⊥q (G),
where G is what they call the primitive matrix.

Lemma 3 ( [2, 3, 18]). Let n,m, q > 0 be positive integers with m ≥ 2ndlog qe
and q a prime. Then, we have:

– [2, 3, 18] a PPT algorithm TrapGen(n,m, q) that outputs a pair (A,TA) ∈
Zn×mq ×Zm×m such that A is statistically close to uniform and TA is a basis

for Λ⊥q (A) satisfying ‖T̃A‖ ≤ O(
√
n log q).

– [18] a fixed full rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a

publicly known basis TG ∈ Zm×m with ‖T̃G‖ ≤
√

5.

We review some of the algorithms that allow one to securely delegate a trap-
door of a lattice to an arbitrary higher-dimensional extension. They can be
obtained by combining corresponding results in [1] and [7].



8 Leixiao Cheng1 and Fei Meng2

Lemma 4 ( [1, 7]). Let n,m, m̄, q > 0 be positive integers with m > n and q a
prime. Then, there exist PPT algorithms as follows:

ExtRndLeft(A,F,TA, σ)→ T[A|F]: On input matrices A ∈ Zn×mq , F ∈ Zn×m̄q ,

a basis TA of Λ⊥q (A), and a Gaussian parameter σ ≥ ‖T̃A‖ · ω(
√

log n),

outputs a matrix T[A|F] ∈ Z(m+m̄)×(m+m̄) distributed statistically close to
(DΛ⊥q ([A|F]),σ)m+m̄.

ExtRndRight(A,G,R,TG, σ)→ T[A|AR+G]: On input full rank matrices A,G ∈
Zn×mq , a matrix R ∈ Zm×mq , a basis TG of Λ⊥q (G), and a Gaussian param-

eter σ ≥ s1(R) · ‖T̃G‖ · ω(
√

logm), outputs a matrix T[A|AR+G] ∈ Z2m×2m

distributed statistically close to (DΛ⊥q ([A|AR+G]),σ)2m.

The following algorithms allow one to sample short vectors from a given
lattice equipped with a short basis.

Lemma 5 ( [1,10]). Let n,m, m̄, q > 0 be positive integers with m ≥ 2ndlog qe
and q a prime. Then, we have the following algorithms:

SamplePre(A,TA,u, σ)→ e [10]: on input a full rank matrix A ∈ Zn×mq , a

basis TA ∈ Zm×m of Λ⊥q (A), a vector u ∈ Znq , and a Gaussian parameter

σ ≥ ‖T̃A‖·ω(
√

logm), it outputs a vector e ∈ Zm sampled from a distribution
statistically close to DΛu

q (A),σ.

SampleLeft(A,F,u,TA, σ)→ e [1]: On input a full rank matrix A ∈ Zn×mq , a

matrix F ∈ Zn×m̄q , a vector u ∈ Znq , a basis TA ∈ Zm×m of Λ⊥q (A), and

a Gaussian parameter σ ≥ ‖T̃A‖ · ω(
√

log(m+ m̄)), it outputs a vector
e ∈ Zm+m̄ sampled from a distribution statistically close to DΛu

q ([A|F]),σ.

Hardness Assumption. The learning with errors (LWE) assumption was in-
troduced by Regev [24]. For integers n,m, a prime q, a real α ∈ (0, 1) such that
αq > 2

√
n, and a PPT algorithm A, the advantage for learning with errors prob-

lem LWEn,m,q,DZm,αq of A is defined as
∣∣Pr[A(A,A>s + x) = 1]−Pr[A(A,v) =

1]
∣∣, where A ← Zn×mq , s ← Znq , x ← DZm,αq, v ← Zmq . We say that the LWE

assumption holds if the above advantage is negligible for all PPT adversary A.

2.4 Facts

Lemma 6 ( [1,15]). Let R be a m×k matrix chosen at random from {−1, 1}m×k,
then there exists a universal constant C such that Pr[s1(R) > C

√
m+ k] <

e−(m+k).

Lemma 7 ( [1, 9]). Suppose that m > (n + 1) log q + ω(log n) and that q is a
prime. Let A,B be matrices chosen uniformly in Zn×mq and let R be an m ×
m matrix chosen uniformly in {−1, 1}m×m mod q. Then, for all vectors w in
Zmq , the distribution of (A,AR,R>w) is statistically close to the distribution of

(A,B,R>w).
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Definition 1 (FRD [1]). Let q be a prime and n a positive integer. We say
that a function H : Znq → Zn×nq is a full-rank difference (FRD) map if: for all

distinct ID, ID′ ∈ Znq , the matrix H(ID) − H(ID′) ∈ Zn×nq is full rank, and H is
computable in polynomial time in n log q.

2.5 Revocable Identity-based Encryption

Recall that in PKC 2019, Katsumata et al. [12] re-specified the syntax and
security definition for RIBE to address the ambiguity of previous security defi-
nitions [4,25–27] (e.g. in some cases it is not clear when the values such as secret
keys and update keys are generated during the security game). Specifically, they
mainly made the following four adjustments:

– An entity capable of deriving a secret key for a low-level user is modeled as
a stateful entity, and is supposed to maintain a so-called “state” in addition
to its own secret key. The roles of the “state” information (used by the
revocation mechanism) and the secret key are merged in the syntax.

– They do not explicitly include the “revoke” algorithm, which adds a user
to be revoked into the revocation list, as part of the syntax. Instead, a
revocation list is treated as a subset of identity space and is considered
together with the update key information.

– They explicitly separate the secret key generation and secret key reveal
queries to capture cases when some secret key skID has been generated but
not revealed to an adversary.

– They combine the “revoke” and “update key” queries into the single “revoke
& update key” query and introduce a global counter tcu representing the
“current time period” which is coordinated with the adversary’s revoke &
update key query.

In this section, we introduce the more rigorous definition of RIBE and its
security model given in [12]. Note that the default security definition captures
the DKER security considered in [25]. For convenience, we sometimes refer to a
RIBE scheme that satisfies the default security definition as RIBE with DKER.

Syntax. A RIBE scheme Π = (Setup,GenSK,KeyUP,GenDK,Encrypt,Decrypt)
is described as follows:

Setup(1λ)→ (pp, skkgc): On input the security parameter 1λ, it outputs a public
parameter pp and the KGC’s secret key skkgc (also called a master secret
key). We assume that the message space M, the time period space T , and
the identity space ID are determined only by the security parameter λ, and
their descriptions are contained in pp.

GenSK(pp, skkgc, ID)→ (skID, sk
′
kgc): On input a public parameter pp, the KGC’s

secret key skkgc, and an identity ID ∈ ID, it outputs a secret key skID for the
identity ID and also the KGC’s “updated” secret key sk′kgc.
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KeyUP(pp, skkgc, t,RLt)→ (ukt, sk
′
kgc): On input a public parameter pp, the KGC’s

secret key skkgc, a time period t and a revocation list RLt ⊂ ID, it outputs
an update key ukt and also the “updated” secret key sk′kgc.

GenDK(pp, skID, ukt)→ dkID,t or ⊥: On input a public parameter pp, a secret
key skID and an update key ukt, it outputs a decryption key dkID,t for the
time period t or the special “invalid” symbol ⊥ indicating that ID has been
revoked.

Encrypt(pp, ID, t,M)→ ctID,t: On input a public parameter pp, an identity ID,
a time period t and a message M , it outputs a ciphertext ctID,t.

Decrypt(pp, dkID,t, ctID,t)→M : On input a public parameter pp, a decryption
key dkID,t and a ciphertext ctID,t, it outputs the decryption result M .

Correctness. For all λ ∈ N, (pp, skkgc) ← Setup(1λ), ID ∈ ID, t ∈ T , M ∈
M and RLt ⊂ ID\{ID}, the correctness requires that M ′ = M to hold after
executing the following procedures:

(1) (skID, skkgc)← GenSK(pp, skkgc, ID).
(2) (ukt, skkgc)← KeyUP(pp, skkgc, t,RLt).
(3) dkID,t ← GenDK(pp, skID, ukt).
(4) ctID,t ← Encrypt(pp, ID, t,M).
(5) M ′ ← Decrypt(pp, dkID,t, ctID,t).

Note that it is allowed to execute an arbitrary polynomial number of ex-
ecutions of GenSK in between steps (1) and (2). However, for simplicity and
readability, the correctness is defined as above.

Security. Let the global counter tcu be initialized to 1. Let SKList be a list
that initially contains (kgc, skkgc). Whenever a new secret key is generated for
an identity ID ∈ ID or the secret key skkgc is updated due to the execution of
GenSK or KeyUP in the security game, the challenger C will store (ID, skID) or
update the corresponding entry (kgc, skkgc) in SKList, and we will not mention
this addition/update explicitly.

Let ORIBE be the set of queries as follows:

Secret Key Generation Query: Upon a query ID ∈ ID from the adver-
sary A, where it is required that (ID, ∗) /∈ SKList, the challenge C runs
(skID, sk

′
kgc)← GenSK(pp, skkgc, ID) and returns nothing to A.

We require that all identities ID appearing in the following queries be “acti-
vated” in the sense that skID is generated via this query and hence (ID, skID) ∈
SKList.

Secret Key Reveal Query: Upon a query ID ∈ ID from A, C checks if the
following condition is satisfied:

– If tcu ≥ t∗ and ID∗ /∈ RLt∗ , then ID 6= ID∗.

If this condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds
skID from SKList and returns it to A.
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Revoke & Update Key Query: Upon a query RL ⊂ ID (which represents
the set of identities that are going to be revoked in the next time period)
from A, C checks if the following conditions are satisfied simultaneously:

– RLtcu ⊂ RL.

– If tcu = t∗ − 1 and skID∗ for the challenge ID∗ has been reveled to A via
a secret key reveal query ID∗, then ID∗ ∈ RL.

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, it
increments the current time period by tcu ← tcu + 1, sets RLtcu ← RL, runs
(uktcu , sk

′
kgc)← KeyUP(pp, skkgc, tcu,RLtcu) and returns uktcu to A.

Decryption Key Reveal Query: Upon a query (ID, t) ∈ ID × T from A, C
checks if the following conditions are simultaneously satisfied:

– t ≤ tcu.

– ID /∈ RLt.

– (ID, t) 6= (ID∗, t∗).

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, it
finds skID from SKList, runs dkID,t ← GenDK(pp, skID, ukt) and returns dkID,t
to A.

Definition 2. A RIBE (with DKER) scheme satisfies selective-identity ( resp.
adaptive-identity) security, if any PPT adversary A has negligible advantage
AdvRIBE-sel

A,ORIBE(λ) ( resp. AdvRIBE-ad
A,ORIBE(λ)) in experiment ExpRIBE-sel

A,ORIBE(λ) ( resp. ExpRIBE-ad
A,ORIBE(λ)):

ExpRIBE-sel
A,ORIBE(λ) :

ID∗, t∗ ← A;
(pp, skkgc) ← Setup(1λ); SKList ← (kgc, skkgc); (uk1, sk

′
kgc) ←

KeyUP(skkgc, tcu = 1,RL1 = ∅);
(M0,M1)← AORIBE

(pp), where |M0| = |M1|;
b← {0, 1}; ctID∗,t∗ ← Encrypt(pp, ID∗, t∗,Mb);

b′ ← AORIBE

(ctID∗,t∗);
Return 1 if b′ = b and 0 otherwise.

ExpRIBE-ad
A,ORIBE(λ) :

(pp, skkgc) ← Setup(1λ); SKList ← (kgc, skkgc); (uk1, sk
′
kgc) ←

KeyUP(skkgc, tcu = 1,RL1 = ∅);
(M0,M1, ID

∗, t∗)← AORIBE

(pp), where it is required that the following
conditions are satisfied simultaneously:
– |M0| = |M1|,
– if t∗ ≤ tcu, then A has not submitted (ID∗, t∗) as a decryption key

reveal query,
– if skID∗ has been revealed to A, then it is required that ID∗ ∈ RLt∗ ;
b← {0, 1}; ctID∗,t∗ ← Encrypt(pp, ID∗, t∗,Mb);

b′ ← AORIBE

(ctID∗,t∗);
Return 1 if b′ = b and 0 otherwise.
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The advantage of A in the experiment ExpRIBE-sel
A,ORIBE(λ) (resp. ExpRIBE-ad

A,ORIBE(λ)) is
defined as:

AdvRIBE-sel
A,ORIBE(λ) = 2 ·

∣∣∣∣Pr
[
ExpRIBE-sel
A,ORIBE(λ) = 1

]
− 1

2

∣∣∣∣ ,(
resp. AdvRIBE-ad

A,ORIBE(λ) = 2 ·
∣∣∣∣Pr
[
ExpRIBE-sel
A,ORIBE(λ) = 1

]
− 1

2

∣∣∣∣ ). (1)

The weak security notions (i.e. security without DKER) are defined by chang-
ing the corresponding security experiments so that an adversary A is not allowed
to make any decryption key reveal query. The advantage of the adversary A in
weak selective-identity (resp. weak adaptive-identity) security experiment is de-
fined as AdvRIBE-sel-weakA,ORIBE (λ) (resp. AdvRIBE-ad-weakA,ORIBE (λ)).

Definition 3. A RIBE scheme satisfies weak selective-identity ( resp. weak adaptive-
identity) security, if any PPT adversary A has negligible advantage AdvRIBE-sel-weak

A,ORIBE (λ)

( resp. AdvRIBE-ad-weak
A,ORIBE (λ)).

For convenience, we sometimes refer to a RIBE scheme satisfying weak secu-
rity as RIBE without DKER.

2.6 2-level Hierarchical Identity Based Encryption

In this section, we introduce the notion of 2-level hierarchical identity based
encryption (HIBE) [1, 12].

Syntax. A 2-level HIBE scheme Π = (Setup,GenSK,Delegate,Encrypt,Decrypt)
is described as follows:

Setup(1λ)→ (pp, skkgc): on input the security parameter 1λ, it outputs a public
parameter pp and the KGC’s secret key skkgc (also called a master secret
key).
We assume that the message space M and the identity space ID are deter-
mined only by the security parameter λ, and their descriptions are contained
in pp.

GenSK(pp, skkgc, id1)→ skid1 : on input a public parameter pp, the KGC’s secret
key skkgc and id1 ∈ ID, it outputs a secret key skid1 .

Delegate(pp, skid1 , id2): on input a public parameter pp, a secret key skid1 (of a
first-level user with id1 ∈ ID), a second-level identity id2 ∈ ID, it outputs a
secret key skid1,id2 .

Encrypt(pp, ID = (id1, id2),M)→ ctID,t: on input a public parameter pp, a level-
2 user’s identity ID = (id1, id2) ∈ (ID)2, and a message M , it outputs a
ciphertext ct.

Decrypt(pp, skid1,id2 , ct)→M : on input a public parameter pp, a decryption key
skid1,id2 (for a lever-2 user with identity ID = (id1, id2)), and a ciphertext ct,
it outputs the decryption result M .
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Correctness. For all λ ∈ N, (pp, skkgc) ← Setup(1λ), ID = (id1, id2) ∈ (ID)2,
skid1 ← GenSK(pp, skkgc, id1), skid1,id2 ← Delegate(pp, skid1 , id2), M ∈ M and
ct← Encrypt(pp, ID,M), the correctness requires Decrypt(pp, skid1,id2 , ct) = M .

Security. Let SKList be a list that initially contains (kgc, skkgc). Whenever a
new secret key is generated for an identity ID ∈ (ID)≤2 during the security game,
the identity/secret key pair (ID, skID) will be stored into SKList and we will not
mention this addition explicitly. Let OHIBE be the set of queries as follows:

Level-1 Secret Key Generation Query: upon a query id1 ∈ ID from the
adversary A, the challenge C check if (id1, ∗) ∈ SKList, and returns ⊥ to A if
this is the case. Otherwise, C runs skid1 ← GenSK(pp, skkgc, id1) and returns
nothing to A.

Level-1 Secret Key Reveal Query: upon a query id1 ∈ ID from A, C checks
if (id1, skid1) ∈ SKList for some skid1 and id1 6= id∗1. If this is not the case,
then C returns ⊥ to A. Otherwise, it returns skid1 to A.

Level-2 Secret Key Reveal Query: upon a query (id1, id2) ∈ (ID)2 from A,
C checks if (id1, skid1) ∈ SKList for some skid1 , ((id1, id2), skid1,id2) /∈ SKList
and (id1, id2) 6= (id∗1, id

∗
2). If this is not the case, then C returns ⊥ to A.

Otherwise, it runs skid1,id2 ← Delegate(pp, skid1 , id2) and returns skid1,id2 to
A.

Definition 4. A 2-level HIBE scheme satisfies selective-identity ( resp. adaptive-
identity) security, if any PPT adversary A has negligible advantage AdvHIBE-sel

A,OHIBE(λ)

( resp. AdvHIBE-ad
A,OHIBE(λ)) in experiment ExpHIBE-sel

A,OHIBE(λ) ( resp. ExpHIBE-ad
A,OHIBE(λ)):

ExpHIBE-sel
A,OHIBE(λ) :

ID∗ = (id∗1, id
∗
2)← A;

(pp, skkgc)← Setup(1λ); SKList← (kgc, skkgc);

(M0,M1)← AORIBE

(pp), where |M0| = |M1|;
b← {0, 1}; ct∗ ← Encrypt(pp, ID∗ = (id∗1, id

∗
2),Mb);

b′ ← AOHIBE

(ct∗);
Return 1 if b′ = b and 0 otherwise.

ExpHIBE-ad
A,OHIBE(λ) :

(pp, skkgc)← Setup(1λ); SKList← (kgc, skkgc);

(M0,M1, ID
∗ = (id∗1, id

∗
2)) ← AOHIBE

(pp), where it is required that the
following conditions are satisfied simultaneously:
– |M0| = |M1|,
– ((id∗1, id

∗
2), ∗) /∈ SKList,

– skid∗1 has not been revealed to A;
b← {0, 1}; ct∗ ← Encrypt(pp, ID∗ = (id∗1, id

∗
2),Mb);

b′ ← AOHIBE

(ct∗);
Return 1 if b′ = b and 0 otherwise.
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The advantage of A in the experiment ExpHIBE-sel
A,OHIBE(λ) (resp. ExpHIBE-ad

A,OHIBE(λ)) is
defined as:

AdvHIBE-sel
A,OHIBE(λ) = 2 ·

∣∣∣∣Pr
[
ExpHIBE-sel
A,OHIBE(λ) = 1

]
− 1

2

∣∣∣∣ ,(
resp. AdvHIBE-ad

A,OHIBE(λ) = 2 ·
∣∣∣∣Pr
[
ExpHIBE-sel
A,OHIBE(λ) = 1

]
− 1

2

∣∣∣∣ ). (2)

3 Framework and Security model of SR-IBE

In Section 2.5 we described why and how Katsumata et al. [12] redefined the
definition and security model of RIBE, and the four adjustments they made. In
this section, by absorbing the ideas of Katsumata et al. [12], we first re-formalize
the framework of server-aided revocable identity-based encryption scheme (SR-
IBE) based on [12, 20, 23]. Then, we propose a new and more refined security
model for SR-IBE.

Note that in the previous security model of SR-IBE [20, 23], the challenge
identity ID∗ must be revoked before the challenge time t∗ if the private key skID∗
was revealed to the adversary. However, decrypting a ciphertext ctID,t issued by
the sender requires not only the private key PrivID(for delegation of the local
decryption key dkID,t), but also the long-term transformation key skID (for gen-
erating the short-term transformation key tkID,t). Therefore, it is more natural
to revoke ID∗ before t∗ when both the private key PrivID∗ and the long-term
transformation key skID∗ for ID∗ are revealed. We additionally consider STKE
attack, which means that the adversary is allowed to issue short-term trans-
formation key queries for (ID, t) 6= (ID∗, t∗). The new SR-IBE security model
with the above two changes is stronger because as mentioned in Section 1.1, the
previous SR-IBE schemes [20,23] are insecure in our new security model.

3.1 Framework of SR-IBE

In this section, we re-formalize the framework of SR-IBE. Compared with
previous SR-IBE [20,23], we make the following adjustments:

– An entity capable of deriving a secret key is modeled as a stateful entity and
is supposed to maintain a so-called “state” in addition to its own secret key.

– We remove the “revoke” algorithm.
– We integrate the system parameter generation algorithm Sys(1λ) into the

setup algorithm Setup(1λ).

A SR-IBE involves four parties: KGC, sender, recipient and server. Algo-
rithms among the parties are as following:

Setup(1λ)→ (pp, skkgc) is run by the KGC. It takes as input a security param-
eter 1λ and outputs a public parameter pp, and the KGC’s secret key skkgc
(also called a master key). We assume that the system parameter params is
contained in pp and pp is an implicit input of all other algorithms.
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L-TranKG(skkgc, ID)→ (skID, sk
′
kgc) is run by the KGC. It takes as input the

KGC’s secret key skkgc, an identity ID, and may update the KGC’s secret key
skkgc. Then, it outputs a long-term transformation key skID and the KGC’s
“updated” state sk′kgc. The long-term transformation key skID is sent to the
server through a public channel.

UpdKG(skkgc, t,RLt)→ (ukt, sk
′
kgc) is run by the KGC. It takes as input the

KGC’s secret key skkgc, a time period t, a revocation list RLt, and may
update the KGC’s secret key skkgc. Then, it outputs an update key ukt and
the KGC’s “updated” state sk′kgc. The updated key ukt is sent to the server
through a public channel.

S-TranKG(skID, ukt)→ tkID,t/ ⊥ is run by the server. It takes as input a long-
term transformation key skID for identity ID, an update key ukt for time
period t, and outputs a short-term transformation key tkID,t or the special
symbol ⊥ indicating that ID has been revoked.

PrivKG(skkgc, ID)→ PrivID is run by the KGC. It takes as input the KGC’s secret
key skkgc and the recipient’s identity ID, and outputs a private key PrivID for
the recipient. The private key must be sent to the recipient through a secure
channel.

DecKG(PrivID, t)→ dkID,t is run by the recipient himself. It takes as input his
private key PrivID and a time period t, and outputs a decryption key dkID,t.

Enc(ID, t,M)→ ctID,t is run by the sender. It takes as input the recipient’s iden-
tity ID, a time period t, a message M , and outputs a ciphertext ctID,t. The
ciphertext is sent to the server.

Transform(tkID,t, ctID,t)→ ct′ID,t is run by the server. It takes as input a short-
term transformation key tkID,t, a ciphertext ctID,t and outputs a partially
decrypted ciphertext ct′ID,t. The partially decrypted ciphertext ct′ID,t is sent
to the recipient through a public channel.

Dec(dkID,t, ct
′
ID,t)→M/ ⊥ is run by the recipient. It takes as input a decryption

key dkID,t, a partially decrypted ciphertext ct′ID,t and outputs a message M
or a symbol ⊥.

Correctness The correctness for a SR-IBE requires that for all security pa-
rameter λ ∈ N and all message M , if ID is not revoked at time period t and if all
parties follow the prescribed algorithms, then we have Dec(dkID,t, ct

′
ID,t) = M .

3.2 Security model of SR-IBE

Qin et al. [23] defined the semantic security against adaptive-identity chosen
plaintext attacks for SR-IBE, i.e., SR-aID-CPA security. Nguyen et al. [20] con-
sidered the selective-identity security, i.e., SR-sID-CPA security, in which the
adversary announces the challenge identity ID∗ and time period t∗ before the
execution of algorithm Setup.

Based on [12,20,23], we consider a Stronger selective-identity (resp. adaptive-
identity) security model for SR-IBE, and call it SSR-sID-CPA (resp. SSR-aID-
CPA) security, mainly making the following two changes: ID∗ will be revoked
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before t∗ only if both skID∗ and PrivID∗ for ID∗ are revealed to the adversary;
the adversary is allowed to issue short-term transformation key reveal queries
for (ID, t) 6= (ID∗, t∗). In addition, we make the following adjustments:

– Separate the long-term transformation key generation and long-term trans-
formation key reveal queries, and the private key generation and private key
reveal queries.

– Merge the “revoke” and “update key” queries into the single “revoke & up-
date key” query and introduce a global counter tcu representing the “current
time period”.

Let SKList be a set that initially contains (kgc, skkgc), and into which identity/long-
term transformation key pairs (ID, skID) generated during the security game will
be stored. From now on, whenever a new secret key skID is generated for ID
or the secret key skkgc is updated during the execution of L-TranKG or UpdKG,
the challenger will store the pair (ID, skID) or update (kgc, skkgc) in SKList, and
we will not explicitly mention this addition/update. Also, let PrivList be a set
that stores the identity/private key pairs (ID,PrivID) and identity/decryption
key pairs ((ID, t), dkID,t) generated during the security game. The challenger will
store the pairs (ID,PrivID) (resp. ((ID, t), dkID,t)) in PrivList whenever a new pri-
vate key PrivID (resp. decryption key ((ID, t), dkID,t)) is generated for ID (resp.
(ID, t)) during the execution of PrivKG (resp. DecKG) and we will not explicitly
mention these additions as well.

Definition 5 (SSR-sID-CPA security). Let OSR-IBE be the set of queries as
follows:

Long-term Transformation Key Generation Query: upon a query ID from
the adversary A, where it is required that (ID, ∗) /∈ SKList, the challenge C
runs (skID, sk

′
kgc)← L-TranKG(skkgc, ID) and returns nothing to A.

We require that all identities ID appearing in the following queries be “acti-
vated” in the sense that skID is generated via this query and hence (ID, skID) ∈
SKList.

Long-term Transformation Key Reveal Query: upon a query ID from A,
C finds skID from SKList and returns it to A.

Revoke & Update Key Query: upon a query RL (which represents the set
of identities that are going to be revoked in the next time period) from A, C
checks whether RLtcu ⊂ RL. If not, it returns ⊥; otherwise, it increments the
current time period by tcu ← tcu + 1, sets RLtcu ← RL, runs (uktcu , sk

′
kgc) ←

UpdKG(skkgc, tcu,RLtcu) and returns uktcu to A.
Short-term Transformation Key Reveal Query: upon a query (ID, t) from
A, C checks whether conditions t ≤ tcu, ID /∈ RLt and (ID, t) 6= (ID∗, t∗) meet
at the same time. If not, it returns ⊥; otherwise, it finds skID from SKList,
runs tkID,t ← S-TranKG(skID, ukt) and returns tkID,t to A.

Private Key Generation Query: upon a query ID from A, where it is re-
quired that (ID, ∗) /∈ PrivList, C runs PrivID ← PrivKG(skkgc, ID) and returns
nothing to A.
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Similarly, we require that all identities ID appearing in the following queries
be “activated” in the sense that PrivID is generated via this query and hence
(ID,PrivID) ∈ PrivList.

Private Key Reveal Query: upon a query ID from A, C finds PrivID from
PrivList and returns it to A.

Decryption Key Reveal Query: upon a query (ID, t) from A, where it is re-
quired that ((ID, t), ∗) /∈ PrivList, C finds PrivID from PrivList, runs dkID,t ←
DecKG(PrivID, t) and returns dkID,t to A.

A SR-IBE scheme is SSR-sID-CPA ( resp. SSR-aID-CPA) secure if any PPT
adversary A has negligible advantage in experiment ExpSSR−sID−CPAA,OSR-IBE (λ) ( resp.

ExpSSR−aID−CPAA,OSR-IBE (λ)) as follows.

ExpSSR−sID−CPAA,OSR-IBE (λ) :

ID∗, t∗ ← A;
(pp, skkgc) ← Setup(1λ); SKList ← (kgc, skkgc); PrivList ← ∅;
(uk1, sk

′
kgc)← UpdKG(skkgc, tcu = 1,RL1 = ∅);

M0,M1 ← AO
SR-IBE

(pp), where |M0| = |M1|;
b← {0, 1}; ctID∗,t∗ ← Enc(ID∗, t∗,Mb);

b′ ← AOSR-IBE

(ctID∗,t∗);
Return 1 if b′ = b and 0 otherwise.

ExpSSR−aID−CPAA,OSR-IBE (λ) :

(pp, skkgc) ← Setup(1λ); SKList ← (kgc, skkgc); PrivList ← ∅;
(uk1, sk

′
kgc)← UpdKG(skkgc, tcu = 1,RL1 = ∅);

(M0,M1, ID
∗, t∗)← AOSR-IBE

(pp), where |M0| = |M1|.
b← {0, 1}; ctID∗,t∗ ← Enc(ID∗, t∗,Mb);

b′ ← AOSR-IBE

(ctID∗,t∗);
Return 1 if b′ = b and 0 otherwise.

The following restrictions are made in the experiments ExpSSR−sID−CPAA,OSR-IBE (λ)

and ExpSSR−aID−CPAA,OSR-IBE (λ):

1. If both skID∗ and PrivID∗ for identity ID∗ are revealed to the adversary, then
ID∗ ∈ RLt for some t ≤ t∗.

2. If ID∗ /∈ RLt∗ , then DecKG(·) can not be queried on (ID∗, t∗).

The advantage of A in the experiment ExpSSR−sID−CPAA,OSR-IBE (λ) ( resp. ExpSSR−aID−CPAA,OSR-IBE (λ))
is defined as:

AdvSSR−sID−CPAA,OSR-IBE (λ) = 2 ·
∣∣∣∣Pr
[
ExpSSR−sID−CPAA,OSR-IBE (λ) = 1

]
− 1

2

∣∣∣∣(
resp. AdvSSR−aID−CPAA,OSR-IBE (λ) = 2 ·

∣∣∣∣Pr
[
ExpSSR−aID−CPAA,OSR-IBE (λ) = 1

]
− 1

2

∣∣∣∣ ). (3)
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The following lemma is a variant of the strategy-dividing lemma in [12]. It is
useful when proving the security of SR-IBE scheme.

Lemma 8 (Strategy-Dividing Lemma [12]). Let Π be a SR-IBE scheme,
and let A be any PPT adversary against the SSR-sID-CPA ( resp. SSR-aID-
CPA) security of Π. Assume that there are n possible attack strategies for A,
Type-1, · · · , Type-n, that satisfy the following conditions:

1. Type-1, · · · , Type-n cover all possible strategies, and each Type-i is mutually
exclusive.

2. For every i ∈ [n], whether A has deviated from the Type-i strategy is “publicly
detectable”, in the sense that during the security game, as soon as A deviates
from the Type-i strategy, it can be efficiently recognized given A’s view at the
moment it deviates from the strategy.

Then, there exist PPT adversaries A1, · · · An against the SSR-sID-CPA ( resp.
SSR-aID-CPA) security of Π, such that Ai always follows the Type-i strategy
for every i ∈ [n], and

AdvSSR-sID-CPA
Π,A (λ) ≤

∑
i∈[n]

AdvSSR-sID-CPA
Π,Ai (λ)

(
resp. AdvSSR-aID-CPA

Π,A (λ) ≤
∑
i∈[n]

AdvSSR-aID-CPA
Π,Ai (λ).

) (4)

In particular, if AdvSSR-sID-CPA
Π,Ai (λ) ( resp. AdvSSR-aID-CPA

Π,Ai (λ)) is negligible for all
PPT adversaries Ai that always follow the Type-i strategy and for all i ∈ [n], then
Π satisfies SSR-sID-CPA ( resp. SSR-aID-CPA) security for any PPT adversary
A following an arbitrary strategy.

4 Our Lattice-based SR-IBE scheme

Nguyen et al. [20] constructed the first lattice-based SR-IBE by combining
Chen et al.’s RIBE without DKER [8] with the 2-level HIBE [1] via a double
encryption technique [14]. More specifically, the sender first encrypts the message
M under the HIBE to get an initial ciphertext of the form (c2, c0 ∈ Zq) and then
encrypts the binary representation of c0 (i.e., bin(c0) ∈ {0, 1}k=dlog qe) under the
RIBE to obtain (c1, ĉ0). The final ciphertext is defined as (c1, c2, ĉ0) and sent
to the server, who will invert the second step of the encryption mechanism and
send the initial ciphertext (c2, c0) to the recipient. In the end, the recipient only
works with the HIBE block. However, the use of double encryption technique
makes it necessary to call k ·O(logN) and k ·O(r · log(N/r)) sampling algorithms
when generating a long-term transformation key and an update key, respectively.
In addition, although the SR-IBE scheme constructed by Nguyen et al. [20]
converts the receiver’s workload from decrypting the ciphertext encrypted with
RIBE [8] to decrypting the ciphertext encrypted with HIBE (in [1]), it is difficult
to measure the extent to which the recipient’s workload is increased or decreased.
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Moreover, as mention in Section 1.1, Nguyen et al.’s SR-IBE scheme is insecure
under SSR-sID-CPA security.

In this section, we construct the first SSR-sID-CPA secure SR-IBE by em-
ploying Katsumata et al.’s RIBE with DKER [12] and a 2-level HIBE [1] as the
building blocks, where Katsumata et al.’s lattice-based RIBE with DKER is con-
structed by combining a RIBE without DKER [8] and the 2-level HIBE [1]. Note
that in Katsumata et al.’s RIBE with DKER, the recipient needs to decrypt a
“RIBE without DKER” ciphertext and a 2-level HIBE ciphertext. However, in
our server-aided model, the server will decrypt the “RIBE with DKER” part of
the ciphertext for the recipient and the recipient only needs to decrypt the HIBE
block in the end. Therefore, the recipient reduces the workload of decrypting the
“RIBE without DKER” ciphertext.

Compared with Nguyen et al. [20], we combine the two building blocks with-
out using the double encryption technique, which reduced the number of calls to
the sampling algorithm from k ·O(logN) and k ·O(r · log(N/r)) to O(logN) and
O(r · log(N/r)), respectively. In addition, We reduce the recipient’s workload in
a strict sense, but not to an incalculable extent. Moreover, our SR-IBE is secure
under a stronger security model, i.e., SSR-sID-CPA security. In the following,
we formally describe our SR-IBE scheme.

Setup(1λ): On input a security parameter λ, the KGC proceeds as follows:
1. Choose positive integers n,N, q, k,m, s0, s1, α with q a prime, k = dlog qe,
N as the maximal number of users that the system will support. Select an
FRD map H : Znq → Zn×nq (see Section 2.4). Let the identity space ID =
Znq , the time space T ⊂ ID = Znq and the message spaceM = {0, 1}. Set
the system parameter params = (n,N, q, k,m, s0, s1, α,H, ID, T ,M).

2. Generate three independent pairs (A,TA), (B,TB) and (C,TC) by run-
ning TrapGen(n,m, q).

3. Select u← Znq and A1,A2,B1,B2,C1,C2 ← Zn×mq .
4. Create a binary tree by running BTkgc ← CS.Setup(N).
5. Set the public parameter pp = (A,B,C,A1,A2,B1,B2,C1,C2,u, params)

and the KGC’s secret key skkgc = (TA,TB,TC,BTkgc).
6. Output pp and skkgc.

L-TranKG(skkgc, ID): On input the KGC’s secret key skkgc and an identity ID ∈
ID, the KGC goes as follows:
1. Run (BTkgc, ηID)← CS.Assign(BTkgc, ID).
2. For each θ ∈ path(BTkgc, ηID), if ukgc,θ is undefined, the KGC picks

ukgc,θ ← Znq , update skkgc by storing ukgc,θ in the node θ ∈ BTkgc. Then,
it samples eID,θ ← SampleLeft(A,AID,TA,ukgc,θ, s1), where AID = [A |
A1 + H(ID)G] ∈ Zn×2m

q . Note that eID,θ ∈ Z2m and AID · eID,θ = ukgc,θ.
3. Extend its basis by running

TBID
← ExtRndLeft(B,B1 + H(ID)G,TB, s0), (5)

where BID = [B | B1 + H(ID)G] ∈ Zn×2m
q , TBID

∈ Z2m×2m.

4. Output skID =
(
path(BTkgc, ηID), (eID,θ)θ∈path(BTkgc,ηID),TBID

)
as the long-

term transformation key and the updated secret key sk′kgc.
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UpdKG(skkgc, t,RLt): On input the KGC’s secret key skkgc, a time period t ∈ T ,
a revocation list RLt, the KGC works as follows:
1. Run KUNodes(BTkgc,RLt) ← CS.Cover(BTkgc,RLt) and check whether

ukgc,θ is defined for each θ ∈ KUNodes(BTkgc,RLt). If not, the KGC picks
ukgc,θ ← Znq , update skkgc by storing ukgc,θ in node θ ∈ BTkgc. Then, it
samples et,θ ← SampleLeft(A,At,TA,u − ukgc,θ, s1), where At = [A |
A2 + H(t)G] ∈ Zn×2m

q . Note that et,θ ∈ Z2m and At · et,θ = u− ukgc,θ.

2. Output ukt =
(
KUNodes(BTkgc,RLt), (et,θ)θ∈KUNodes(BTkgc,RLt)

)
as the up-

date key and the (possibly) updated secret key sk′kgc.
S-TranKG(skID, ukt): On input a long-term transformation key skID for identity

ID ∈ ID, an update key ukt for time period t ∈ T , the server goes as follows:
1. Extract path(BTkgc, ηID) in skID and KUNodes(BTkgc,RLt) in ukt and run
θ/∅ ← CS.Match(path(BTkgc, ηID),KUNodes(BTkgc,RLt)). If the output
is ∅, the server outputs ⊥. Otherwise, it extracts eID,θ, et,θ ∈ Z2m in
skID, ukt, respectively, and parses it as

eID,θ = [eL
ID,θ | eR

ID,θ], et,θ = [eL
t,θ | eR

t,θ]. (6)

where eL
ID,θ, e

R
ID,θ, e

L
t,θ, e

R
t,θ ∈ Zm. Then the server computes

eID,t = [eL
ID,θ + eL

t,θ | eR
ID,θ | eR

t,θ]. (7)

Note that eID,t ∈ Z3m and [A | A1 + H(ID)G | A2 + H(t)G] · eID,t = u.
2. Sample gID,t ← SampleLeft(BID,B2+H(t)G,TBID

,u, s1). Note that gID,t ∈
Z3m and [B | B1 + H(ID)G | B2 + H(t)G] · gID,t = u.

3. Output the short-term transformation key tkID,t = (eID,t,gID,t).
PrivKG(skkgc, ID): On input the KGC’s secret key skkgc and an identity ID ∈ ID,

the KGC proceeds as follows:
1. Sample TCID

← ExtRndLeft(C,C1 + H(ID)G,TC, s0), where CID = [C |
C1 + H(ID)G] ∈ Zn×2m

q .
2. Output the private key PrivID = TCID

∈ Z2m×2m.
DecKG(PrivID, t): On input the private key PrivID = TCID

and a time period
t ∈ T , the recipient works as follows:
1. Sample dID,t ← SampleLeft(CID,C2+H(t)G,TCID

,u, s1). Note that dID,t ∈
Z3m and [C | C1 + H(ID)G | C2 + H(t)G] · dID,t = u.

2. Output the decryption key dkID,t = dID,t.
Enc(ID, t,M): On input an identity ID ∈ ID, a time period t ∈ T , a message

M ∈M, the sender works as follows:
1. Set

AID,t = [A | A1 + H(ID)G | A2 + H(t)G] ∈ Zn×3m
q

BID,t = [B | B1 + H(ID)G | B2 + H(t)G] ∈ Zn×3m
q

CID,t = [C | C1 + H(ID)G | C2 + H(t)G] ∈ Zn×3m
q .

(8)

2. Sample s, s′, s′′ ← Znq , x← DZ,αq, x,x′,x′′ ← DZm,αq.
3. Sample R11,R12,R21,R22,R31,R32 ← {−1, 1}m×m.
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4. Set

c0 = u>(s + s′ + s′′) + x+M · bq
2
c, c1 = A>ID,ts +

 x
R>11x
R>12x

 ,
c2 = B>ID,ts

′ +

 x′

R>21x
′

R>22x
′

 , c3 = C>ID,ts
′′ +

 x′′

R>31x
′′

R>32x
′′

 .
(9)

5. Output the ciphertext ctID,t = (c0, c1, c2, c3) ∈ Zq × Z3m
q × Z3m

q × Z3m
q .

Transform(tkID,t, ctID,t): On input a short-term transformation key tkID,t = (eID,t,gID,t),
a ciphertext ctID,t = (c0, c1, c2, c3), the server works as follows:

1. Compute c′0 = c0 − e>ID,tc1 − g>ID,tc2.

2. Output the partially decrypted ciphertext ct′ID,t = (c′0, c3) ∈ Zq × Z3m
q .

Dec(dkID,t, ct
′
ID,t): On input a decryption key dkID,t = dID,t, a partially decrypted

ciphertext ct′ID,t, the recipient works as follows:

1. Compute c = c′0 − d>ID,tc3 ∈ Zq.
2. Compare c and b q2c by treating them as integers in Z, output 1 in case
|c− b q2c| < b

q
4c and 0 otherwise.

4.1 Correctness

Let a ciphertext ctID,t be aimed for recipient ID and time period t. To check
correctness, we only need to consider the situation where the ID has not been
revoked at time period t. In this case, the server can construct a short-term
transformation key tkID,t for ID at time t.

Lemma 9. Assume O
((
α+ αs1m · ω(

√
logm)

)
· q
)
≤ q/5 hold with overwhelm-

ing probability, then the above SR-IBE scheme has negligible decryption error.

Proof. Since ID is non-revoked at time period t, there exists one node θ ∈
path(BTkgc, ηID)∩KUNodes(BTkgc,RLt). The short-term transformation key gen-
erated by running S-TranKG(skID, ukt) is of the form tkID,t = (eID,t,gID,t) such
that

AID,t · eID,t = [A | A1 + H(ID)G | A2 + H(t)G] · eID,t = u,

BID,t · gID,t = [B | B1 + H(ID)G | B2 + H(t)G] · gID,t = u.
(10)

During the Transform procedure performed by the server, we have
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c′0 =c0 − e>ID,tc1 − g>ID,tc2

=u>(s + s′ + s′′) + x+M · bq
2
c −

u>s + e>ID,t

 x
R>11x
R>12x

−
u>s′ + g>ID,t

 x′

R>21x
′

R>22x
′


=u>s′′ + x+M · bq

2
c − e>ID,t

 x
R>11x
R>12x

− g>ID,t

 x′

R>21x
′

R>22x
′

 .

(11)

The decryption key generated by running DecKG(PrivID, t) is of the form dkID,t =
dID,t such that

CID,t · dID,t = [C | C1 + H(ID)G | C2 + H(t)G] · dID,t = u. (12)

During the Dec procedure performed by the recipient, we have

c =c′0 − d>ID,tc3

=M · bq
2
c+ x− e>ID,t

 x
R>11x
R>12x

− g>ID,t

 x′

R>21x
′

R>22x
′

− d>ID,t

 x′′

R>31x
′′

R>32x
′′

 .
︸ ︷︷ ︸

:=z(“noise′′)

(13)

If we set the parameters appropriately, by Lemma 1 and 5, we know that

‖eID,t‖ ≤ 2 ·
√

3m · s1, ‖gID,t‖ ≤
√

3m · s1, ‖dID,t‖ ≤
√

3m · s1. (14)

By Lemma 1, 5 and 6, we have

‖[I | R11 | R12] · eID,t‖ ≤ (1 + 2 ·
√

2m) · 2 ·
√

3m · s1 ≤ O(s1m),

‖[I | R21 | R22] · gID,t‖ ≤ O(s1m), ‖[I | R31 | R32] · dID,t‖ ≤ O(s1m).
(15)

By Lemma 1 and the standard Gaussian tail bound in [10], we have

‖([I | R11 | R12] · eID,t)
> · x‖ ≤ ‖[I | R11 | R12] · eID,t‖ · αq · ω(

√
logm),

≤ O(s1m) · αq · ω(
√

logm).
(16)

Similarly, ‖([I | R21 | R22] · gID,t)
> · x′‖, ‖([I | R31 | R32] · dID,t)

> · x′′‖ ≤
O(s1m) · αq · ω(

√
logm). Thus, the noise z can be bounded with overwhelming

probability as follows:

‖z‖ ≤ |x|+ ‖e>ID,t

 x
R>11x
R>12x

 ‖+ ‖g>ID,t

 x′

R>21x
′

R>22x
′

 ‖+ ‖d>ID,t

 x′′

R>31x
′′

R>32x
′′

 ‖,
≤ αq +O(s1m) · αq · ω(

√
logm),

= O
((
α+ αs1m · ω(

√
logm)

)
· q
)
.

(17)
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ut

4.2 Parameter Selection

In this section, we provide an example of parameter selection of our SRIBE
scheme. Note that we need to ensure that

– the “noise” term in the above section is less than q/5 with overwhelming
probability (i.e., O

((
α+ αs1m · ω(

√
logm)

)
· q
)
≤ q/5 by Lemma 9).

– algorithm Trap operates as specified (i.e., m ≥ 2ndlog qe by Lemma 3).
– algorithms SampleLeft and ExtRndLeft work as specified (i.e., s0 ≥ O(

√
n log q)·

ω(
√

logm), s1 ≥ s0
√
m · ω(

√
logm) by Lemma 1, 3, 4 and 5).

– algorithm ExtRndRight works as specified in the security proof (i.e., s0 >√
m · ω(

√
logm) by Lemma 3, 4 and 6).

– the hardness assumption of LWE applies (i.e., αq > 2
√
n).

According to the above restrictions, we can set the parameters of our SR-IBE
as follows:

n = O(λ), N = poly(λ), m = O(n log q), s0 =
√
m · ω(

√
log n),

s1 = m · ω(log n), α = m−2 · ω((log n)
3
2 )−1, q = n

1
2 ·m2 · ω((log n)

3
2 ).

(18)

Remark 1. For the sake of simplicity, we define the correctness of SR-IBE to
have a probability of 1 in Section 3.1. Therefore, in order to be consistent with
our definition, we can use standard techniques to modify our lattice-based con-
struction so that there are no decryption errors by considering a bound on the
secret/noise vector.

4.3 Security Analysis

Theorem 1. The SR-IBE scheme described above is SSR-sID-CPA secure as-
suming the hardness of the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof. Let A be a PPT adversary who succeeds in breaking the SSR-sID-CPA
security of our SR-IBE scheme with advantage AdvSSR-sID-CPA

A,OSR-IBE (λ) = ε, let ID∗

be the challenge identity and t∗ be the challenge time period. Observe that
the strategy taken by A can be divided into three types of strategies that are
mutually exclusive as follows.

Type-I: A issues both private key reveal query and long-term transformation
key reveal query on the challenge identity ID∗. In this case, the challenge
identity ID∗ must be revoked before the challenge time t∗.

Type-II: A issues private key reveal query on the challenge identity ID∗, but
does not issue long-term transformation key reveal query on ID∗.

Type-III: A does not issue private key reveal query on the challenge identity
ID∗.
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By Lemma 8, A always follows one of the above strategies, and we only need to
show that the advantage of A is negligible regardless of the strategy taken by A.

We will provide three types of security proofs according to the three types
of strategies taken by A as described above. In both proofs, we proceed with a
sequence of games where the first game is identical to the SSR-sID-CPA game
from Definition 5 and the adversary has no advantage in the last game. We will
show that A cannot distinguish between the games, which will prove that the
adversary has negligible advantage in winning the original SSR-sID-CPA game
and will complete our proof.

Lemma 10. The advantage of an adversary A1 using the Type-I strategy is
negligible assuming the hardness of the LWEn,m+1,q,χ, where χ = DZm+1,αq.

Proof. We define the sequence of games as follows:

GameI-0: This is the original SSR-sID-CPA game from Definition 5.

GameI-1: In this game, we change the way that the challenger generates A1,A2 in
the public parameters. The GameI-1 challenger samples R∗11,R

∗
12 ← {−1, 1}m×m

at the setup phase and sets A1,A2 as

A1 = AR∗11 − H(ID∗)G, A2 = AR∗12 − H(t∗)G. (19)

Then the challenger keeps the matrices R∗11,R
∗
12 as part of skkgc. The remainder

of the game is unchanged.
We now show that GameI-0 is statistically indistinguishable from GameI-1.

Note that in GameI-1 the matrices R∗11,R
∗
12 are used only in the construction of

A1,A2 and in the construction of the challenge ciphertext where z1 ← (R∗11)>x,
z2 ← (R∗12)>x. By Lemma 7, the distributions (A,AR∗11, z1) and (A,AR∗12, z2)
are statistically close to the distributions (A,A′1, z1) and (A,A′2, z2) respective-
ly, where A′1,A

′
2 ← Zn×mq . Hence, A1,A2 in GameI-0 and GameI-1 are indistin-

guishable.

GameI-2: In this game, we change how we assign ID∗ to the binary tree BTkgc.
Recall in the previous game, the challenger assigned ID∗ to some random leaf
ηID∗ of BTkgc when A1 issued a long-term transformation key query on ID∗. In
this game, the GameI-2 challenger chooses a random leaf in BTkgc to assign ID∗

before providing A1 the public parameter pp. When A1 submitted a long-term
transformation key query on some ID, if ID = ID∗, then the challenger proceed-
s with L-TranKG as if (BTkgc, ηID∗) ← CS.Assign(BTkgc, ID

∗) and otherwise it
assigns ID to some random leaf of BTkgc that is not ηID∗ . Since the random as-
signment of ID∗ made by the challenger is statistically hidden from A1, GameI-1
and GameI-2 are indistinguishable.

GameI-3: In this game, we change the challenger so he does not have to use the
trapdoor TA when generating the following short vectors: (eID,θ)θ∈path(BTkgc,ηID)

in skID, (et,θ)θ∈KUNodes(BTkgc,RLt) in ukt, and eID,t in tkID,t. To achieve this goal, we
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modify when and how the vectors ukgc,θ for each node θ ∈ BTkgc are chosen. By
the definition of the Type-I strategy, ID∗ must be revoked before time period t∗.
Hence, we have path(BTkgc, ηID∗)∩KUNodes(BTkgc,RLt∗) = ∅ by the property of
the CS scheme.

Whenever A1 issues a long-term transformation key query, a revoke & up-
date key query, or a short-term transformation key reveal query, the GameI-3
challenger generates the vectors ukgc,θ for each node θ ∈ BTkgc as follows:

– If θ ∈ path(BTkgc, ηID∗), then it samples eID∗,θ ← DZ2m,s1 , sets ukgc,θ =
AID∗ · eID∗,θ for AID∗ = [A | A1 + H(ID∗)G], stores ukgc,θ in the node θ and
keeps eID∗,θ secret.

– If θ /∈ path(BTkgc, ηID∗), then it samples et∗,θ ← DZ2m,s1 , sets ukgc,θ = At∗ ·
et∗,θ for At∗ = [A | A2 +H(t∗)G] by implicitly setting tcu = t∗, stores ukgc,θ

in the node θ and keeps et∗,θ secret.

Then, if A1 issues a long-term transformation key query on ID 6= ID∗, the
GameI-3 challenger first runs ExtRndRight(A,G,R∗11,TG, s0) to create the trap-
door TAID=[A|A1+H(ID)G]=[A|AR∗11+(H(ID)−H(ID∗))G] and then samples the short
vectors (eID,θ)θ∈path(BTkgc,ηID) by running SamplePre(·) with trapdoor TAID

and
Gaussian parameter s1. Otherwise, if ID = ID∗, the challenger simply returns
(eID∗,θ)θ which he has already generated without using TA. Moreover, if the
counter tcu on which A1 queries a revoke & key update query is not t∗, the
GameI-3 challenger first runs ExtRndRight(A,G,R∗12,TG, s0) to create the trap-
door TAt=[A|A2+H(t)G]=[A|AR∗12+(H(t)−H(t∗))G] and then samples the short vectors
(et,θ)θ∈KUNodes(BTkgc,RLt) by running SamplePre(·) with trapdoor TAt and Gaus-
sian parameter s1. Otherwise, if tcu = t∗, the challenger simply returns (et∗,θ)θ
which he has already created without using TA. Furthermore, when A1 issues
a short-term transformation key reveal query on (ID, t), the challenger checks
whether conditions t ≤ tcu, ID /∈ RLt and (ID, t) 6= (ID∗, t∗) meet at the same
time. If not, it returns ⊥; otherwise, it simply creates eID,t by combing (eID,θ)θ
and (et,θ)θ. Since path(BTkgc, ηID∗) ∩ KUNodes(BTkgc,RLt∗) = ∅, the procedures
described above are well-defined. Finally, according to Lemma 1, 2, 4, 5 and 6,
the distributions of the short vectors given to A1 are distributed statistically
close to those of the previous game. Therefore, GameI-2 and GameI-3 are indis-
tinguishable.

GameI-4: In this game we change how A is sampled. We generate A as a ran-
dom matrix in Zn×mq instead of generating it by running Trap(·). By Lemma 3,
GameI-3 and GameI-4 are indistinguishable.

GameI-5: In this game we change the way the challenge ciphertext ctID∗,t∗ is cre-
ated. In this game, when the GameI-5 challenger is issued a challenge query on
(M0,M1) byA1, the challenger chooses a random bit b← {0, 1}, samples v ← Zq,
v ← Znq , s′, s′′ ← Znq , x′,x′′ ← DZm,αq, R21,R22,R31,R32 ← {−1, 1}m×m and
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sets

c0 = v + u>(s′ + s′′) +Mb · b
q

2
c, c1 =

 v
(R∗11)>v
(R∗12)>v

 ,
c2 = B>ID∗,t∗s

′ +

 x′

R>21x
′

R>22x
′

 , c3 = C>ID∗,t∗s
′′ +

 x′′

R>31x
′′

R>32x
′′

 .
(20)

Finally, the challenger outputs the challenge ciphertext as ctID∗,t∗ = (c0, c1, c2, c3).
Since v is distributed uniformly at random over Zq and independently of all oth-
er terms, the probability of A1 guessing whether b = 0 or b = 1 is exactly 1/2.
In the following, we only need to show that GameI-4 and GameI-5 are indistin-
guishable assuming the hardness of the LWEn,m+1,q,χ to complete the proof. To
this end, we use A1 to construct a LWE adversary B1 as follows:

B1 is given the problem instance of LWE as (Ā, v̄) ∈ Zn×(m+1)
q × Z(m+1)

q

and aims to distinguish whether v̄ = Ā>s + x̄ for some s← Znq , x̄← DZm+1,αq

or v̄ ← Z(m+1)
q . Let the first column of Ā be u∗ ∈ Znq and the remaining

columns be A∗ ∈ Zn×mq . Let the first coefficient of v̄ be v and the remaining
columns be v. Now, B1 sets (A,u) = (A∗,u∗) and proceeds the setup as the
GameI-4 challenger. Furthermore, whenever A1 issues a query, B1 works as the
GameI-3 challenger and answers them without TA. To generate the challenge
ciphertext, B1 chooses b ← {0, 1} and generates the challenge ciphertext as in
Eq.(20) using v, v, and returns it to A1. Let b′ denote the output of A1, then
B1 outputs 1 if b′ = b and 0 otherwise. Note that if (Ā, v̄) is a valid LWE
sample, i.e., v̄ = Ā>s + x̄ for some s← Znq , then the view of A1 is the same as

that of GameI-4. Otherwise, i.e., v̄ ← Z(m+1)
q , it is the same as that of GameI-5.

Therefore, GameI-4 and GameI-5 are indistinguishable assuming the hardness of
the LWEn,m+1,q,χ, where χ = DZm+1,αq. ut

Lemma 11. The advantage of an adversary A2 using the Type-II strategy is
negligible assuming the hardness of the LWEn,m+1,q,χ, where χ = DZm+1,αq.

Proof. The outline of this proof is essentially the same as that of Lemma 10.
The difference is that in this proof, we modify the challenger so that he is able
to simulate the game without TB.

GameII-0: This is the original SSR-sID-CPA game from Definition 5.

GameII-1: In this game, we change the way that the challenger generates B1,B2

in the public parameters. The GameII-1 challenger samples R∗21,R
∗
22 ← {−1, 1}m×m

at the setup phase and sets B1,B2 as

B1 = BR∗21 − H(ID∗)G, B2 = BR∗22 − H(t∗)G. (21)

Then the challenger keeps the matrices R∗21,R
∗
22 as part of skkgc. The remainder

of the game is unchanged. Similar to the analysis of GameI-1 in Lemma 10, by
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Lemma 7, B1,B2 in GameII-0 and GameII-1 are indistinguishable, hence GameII-0
is indistinguishable from GameII-1.

GameII-2: In this game, we change the challenger so he does not have to use
the trapdoor TB when generating TBID=[B|B1+H(ID)G]=[B|BR∗21+(H(ID)−H(ID∗))G]

in skID and gID,t in tkID,t. To this end, we modify the ways TBID
and gID,t are

sampled, respectively. By the definition of the Type-II strategy, A2 does not
issue long-term transformation key reveal query on ID∗. Then, when A2 issues
a long-term transformation key query on ID 6= ID∗, the GameII-2 challenger
runs ExtRndRight(B,G,R∗21,TG, s0) to create TBID

. By Lemma 4, the distribu-
tion of TBID

given to A2 is distributed statistically close to that of the previ-
ous game. Furthermore, when A2 issues a short-term transformation key reveal
query on (ID, t), the challenger checks whether conditions t ≤ tcu, ID /∈ RLt
and (ID, t) 6= (ID∗, t∗) meet at the same time. If not, it returns ⊥. Otherwise, if
ID 6= ID∗, the challenger samples gID,t by running SampleLeft(·) with TBID

and
Gaussian parameter s1. Otherwise ID = ID∗ and t 6= t∗, the challenger first runs
ExtRndRight(B,G,R∗22,TG, s0) to create the trapdoor TBt=[B|B2+H(t)G]=[B|BR∗22+(H(t)−H(t∗))G],
samples g′ID∗,t by running algorithm SampleLeft(Bt,B1 + H(ID∗)G,u,TBt , s1),
and then obtains gID∗,t by rearranging elements in g′ID∗,t. According to Lem-
ma 1, 2, 4, 5 and 6, the distribution of gID,t given to A2 is distributed statisti-
cally close to that of the previous game. Therefore, GameII-1 and GameII-2 are
indistinguishable.

GameII-3: In this game we change how B is sampled. We generate B as a ran-
dom matrix in Zn×mq instead of generating it by running Trap(·). By Lemma 3,
GameII-2 and GameII-3 are indistinguishable.

GameII-4: In this game we change the way the challenge ciphertext ctID∗,t∗ is
created. When the GameII-4 challenger is issued a challenge query on (M0,M1)
by A2, the challenger chooses a random bit b← {0, 1}, samples v ← Zq, v← Znq ,
s, s′′ ← Znq , x,x′′ ← DZm,αq, R11,R12,R31,R32 ← {−1, 1}m×m and sets

c0 = v + u>(s + s′′) +Mb · b
q

2
c, c1 = A>ID∗,t∗s +

 x
R>11x
R>12x

 ,
c2 =

 v
(R∗21)>v
(R∗22)>v

 , c3 = C>ID∗,t∗s
′′ +

 x′′

R>31x
′′

R>32x
′′

 .
(22)

Finally, the challenger outputs the challenge ciphertext as ctID∗,t∗ = (c0, c1, c2, c3).
Since v is distributed uniformly at random over Zq and independently of all oth-
er terms, the probability of A2 guessing whether b = 0 or b = 1 is exactly 1/2.
To complete the proof, we only need to show that GameII-3 and GameII-4 are
indistinguishable assuming the hardness of the LWEn,m+1,q,χ. This process is
similar to that of GameI-5 in Lemma 10, so we omit it here. ut
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Lemma 12. The advantage of an adversary A3 using the Type-III strategy is
negligible assuming the hardness of the LWEn,m+1,q,χ, where χ = DZm+1,αq.

Proof. The outline of this proof is essentially the same as that of Lemma 10.
The difference is that in this proof, we modify the challenger so that he is able
to simulate the game without TC.

GameIII-0: This is the original SSR-sID-CPA game from Definition 5.

GameIII-1: In this game, we change the way that the challenger generates C1,C2

in the public parameters. The GameIII-1 challenger samples R∗31,R
∗
32 ← {−1, 1}m×m

at the setup phase and sets C1,C2 as

C1 = CR∗31 − H(ID∗)G, C2 = CR∗32 − H(t∗)G. (23)

Then the challenger keeps the matrices R∗31,R
∗
32 as part of skkgc. The remain-

der of the game is unchanged. Similar to GameI-1 in Lemma 10, by Lemma 7,
C1,C2 in GameIII-0 and GameIII-1 are indistinguishable, hence GameIII-0 is in-
distinguishable from GameIII-1.

GameIII-2: In this game, we change the challenger so he does not have to use
the trapdoor TC when generating TCID=[C|C1+H(ID)G]=[C|CR∗31+(H(ID)−H(ID∗))G]

in PrivID and dID,t in dkID,t. To this end, we change how TCID
and dID,t are

sampled. By the definitions of the Type-III strategy and the SSR-sID-CPA
security, A3 does not issue private key reveal query on ID∗ and only issues
decryption key reveal queries on (ID, t) 6= (ID∗, t∗) (since ID∗ /∈ RLt∗). Then,
when A3 issues a private key query on ID 6= ID∗, the GameIII-2 challenger runs
ExtRndRight(C,G,R∗31,TG, s0) to create TCID

. By Lemma 4, the distribution of
TCID

given to A3 is distributed statistically close to that of the previous game.
Furthermore, when A3 issues a decryption key reveal query on (ID, t) 6= (ID∗, t∗),
if ID 6= ID∗, the challenger samples dID,t by running SampleLeft(·) with TCID

and
Gaussian parameter s1. Otherwise ID = ID∗ and t 6= t∗, the challenger first runs
ExtRndRight(C,G,R∗32,TG, s0) to create the trapdoor TCt=[C|C2+H(t)G]=[C|CR∗32+(H(t)−H(t∗))G],
samples d′ID∗,t by running algorithm SampleLeft(Ct,C1 + H(ID∗)G,u,TCt , s1),
and then obtains dID∗,t by rearranging elements in d′ID∗,t. According to Lem-
ma 1, 2, 4, 5 and 6, the distribution of dID,t given to A3 is distributed statisti-
cally close to that of the previous game. Therefore, GameIII-1 and GameIII-2 are
indistinguishable.

GameIII-3: In this game we change how C is sampled. We generate C as a ran-
dom matrix in Zn×mq instead of generating it by running Trap(·). By Lemma 3,
GameIII-2 and GameIII-3 are indistinguishable.

GameIII-4: In this game we change the way the challenge ciphertext ctID∗,t∗ is
created. When the GameIII-4 challenger is issued a challenge query on (M0,M1)
by A3, the challenger chooses a random bit b← {0, 1}, samples v ← Zq, v← Znq ,
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s, s′ ← Znq , x,x′ ← DZm,αq, R11,R12,R21,R22 ← {−1, 1}m×m and sets

c0 = v + u>(s + s′) +Mb · b
q

2
c, c1 = A>ID∗,t∗s +

 x
R>11x
R>12x

 ,
c2 = B>ID∗,t∗s

′ +

 x′

R>21x
′

R>22x
′

 , c3 =

 v
(R∗31)>v
(R∗32)>v

 .
(24)

Finally, the challenger outputs the challenge ciphertext as ctID∗,t∗ = (c0, c1, c2, c3).
Since v is distributed uniformly at random over Zq and independently of all oth-
er terms, the probability of A3 guessing whether b = 0 or b = 1 is exactly 1/2.
To complete the proof, we only need to show that GameIII-3 and GameIII-4 are
indistinguishable assuming the hardness of the LWEn,m+1,q,χ. This process is
similar to that of GameI-5 in Lemma 10, so we omit it here. ut

According to Lemma 10, 11 and 12, we can conclude that the SR-IBE scheme
is SSR-sID-CPA secure, which completes the proof of Theorem 1. ut

5 Generic SR-IBE scheme

In this section, we propose a generic construction of SR-IBE scheme by em-
ploying a RIBE with DKER scheme and a 2-level HIBE scheme, and prove
that it is SSR-sID-CPA (resp. SSR-aID-CPA) secure if the underlying RIBE
is selective-identity (resp. adaptive-identity) secure and the underlying 2-level
HIBE is selective-identity (resp. adaptive-identity) secure.

Let r.Π = (r.Setup, r.GenSK, r.KeyUP, r.GenDK, r.Encrypt, r.Decrypt) be a RIBE
(with DKER) scheme with identity space r.ID, message space r.M and time
period space r.T . Let h.Π = (h.Setup, h.GenSK, h.Delegate, h.Encrypt, h.Decrypt)
be a 2-level HIBE scheme with identity space h.ID, message space h.M. Let
r.ID = h.ID, r.M = h.M and r.T ⊂ h.ID. We assume that the message s-
pace is finite and forms an abelian group with the addition “+” as the group
operation.

In the following, using the RIBE with DKER scheme and the 2-level HIBE
scheme described above as building blocks, we construct a SR-IBE scheme
Π = (Setup, L-TranKG,UpdKG,S-TranKG,PrivKG,DecKG,Enc,Dec) with identi-
ty space ID = r.ID = h.ID, message space M = r.M = h.M and time period
space T = r.T ⊂ h.ID.

Setup(1λ): On input the security parameter 1λ, it runs

(r.pp, r.skkgc)← r.Setup(1λ), (h.pp, h.skkgc)← h.Setup(1λ). (25)

Then it outputs pp := (r.pp, h.pp) and skkgc := (r.skkgc, h.skkgc). We assume
that pp is an implicit input of all other algorithms.
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L-TranKG(skkgc, ID): On input the KGC’s secret key skkgc, an identity ID ∈ ID,
it runs

(r.skID, r.sk
′
kgc)← r.GenSK(r.pp, r.skkgc, ID). (26)

Then it outputs a long-term transformation key skID := r.skID for ID and the
KGC’s “updated” state sk′kgc := (r.sk′kgc, h.skkgc).

UpdKG(skkgc, t,RLt): On input the KGC’s secret key skkgc = (r.skkgc, h.skkgc), a
time period t ∈ T , a revocation list RLt ⊂ ID, it runs

(r.ukt, r.sk
′
kgc)← r.KeyUP(r.pp, r.skkgc, t,RLt). (27)

Then it outputs an update key ukt := r.ukt and the “updated” state sk′kgc :=

(r.sk′kgc, h.skkgc).
S-TranKG(skID, ukt): On input a long-term transformation key skID = (r.skID, h.skID)

for identity ID ∈ ID, an update key ukt = r.ukt for time period t ∈ T , it
runs

r.dkID,t ← r.GenDK(r.pp, r.skID, r.ukt). (28)

Then it outputs a short-term transformation key tkID,t := r.dkID,t for time
period t, except that if r.dkID,t =⊥, then it returns the special symbol ⊥
indicating that ID has been revoked.

PrivKG(skkgc, ID): On input the KGC’s secret key skID = (r.skID, h.skID) and an
identity ID ∈ ID, it runs

h.skID ← h.GenSK(h.pp, h.skkgc, ID). (29)

Then it outputs a private key PrivID := h.skID.
DecKG(PrivID, t): On input a private key PrivID = h.skID and a time period t ∈ T ,

it runs

h.skID,t ← h.Delegate(h.pp, h.skID, t). (30)

Then it outputs a decryption key dkID,t := h.skID,t.
Enc(ID, t,M): On input an identity ID ∈ ID, a time period t ∈ T , a message

M ∈M, it samples (r.M, h.M) ∈M2 uniformly at random, such that

r.M + h.M = M. (31)

Then, it runs

r.ctID,t ← r.Encrypt(r.pp, ID, t, r.M), h.ctID,t ← h.Encrypt(h.pp, (ID, t), h.M).
(32)

Finally, it outputs a ciphertext ctID,t := (r.ctID,t, h.ctID,t).
Transform(tkID,t, ctID,t): On input a short-term transformation key tkID,t = r.dkID,t,

a ciphertext ctID,t = (r.ctID,t, h.ctID,t), it runs

r.M ← r.Decrypt(r.pp, r.dkID,t, r.ctID,t) (33)

and outputs a partially decrypted ciphertext ct′ID,t := (r.M, h.ctID,t).
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Dec(dkID,t, ct
′
ID,t): On input a decryption key dkID,t = h.skID,t, a partially de-

crypted ciphertext ct′ID,t = (r.M, h.ctID,t), it runs

h.M ← h.Decrypt(h.pp, h.skID,t, h.ctID,t). (34)

Then it outputs a message M = r.M+h.M except that if r.M =⊥, it returns
the special symbol ⊥.

5.1 Correctness

The correctness of the SR-IBE scheme constructed above follows from the
correctness of the underlying RIBE with DKER scheme and the underlying 2-
level HIBE scheme.

5.2 Security

Theorem 2. If the underlying RIBE scheme r.Π satisfies selective-identity ( resp.
adaptive-identity) security and the underlying 2-level HIBE scheme h.Π satisfies
selective-identity ( resp. adaptive-identity) security, then the resulting SR-IBE
scheme Π satisfies SSR-sID-CPA ( resp. SSR-aID-CPA) security.

Proof. We only show the proof for SSR-sID-CPA security, the proof for SSR-aID-
CPA security is similar. Let A be a PPT adversary who succeeds in breaking the
SSR-sID-CPA security of our generic SR-IBE scheme Π, let ID∗ be the challenge
identity and t∗ be the challenge time period. Observe that the strategy taken
by A can be divided into two types of strategies that are mutually exclusive,
where the first type can be further divided into two types of strategies that are
mutually exclusive.

Type-I: A issues private key reveal query on the challenge identity ID∗.
Type-I-1: A issues long-term transformation key reveal query on the chal-

lenge identity ID∗ as well. In this case, the challenge identity ID∗ must
be revoked before the challenge time t∗.

Type-I-2: A does not issue long-term transformation key reveal query on
the challenge identity ID∗.

Type-II: A doesn’t issue private key reveal query on the challenge identity ID∗.

By Lemma 8, A always follows one of the above strategies, and we only need to
show that the advantage of A is negligible regardless of the strategy taken by
A. We will provide two types of security proofs according to the two types of
strategies taken by A as described above to complete our proof in the following.

Lemma 13. For any PPT Type-I adversary A1, there exists a PPT adversary
B1 against the selective-identity security of the underlying RIBE scheme r.Π such
that AdvSSR-sID-CPA

A1,OSR-IBE (λ) = AdvRIBE-sel
B1,ORIBE(λ).

Proof. Let C1 be the challenger in the experiment ExpRIBE-selB1,ORIBE(λ) for the underling
RIBE scheme, then the adversary B1 interacts with A1 and C1 as follows.
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Initial: A1 announces to B1 the challenge ID∗ and t∗, and the latter forwards
them to C1.

Setup: B1 receives the public parameter r.pp and the update key r.uk1 from
C1. Then B1 runs (h.pp, h.skkgc)← h.Setup(1λ), sends pp := (r.pp, h.pp) and
uk1 := r.uk1 to A1, and keeps h.skkgc secret. Also, B1 initializes the counter
tcu := 1 (which will always be synchronized by the one maintained by C1),
generates two empty lists SKList and PrivList.

Long-term Transformation Key Generation Query: For a the long-term
transformation key generation query ID from the adversaryA1 (where it is re-
quired that (ID, ∗) /∈ SKList), B1 makes a secret key generation query ID to C1
(note that upon this query, C1 runs (r.skID, r.sk

′
kgc)← r.GenSK(r.pp, r.skkgc, ID)

and returns nothing to B1). Then B1 goes as follows according to the strategy
of A1:
– If A1 follows Type-I-1 strategy, then B1 further makes a secret key reveal

query ID to C1, and receives r.skID from C1. Next, B1 sets skID := r.skID,
and adds (ID, skID) into the list SKList.

– If A1 follows Type-I-2 strategy, then B1 proceeds as above except for
ID = ID∗. For ID = ID∗, B1 does not make the secret reveal query ID∗ to
C1, and stores nothing in SKList.

Finally, B1 returns nothing to A1.
Long-term Transformation Key Reveal Query: For a long-term transfor-

mation key reveal query ID made by Type-I adversary A1, it is easy to check
that the following condition is satisfied:
– If tcu ≥ t∗ and ID∗ /∈ RLt∗ , then ID 6= ID∗.

This is because for Type-I-1 adversary, ID∗ must be revoked before t∗, and
for Type-I-2 adversary, ID 6= ID∗ is satisfied. Therefore, the check does by
the challenger C1 for the secret key reveal query ID is always satisfied. This
guarantees that (ID, skID) is contained in the list SKList and thus B1 returns
skID to A1.

Revoke & Update Key Query: For a revoke & update key query RL ⊂ ID
from A1, B1 checks whether RLtcu ⊂ RL. If not, B1 returns ⊥ to A1. Other-
wise, B1 forwards RL to C1. Note that upon this query, the checks performed
by C1 listed below are satisfied simultaneously:
– RLtcu ⊂ RL.
– If tcu = t∗ − 1 and r.skID∗ for the challenge ID∗ has been revealed to B1

via a secret key reveal query ID∗, then ID∗ ∈ RL.
This is because for Type-I-1 adversary, ID∗ must be revoked before t∗, and
for Type-I-2 adversary, r.skID∗ has never been revealed to B1 via a secret
key reveal query ID∗. Therefore, C1 increments the current time period by
tcu ← tcu+1 and returns r.uktcu to B1. Finally, B1 does the same increment for
tcu (which ensures that the counter tcu maintained by C1 and that maintained
by B1 are synchronized) and returns uktcu := r.uktcu to A1.

Short-term Transformation Key Reveal Query: For a short-term trans-
formation key reveal query (ID, t) from A1, B1 checks whether conditions
t ≤ tcu, ID /∈ RLt and (ID, t) 6= (ID∗, t∗) meet at the same time. If not, B1

returns ⊥ to A1. Otherwise, B1 forwards (ID, t) to C1 (note that upon this
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query, the checks performed by C1 for the decryption key reveal query (ID, t)
are satisfied because C1 does the same checks as B1) and receives r.dkID,t
from C1. Finally, B1 returns tkID,t := r.dkID,t to A1.

Private Key Generation Query: For a private key generation query ID from
A1 (where it its required that (ID, ∗) /∈ PrivList), B1 runs h.skID ← h.GenSK(h.pp, h.skkgc, ID),
sets PrivID := h.skID, adds (ID,PrivID) into the list PrivList and returns noth-
ing to A1.

Private Key Reveal Query: For a private key reveal query ID from A1, B1

finds PrivID from PrivList and returns it to A1.
Decryption Key Reveal Query: For a decryption key reveal query (ID, t)

from A1 (where it is required that ((ID, t), ∗) /∈ PrivList), B1 finds PrivID =
h.skID from PrivList (it is required that ID is “activated” and hence (ID,PrivID) ∈
PrivList), runs h.skID,t ← h.Delegate(h.pp, h.skID, t), sets dkID,t := h.skID,t,
adds ((ID, t), dkID,t) into the list PrivList and returns dkID,t to A1.

Challenge: Upon the challenge (M0,M1) from A1, B1 picks h.M ← M uni-
formly at random, and then sets r.M0 ←M0−h.M , r.M1 ←M1−h.M . Then,
B1 sends the challenge (r.M0, r.M1) to C1 and receives B1’s challenge cipher-
text r.ctID∗,t∗ ← r.Encrypt(r.pp, ID∗, t∗, r.Mb) from C1, where b ← {0, 1} is
B1’s challenge bit. Next, B1 runs h.ctID∗,t∗ ← h.Encrypt(h.pp, (ID∗, t∗), h.M)
and returns the challenge ciphertext ctID∗,t∗ := (r.ctID∗,t∗ , h.ctID∗,t∗) to A1.

Guess: A1 outputs its guess bit b′, B1 outputs b′ as the guess of b.

Note that B1 perfectly simulates the SSR-sID-CPA security game for the Type-I
adversaryA1, so that the challenge bit b of B1 is that ofA1’s. That is, the message
encrypted in ctID∗,t∗ is Mb. The probability that B1 succeeds in guessing B1’s
challenge bit in the selective-identity security game is the same as the probability
that A1 succeeds in guessing the challenge bit in the SSR-sID-CPA security
game. Hence, we have AdvRIBE-selB1,ORIBE(λ) = AdvSSR-sID-CPA

A1,OSR-IBE (λ), which completes the
proof. ut

Lemma 14. For any PPT Type-II adversary A2, there exists a PPT adversary
B2 against the selective-identity security of the underlying 2-level HIBE scheme
h.Π such that AdvSSR-sID-CPA

A2,OSR-IBE (λ) = AdvHIBE-sel
B2,OHIBE(λ).

Proof. Let C2 be the challenger in the experiment ExpRIBE-selA,OHIBE(λ) for the underling
2-level HIBE scheme, then the adversary B2 interacts with A2 and C2 as follows.

Initial: A2 announces to B2 the challenge ID∗ and t∗, and the latter sends the
pair (ID∗, t∗) as its own challenge 2-level hierarchical identity to C2.

Setup: B2 receives the public parameter h.pp from C2. Then, B2 initializes
the counter tcu := 1, generates two empty lists SKList and PrivList, runs
(r.pp, r.skkgc)← r.Setup(1λ) and (r.uk1, r.sk

′
kgc)← r.KeyUP(r.pp, r.skkgc, 1,RL1 =

∅). Finally, B2 sends pp := (r.pp, h.pp) and uk1 := r.uk1 to A2, and keeps
r.skkgc secret.

Long-term Transformation Key Generation Query: For a the long-term
transformation key generation query ID from the adversary A2 (where it is
required that (ID, ∗) /∈ SKList), B2 runs r.skID ← r.GenSK(r.pp, r.skkgc, ID),
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sets skID := r.skID, adds (ID, skID) into the list SKList, and returns nothing
to A2.

Long-term Transformation Key Reveal Query: For a long-term transfor-
mation key reveal query ID from A2, B2 finds skID from SKList and returns
it to A2.

Revoke & Update Key Query: For a revoke & update key query RL ⊂ ID
from A2, B2 checks whether RLtcu ⊂ RL. If not, it returns ⊥. Otherwise, B2

increments the current time period by tcu ← tcu + 1, sets RLtcu ← RL, runs
(r.uktcu , r.sk

′
kgc)← r.KeyUP(r.pp, r.skkgc, tcu,RLtcu), and returns uktcu := r.uktcu

to A2.

Short-term Transformation Key Reveal Query: For a short-term trans-
formation key reveal query (ID, t) from A2, B2 checks whether conditions
t ≤ tcu, ID /∈ RLt and (ID, t) 6= (ID∗, t∗) hold simultaneously. If not, B2 re-
turns ⊥ to A2. Otherwise, it is guaranteed that B2 has already generated
ukt = r.ukt and r.skID. Then, B2 runs r.dkID,t ← r.GenDK(r.pp, r.skID, r.ukt)
and returns tkID,t := r.dkID,t to A2.

Private Key Generation Query: For a private key generation query ID from
A2 (where it is required that (ID, ∗) /∈ PrivList), B2 first makes a level-1 secret
key generation query ID to C2 (note that upon this query, C2 runs h.skID ←
GenSK(h.pp, h.skkgc, ID), but returns nothing to B2). Then, B2 further makes
a level-1 secret key reveal query ID to C2, and receives h.skID from C2. Finally,
B2 sets PrivID := h.skID, adds (ID,PrivID) into the list PrivList and returns
nothing to A2.

Private Key Reveal Query: For a private key reveal query ID from Type-II
adversary A2, it is easy to check that the following conditions are satisfied:

– (ID,PrivID) ∈ PrivList and ID 6= ID∗,

according to the strategy of A2. Therefore, the check does by the challenger
C2 for the level-1 secret key reveal query ID is satisfied. This guarantees that
(ID,PrivID) is contained in the list PrivList and thus B2 returns PrivID to A2.

Decryption Key Reveal Query: For a decryption key reveal query (ID, t)
from A2 (where it is required that ((ID, t), ∗) /∈ PrivList), B2 forwards it to
C2. Note that upon this query, the checks performed by C2 for the level-2
secret key reveal query (ID, t) listed below are satisfied simultaneously:

– (ID, skID) ∈ PrivList, ((ID, t), ∗) /∈ PrivList and (ID, t) 6= (ID∗, t∗).

The first two conditions are obviously true. The last one also holds be-
cause ID∗ /∈ RLt∗ (according to A2’s strategy), Dec(·) can not be queried on
(ID∗, t∗). Therefore, C2 returns h.skID,t to B2. Finally, B2 sets dkID,t := h.skID,t,
and returns dkID,t to A2.

Challenge: Upon the challenge (M0,M1) fromA2, B2 picks r.M ←M uniform-
ly at random, and then sets h.M0 ←M0− r.M , h.M1 ←M1− r.M . Then, B2

sends the challenge (h.M0, h.M1) to C2 and receives B2’s challenge cipher-
text h.ctID∗,t∗ ← h.Encrypt(h.pp, (ID∗, t∗), h.Mb) from C2, where b← {0, 1} is
B2’s challenge bit. Next, B2 runs r.ctID∗,t∗ ← r.Encrypt(r.pp, ID∗, t∗, r.M) and
returns the challenge ciphertext ctID∗,t∗ := (r.ctID∗,t∗ , h.ctID∗,t∗) to A2.

Guess: A2 outputs its guess bit b′, B2 outputs b′ as the guess of b.
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Note that B2 perfectly simulates the SSR-sID-CPA security game for the Type-
II adversary A2, so that the challenge bit b of B2 is that of A2’s. That is,
the message encrypted in ctID∗,t∗ is Mb. The probability that B2 succeeds in
guessing B2’s challenge bit in the selective-identity security game is the same as
the probability that A2 succeeds in guessing the challenge bit in the SSR-sID-
CPA security game. Hence, AdvHIBE-selB2,OHIBE(λ) = AdvSSR-sID-CPA

A2,OSR-IBE (λ), which completes
the proof. ut

Due to Lemma 13 and 14, we can conclude that the generic SR-IBE scheme
satisfies SSR-sID-CPA security, which completes the proof of Theorem 2. ut

6 Conclusion

In this paper, we first revisit Qin et al.’s security model for SR-IBE [23], and
propose a new security model called SSR-sID-CPA security by weakening the
limitation on revoking the challenge identity and capturing both DKE attacks
and STKE attacks. Then we propose a SSR-sID-CPA secure SR-IBE scheme
from lattices. Compared with that of Nguyen et al. [20], our lattice-based SR-
IBE removes the use of the double encryption technique, reduces the number of
calls to sampling algorithm, and is proved to be more secure. Finally, we propose
a generic construction of SR-IBE scheme, the security of which inherits those of
the underlying building blocks.
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21. Juan Manuel González Nieto, Mark Manulis, and Dongdong Sun. Fully private
revocable predicate encryption. In Information Security and Privacy - 17th Aus-
tralasian Conference, ACISP 2012, Wollongong, NSW, Australia, July 9-11, 2012.
Proceedings, pages 350–363, 2012.



Server-Aided Revocable Identity-Based Encryption Revisited 37

22. Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revo-
cable identity-based encryption from multilinear maps. IEEE Trans. Information
Forensics and Security, 10(8):1564–1577, 2015.

23. Baodong Qin, Robert H. Deng, Yingjiu Li, and Shengli Liu. Server-aided revocable
identity-based encryption. In Computer Security - ESORICS 2015 - 20th European
Symposium on Research in Computer Security, Vienna, Austria, September 21-25,
2015, Proceedings, Part I, pages 286–304, 2015.

24. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

25. Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Se-
curity model and construction. In Public-Key Cryptography - PKC 2013 - 16th In-
ternational Conference on Practice and Theory in Public-Key Cryptography, Nara,
Japan, February 26 - March 1, 2013. Proceedings, pages 216–234, 2013.

26. Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption.
Theor. Comput. Sci., 542:44–62, 2014.

27. Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption
via history-free approach. Theor. Comput. Sci., 615:45–60, 2016.

28. Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August
19-22, 1984, Proceedings, pages 47–53, 1984.

29. Atsushi Takayasu and Yohei Watanabe. Lattice-based revocable identity-based
encryption with bounded decryption key exposure resistance. In Information Se-
curity and Privacy - 22nd Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3-5, 2017, Proceedings, Part I, pages 184–204, 2017.

30. Shixiong Wang, Juanyang Zhang, Jingnan He, Huaxiong Wang, and Chao Li. Sim-
plified revocable hierarchical identity-based encryption from lattices. In Cryptology
and Network Security - 18th International Conference, CANS 2019, Fuzhou, Chi-
na, October 25-27, 2019, Proceedings, pages 99–119, 2019.

31. Yohei Watanabe, Keita Emura, and Jae Hong Seo. New revocable IBE in prime-
order groups: Adaptively secure, decryption key exposure resistant, and with short
public parameters. In Topics in Cryptology - CT-RSA 2017 - The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA, USA, February 14-17,
2017, Proceedings, pages 432–449, 2017.


