
1

CAS-Unlock: Unlocking CAS-Lock without Access
to a Reverse-Engineered Netlist

Abhrajit Sengupta†, Ozgur Sinanoglu‡
†New York University, ‡New York University Abu Dhabi

{as9397, ozgursin}@nyu.edu

Abstract—CAS-Lock (cascaded locking) [1] is a SAT-resilient
locking technique, which can simultaneously thwart SAT and
bypass attack, while maintaining non-trivial output corruptibility.
Despite all of its theoretical guarantees, in this report we expose
a serious flaw in its design that can be exploited to break CAS-
Lock. Further, this attack neither requires access to a reverse-
engineered netlist, nor it requires a working oracle with the
correct key loaded onto the chip’s memory. We demonstrate that
we can activate any CAS-Locked IC without knowing the secret
key.

I. ALGORITHMIC ATTACK ON CAS-LOCK

A. CAS-Lock design
Before delving into the attack, let us first analyze the design

of CAS-Lock. CAS-Lock works on the same principle of Anti-
SAT [2] which is shown in Fig. 1. In Anti-SAT, the outputs
of two complementary Boolean functions g and g are ANDed
together to generate Y , which flips a high observability net in
the design such as a primary output (PO). The two blocks g
and g takes two different n-bit keys k1 and k2, respectively,
and produces Y = 1 for some input patterns for the incorrect
keys k1 and k2, thereby corrupting the output.

CAS-Lock as shown in Fig. 2, adopts a structure similar to
Anti-SAT, where the outputs of two complementary Boolean
functions gcas and gcas are ANDed together to produce the flip
signal Y . The only difference lies in the structure, where CAS-
Lock implements a daisy-chained architecture of AND/OR
gates as compared to the AND-tree in Anti-SAT. Note that
k1 = k2 produces Y=0, unlocking the chip and ensuring
correct (corruption-free) operations.

B. CAS-Lock security
The security of CAS-Lock stems from the difficulty of

setting the key values equal, i.e., k1 = k2, as the bit-wise
mapping between the keys k1 and k2 is unknown to the
attacker. Note that if an attacker is able to figure out this bit-
wise mapping between the keys, then setting k1 = k2 becomes
trivial, which leads to a successful attack. This is given by the
following equation:

Y = gcas(I ⊕ k1) ∧ gcas(I ⊕ k2)

= gcas(I ⊕ k) ∧ gcas(I ⊕ k), k1 = k2 = k

= gcas(J) ∧ gcas(J), I ⊕ k = J

= 0, ∀I
As can be seen from the derivation above, any attack that can
identify the bit-wise mapping between k1 and k2 can easily
satisfy k1 = k2 to fix Y to 0 for all input patterns. However,
the defense in [1] proposes countermeasures to render the
identification of this mapping difficult.

C. Attack on CAS-Lock
In this attack, we demonstrate a scenario where an attacker

correctly sets the condition k1 = k2, without having prior

Fig. 1. Architecture of Anti-SAT to generate the flip signal Y . Source: [1].

Fig. 2. Architecture of CAS-Lock to generate the flip signal Y . Source: [1].

knowledge about the bit-wise mapping between the keys. To
this end, she sets both the keys to all zero, which ensures the
condition k1 = k2 for any bit-wise mapping, and bypasses the
protection offered by the CAS-Lock block. This is given by:

Y = gcas(I ⊕ k1) ∧ gcas(I ⊕ k2)

= gcas(I ⊕ 0) ∧ gcas(I ⊕ 0), k1 = k2 = 0

= gcas(I) ∧ gcas(I)

= 0

Note that she can achieve the same, by setting both the keys
to all ones, i.e. k1 = k2 = 0xF...FF .

We would like to emphasize that this attack neither requires
a reverse-engineered netlist nor a working oracle with the
correct key loaded onto the chip’s memory. An attacker can
simply initialize the key registers with zeros, and the chip
becomes immediately functional. Overproduced or counterfeit
chips that has CAS-Lock defense can be unlocked using this
simple attack.

REFERENCES

[1] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-
lock: A security-corruptibility trade-off resilient logic locking scheme.
TCHES, 2020:175–202.

[2] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic
locking. TCAD, 38(2):199–207, 2019.


