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Abstract

Updatable encryption allows a client to outsource ciphertexts to some untrusted server and period-
ically rotate the encryption key. The server can update ciphertexts from an old key to a new key with
the help of an update token, received from the client, which should not reveal anything about keys or
plaintexts to an adversary.

We provide a new and highly efficient updatable encryption scheme called SHINE. Ciphertext gener-
ation consists of applying one permutation and one exponentiation (per message block), while updating
ciphertexts requires just one exponentiation. We also define a new security notion for updatable encryp-
tion schemes that implies prior notions (for schemes with randomized and deterministic updates). We
prove that SHINE and the previous best scheme, RISE, are secure under our new definition.

∗Work partially conducted while employed at NTNU Trondheim and the University of Paderborn.
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1 Introduction

The past decades have demonstrated clearly that key compromise is a real threat for deployed systems.
The standard technique for mitigating key compromise is to regularly rotate the encryption keys – generate
new ones and switch the ciphertexts to encryption under the new keys. Key rotation is a well-established
technique in applications such as payment cards [Cou18] and cloud storage [KRS+03].

For a local drive or server, key rotation is feasible by decrypting and re-encrypting with a new key, since
symmetric encryption operations are fast and parallelizable and bandwidth is often plentiful. When cipher-
text storage has been outsourced to some (untrusted) cloud storage provider, bandwidth is often considerably
more expensive than computation, and even for small volumes of data it may be prohibitively expensive to
download, re-encrypt and upload the entire database even once. This means that key rotation by download-
ing, decrypting, re-encrypting and reuploading is practically infeasible.

An alternative approach to solving this problem is to use updatable encryption (UE), first defined by
Boneh et al. [BLMR13] (henceforth BLMR). The user computes a token and sends it to the storage server.
The token allows the server to update the ciphertexts so that they are encryptions under some new key.
Although the token clearly depends on both the old and new encryption keys, knowledge of the token alone
should not allow the server to obtain either key. In a typical usage of UE, the cloud storage provider will be
provided a new token on a periodic basis, and the provider then updates every stored ciphertext. The time
period for which a given key is valid for is called an epoch.

In the past few years there has been considerable interest in extending the understanding of UE. A se-
ries of prominent papers [BLMR13, EPRS17a, LT18a, KLR19a] have provided both new (typically stronger)
security definitions and concrete or generic constructions to meet their definitions. (We make a detailed com-
parison of related work in Section 1.1.1 next.) An important distinction between earlier schemes is whether
or not the token (and in particular its size) depends on the ciphertexts to be updated (and in particular the
number of ciphertexts). Schemes for which a token is assigned to each ciphertext are ciphertext-dependent
and were studied by Everspaugh et al. [EPRS17a] (henceforth EPRS). If the token is independent of the
ciphertexts to be updated, such as in BLMR [BLMR15], we have a ciphertext-independent1 scheme. A
clear and important goal to limit the bandwidth required and so, in general, one should prefer ciphertext-
independent schemes. Thus, as with the most recent work [LT18a, KLR19a], we focus on such schemes in
this paper.

Despite the considerable advances of the past few years, there remain some important open questions
regarding basic properties of UE. In terms of security, various features have been added to protect against
stronger adversaries. Yet it is not obvious what are the realistic and optimal security goals of UE and whether
they have been achieved. In terms of efficiency, we only have a few concrete schemes to compare. As may
be expected, schemes with stronger security are generally more expensive but it remains unclear whether this
cost is necessary. In this paper we make contributions to both of these fundamental questions by defining
new and stronger security properties and showing that these can be achieved with more efficient concrete UE
schemes.

Security. The basic goal of UE is to prevent an adversary, who may obtain keys from certain previous
points in time (epochs), from obtaining anything useful regarding ciphertexts stored in the current epoch.
In addition to obtaining keys from some earlier epochs, a practical adversary may obtain snapshots of the
database during different epochs and may have access to some of the update tokens.

UE must therefore, at the least, ensure that an adversary that learns current ciphertexts learns nothing
about their decryption. This can be modelled using a standard indistinguishability game, where the adversary
must distinguish between encryptions of two messages of the adversary’s choice. (Since we are trying to
mitigate key compromises, the modelling is complicated by the need to reveal adversarially chosen keys and
tokens in addition to ciphertexts, without making the adversary’s job trivial.)

In addition to basic confidentiality, a second natural security goal is a form of unlinkability between
different epochs arising from the ciphertext update procedure. This is modelled by asking an adversary to

1Note that Boneh et al. [[BLMR15], § Definition 7.6] use ciphertext-independence to mean that the updated ciphertext should
have the same distribution as a fresh ciphertext (i.e. independent of the ciphertext in the previous epoch) – we follow the nomencla-
ture of Lehmann and Tackmann [LT18a].
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distinguish updated versions of ciphertexts that existed in a prior epoch. Thus we can regard UE security as
requiring security across two different “dimensions”: for different ciphertexts stored within one epoch, and
between ciphertexts stored across different epochs.

These two properties are unfortunately not enough. Consider, for example, a journalist who stores a
contact list with a cloud storage provider. At some point, the storage is compromised and an adversary
recovers the ciphertexts. At this point, it may be important that the cryptography does not reveal which of
the contacts are recent, and which are old. That is, it must be hard to decide if some ciphertext was recently
created, or if it has been updated from a ciphertext stored in an earlier epoch. It is possible for a scheme to
meet both of the notions that we have outlined previously, but not provide security in this context. In this
paper we define a new security notion for UE that, unlike any previous notion, captures the above example
and maximally protects ciphertexts across both dimensions. We also show that this security notion implies
previous notions, and therefore we claim it is a more natural choice as the right security notion for updatable
encryption.

Efficiency. Although UE is by definition a form of symmetric key cryptography, techniques from asym-
metric cryptography appear to be needed to achieve the required functionality in a sensible fashion. All of
the previous known schemes with security proofs use exponentiation in both the encryption and update func-
tions, even for those with limited security properties. Since a modern database may contain large numbers
of files, efficiency is critical both for clients who will have to encrypt plaintexts initially and for servers who
will have to update ciphertexts for all of their users.

To bridge the gap between the academic literature and deployments of encrypted outsourced storage, it
is crucial to design fast schemes. We have designed a novel UE scheme that not only satisfies our strong
security definition but also is twice as fast as any previous scheme with a comparable security level.

1.1 Related Work

1.1.1 Security Models for UE.

We regard the sequential, epoch-based corruption model of Lehmann and Tackmann [LT18a] (henceforth
LT18) as the most suitable execution environment to capture the threats in updatable encryption. In this
model, the adversary advances to the next epoch via an oracle query. It can choose to submit its (single)
challenge when it pleases, and it can later update the challenge ciphertext to the ‘current’ epoch. Further, the
adversary is allowed to adaptively corrupt epoch (i.e. file encryption) keys and update tokens at any point in
the game: only at the end of the adversary’s execution does the challenger determine whether a trivial win
has been made possible by some combination of the corruption queries and the challenge.

LT18 introduced two notions: IND-ENC asks the adversary to submit two plaintexts and distinguish the
resulting ciphertext, while possibly having corrupted tokens (but of course not keys) linking this challenge
ciphertext to prior or later epochs. Further, they introduced IND-UPD: the adversary provides two ciphertexts
that it received via regular encryption-oracle queries in the previous epoch, and has to work out which one
has been updated. They observed2 that plaintext information can be leaked not only through the encryption
procedure, but also via updates. For schemes with deterministic updates, the adversary would trivially win if
it could acquire the update token that takes the adversarially-provided ciphertexts into the challenge epoch,
hence the definition for this setting, named detIND-UPD is different from that for the randomized setting,
named randIND-UPD.

LT18’s IND-UPD definition was not the first approach to formalizing the desirable property of unlink-
ability of ciphertexts, which attempts to specify that given two already-updated ciphertexts, the adversary
cannot tell if the plaintext is the same. Indeed EPRS (UP-REENC) and Klooß et al. [KLR19a] (henceforth
KLR19) (UP-REENC-CCA) also considered this problem, in the ciphertext-dependent update and CCA-
secure setting respectively. KLR19 [[KLR19a], § Appendix A] stated that “an even stronger notion [than

2The proceedings and full versions of LT18 stated that “IND-ENC security cannot guarantee anything about the security of
updates. In fact, a scheme where the update algorithm UE.Upd includes all the old ciphertexts C0, ...,Ce in the updated ciphertext
Ce+1 could be considered IND-ENC secure, but clearly lose all security if a single old key gets compromised.” This line of
argument is flawed, and in fact IND-ENC rules out schemes of this form: encryptions were always fresh at some point. This claim
was corrected and clarified in a June 2019 presentation by the first author [Leh19].
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IND-UPD ] might be desirable: namely that fresh and re-encrypted ciphertexts are indistinguishable (which
is not guaranteed by (UP-REENC)” – we will close this gap later on in our paper.

In the full version [BLMR15] of their work, BLMR introduced a security definition for UE denoted
update – an extension of a model of symmetric proxy re-encryption. This non-sequential definition is con-
siderably less adaptive than the later work of LT18, since the adversary’s key/token corruption queries and
ciphertext update queries are very limited. Further, they only considered schemes with deterministic update
algorithms.

EPRS [EPRS17a] provided (non-sequential) definitions for updatable authenticated encryption, in the
ciphertext-dependent setting. Their work (inherently) covered CCA security and ciphertext integrity (CTXT).
These definitions were ambiguous with regards to adaptivity, though these issues have since been fixed in
the full version [EPRS17b].

KLR19 attempted to provide stronger security guarantees for ciphertext-independent UE than LT18, con-
centrating on chosen-ciphertext security (and the weaker replayable CCA) in addition to integrity of plain-
texts and ciphertexts. We do not focus on integrity in our work as it is essentially a tangential property (for
schemes using ‘public-key’ techniques such as ours), however we believe that this is an important property
and discuss in Section 8 the links between our construction and their framework.

In practice, LT18’s randIND-UPD definition insists that the ciphertext update procedure Upd requires
the server to generate randomness for updating each ciphertext. Further, a scheme meeting both IND-ENC
and IND-UPD can still leak the epoch in which the file was uploaded (the ‘age’ of the ciphertext). While it is
arguable that metadata is inherent in outsourced storage, the use of updatable encryption is for high-security
applications, and it would not be unreasonable to design a system that does not reveal meta-data, which is
clearly impossible if the underlying cryptosystem reveals the meta-data.

Recent work by Jarecki et al. [JKR19] considers the key wrapping entity as a separate entity from the
data owner or the storage server. While this approach seems promising, their security model is considerably
weaker than those considered in our work or the papers already mentioned in this section: the adversary
must choose whether to corrupt the key management server (and get the epoch key) or the storage server
(and get the update token) for each epoch, and thus it cannot dynamically corrupt earlier keys or tokens at a
later stage.

1.1.2 Constructions of Ciphertext-Independent UE

The initial description of updatable encryption by Boneh et al. [BLMR13] was motivated by providing a
symmetric-key version of proxy re-encryption. In (public-key) proxy re-encryption (PRE), a proxy (server)
converts an encryption under some public key to something that is decryptable by some other key. BLMR
imagined doing this in a symmetric manner, where each epoch is simply one period in which re-encryption
(rotation) has occurred. Their resulting scheme, denoted BLMR, deploys a key-homomorphic PRF, yet the
nonce attached to a ciphertext ensures that IND-UPD cannot be met.

The symmetric-Elgamal-based scheme of LT18, named RISE, uses a randomized update algorithm and
is proven secure in terms of IND-ENC and randIND-UPD under DDH. These proofs invoke a seemingly
unavoidable loss – a cubic term in the total number of epochs – our results also have this factor. LT18 also
presented an extended version of the scheme by BLMR, denoted BLMR+, where the nonce is encrypted:
they showed that this scheme meets a weak version of IND-UPD, called weakIND-UPD, in which if the
adversary corrupts the token that links the challenge epoch to the epoch immediately after then a trivial win
condition is triggered.

The aim of KLR19 was to achieve stronger security than BLMR, EPRS and LT18 in the ciphertext-
independent setting: in particular CCA security and integrity protection. They observed that the structure of
RISE ensures that ciphertext integrity cannot be achieved: access to just one update token allows the storage
provider to construct ciphertexts of messages of its choice. Their generic constructions, based on encrypt-
and-MAC and the Naor-Yung paradigm, are strictly less efficient than RISE: we believe that focusing on
direct constructions is the most promising way to achieve efficient and secure updatable encryption.
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1.1.3 Related Primitives

Proxy re-encryption. Proxy re-encryption (PRE) is a mechanism for key rotation, but in the public key
setting. In a PRE scheme, a ciphertext that is decryptable by some secret key is re-encrypted such that it
can be decrypted by some other key. Security models for PRE are closer to those for encryption than the
(strictly sequential) outsourced-storage-centric models for UE. Consequently, updating the entire ciphertext
may not be essential for a PRE scheme to be deemed secure, and thus even after conversion to the symmetric
setting, prior schemes [AFGH05, CH07] cannot meet the indistinguishability requirements that we ask of UE
schemes. Recent works by Lee [Lee17] and Davidson et al. [DDLM19] have highlighted the links between
the work of BLMR and EPRS and PRE, and in particular the second work gives a public-key variant of the
(sequential) IND-UPD definition of LT18. Myers and Shull [MS18] presented security models for hybrid
proxy re-encryption, and gave a single-challenge version of the UP-IND notion of EPRS.

Tokenization. Tokenization schemes aim to protect short secrets, such as credit card numbers, using de-
terministic encryption and deterministic updates: this line of work reflects the PCI DSS standard [Cou18]
for the payment card industry. Provable security of such schemes was initially explored by Diaz-Santiago et
al. [DRC14] and extended to the updatable setting by Cachin et al. [CCFL17]. While much of the formalism
in the model of Cachin et al. has been used in recent works on UE (in particular the epoch-based corruption
model), the requirements on ciphertext indistinguishability are stronger in the UE setting, where we expect
probabilistic encryption of (potentially large) files.

1.2 Contributions

Our first major contribution is defining the IND-UE security notion and comprehensively analyzing its re-
lation to other, existing security notions (IND-ENC, IND-UPD). Our new notion is strictly stronger even
than combinations of prior notions, both in the randomized- and deterministic-update settings. With these
results, we show that our single definition is sufficient to ensure that ciphertexts output by the encryption
algorithm are indistinguishable from ciphertexts output by the update algorithm. This not only gives us the
unlinkability desired by prior works, but also answers the open question posed by KLR19 mentioned earlier.
Fig. 14 describes the relationship between our new notion IND-UE and prior notions.

Our second major contribution is in designing a new, fast updatable encryption scheme SHINE. Our
scheme is based on a random-looking permutation combined with the exponentiation map in a cyclic group,
and we prove that SHINE is detIND-UE secure under the DDH assumption. Our scheme is more efficient
than RISE [LT18a], much more efficient than the CCA-secure schemes of KLR19 [KLR19a], and it is ap-
proximately as fast as BLMR [BLMR13]. Note that the latter is not even detIND-UPD-secure. A comparison
of efficiency and security of these prior schemes and SHINE is given in Fig. 1.

We also further the understanding of schemes with deterministic update mechanisms. In particular, we
identify the properties that are necessary of such schemes to meet a generalized version of our detIND-UE

BLMR BLMR+ RISE SHINE
[BLMR13] [BLMR13, LT18a] [LT18a] This work

IND-ENC 3 3 3 3

IND-UPD 8 3weak 3rand 3det

IND-UE 8 3weak 3rand 3det

Enc 1E +1P 1E +1P +1S 2E 1E +1S
TG 1X 1X 1E +1I 1I
Upd 1E +1P 1E +1P +2S 2E 1E

Figure 1: Comparison of security and efficiency – for encryption Enc, token generation TG and ciphertext
update Upd– of updatable encryption schemes. E denotes exponentiation, I is inversion, P is evaluating a
key-homomorphic PRF, S is symmetric encryption and X is an XOR.
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notion. It seems very difficult to design a scheme with a randomized update algorithm that is as fast as
SHINE, so our contributions to the study of the deterministic-update setting are significant.

Another important contribution is that we further improve on the existing epoch insulation that have been
used to create proofs of security in the strong corruption environment we pursue. These have been shown to
be very useful for studying this kind of schemes, and we expect our new techniques to be useful in the future.

We do not claim that SHINE is CCA-secure (it does certainly not have ciphertext integrity), but we note
that unlike for RISE, there are no trivial CCA-attacks against SHINE. We discuss this question further in
Section 8.

1.3 Further Discussion

We have had to make a number of practical design decisions for our new UE scheme SHINE. In this subsec-
tion we give some motivation for why we believe that these choices are reasonable.

Deterministic updates. Since we will require indistinguishability of ciphertexts, we know that the UE
encryption algorithm should be randomized. The update algorithm may or may not be randomized, how-
ever. Randomized updates seem to be more expensive than deterministic updates, but there is a small,
well-understood security loss in moving to deterministic updates: an adversary with an update token in an
appropriate epoch can trivially distinguish between an update of a known ciphertext and other ciphertexts in
the next epoch. As a result, in the detIND-UE case the adversary is only forbidden from obtaining one token
compared to randIND-UE. We believe that this minor security loss is a small price to pay for the efficiency
gain, both in terms of reduced computations in the UE encryption and update algorithms and also improved
ciphertext expansion.

Bidirectional updates. In principle, the token used to update ciphertexts need not be sufficient to derive the
new key from the old key. But for every known practical scheme, this derivation is indeed easy. Moreover,
for every known practical scheme, the old key can be derived from the new key. In other words, the up-
date algorithm is bidirectional. While unidirectional update algorithms are desirable, constructing efficient
protocols has so far been elusive, and we study bidirectional schemes in this work also: this has technical
implications for how security notions are defined.

Other forms of leakage. Modern cloud storage systems usually maintain a lot of meta-data about cipher-
texts. Practitioners may therefore doubt that an updatable encryption scheme as a simple drop-in solution
will provide the high levels of security defined in this work and previous formal analysis. However, we
are motivated to obtain cryptographic schemes that make it possible to design cloud storage solutions for
applications demanding strong security properties. If our cryptographic schemes leak valuable information,
designing secure cloud storage based on these schemes becomes much harder – our goal is to further the
understanding of this leakage.

Limited number of epochs. In many applications that we would like to consider, the user of the storage
service will control when updates occur (perhaps when an employee with access to key material leaves
the organisation, or if an employee loses a key-holding device): this indicates that the total number of key
rotations in the lifetime of a storage system might be numbered in the thousands, and in particular could be
considerably smaller than the number of outsourced files.

2 Preliminaries

Pseudocode return b′ ?
= b is used as shorthand for if b′ = b then return 1 // else return 0, with an output of

1 indicating adversarial success. We use the concrete security framework, defining adversarial advantage as
probability of success in the security game, and avoid statements of security with respect to security notions.
In the cases where we wish to indicate that notion A implies notion B (for some fixed primitive), i.e. an
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adversary’s advantage against B carries over to an advantage against A, we show this by bounding these
probabilities.

2.1 Hardness Assumptions

For the definition of DDH and in Def. 13 later on, we assume the existence of a group-generation algorithm
that is parameterized by λ and outputs a cyclic group G of order q (where q is of length λ bits) and a generator
g. We adapt the definition of pseudorandom functions from Boneh et al. [BLMR13].

Definition 1 (DDH). Fix a cyclic group G of prime order q with generator g. The advantage of an algorithm
A solving the Decision Diffie-Hellman (DDH) problem for G and g is

AdvDDH
G, A(λ) =

∣∣∣Pr[ExpDDH-1
G, A (λ) = 1]−Pr[ExpDDH-0

G, A (λ) = 1]
∣∣∣

where the experiment ExpDDH-b
G, A is given in Fig. 2.

ExpDDH-b
G, A (λ) :

x, y, r
$←− Zq

X ← gx;Y ← gy

if b = 0
Z ← gxy

else
Z ← gr

b′ ← A(g,X, Y, Z)
return b′

Figure 2: DDH experiment ExpDDH-b
G, A

ExpPRF-b
F, A (λ) :

if b = 0
k

$←− K
f(·)← F (k, ·)

else
f(·) $←− {f : X −→ Y}

b′ ← AO.f ()
return b′

O.f(x) :
if x 6∈ X

return ⊥
else

return f(x)

Figure 3: PRF experiment ExpPRF-b
F, A

Definition 2 (PRF). Let F : K × X −→ Y be an efficiently computable function, where K is called the key
space, X is the domain, and Y is the range. The PRF advantage for A against F is given by

AdvPRF
F, A(λ) =

∣∣∣Pr[ExpPRF-1
F, A (λ) = 1]−Pr[ExpPRF-0

F, A (λ) = 1]
∣∣∣

where the experiment ExpPRF-b
F, A is given in Fig. 3.

2.2 Updatable Encryption

We follow the syntax of prior work [KLR19a], defining an Updatable Encryption (UE) scheme as a tuple
of algorithms {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} that operate in epochs, these algorithms are de-
scribed in Fig. 4.

Algorithm Rand/Det Input Output Syntax

UE.KG Key Gen Rand λ ke ke
$←− UE.KG(λ)

UE.TG Token Gen Det ke, ke+1 ∆e+1 ∆e+1 ← UE.TG(ke, ke+1)

UE.Enc Encryption Rand m, ke Ce Ce
$←− UE.Enc(ke,m)

UE.Dec Decryption Det Ce, ke m′ or ⊥ {m′/ ⊥} ← UE.Dec(ke,Ce)

UE.Upd Update Ctxt Rand/det Ce,∆e+1 Ce+1 Ce+1
$←− UE.Upd(∆e+1,Ce)

Figure 4: Syntax of algorithms defining an Updatable Encryption scheme UE.

A scheme is defined over some plaintext spaceMS, ciphertext space CS , key spaceKS and token space
T S . We specify integer n+ 1 as the (total) number of epochs over which a UE scheme can operate, though
this is only for proof purposes. The definition of correctness is the same as in [KLR19a]: fresh encryptions
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and updated ciphertexts should decrypt to the correct message under the appropriate epoch key. In contrast
to prior work, we only consider deterministic token generation algorithms – all prior work and our schemes
have this property.

In addition to enabling ciphertext updates, in many schemes the token allows ciphertexts to be ‘down-
graded’: performing some analog of the UE.Upd operation on a ciphertext C created in (or updated to)
epoch e yields a valid ciphertext in epoch e-1. Such a scheme is said to have bi-directional ciphertext
updates3. Furthermore, for many constructions, the token additionally enables key derivation, given one
adjacent key. If this can be done in both directions – i.e. knowledge of ke and ∆e+1 allows derivation of
ke+1 AND knowledge of ke+1 and ∆e+1 allows derivation of ke – then such schemes are referred to by
LT18 as having bi-directional key updates. If such derivation is only possible in one ‘direction’ then the
scheme is said to have uni-directional key updates. Much of the prior literature on updatable encryption has
distinguished these notions: we stress that all schemes and definitions of security considered in this paper
have bi-directional ciphertext updates and bi-directional key updates.

3 Security Models for Updatable Encryption

We consider a number of indistinguishability-based games for assessing security of updatable encryption
schemes. The environment provided the challenger attempts to give as much power as possible to adversary
A, then after A has finished running the challenger computes whether or not any of the actions enabled a
trivial win. A generic representation of all security games described in this paper is detailed in Fig. 5. The
current epoch is advanced by an adversarial call to O.Next – simulating UE.KG and UE.TG – and keys and
tokens (for the current or any prior epoch) can be corrupted via O.Corr. The adversary can encrypt arbitrary
messages via O.Enc, and update these ‘non-challenge’ ciphertexts via O.Upd. At some point A makes its
challenge by providing two inputs, and receives the challenge ciphertext – and in later epochs can receive
an updated version by calling O.UpdC̃ (computing this value is actually done by O.Next, a call to O.UpdC̃
returns it). A can then interact with its other oracles again, and eventually outputs its guess bit. The flag
phase tracks whether or not A has made its challenge, and we always give the epoch in which the challenge
happens a special identifier ẽ. If A makes any action that would lead to a trivial win, the flag twf is set and
A’s output is discarded and replaced by a random bit. We follow the bookkeeping techniques of LT18 and
KLR19, using the following sets to track ciphertexts and their updates that can be known to the adversary.

• L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with entries of form (c,C, e), where
query identifier c is a counter incremented with each new O.Enc query.

• L̃: List of updated versions of challenge ciphertext (created via O.Next, received by adversary via
O.UpdC̃), with entries of form (C̃, e).

Further, we use the following lists that track epochs only.

• C: List of epochs in which adversary learned updated version of challenge ciphertext (via CHALL or
O.UpdC̃).

• K: List of epochs in which the adversary corrupted the encryption key.

• T : List of epochs in which the adversary corrupted the update token.

All experiments necessarily maintain some state, but we omit this for readability reasons. The chal-
lenger’s state is S← {L, L̃, C,K, T }, and the system state in the current epoch is given by st← (ke,∆e,S, e).

An at-a-glance overview of CHALL for various security definitions is given in Fig. 6. For security games
such as LT18’s IND-UPD notion, where the adversary must submit as its challenge two ciphertexts (that
it received from O.Enc) and one is updated, the game must also track in which epochs the adversary has
updates of these ciphertexts. Later on we will specify a version of our new IND-UE notion that allows the

3For example if the Upd procedure exponentiates all ciphertext components using the token, as done in SHINE, then Upd itself
is sufficient to demonstrate this property.
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Setup(λ)
k0 ← UE.KG(λ)
∆0 ←⊥; e, c← 0; phase, twf ← 0
L, L̃, C,K, T ← ∅

ExpxxIND-atk-b
UE, A

do Setup
CHALL← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
Create C̃; ẽ← e; L̃ ← L̃ ∪ {(C̃e, e)}
b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or
xx ∈ {det,weak} and I∗ ∩ C∗ 6= ∅
xx = weak and I∗ ∩ (K∗ ∪ T ∗) 6= ∅ and

(∃e ∈ C∗ s.t. e or e + 1 ∈ T ∗)
if twf = 1 then

b′
$←− {0, 1}

return b′

O.Enc(m) :
c← c + 1
C← UE.Enc(ke,m)
L ← L ∪ {(c,C, e)}
return C

O.Next() :

ke+1
$←− UE.KG(λ)

∆e+1
$←− UE.TG(ke, ke+1)

if phase = 1 then
C̃e+1 ← UE.Upd(∆e+1, C̃e)
L̃ ← L̃ ∪ {(C̃e+1, e + 1)}

O.Upd(Ce−1) :
if (j,Ce−1, e− 1) /∈ L then

return ⊥
Ce ← UE.Upd(∆e,Ce−1)
L ← L ∪ {(j,Ce, e)}
return Ce

O.Corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

O.UpdC̃ :
C ← C ∪ {e}
L̃ ← L̃ ∪ {(C̃e, e)}
return C̃e

Figure 5: Generic description of challenger behavior in definitions of security for Updatable Encryption
scheme UE and adversary A, where xx ∈ {rand, det,weak}, IND-atk ∈ {IND-ENC, IND-UPD, IND-UE}.
Trivial win conditions, i.e. how to decide the value of twf, are discussed in Section 3.1.

adversary to submit a ciphertext that existed in any epoch prior to the challenge epoch, not just the one
immediately before: this introduces some additional bookkeeping and is discussed further in Section 3.1.

CHALL Input CHALL Output (in ẽ)
IND-ENC m̄0, m̄1 UE.Enckẽ

(m̄0) or UE.Enckẽ
(m̄1)

IND-UPD C̄0, C̄1 UE.Upd∆ẽ
(C̄0) or UE.Upd∆ẽ

(C̄1)

IND-UE m̄, C̄ UE.Enckẽ
(m̄) or UE.Upd∆ẽ

(C̄)

Figure 6: Intuitive description of challenge inputs and outputs for updatable encryption security notions. Full
definitions are given in Section 3.3 and 4.1.

A note on nomenclature: the adversary can make its challenge query to receive the challenge ciphertext,
and then acquire updates of the challenge ciphertext via calls to O.UpdC̃, and additionally it can calculate
challenge-equal ciphertexts via applying tokens it gets via O.Corr queries.

When appropriate, we will restrict our experiments to provide definitions of security that are more suit-
able for assessing schemes with deterministic update mechanisms. For such schemes, access to the update
token for the challenge epoch (∆ẽ) allows the adversary to trivially win IND-UPD and IND-UE. Note how-
ever that the definitions are not restricted to schemes with deterministic updates: such schemes are simply
insecure in terms of randIND-UPD and randIND-UE.
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3.1 Trivial Win Conditions

Trivial wins via keys and ciphertexts. We again follow LT18 in defining the epoch identification sets C∗,
K∗ and T ∗ as the extended sets of C, K and T in which the adversary has learned or inferred information via
its acquired tokens. These extended sets are used to exclude cases in which the adversary trivially wins, i.e.
if C∗ ∩ K∗ 6= ∅, then there exists an epoch in which the adversary knows the epoch key and a valid update
of the challenge ciphertext. Note that the challenger computes these sets once the adversary has finished
running. We employ the following algorithms of LT18 (for bi-directional updates):

K∗ ← {e ∈ {0, ..., n}|CorrK(e) = true}
true← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T ) ∨ (CorrK(e+1) ∧ e+1 ∈ T )

T ∗ ← {e ∈ {0, ..., n}|(e ∈ T ) ∨ (e ∈ K∗ ∧ e-1 ∈ K∗)}
C∗ ← {e ∈ {0, ..., n}|ChallEq(e) = true}

true← ChallEq(e) ⇐⇒
(e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗)

Trivial wins via direct updates. The following is for analyzing detIND-UE or detIND-UPD security
notions, where the adversary provides as its challenge one or two ciphertexts that it received from O.Enc.
The challenger needs to use L to track the information the adversary has about these challenge input values.

Define a new list I as the list of epochs in which the adversary learned an updated version of the ci-
phertext(s) given as a challenge input. Furthermore, define I∗ to be the extended set in which the adversary
has learned or inferred information via token corruption. We will use this set to exclude cases which the
adversary trivially wins, i.e. if I∗ ∩ C∗ 6= ∅, then there exists an epoch in which the adversary knows the
updated ciphertext of C̄ and a valid challenge-equal ciphertext. For deterministic updates, the adversary
can simply compare these ciphertexts to win the game. In particular, if C̄ is restricted to come from ẽ − 1
(recall the challenge epoch is ẽ), then the condition I∗ ∩ C∗ 6= ∅ is equivalent to the win condition that LT18
used for detIND-UPD: ∆ẽ ∈ T ∗ or A did O.Upd(C̄) in ẽ. Our generalization is necessary for a variant of
detIND-UE that we define later in which the challenge ciphertext input can come from any prior epoch, and
not just the epoch immediately before the one in which the challenge is made.

To compute I, find an entry in L that contains challenge input C̄. Then for that entry, note the query
identifier c, scan L for other entries with this identifier, and add all found indices into list I. Then compute
I∗ as follows:

I∗ ← {e ∈ {0, ..., n}|ChallinputEq(e) = true}
true← ChallinputEq(e) ⇐⇒

(e ∈ I) ∨ (ChallinputEq(e-1) ∧ e ∈ T ∗) ∨ (ChallinputEq(e+1) ∧ e+1 ∈ T ∗)

Additionally, if the adversary submits two ciphertexts C̄0, C̄1 as challenge (as in IND-UPD), we compute
Ii, I∗i , i ∈ {0, 1} first and then use I∗ = I∗0 ∪ I∗1 to check the trivial win condition. An example of trivial
win conditions C∗ ∩ K∗ 6= ∅ and I∗ ∩ C∗ 6= ∅ is shown in Fig. 8.

Trivial wins for a weak model. An additional notion weakIND-UPD was used by LT18 for proving their
BLMR+ scheme secure: if the adversary has access to any token or key which could leak the nonce of a chal-
lenge input ciphertext, the trivial win flag is triggered if the adversary gains access to any token which could
reveal the nonce of a known (version of the) challenge ciphertext (i.e. if I∗∩ (K∗∪T ∗) 6= ∅, then twf ← 1 if
∃e ∈ C∗ such that e or e + 1 ∈ T ∗). This is necessary because the token in BLMR+ contains the symmetric
keys that enable decryption and re-encryption of the nonce. We prove that BLMR+ is weakIND-UPD secure
in Section 6.

3.2 Firewall Technique

In order to prove security for updatable encryption in the epoch-based model with strong corruption capa-
bilities, cryptographic separation is required between the epochs in which the adversary knows key material,

11



and those in which it knows challenge-equal ciphertexts (acquired/calculated via queries to O.UpdC̃ and
O.Corr(∆)). To ensure this, we follow prior work in explicitly defining the ‘safe’ or insulated regions, as
we explain below. These regions insulate epoch keys, tokens and ciphertexts: outside of an insulated region
a reduction in a security proof can generate keys and tokens itself, but within these regions it must embed its
challenge while still providing the underlying adversary with access to the appropriate oracles. A thorough
discussion of how we leverage these insulated regions in proofs is given in Section 5.1.

To understand the idea of firewalls, consider any security game (for bi-directional schemes) in which the
trivial win conditions are not triggered. If the adversaryA corrupts all tokens then either it never corrupts any
keys or it never asks for a challenge ciphertext. Suppose that A does ask for a challenge ciphertext in epoch
ẽ 4. Then there exists an (unique) epoch continuum around ẽ such that no keys in this epoch continuum, and
no tokens in the boundaries of this epoch continuum are corrupted. Moreover, we can assume that all tokens
within this epoch continuum are corrupted, because once the adversary has finished corrupting keys, it can
corrupt any remaining tokens that do not ‘touch’ those corrupted keys. This observation is first used in the
IND-UPD proof of RISE provided by Lehmann and Tackmann [LT18a], and Klooß et al. [KLR19a] provided
an extended description of this ‘key insulation’ technique. We name these epoch ranges insulated regions
and their boundaries to be firewalls.

Definition 3. An insulated region with firewalls fwl and fwr is a consecutive sequence of epochs (fwl, . . . , fwr)
for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;

• the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist);

• all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

We denote the firewalls bordering the special insulated region that contains ẽ as ˆfwl and ˆfwr – though
note that there could be (many, distinct) insulated regions elsewhere in the epoch continuum. Specifically,
when the adversary asks for updated versions of the challenge ciphertext, the epoch in which this query
occurs must also fall within (what the challenger later calculates as) an insulated region. In Fig. 7 we give
an algorithm FW-Find for computing firewall locations. The list FW tracks, and appends a label to, each
insulated region and its firewalls. Observe that if an epoch is a left firewall, then neither the key nor the token
for that epoch are corrupted. From the left firewall, since we assume that all tokens are corrupted, track to
the right until either a token is not corrupted or a key is.

FW-Find :
FW ← ∅; j = 0
for e ∈ {0, ..., n} do

if e ∈ ¬(T ∗ ∪ K∗) then
j ← j + 1
fwlj ← e

if (e + 1 /∈ T ∗) ∧ (e /∈ K∗) then
fwrj ← e
FW ← {(j, fwlj , fwrj)}

Figure 7: Algorithm FW-Find for computing all firewalls.

3.2.1 Example of Epoch Corruption and Trivial Wins

In Fig. 8 we indicate the trivial win conditions and insulated regions for a particular adversarial corruption
strategy, in the experiment for IND-UE∗ (this notion chosen here to demonstrate how the challenger populates
its lists). Suppose challenge epoch ẽ = 8, and further assume K∗ = {1, 6, 9}, and T ∗ = {3, 4, 8}, meaning

4In the situation that the adversary does not corrupt any keys to the left or the right (or both) of the challenge epoch, the insulated
region thus extends to the boundary (or boundaries) of the epoch continuum
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that C∗ = {7, 8}. Suppose C̄ is in epoch 1 and the adversary has asked O.Upd(C̄) in epoch 2, so C̄2, C̄3, C̄4

are updated ciphertexts of C̄, therefore I∗ = {1, 2, 3, 4}. So C∗ ∩ K∗ = ∅ and I∗ ∩ C∗ = ∅, the trivial win
conditions have not occurred. Then we see insulated regions: {0} is the first insulated region, {2, 3, 4} is the
second insulated region, etc. We compute T ∗ ∪ K∗ = {1, 3, 4, 6, 8, 9}, so ¬(T ∗ ∪ K∗) = {0, 2, 5, 7}: using
FW-Find we know this is the set of left firewalls, and the right firewalls are {0, 4, 5, 8}.

Epoch {0} 1 {2 3 4} {5} 6 {7 ẽ} 9
Key × k1 × × × × k6 × × k9

Token × × ∆3 ∆4 × × × ∆8 ×
Challenge ciphertexts × × × × × × × C̃7 C̃8 ×
Challenge input × C̄ C̄2 C̄3 C̄4 × × × × ×

Figure 8: An example of trivial win conditions and insulated regions incurred by an adversary playing
IND-UE∗, where × indicates the keys/tokens/ciphertexts not revealed to the adversary, and {} indicates
insulated regions.

3.3 Existing Definitions of Security

Here we describe existing security notions for UE security given by LT18, including formal definitions for
their IND-ENC and xxIND-UPD notions. We will define our new security notion in Section 4.1 and compare
the relation among all of these notions in Section 4.4.

Definition 4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the IND-ENC advantage of an adversary A against UE is defined as

AdvIND-ENC
UE, A (λ) =

∣∣∣∣Pr[ExpIND-ENC-1
UE, A = 1]−Pr[ExpIND-ENC-0

UE, A = 1]

∣∣∣∣,
where the experiment ExpIND-ENC-b

UE, A is given in Fig. 5 and Fig. 9.

ExpIND-ENC-b
UE, A (λ) :

CHALL :
(m0,m1)← A
if |m0| 6= |m1| then

return ⊥
C̃

$←− UE.Enc(kẽ,mb)
return C̃

Figure 9: Challenge call definition for IND-ENC
security experiment; the full experiment is de-
fined in Fig. 5.

ExpxxIND-UPD-b
UE, A (λ) :

CHALL :
(C̄0, C̄1)← A
if |C̄0| 6= |C̄1| or (C̄0, ẽ-1) /∈ L

or (C̄1, ẽ-1) /∈ L then
return ⊥

C̃
$←− UE.Upd(∆ẽ, C̄b)

return C̃

Figure 10: Challenge call definition for
xxIND-UPD security experiment for xx ∈
{rand, det,weak}; the full experiment is defined
in Fig. 5.

Definition 5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the xxIND-UPD advantage, for xx ∈ {rand, det,weak}, of an adversary A against UE is defined as

AdvxxIND-UPD
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UPD-1
UE, A = 1]−Pr[ExpxxIND-UPD-0

UE, A = 1]
∣∣∣,

where the experiments ExpxxIND-UPD-b
UE, A are given in Fig. 5 and Fig. 10.
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4 On the Security of Updates

In this section we present a new notion of security for updatable encryption schemes, which we denote
IND-UE. This notion captures both security of fresh encryptions (i.e. implies IND-ENC) and unlinkability
(i.e. implies IND-UPD). We first explain the new notion and then describe its relation to previous notions.

4.1 A New Definition of Security

In the security game for IND-UE, the adversary submits one message and a ciphertext from an earlier epoch
that the adversary received via a call to O.Enc. The challenger responds with either an encryption of that
message or an update of that earlier ciphertext, in the challenge (current) epoch ẽ.

Definition 6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the xxIND-UE advantage, for xx ∈ {rand, det,weak}, of an adversary A against UE is defined as

AdvxxIND-UE
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UE-1
UE, A = 1]−ExpxxIND-UE-0

UE, A = 1]
∣∣∣

where the experiment ExpxxIND-UE-b
UE, A is given in Fig. 5 and Fig. 11.

Note that randIND-UE is strictly stronger than detIND-UE, since the adversary has strictly more capa-
bilities.

A generalized version of xxIND-UE, denoted xxIND-UE∗, is also given in Fig. 11. In this game the input
challenge ciphertext can come from (i.e. be known to A in) any prior epoch, not just the epoch immediately
before ẽ. Note that xxIND-UE is a special case of xxIND-UE∗. Under some fairly weak requirements (that
all schemes discussed in this paper satisfy) we can prove that xxIND-UE implies xxIND-UE∗ as well – we
prove this result in Section. 4.3.

ExpxxIND-UE-b
UE, A (λ) :

CHALL :
(m̄, C̄)← A
if (C̄, ẽ− 1) /∈ L then

return ⊥
if b = 0 then

C̃← UE.Enc(kẽ, m̄)
else

C̃← UE.Upd(∆ẽ, C̄)
return C̃

ExpxxIND-UE∗-b
UE, A (λ) :

CHALL :
(m̄, (C̄, e′))← A
if (C̄, e′) /∈ L then

return ⊥
if b = 0 then

C̃ẽ ← UE.Enc(kẽ, m̄)
else

C̃e′ ← C̄
for j ∈ {e′+1, ..., ẽ} do

C̃j ← UE.Upd(∆j , C̃j−1)
return C̃ẽ

Figure 11: Challenge call definition for xxIND-UE and xxIND-UE∗ security experiments for xx ∈
{rand, det,weak}; the full experiment is defined in Fig. 5.

Remark 1. The definition of xxIND-UE is more concise and intuitively easier to understand than xxIND-UE∗,
however in Theorem 1.1 and Theorem 1.2 in Section 4.3 we show that xxIND-UE∗ ⇐⇒ xxIND-UE, and
in particular our proof techniques mean that all results in this paper that hold for xxIND-UE, also hold for
xxIND-UE∗, vice versa.

4.2 Properties of Deterministic Updates

Here we will use an an alternative representation of UE.Enc that specifies a deterministic algorithm with
randomness as input, i.e. Ce ← UE.Enc(ke,m; r).

One of our main contributions is a scheme with a deterministic update mechanism – we now discuss some
of the properties of such schemes. The first two properties, simulatable token generation and randomness-
preserving updates, were introduced by Klooß et al. [KLR19a]. Simulatable token generation states that
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the real token looks like a token generated from a token simulation algorithm, as we consider bi-directional
updates we omit the generation of the reverse token. Randomness-preserving states that the update of a
ciphertext looks like an encryption of the same message, with the same randomness, under the new key.

Definition 7. [Simulatable token [KLR19a]] Let UE be an updatable encryption scheme. We say that UE
has simulatable token generation if it has the following property: There is a PPT algorithm SimTG(λ) which

samples a token ∆. Furthermore, for arbitrary (fixed) kold
$←− UE.KG(λ) following distributions of ∆ are

identical:

• {∆ | ∆ $←− SimTG(λ)}

• {∆ | knew
$←− UE.KG(λ),∆← UE.TG(kold, knew)}

Notice that BLMR, BLMR+, RISE, SHINE all have simulatable token generation. Furthermore, the
simulatable token generation algorithms of these UE schemes generates a token by randomly picking a token

from the token space, i.e. SimTG : ∆
$←− T S .

Definition 8. [Randomness-preserving [KLR19a]] Let UE be an updatable encryption scheme. We say
that UE.Upd (for UE) is randomness-preserving if the following holds: First, as usually assumed, UE en-

crypts with uniformly chosen randomness. Second, all keys (kold, knew)
$←− UE.KG(λ), tokens ∆new $←−

UE.TG(kold, knew), plaintext m and randomness r, we have

UE.Upd(∆new,Cold) = UE.Enc(knew,m; r),

where Cold = UE.Enc(kold,m; r).

Suppose Ci = UE.Enc(ki,m; r), and Cj is an update of Ci from epoch i to epoch j. Randomness-
preserving property makes sure that Cj = UE.Enc(kj ,m; r), which means a (updated) ciphertext under
some epoch key is uniquely decided by the message and randomness.

We define an even weaker property which we call update-preserving: any update sequence starting and
ending at the same key that starts with the same ciphertext will result in the same ciphertext.

Definition 9. [Update-preserving] Let UE be an updatable encryption scheme. with deterministic up-
date algorithm We say that UE.Upd (for UE) is update-preserving if the following holds: for any two
sequence of key pairs with the same start key and end key (ki, ki+1, ..., kj) and (k′i, k

′
i+1, ..., k′j), where

ki(= k′i), ki+1, k
′
i+1, ..., kj−1, k

′
j−1, kj(= k′j)

$←− UE.KG(λ), and tokens ∆l
$←− UE.TG(kl−1, kl), ∆′l

$←−
UE.TG(k′l−1, k

′
l), f or any ciphertext Ci in epoch i, we have Cj = C′j where C′i = Ci,Cl = UE.Upd(∆l,Cl−1),

C′l = UE.Upd(∆′l,C
′
l−1) for l = i+ 1, ..., j.

The diagrams in Fig. 12 show how the property works, with the left-hand side indicating keys and tokens
and the right-hand side showing ciphertexts.

ki

k′i+1

ki+1

k′j−1

kj−1

kj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j Ci

C′i+1

Ci+1

C′j−1

Cj−1

Cj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j

Figure 12: Keys and updated ciphertexts in Definition 9

Update-preserving property implies that the updated ciphertext is uniquely determined by (Ci, kj , j-i),
where Ci is the beginning ciphertext for updating, j-i decides how many updates have occurred, and kj
decides the value of the ending epoch’s epoch key.

We now define another property which states that ciphertexts encrypted under one key can be simulated
by ciphertexts encrypted under another key. All schemes in this paper meet this property.
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Definition 10 (Simulatable Encryption). Let UE be an updatable encryption scheme. For all keys kold, knew $←−
UE.KG(λ), tokens ∆new $←− UE.TG(kold, knew), plaintext m, define Xold, Xnew to be the statistical distribu-
tion of the ciphertexts output by UE.Enc(kold,m), UE.Enc(knew,m), resp.. We say that UE has simulatable

encryption if update algorithm keeps the ciphertext distribution, i.e. UE.Upd(∆new, Xold)
dist
= Xnew.

Note that we do not restrict that the update algorithm is probabilistic. This means when the update
algorithm is deterministic, it will not add randomness to the updated ciphertext, and it maintains the cipher-
text distribution. For example, suppose U(Z) is a uniform distribution over Z, and for any integer ∆, let
UE.Upd(∆, x) = x + ∆, then UE.Upd(∆, U(Z)) = U(Z). This definition looks similar to the definition
of perfect re-encryption provided by Klooß et al. [KLR19a], which mandates that update has the same dis-
tribution as decrypt-then-encrypt. Perfect re-encryption requires the update algorithm is probabilistic, which
makes it possible for any updated ciphertext looks like a fresh encryption. The simulatable encryption prop-
erty is to make sure that the update algorithm can keep the distribution of encryption – however it is not
necessary to require that the update algorithm is probabilistic.

All schemes discussed in this paper satisfy all of the above properties. Note that randomness-preserving
property is strictly stronger than the update-preserving property and simulatable encryption. Obviously, if
a scheme is randomness-preserving then it is also update-preserving and has simulatable encryption. How-
ever, the update-preserving property does not imply randomness-preserving property, even with simulatable
encryption. To see this, construct a deterministic update variant of the RISE scheme (Section 7) such that the
randomness r updates to r + 2: this scheme has the update-preserving property and simulatable encryption,
but not the randomness-preserving property.

4.3 IND-UE implies IND-UE∗

We prove IND-UE implies IND-UE∗ in this section, and consequently IND-UE and IND-UE∗ are equivalent.

randIND-UE implies randIND-UE∗.

Theorem 1.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any randIND-UE∗ adversary A against UE, there exists an randIND-UE adversary B1.1 against UE such
that

AdvrandIND-UE∗
UE, A (λ) ≤ AdvrandIND-UE

UE, B1.1 (λ).

Proof. We construct an reduction B1.1: before the epoch counter is incremented, every ciphertext is updated
using the available update oracles. This needs to happen when the adversary moves to the next epoch, so that
it is always possible to provide a valid challenge input to the reducton’s own randIND-UE challenger and
respond with a valid challenge output to the adversary.

More precisely, when the adversary makes the randIND-UE∗ challenge query, the reduction make its
own randIND-UE query, submitting the ciphertext provided by the adversary but updated to the epoch one
before the challenge epoch that both algorithms are in. This should give the exact same result as updating
the older ciphertext. Consequently, and since all other oracle queries can just be forwarded, the reduction
perfectly simulates the randIND-UE∗ game. We have the required result.

detIND-UE implies detIND-UE∗.

Proof technique of Theorem 1.2. The proof uses the firewall technique, where the reduction will ‘pause’
its own epoch continuum while responding to the adversary’s queries. The main left firewall in the detIND-UE∗

game is an epoch in which the detIND-UE reduction can possibly ask for a valid challenge query. Before the
left firewall, the reduction sends the queries received from the adversaryA to its own detIND-UE challenger,
and forwards responses to A. Within the firewalls, the reduction stops asking any O.Next queries, and in-
stead simulates the responses of each query to provide answers to A. Because of this action, the detIND-UE
challenger will stay in epoch ˆfwl. When A makes the detIND-UE∗ challenge queries (if the trivial win con-
ditions of the detIND-UE∗ game are not satisfied then the trivial win conditions of the detIND-UE game
will be not satisfied as well), the reduction makes its detIND-UE query using the old ciphertext (in ˆfwl− 1)
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instead. After receiving the response, the reduction updates its challenge ciphertext to the challenge epoch
to reply to A. After the right firewall, the query responses are calculated and forwarded, in the same manner
as before the left firewall.

Theorem 1.2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme
has simulatable token generation, update-preserving property and simulatable encryption property. For any
detIND-UE∗ adversary A against UE, there exists an detIND-UE adversary B1.2 against UE such that

AdvdetIND-UE∗
UE, A (λ) ≤ (n+ 1)2 ·AdvdetIND-UE

UE, B1.2 (λ),

Proof. We use three steps to prove this result.
(Step 1.) Consider a modified version of detIND-UE∗. For b ∈ {0, 1}, define experiments ExpINT1-b

to be the same as ExpdetIND-UE∗-b except that the experiments randomly pick ˆfwl, ˆfwr, and if ˆfwl, ˆfwr are
not the firewalls around challenge epoch ẽ, then the experiment returns a random bit b′. More formally,
the values ˆfwl, ˆfwr are the desired firewalls if the challenge is made inside – i.e. ẽ ∈ [ ˆfwl, ˆfwr] – and they
actually consitute an insulate region, i.e. (, ˆfwl, ˆfwr) ∈ FW)). These firewalls ˆfwl, ˆfwr could take any value
in {0, ..., n}, so this loss is upper bounded by (n+ 1)2. We have

AdvdetIND-UE∗
UE,A (λ) ≤ (n+ 1)2AdvINT1

UE,A.

(Step 2.) Then we consider experiments ExpINT2-b, which is the same as ExpINT1-b except for: in the
insulated region all encryptions are updated ciphertexts of ciphertexts encrypted in left firewall ˆfwl By this
we mean that if the adversary asks for any O.Enc and challenge query, the responses work as follows:

• O.Enc(m): if called in an epoch ˆfwl < e ≤ ˆfwr, encrypt the message in left firewall ˆfwl, then update
the ciphertext to epoch e, and return the updated ciphertext.

• challenge, on input (m̄, (C̄, e′)): if b = 0, encrypt the message m̄ in left firewall ˆfwl, then update the
ciphertext to the challenge epoch ẽ; if b = 1, update ciphertext C̄ from epoch e′ to epoch ẽ. Return
the challenge ciphertext.

Since we assume that UE has the simulatable encryption property, both operations are possible so we have

AdvINT1
UE, A(λ) = AdvINT2

UE, A(λ).

(Step 3.) We construct a reduction B1.2, detailed in Fig. 13, that is playing the detIND-UE game and
runs A. We claim that

AdvINT2
UE, A(λ) ≤ AdvdetIND-UE

UE, B1.2 (λ).

If ˆfwl, ˆfwr are the desired firewalls, then [ ˆfwl, ˆfwr] ⊆ C∗. If the trivial win conditions in ExpINT2-b

are not set (the same result as the trivial win conditions in ExpdetIND-UE∗-b), i.e. I∗ ∩ C∗ = ∅, then
I∗ ∩ [ ˆfwl, ˆfwr] = ∅. That means A never asks O.Upd(C̄) and O.Corr(token) in ˆfwl. So the reduction uses
the relevant challenge input to ask a challenge query to its own detIND-UE challenger in epoch ˆfwl, and it
will not trivially lose.

Before the epoch counter is incremented, every ciphertext is updated using the available update oracles.
This needs to happen when the adversary moves to the next epoch, so that it is always possible to provide a
valid challenge input to the reducton’s own detIND-UE challenger and respond with a valid challenge output
to the adversary.

Within the firewalls, the reduction simulates all ciphertexts and uses the list FL and the list F̃L to track
non-challenge ciphertexts and challenge-equal ciphertexts, respectively. When the challenge query happens
with input (m̄, (C̄, e′)), the reduction can find all updated versions of C̄ by checking the first entry of the list
L. The reduction uses the ciphertext in epoch ˆfwl-1 with the same query identifier c as a challenge input,
sending to its own detIND-UE challenger. (Note that e′ < ˆfwl, otherwise, [ ˆfwl, ˆfwr] ⊆ I∗ and the trivial
win condition is triggered.) After receiving the response from the detIND-UE challenger, B1.2 updates the
received ciphertext to the challenge epoch to reply A.

Eventually B1.2 receives b′ from A, and simply outputs b′ to its detIND-UE challenger. When B1.2

interacts with ExpdetIND-UE-b
UE, B1.2 , B1.2 can perfectly simulate ExpINT2-b

UE, A to A. Then we have the required
result.
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Reduction B1.2 playing ExpdetIND-UE-b
UE, B1.2 :

do Setup
FL, F̃L,L, L̃ ← ∅
ˆfwl, ˆfwr

$←− {0, ..., n}
m̄, (C̄, e′)← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄, (C̄, e′)), get C̃ẽ

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅

if ABORT occurred or (·, ˆfwl, ˆfwr) 6∈ FW
or twf = 1 then
b′

$←− {0, 1}
return b′

O.Enc(m) :
c← c + 1
if e 6∈ { ˆfwl+1, ..., ˆfwr} then

call O.Enc(m), get Ce

L ← L ∪ {(c,Ce, e)}
if e ∈ { ˆfwl+1, ..., ˆfwr} then

call O.Enc(m), get C ˆfwl

L ← L ∪ {(c,C ˆfwl,
ˆfwl)}

for j ∈ { ˆfwl+1, ..., e} do
Cj ← UE.Upd(∆j ,Cj−1)
FL ← FL ∪ {(c,Ce, e)}

return Ce

O.Next :
if e ∈ {1, ..., ˆfwl-1} then

for (c,Ce−1, e− 1) ∈ L do
call O.Upd(Ce-1), get Ce

L ← L ∪ {(c,Ce, e)}
call O.Next

if e ∈ { ˆfwr+1, ..., n} then
call O.Next

if e ∈ { ˆfwl, ..., ˆfwr-1} then
e← e+1
∆e

$←− SimTG(λ)
if e = ˆfwr then

for j ∈ { ˆfwl+1, ..., ˆfwr+1} do
call O.Next
for (c,Cj-1, j-1) ∈ L do

call O.Upd(Cj-1), get Cj

L ← L ∪ {(c,Cj , j)}
for (C̃j-1, j-1) ∈ L̃ do

call O.UpdC̃(C̃j-1)), get C̃j

L̃ ← L̃ ∪ {(C̃j , j)}

O.Upd(Ce−1) :
if (c,Ce−1, e− 1) /∈ L ∪ FL then

return ⊥
if e ∈ {1, ..., ˆfwl} or e ∈ { ˆfwr+2, ..., n} then

call O.Upd(Ce−1), get Ce

L ← L ∪ {(c,Ce, e)}
if e ∈ { ˆfwl+1, ..., ˆfwr} then

Ce ← UE.Upd(∆e,Ce−1)
FL ← FL ∪ {(c,Ce, e)}

if e = ˆfwr+1 then
find (c,Ce, e) ∈ L

return Ce

O.Corr(inp, ê) :

do Check(inp, ê; e; ˆfwl, ˆfwr)
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
if ê ∈ {1, ..., ˆfwl-1} or ê ∈ { ˆfwr+2, ..., n} then

call O.Corr(inp, ê), get ∆ê

if ê ∈ { ˆfwl+1, ..., ˆfwr} then
find ∆ê

return ∆ê

do CHALL with (m̄, (C̄, e′)) :

if ẽ 6∈ { ˆfwl, ..., ˆfwr} or (c, C̄, e′) 6∈ L then
ABORT

find (c,C ˆfwl−1,
ˆfwl− 1) ∈ L

call CHALL with (m̄,C ˆfwl−1), get C̃ ˆfwl

L̃ ← L̃ ∪ {(C̃ ˆfwl,
ˆfwl)}

for j ∈ { ˆfwl+1, ..., ˆfwr} do
C̃j ← UE.Upd(∆j , C̃j−1)
F̃L ← F̃L ∪ {(C̃j , j)}

return C̃ẽ

O.UpdC̃ :

if e ∈ {1, ..., ˆfwl-1} then
return ⊥
C ← C ∪ {e}
if e ∈ { ˆfwl} then

find (C̃e, e) ∈ L̃
if e ∈ { ˆfwl+1, ..., ˆfwr} then

find (C̃e, e) ∈ F̃L
if e ∈ { ˆfwr+1, ..., n} then

call O.UpdC̃, get C̃e

return C̃e

Figure 13: Reduction B1.2 for proof of Theorem 1.2. The underlined oracles shows how B1.2 simulates
the responses of this oracles made by A. B1.2 calls oracles to its detIND-UE challenger, and updates the
response to A.
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4.4 Relation to Prior Notions

In Fig. 14 we show the relationship between the new and existing UE security notions. Note that our new
notion is strictly stronger than the IND-ENC and IND-UPD notions presented by LT18, and is in fact stronger
than the combination of the prior notions. The relationships are proven via Theorems 1.3 to 1.8 which follow
next. Since similar proof techniques are used in Theorems 1.3, 1.4, 1.5 and 1.6, of these we give full proof
details only for Theorem 1.3.

Theorem 1 (Informal Theorem). The relationship among the security notions IND-UE, IND-ENC and
IND-UPD are as in Fig. 14. This is proven via Theorems 1.3 to 1.8.

randIND-UE

IND-ENC randIND-UPD

IND-ENC+randIND-UPD

Thm. 1.3 Thm. 1.5

\ Thm. 1.7

detIND-UE

detIND-UPDIND-ENC

IND-ENC+detIND-UPD

Thm. 1.6Thms. 1.4/1.2

\ Thm. 1.7
Def. 6

\

Thm.1.8

Figure 14: Relations between IND-ENC, IND-UPD and IND-UE.

Theorem 1.3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any IND-ENC adversary A against UE, there exists an randIND-UE adversary B1.3 against UE such that

AdvIND-ENC
UE, A (λ) ≤ 2 ·AdvrandIND-UE

UE, B1.3 (λ).

Proof. We construct a reduction B1.3 running the randIND-UE experiment which will simulate the responses
of queries made by the IND-ENC adversary A. To provide a valid non-challenge ciphertext to its own
challenger, B1.3 must run A out of step with its own game, so epoch 0 as far as A is concerned is actually
epoch 1 for B1.3, and so on.

1. B1.3 chooses b
$←− {0, 1}.

2. B1.3 receives the setup parameters from its randIND-UE challenger, chooses m
$←− MS and calls

O.Enc(m) which returns some C0. Then B1.3 callsO.Next once and sends the setup parameters toA.

3. (a) Whenever B1.3 receives the queries O.Enc,O.Upd,O.Corr from A, B1.3 sends these queries to
its IND-UE challenger, and forwards the responses to A.

(b) Whenever O.Next is called by A, B1.3 randomly chooses a message m
$←− MS and calls

O.Enc(m) to receive some Ce, and then calls O.Next.

4. At some point, in epoch ẽ (for its game), B1.3 receives the challenge query (m̄0, m̄1) from A. Then
B1.3 sends (m̄b,C

ẽ−1) as challenge to its own randIND-UE challenger. After receiving the challenge
ciphertext, C̃ẽ, from its challenger, B1.3 sends C̃ẽ to A.

5. B1.3 continues to answer A’s queries using its own oracles, now including O.UpdC̃.

6. Finally B1.3 receives the output bit b′ from A. If b = b′ then B1.3 returns 0. Otherwise B1.3 returns 1.

We now bound the advantage of B1.3. The point is that whenever B1.3 returns a random encryption toA,
B1.3’s probability of winning is exactly 1/2 because the bit b′ from A is independent of its choice of b. This
happens with probability 1/2. However, when B1.3 returns a “correct” value to A (an encryption of m̄0 or
m̄1), then B1.3’s probability of winning is the same as the probability that A wins.
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First note that, as usual,

AdvrandIND-UE
UE,B1.3 = |Pr[ExprandIND-UE-1

UE, B1.3 = 1]−Pr[ExprandIND-UE-0
UE, B1.3 = 1]|.

We claim that Pr[ExprandIND-UE-1
UE, B1.3 = 1] = 1/2 because in this case C̃ẽ is independent of b and so b′ must

also be independent of b. Then we have:

AdvrandIND-UE
UE,B1.3 =

∣∣∣∣12 −Pr[ExprandIND-UE-0
UE, B1.3 = 1]

∣∣∣∣
=

∣∣∣∣12 −
(

1

2
·Pr[ExpIND-ENC-0

UE, A = 1] +
1

2
·Pr[ExpIND-ENC-1

UE, A = 0]

)∣∣∣∣
=

∣∣∣∣12 − 1

2
·Pr[ExpIND-ENC-0

UE, A = 1]− 1

2

(
1−Pr[ExpIND-ENC-1

UE, A = 1]
)∣∣∣∣

=

∣∣∣∣12 · (Pr[ExpIND-ENC-0
UE, A = 1]−Pr[ExpIND-ENC-1

UE, A = 1]
)∣∣∣∣

=
1

2
·AdvIND-ENC

UE, A .

A remark on Theorem 1.4. Directly proving that detIND-UE implies IND-ENC is very challenging, and
in fact the difficulty is the same as proving that detIND-UE implies detIND-UE∗. Since we have proved
detIND-UE implies detIND-UE∗ in Theorem 1.2 in Section 4.3, we do not repeat the similar proof approach
here. We can just prove detIND-UE∗ implies IND-ENC, which is easy. We follow a very similar approach to
the proof of Theorem 1.3. The detIND-UE∗ (reduction) adversary can ask for tokens almost as freely as the
IND-ENC adversary without incurring the trivial win conditions. But since there should at least one token, in
an epoch before (include) challenge epoch ẽ, is unknown to the adversary, we again have to run our reduction
out of step with the IND-ENC adversary (essentially creating an artificial epoch).

Theorem 1.4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any IND-ENC adversary A against UE, there exists a detIND-UE∗ adversary B1.4 against UE such that

AdvIND-ENC
UE, A (λ) ≤ 2 ·AdvdetIND-UE∗

UE, B1.4 (λ).

Proof. Similar to the proof strategy in Theorem 1.3, we construct a detIND-UE∗ adversary B1.4 against UE

to simulate the responses to queries made by IND-ENC adversaryA. B1.4 chooses b
$←− {0, 1}. Since B1.4 is

allowed to takes its challenge ciphertext from any epoch in its detIND-UE∗ experiment, it can in particular
uses the random ciphertext created in epoch 0, C0. Note that, in contrast to Step 3 (b) of the simulation in the
proof of Theorem 1.3, there is now no need for B1.4 to generate a random ciphertext for each epoch. Also
B1.4 will never ask for O.Upd(C0) to its own detIND-UE∗ challenger.

When receiving the challenge query (m̄0, m̄1) fromA, the reduction B1.4 sends (m̄b,C
0) as challenge to

its own detIND-UE∗ challenger. Since A has no view of epoch 0, A cannot ask for ∆1. In addition, A will
never ask forO.Upd(C0). Thus the trivial win condition I∗∩C∗ 6= ∅ will not be satisfied in the detIND-UE∗

game. The result follows using the same calculation as in the proof of Theorem 1.3.

Theorem 1.5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any randIND-UPD adversaryA against UE, there exists an randIND-UE adversary B1.5 against UE such
that

AdvrandIND-UPD
UE, A (λ) ≤ 2 ·AdvrandIND-UE

UE, B1.5 (λ).

Proof. Similarly to the proof of Theorem 1.3, we construct a randIND-UE reduction B1.5 against UE to sim-
ulate the responses of queries made by randIND-UPD adversary A. However in this case it is not necessary

for the reduction to be out-of-step with the adversary. B1.5 first chooses b
$←− {0, 1}. B1.5 forwards all
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queries from A to its own oracles, and when it receives challenge query (C̄0, C̄1) from A, B1.5 samples a
random message m, and sends (m, C̄b) to the randIND-UE challenger. The result follows using a similar
calculation to that in the proof of Theorem 1.3.

Theorem 1.6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme
For any detIND-UPD adversary A against UE, there exists an detIND-UE adversary B1.6 against UE such
that

AdvdetIND-UPD
UE, A (λ) ≤ 2 ·AdvdetIND-UE

UE, B1.6 (λ).

Proof. The proof follows exactly the same steps as that of Theorem 1.5, in addition to the observation that
in the det versions of the games, the trivial win flag twf is either triggered for both adversary and reduction
or for neither when O.Corr queries are made by the underlying adversary.

Theorem 1.7. Each of the following hold for xx ∈ {rand, det}.
(i). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let αENC

be the IND-ENC advantage of an adversary A against UE. Then there exists a modified scheme UE′ such
that A’s IND-ENC advantage against UE′ is (still) αENC, and there exists an xxIND-UE adversary B against
UE′ with advantage 1.
(ii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let
αUPD be the xxIND-UPD advantage of an adversaryA against UE. Then there exists a modified scheme UE′

such that A’s xxIND-UPD advantage against UE′ is (still) αUPD, and there exists an xxIND-UE adversary B
against UE′ with advantage 1.
(iii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let
αENC be the IND-ENC advantage of an adversaryAENC against UE and αUPD be the xxIND-UPD advantage
of an adversary . Then there exists a modified scheme UE′ such that AENC’s IND-ENC advantage against
UE′ is (still) αENC,AUPD’s xxIND-UPD advantage against UE′ is (still) αUPD, and there exists an xxIND-UE
adversary B against UE′ with advantage 1.

Proof. All three are demonstrated using the same counterexample. All algorithms for UE′ are the same as
for UE, except UE′.Enc is defined by modifying UE.Enc to append the epoch number in which the ciphertext
was initially created. This does not affect an adversary’s ability to win the IND-ENC or IND-UPD games but
trivially breaks IND-UE security.

A remark on Theorem 1.8. We construct an updatable encryption scheme which is detIND-UE secure
but not randIND-UE secure to prove that detIND-UE does not imply randIND-UE. Note that in Section 5
we will prove that SHINE is detIND-UE secure (yet it is trivially not randIND-UE secure), which provides
an example to support this result. However the proof that SHINE is detIND-UE in the ideal cipher model
(if DDH holds). Here we demonstrate the theorem based on a weaker assumption, namely the existence of
pseudorandom functions.

Proof technique of Theorem 1.8. We use a IND-UE secure UE scheme to construct a new UE scheme
UEnew, where we use a PRF to make a part of the new update algorithm deterministic. Because of this UEnew

will not be randIND-UE secure. In order to bound the detIND-UE security of UEnew, we need to make sure
the newly added deterministic part of the updates will not make Enc(m) and Upd(C) distinguishable – this
is where we need the PRF.

Theorem 1.8. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme,
and define a new updatable encryption scheme UEnew in Fig. 15, built using pseudorandom function F :
K × X −→ X . Then, for any detIND-UE adversary A against UEnew that asks at most QE queries to O.Enc
before it makes its challenge, there exists a PRF adversary BPRF against F and a detIND-UE adversary B1.8

against UE such that

AdvdetIND-UE
UEnew, A (λ) ≤ (n+ 1) · (AdvdetIND-UE

UE, B1.8 (λ) + 2 ·AdvPRF
F, BPRF +

2QE
2

|X |
),
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and there exists a randIND-UE adversary C against UEnew that wins with probability 1.

UEnew.KG(λ) :

k
$←− UE.KG(λ)

return k

UEnew.TG(ke, ke+1) :
∆′e+1 ← UE.TG(ke, ke+1)

fke+1
$←− K

return (∆′e+1, fke+1)

UEnew.Enc(ke,m) :

re
$←− X

C′e
$←− UE.Enc(ke,m)

return (re,C
′
e)

UEnew.Dec(ke,Ce) :
parse Ce = (re,C

′
e)

m′ or ⊥ ← UE.Dec(ke,C
′
e)

return m′

UEnew.Upd(∆e+1,Ce) :
parse ∆e+1 = (∆′e+1, fke+1)
parse Ce = (re,C

′
e)

re+1 ← F (fke+1, re)
C′e+1 ← UE.Upd(∆′e+1,C

′
e)

return (re+1,C
′
e+1)

Figure 15: Updatable encryption scheme UEnew for PRF F and updatable encryption scheme UE.

Proof. UEnew is not randIND-UE secure. If the token in the challenge epoch is corrupted then the adversary
can compare r in the value it receives with the value it provided and therefore trivially win. So UEnew is not
randIND-UE secure.
UEnew is detIND-UE secure. We proceed in three steps.

(Step 1.)
Consider a modified version of detIND-UE. For b ∈ {0, 1}, define experiments ExpINT1-b to be the

same as ExpdetIND-UE-b except that the experiments randomly pick e∗ ← {0, ..., n}, and if e∗ 6= ẽ the
experiments return a random bit for b′. The loss is upper bounded by n+ 1. Then:

AdvdetIND-UE
UEnew, A (λ) ≤ (n+ 1) ·AdvINT1

UEnew, A(λ).

(Step 2.) Then we consider modified experiments ExpINT2-b, which are the same as ExpINT1-b except
that the first element of ciphertexts in the guessed epoch e∗ is a uniformly random element. We show that the
ability to notice this change is upper bounded by PRF advantage. More precisely, experiment ExpINT2-b

tracks randomness in the setX (initialized as empty), and when adversary asks anO.Upd or challenge query:

• For O.Upd(Ce∗-1): parse ∆e∗ = (∆′e∗ , ), parse Ce∗-1 = (re∗-1,C
′
e∗-1), if re∗-1 ∈ X , then the experi-

ment aborts; otherwise, setX ← X∪{re∗-1}, randomly choose re∗
$←− X . Return (re∗ ,UE.Upd(∆′e∗ ,C

′
e∗-1)).

• For challenge input (m̄, (r, C̄)): parse ∆e∗ = (∆′e∗ , ), if e∗ 6= ẽ or r ∈ X , then the experiment aborts;
otherwise, set X ← X ∪ {r}. If b = 0, return UEnew.Enc(ke∗ , m̄). If b = 1, randomly choose

re∗
$←− X , return (re∗ ,UE.Upd(∆′e∗ , C̄)).

Note that

AdvINT1

UEnew, A(λ) =
∣∣∣Pr[ExpINT1-1

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣
≤ AdvINT2

UEnew, A(λ) +
∣∣∣Pr[ExpINT2-1

UEnew, A = 1]−Pr[ExpINT1-1
UEnew, A = 1]

∣∣∣
+
∣∣∣Pr[ExpINT2-0

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣
For b ∈ {0, 1}, we wish to prove that∣∣∣Pr[ExpINT2-b

UEnew, A = 1]−Pr[ExpINT1-b
UEnew, A = 1]

∣∣∣ ≤ AdvPRF
F +

QE
2

|X |
.
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Suppose A is an adversary trying to distinguish ExpINT2-b
UEnew, A from ExpINT1-b

UEnew, A. We construct a PRF
reduction BPRF, detailed in Fig. 16, against F to simulate the responses of queries made by A. BPRF first
guesses when A is going to ask a challenge query (assume e∗) and in that epoch BPRF does bookkeeping for
the randomness in X (initiated as empty set). Note that the reduction generates all keys and tokens except
for fke∗ . Update randomness in epoch e∗ is simulated by sending the randomness to the PRF challenger and
forwarding the response to A.

Reduction BPRF playing PRF:
do Setup
m̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄, (r, C̄)), get C̃e∗

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅

if ABORT occurred or twf = 1 then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(λ)
k0 ← UE.KG(λ);
∆0 ←⊥; e← 0; phase, twf ← 0;

e∗
$←− {0, ..., n};

L, L̃, C,K, T , X ← ∅

O.Enc(m) :

O.Next :∗∗

O.Upd((re−1,C
′
e−1)) :

if (·, (re−1,C
′
e−1), e− 1) 6∈ L then

return ⊥
if e 6= e∗ then

Ce ← UEnew.Upd((∆′e, fke), (re−1,C
′
e−1))

if e = e∗ then
if re−1 ∈ X then

return ABORT

X ← X ∪ {re−1}
re ← O.f(re−1) embed
C′e ← UE.Upd(∆′e,C

′
e−1)

Ce ← (re,C
′
e)

L ← L ∪ {(·,Ce, e)}
return Ce

O.Corr(inp, ê) :

do CHALL with (m̄, (r, C̄)) :

if (·, (r, C̄), ẽ− 1) 6∈ L or e∗ 6= ẽ or r ∈ X then
return ⊥

X ← X ∪ {r}
if b = 0 then

C̃ẽ ← UEnew.Enc(kẽ, m̄)
else
rẽ ← O.f(r) embed
C̃′ẽ ← UE.Upd(∆′ẽ, C̄)
C̃ẽ ← (rẽ, C̃

′
ẽ)

return C̃ẽ

O.UpdC̃

Figure 16: Reduction BPRF for proof of Theorem 1.8, BPRF simulatesO.Enc,O.Next,O.Corr andO.UpdC̃
queries as described in Fig. 5. Recall that the PRF advantage in Definition 2, O.f replies with F(k, r) or a
random value. ** indicates fke∗ are skipped in the generation.

Eventually BPRF receives the guess from A, and outputs 0 if A guesses that it is in ExpINT1-b, and 1 if
A guesses that it is in ExpINT2-b.

When BPRF interacts with ExpPRF-0, it can simulate ExpINT1-b perfectly except with a negligible
probability. The negligible term is due to BPRF aborts the game. Since the number of existed randomnesses
is small compared to the number of possible random elements, the probability that BPRF aborts the game is
upper bounded by QE

2

|X | . When BPRF interacts with ExpPRF-1, it can perfectly simulate ExpINT2-b, thus we
have the required result.

(Step 3.) Now we conclude that the advantage of winning INT2 is upper bounded by detIND-UE ad-
vantage (against UE). Suppose an INT2 adversary A is trying to attack UEnew. We construct a detIND-UE
reduction B1.8, detailed in Fig. 17, attacking UE and runs A. B1.8 first guesses when A is going to ask a
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challenge query (assume e∗) and in that epoch B1.8 does a bookkeeping for the randomness in X (initiated
as empty set).

Reduction B1.8 playing detIND-UE :
do Setup
m̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄, (r, C̄)), get C̃e∗

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅

if ABORT occurred or twf = 1 then
b′

$←− {0, 1}
return b′

Setup(λ)
k0 ← UE.KG(λ);
∆0 ←⊥; e← 0; phase, twf ← 0;

e∗
$←− {0, ..., n};

L, L̃, C,K, T , X ← ∅

O.Enc(m) :
call O.Enc(m), get C′

r
$←− X

return (r,C′)

O.Next :
call O.Next
fke+1

$←− K
if phase = 1 then
r̃e+1 = F (fke+1, r̃e)
L̃ ← L̃ ∪ {((r̃e+1, ·), e + 1)}

O.Upd((re−1,C
′
e−1)) :

if (·, (re−1,C
′
e−1), e− 1) 6∈ L then

return ⊥
call O.Upd(C′e−1), get C′e
if e 6= e∗ then
re = F (fke, r)

if e = e∗ then
if re−1 ∈ X then

return ABORT

X ← X ∪ {re−1}
re

$←− X
L ← L ∪ {(·, (re,C′e), e)}
return (re,C

′
e)

O.Corr(inp, ê) :
call O.Corr(inp, ê), get ⊥ or kê or ∆′ê
return ⊥ or kê or (∆′ê, fkê)

do CHALL with (m̄, (r, C̄)) :

if (·, (r, C̄), ẽ− 1) 6∈ L or e∗ 6= ẽ or r ∈ X then
return ⊥

X ← X ∪ {r}
call CHALL with (m̄, C̄), get C̃′ embed

r̃ẽ
$←− X

L̃ ← L̃ ∪ {((r̃ẽ, C̃′), ẽ)}
return (r̃ẽ, C̃

′)

O.UpdC̃

call O.UpdC̃, get C̃′e embed
L̃ ← L̃ ∪ {((r̃e, C̃′e), e)}
return (r̃e, C̃

′
e)

Figure 17: Reduction B1.8 for proof of Theorem 1.8.

Eventually B1.8 receives b′ from A, and simply outputs b′. Then B1.8 perfectly simulates ExpINT2-b to
A. We have the required result

AdvINT2

UEnew, A(λ) ≤ AdvdetIND-UE
UE, B1.8 (λ).
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5 The SHINE Scheme

We now describe our new UE scheme SHINE (Secure Homomorphic Ideal-cipher Nonce-based Encryption).
The encryption algorithm uses a permutation to obfuscate the input to the exponentiation function. Updating
a ciphertext simply requires exponentiation once by the update token, which itself is the quotient of the
current epoch key and the previous epoch key. The scheme comes in two flavors: SHINE1 is presented in
Fig. 18 and takes in short messages and only uses a single permutation. The second flavor, SHINE2, is given
in Fig. 19 is for applications with long messages, and uses a family of permutations.

Our proof of security, given as Theorem 2, bounds an adversary’s detIND-UE advantage by DDH, and
is provided in the ideal cipher model. The proof refers to SHINE1 but is extendable to SHINE2, and thus we
refer to SHINE to mean the family containing both schemes.

The message block in SHINE1 and the final message block in SHINE2 must of course be appropriately
padded to allow application of the permutation, and this permutation’s block size must allow – via some
encoding to group elements – exponentiation by the epoch key. (As far as our proofs are concerned, we
just need this object to be any invertible bijection from the message space to the exponentiation group.) In
practice, the permutation – which takes as input some message and some initialization vector IV– could be
deployed using a variable-output-length sponge construction, or a blockcipher or authenticated encryption
scheme with a fixed key and suitably large IV space (for example, AES-GCM-256 with 80-bit IV). We
discuss this further in Section 8.

SHINE1.KG(λ) :

k
$←− Z∗q

return k

SHINE1.TG(ke, ke+1) :

∆e+1 ← ke+1

ke

return ∆e+1

SHINE1.Enc(ke,m) :

IV
$←− V

Ce ←
(
π(IV||m)

)ke

return Ce

SHINE1.Dec(ke,Ce) :

a← π−1
(
C

1/ke
e

)
parse a as IV′||m′
return m′

SHINE1.Upd(∆e+1,Ce) :

Ce+1 ← (Ce)
∆e+1

return Ce+1

Figure 18: Updatable encryption scheme SHINE1 for permutation π and λ-bit prime q.

5.1 Proof Challenges in Schemes with Deterministic Updates

We now highlight the difficulties in creating security proofs for single-component updatable encryption
schemes. In both variants of SHINE all components are raised to the epoch key, so the update mecha-
nism transforms a ciphertext for epoch e to one for e+1 by raising this value to ke+1

ke
. Randomness is used in

creation of the initial ciphertext (via IV) but updates are completely deterministic, and thus in any reduction
it is necessary to provide consistent ciphertexts to the adversary (i.e. the IV value must be consistent). The
(cryptographic) separation gained by using the firewall technique (see Section 3.2 for discussion and def-
inition) assists with producing (updates of) non-challenge ciphertexts, but embedding any challenge value
while also providing answers to the O.Corr queries of the underlying adversary is very challenging.

The regular key insulation technique as introduced by LT18 – where the reduction constructs one hybrid
for each epoch – does not work. Specifically, in any reduction to a DDH-like assumption, it is not possible
to provide a challenge ciphertext in a left or right sense (to the left of this challenge ciphertext are of some
form, and to the right of this challenge ciphertext are of some other form) if the underlying adversary asks
for tokens around the challenge epoch: deterministic updates mean that tokens will make these ciphertexts
of the same form and this gap will be easily distinguishable.
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SHINE2.KG(λ) :

k
$←− Z∗q

return k

SHINE2.TG(ke, ke+1) :

∆e+1 ← ke+1

ke

return ∆e+1

SHINE2.Enc(ke,m) :
parse m = (m1, ...,mn)

IV
$←− V

C0 ←
(
π0(IV)

)ke

for i = 1, ..., n do
Ci ←

(
πi(IV ⊕mi)

)ke

Ce ← (C0, ...Cn)
return Ce

SHINE2.Dec(ke,Ce) :

parse Ce = (C0, ...,Cn)

a0 ←
(
C0
)1/ke

IV′ ← π−1
0 (a0)

for i = 1, ..., n do
ai ←

(
Ci
)1/ke

m′i ← π−1
i (ai)⊕ IV′

m′ ← (m′1, ...,m′n)
return m′

SHINE2.Upd(∆e+1,Ce) :

parse Ce = (C0, ...,Cn)
for i = 0, ..., n do

Ci
e+1 ← (Ci

e)
∆e+1

return Ce+1

Figure 19: Updatable encryption scheme SHINE2 for family of permutations {π0, ..., πn} and λ-bit prime
q.

We counteract this problem by constructing a hybrid argument across insulated regions. This means that
in each hybrid, we can embed at one firewall of the insulated region, and simulate all tokens within that
insulated region to enable answering queries to both O.Upd and O.UpdC̃. The reduction’s distinguishing
task is thus ensured to be at the boundaries of the insulated regions, the firewalls, so any (non-trivial) win for
the underlying adversary is ensured to carry through directly to the reduction.

5.2 Proof Method of Theorem 2: Constructing a Hybrid argument across Insulated Regions

We now explain how we bound the advantage of any adversary playing detIND-UE for SHINE by the advan-
tage of a reduction playing DDH.

Notice that the non-corrupted key space is the union set of all insulated regions, i.e. {0, 1, ..., n} \ K∗ =
∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}. If the trivial win conditions are not triggered and the adversary knows a
challenge-equal ciphertext in some epoch within an insulated region, then since the adversary knows all
tokens in that insulated region, the adversary will know all challenge-equal ciphertexts in that insulated
region. Then we have

C∗ = ∪(j,fwlj ,fwrj)∈S⊆FW{fwlj , ..., fwrj},

where S is a subset of firewall list FW .
We apply the firewall technique to set up hybrid games such that in hybrid i, we embed within the i-th

insulated region: this means that to the left of the i-th insulated region the game responds with the b = 1
case of the detIND-UE experiment, and to the right of the i-th insulated region it gives an encryption of the
challenge input message as output, i.e. b = 0. This means we have one hybrid for each insulated region,
moving left-to-right across the epoch space.

We construct a reduction B playing the DDH experiment in hybrid i. Initially, B guesses the location
of the i-th insulated region. If the underlying adversary has performed a corrupt query within this insulated
region that would lead to the reduction failing, the reduction aborts the game. We use the algorithm Check
described in Fig. 20, to check if this event happens.

In particular, within the insulated region, the reduction can simulate challenge ciphertexts and non-
challenge ciphertexts using its DDH tuple. Furthermore, ciphertexts can be moved around within the insu-
lated region by tokens.

We note that the problem of challenge insulation in schemes with deterministic updates was also observed
independently and concurrently by Klooß et al. [[KLR19b], § B.2]. Their solution (though in the different
context of CCA security of UE with certain properties) is to form a hybrid argument with a hybrid for each
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Check(inp, ê; e; fwl, fwr) :
if ê > e then

return ⊥
if inp = key and ê ∈ {fwl, ..., fwr} then

return ABORT

if inp = token and ê ∈ {fwl, fwr+1} then
return ABORT

Figure 20: Algorithm Check, used in proofs in this section. In Check, ê is the epoch in the adversary’s
request, and e is the current epoch.

epoch, and essentially guess an epoch r which is the first token ‘after’ the hybrid index that the adversary
has not corrupted, and use the inherent ‘gap’ in the adversary’s knowledge continuum to replace challenge
updates across this gap with encryptions of just one of the challenge messages. It is not clear if this approach
would work for showing detIND-UE (or IND-ENC) of SHINE. We conjecture that even if it were possible
to construct a reduction in this vein, our approach enables a more direct proof: in particular we do not need
to assume specific additional properties of the UE scheme in question for it to work.

5.3 SHINE is detIND-UE Secure

In Theorem 2, we show that SHINE is detIND-UE in the ideal cipher model, if DDH holds. The loss incurred
by this proof is the normal n3 and also the number of encryption queries the adversary makes before it makes
its challenge: to avoid the issues described above we not only need to guess the location of the challenge
firewall but also the ciphertext that the adversary will submit as its challenge.

The ideal cipher model, a version of which was initially given by Shannon [Sha49] and shown to be
equivalent to the random oracle model by Coron et al. [CPS08], gives all parties access to a permutation
that is chosen randomly from all possible key-permutation possibilities of the appropriate length. Since the
SHINE scheme exponentiates the output of the permutation by the epoch key to encrypt, our reduction can
thus ‘program’ the transformation from permutation outputs to group elements.

Theorem 2. Let G be a group of order q (a λ-bit prime) with generator g, and let SHINE1 be the updatable
encryption scheme described in Fig. 18. For any detIND-UE adversary A against SHINE that asks at most
QE queries to O.Enc before it makes its challenge, there exists an adversary B2 against DDH such that

AdvdetIND-UE
SHINE, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B2(λ).

Proof. Play hybrid games. We begin by partitioning non-corrupted key space as follows: {0, 1, ..., n}\K∗ =
∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}, where fwri and fwri are firewalls of the i-th insulated region. Recall the
definition from Section 3.2 and firewall computing algorithm FW-Find in Fig. 7: fwli, fwri are firewalls of
the i-th insulated region if (i, fwli, fwri) ∈ FW .

For b ∈ {0, 1}, define game Gb
i as ExpdetIND-UE-b

SHINE, A except for:

• The game randomly picks an integer h, and if the challenge input C̄ is not an updated ciphertext of the
h-th O.Enc query, it (aborts and) returns a random bit for b′. This loss is upper-bounded by QE.

• The game randomly picks fwli, fwri
$←− {0, ..., n} and if fwli, fwri are not the i-th firewalls, returns a

random bit for b′. This loss is upper-bounded by (n+ 1)2.

• For the challenge (made in epoch ẽ, input (m̄, C̄)): If ẽ < fwli then return a ciphertext with respect to
C̄, if ẽ > fwri return a ciphertext with m̄, and if fwli ≤ ẽ ≤ fwri then return a ciphertext with m̄ when
b = 0, return a ciphertext with respect to C̄ when b = 1.

• After A outputs b′, returns b′ if twf 6= 1 or some additional trivial win condition triggers.

If h, fwli, fwri are the desired values, then G0
1 is ExpdetIND-UE-0

SHINE, A , i.e. all challenges are encryptions
of m̄. And there exists some l (the total number of insulated regions, bounded by n + 1), game G1

l is
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ExpdetIND-UE-1
SHINE, A , i.e. all challenges are updates of C̄. Let E to be the event that h, fwli, fwri are the desired

values, notice that Pr[Gb
i = 1|¬E] = 1

2 for any 1 ≤ i ≤ n+ 1 and b ∈ {0, 1}. Then

Pr[G1
l = 1] = Pr[G1

l = 1|E] ·Pr[E] + Pr[G1
l = 1|¬E] ·Pr[¬E]

= Pr[ExpdetIND-UE-1
SHINE, A = 1] · 1

(n+ 1)2QE
+

1

2
· (1− 1

(n+ 1)2QE
), and

Pr[G0
1 = 1] = Pr[ExpdetIND-UE-0

SHINE, A = 1] · 1

(n+ 1)2QE
+

1

2
· (1− 1

(n+ 1)2QE
)

Thus we have that

|Pr[G1
l = 1]−Pr[G0

1 = 1]| = 1

(n+ 1)2QE
· |Pr[ExpdetIND-UE-1

SHINE, A = 1]−

Pr[ExpdetIND-UE-0
SHINE, A = 1]|

=
1

(n+ 1)2QE
·AdvdetIND-UE

SHINE, A (λ)

Notice that all queries in G1
i−1 and G0

i have the equal responses: for the challenge query and O.UpdC̃, if
called in epoch in first i− 1 insulated regions, the reduction returns a ciphertext with respect to C̄, otherwise
returns an encryption of m̄. Therefore, for any l(≤ n+ 1), |Pr[G1

l = 1]−Pr[G0
1 = 1]| ≤

∑l
i=1 |Pr[G1

i =
1]−Pr[G0

i = 1]|. We prove that for any 1 ≤ i ≤ l, |Pr[G1
i = 1]−Pr[G0

i = 1]| ≤ 2AdvDDH
G, (λ). We only

prove one of these l hybrids, the rest can be similarly proven.
In hybrid i. Suppose thatAi is an adversary attempting to distinguish G0

i from G1
i . For all queries concerning

epochs outside of the i-th insulated region the responses will be equal in either game, so we assume that Ai

asks for at least one challenge ciphertext in an epoch within the i-th insulated region (then [fwli, fwri] ⊆ C∗)
and this is where we will embed DDH tuples in our reduction.

We construct a reduction B2, detailed in Fig. 21, that is playing the standard DDH game and will simulate
the responses of queries made by adversary Ai. The reduction B2 receives DDH tuples (X,Y, Z), flips a
coin b and simulates game Gb

i . Whenever the reduction needs to provide an output of π(·) to A, it chooses
(‘programs’) some random value r such that π(·) = gr. Then, we use the fact that (gr)ke = (gke)r and use
the gke values as ‘public keys’ to allow simulation. In this setting, decryption (i.e. π−1) is simply a lookup
to this mapping of the ideal cipher π. A summary of the technical simulations follows:

Initially,

1. B2 guesses the values of h, fwli, fwri.

2. B2 generates all keys and tokens except for kfwli , ..., kfwri , ∆fwli ,∆fwri+1. If Ai ever corrupts these
keys and tokens – which indicates the firewall guess is wrong – the reduction aborts the game.

3. B2 computes the public values of keys in an epoch:

• e 6∈ {fwli, ..., fwri}: B2 computes PKe = gke ;

• e ∈ {fwli, ..., fwri}: B2 embeds DDH value Y as PKfwli . More precisely, if b = 0,PKfwli = Y ,
otherwise PKfwli = Y kfwli−1 (since g∆fwli = Y ). Then B2 uses tokens ∆fwli+1, ...,∆fwri to
compute the remaining public key values PKe in the insulated region.

To simulate a non-challenge ciphertext that is:

• not the h-th query to O.Enc: B2 generates a random value r for each encryption (so that the ran-
domness will be consistent for calls that Ai makes to O.Upd) and programs the ideal cipher with
Ce = PKr

e. To respond to O.Upd queries, the reduction computes Ce′ = PKr
e′ to update a non-

challenge ciphertext to epoch e′.
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• the h-th query to O.Enc: B2 embeds either a random ciphertext (b = 0) or a DDH value (b = 1)
to the encryption (Ceh). Furthermore, the reduction uses tokens ∆0, ...,∆fwli−1 to update the h-th
encryption. Note that C̄ is an update of the h-th encryption. The adversary can not ask for update of
the h-th encryption in an epoch e ≥ fwli, as this would trigger the trivial win condition [fwli, fwri] ⊆
I∗ ∩ C∗ 6= ∅.

To simulate challenge-equal ciphertext in an epoch that is:

• to the left of the i-th insulated region: B2 simulates SHINE.Upd(C̄) using the tokens that it created
itself.

• within the i-th insulated region: B2 simulates SHINE.Upd(C̄) if b = 1, and simulates SHINE.Enc(m̄)
if b = 0. More precisely, B2 embeds DDH value X to ciphertext information of challenge input,
embeds DDH value Z to the challenge ciphertext. Which means if b = 1, the reduction will give the

value X to Ceh , Z
∏fwli−1

j=eh+1
∆j to C̃fwli (recall g∆fwli = Y ) since

C̃fwli = SHINE.Upd(C̄) = C̄
∆fwli
fwli−1 = (C

∆fwli
eh )

∏fwli−1
j=eh+1

∆j
.

If b = 0, the reduction will give X to π(IV||m̄), and Z to C̃fwli (recall PKfwli = Y ) since C̃fwli =
SHINE.Enc(m̄) = π(IV||m̄)kfwli . Furthermore, the reduction uses tokens ∆fwli+1, ...,∆fwri to update
C̃fwli to simulate all challenge ciphertext in epochs within the insulated region.

• to the right of the i-th insulated region: B2 simulates SHINE.Enc(m̄) using the keys that it created
itself.

Eventually, B2 receives the output bit b′ fromAi. If b′ = b, then B2 guesses that it has seen real DDH tuples
(returns 0 to its DDH challenger), otherwise, B2 guesses that it has seen random DDH tuples (returns 1).

If B2 receives a real DDH tuple, then B2 perfectly simulates the environment of Ai in Gb
i . If B2 receives

a random DDH tuple, then B2 wins with probability 1/2. After some computation similar to that in the proof
of Theorem 1.3 we have AdvDDH

G, B2(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.

5.4 SHINE is IND-ENC Secure.

As a corollary of Theorem 1.4 and Theorem 2, SHINE is IND-ENC – however we can give a tighter proof –
eliminating the QE term – by directly proving the IND-ENC security of SHINE. The proof follows a similar
strategy to that of Theorem 2, with one hybrid for each insulated region.

Proposition 3. Let G be a group of order q (a λ-bit prime) with generator g, and let SHINE1 be the updatable
encryption scheme described in Fig. 18. For any IND-ENC adversary A against SHINE, there exists an
adversary B3 against DDH such that

AdvIND-ENC
SHINE, A(λ) ≤ 2(n+ 1)3 ·AdvDDH

G, B3(λ).

Proof. Similarly to the proof of Theorem 2, we use the firewall technique and construct hybrid games. For
b ∈ {0, 1}, define game Gb

i as ExpIND-ENC-b
SHINE, A except for:

• The game randomly pick two numbers fwli, fwri and if fwli, fwri are not the i-th firewalls returns a
random bit for b′. This loss is upper bounded by (n+ 1)2;

• For challenge made in epoch ẽ with input (m̄0, m̄1): If ẽ < fwli then return a ciphertext with m̄1, if
ẽ > fwri return a ciphertext with m̄0, and if fwli ≤ ẽ ≤ fwri return a ciphertext with m̄b.

• After A outputs b′: returns b′ if twf 6= 1 or some additional trivial win condition triggers.
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Reduction B2 playing DDH in hybrid i:
receive (g,X, Y, Z)
do Setup
m̄, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄, C̄), get C̃ẽ

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅

if ABORT occurred or twf = 1
or (i, fwli, fwri) 6∈ FW then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(λ)

b
$←− {0, 1}; k0 ← SHINE.KG(λ)

∆0 ←⊥; e, c← 0; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwli, fwri

$←− {0, ..., n}; h
$←− {1, ...,QE}

for j ∈ {0, ..., fwli-1} ∪ {fwri+1, ..., n} do
kj

$←− Z∗q ; ∆j ← kj

kj−1

∗∗
;PKj ← gkj

if b = 0 then
PKfwli ← Y ; C

$←− G
else
PKfwli ← Y kfwli−1 ; C← X

for j ∈ {fwli+1, ..., fwri} do
∆j

$←− Z∗q ;PKj ← PK
∆j

j−1

O.Enc(m) :
c← c + 1
if c = h then

Ce ← C; inf ← e
else
inf

$←− Z∗q ;π(IV||m)← ginf ; Ce ← PKinf
e

L ← L ∪ {(c,Ce, e; inf)}
return Ce

O.Next :
e← e + 1

O.Upd(Ce−1) :
if (c,Ce−1, e− 1; inf) 6∈ L then

return ⊥
if c = h then

Ce ← C∆e
e−1

else
Ce ← PKinf

e

L ← L ∪ {(c,Ce, e; inf)}
return Ce

O.Corr(inp, ê) :
do Check(inp, ê; e; fwli, fwri)
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

do CHALL with (m̄, C̄) :

if (h, C̄, ẽ− 1; inf) /∈ L then
ABORT

if b = 0 then
π(IV||m̄)← X; C̃fwli ← Z

else
π(IV||m̄)

$←− G; C̃fwli ← Z
∏fwli−1

j=inf+1 ∆j

for j ∈ {0, ..., fwli − 1} do
C̃j ← C̄(

∏j
k=0 ∆k)/(

∏ẽ−1
k=0 ∆k) left

for j ∈ {fwli + 1, ..., fwri} do
C̃j ← C̃

∆j

j−1 embed
for j ∈ {fwri + 1, ..., n} do

C̃j ← (π(IV||m̄))kj right
L̃ ← ∪nj=0{(C̃j , j)}
return C̃ẽ

O.UpdC̃
C ← C ∪ {e}
find (C̃e, e) ∈ L̃
return C̃e

Figure 21: Reduction B2 for proof of Theorem 2. Moving left-to-right through embedding DDH tuples in
the i-th insulated region: when b = 1, embedding DDH tuples to token values to move left to random; when
b = 0, embedding DDH tuples to key values to move right to random. inf is used to track the fixed additional
information over updated ciphertext, it is equal to an epoch if c = h, otherwise it is a random value used in
the encryption and updating. ** indicates ∆0 and ∆fwri+1 are skipped in the computation.

30



Similarly to the computation in Theorem 2, we have

AdvIND-ENC
SHINE, A(λ) = (n+ 1)2 ·

(
l∑

i=1

|Pr[G1
i = 1]−Pr[G0

i = 1]|

)
,

for some l. Again we need to prove that |Pr[G1
i = 1]−Pr[G0

i = 1]| ≤ 2AdvDDH
G, (λ).

We construct a reduction B3, detailed in Fig. 22, that is playing the standard DDH game and runs Ai.
The reduction B3 flips a coin b, and simulates Gb

i by using DDH tuples (X,Y, Z) to output SHINE.Enc(m̄b)
in the i-th insulated region. IfAi guess b correctly, then B3 guesses its real DDH tuples, otherwise, B3 guess
its random DDH tuples. If B3 receives a real DDH tuple, then B3 perfectly simulates the input of Ai in Gb

i .
If B3 receives a random DDH tuple, then B3 wins with probability 1/2. After some computation similar to
that in the proof of Theorem 1.3 we have that AdvDDH

G, B3(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.

Reduction B3 playing DDH in hybrid i:
receive (g,X, Y, Z)
do Setup
m̄0, m̄1 ← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄0, m̄1), get C̃ẽ

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)
twf ← 1 if :
C∗ ∩ K∗ 6= ∅

if ABORT occurred or twf = 1
or (i, fwli, fwri) 6∈ FW then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(λ)

b
$←− {0, 1}; k0 ← SHINE.KG(λ)

∆0 ←⊥; e← 0; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwli, fwri

$←− {0, ..., n}
PKfwli ← Y
for j ∈ {fwli+1, ..., fwri} do

∆j
$←− Z∗q ; PKj ← PK

∆j

j−1

for j ∈ {0, ..., fwli-1} ∪ {fwri+1, ..., n} do
kj

$←− Z∗q ; ∆j ← kj

kj−1

∗∗
;PKj ← gkj

O.Enc(m) :

r
$←− Z∗q ;π(IV||m)← gr; Ce ← PKr

e

L ← L ∪ {(·,Ce, e; r)}
return Ce

O.Next :
e← e + 1

O.Upd(Ce−1) :
if (·,Ce−1, e− 1; r) 6∈ L then

return ⊥
Ce ← PKr

e

L ← L ∪ {(·,Ce, e; r)}
return Ce

O.Corr(inp, ê) :
Check(inp, ê; e; fwli, fwri)
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

do CHALL with (m̄0, m̄1) :

π(IV||m̄b)← X;π(IV||m̄b⊕1)
$←− G

C̃fwli ← Z
for j ∈ {0, ..., fwli − 1} do

C̃j ← (π(IV||m̄1))kj left
for j ∈ {fwli + 1, ..., fwri} do

C̃j ← C̃
∆j

j−1 embed
for j ∈ {fwri + 1, ..., n} do

C̃j ← (π(IV||m̄0))kj right
L̃ ← ∪nj=0{(C̃j , j)}
return C̃ẽ

O.UpdC̃
C ← C ∪ {e}
find (C̃e, e) ∈ L̃
return C̃e

Figure 22: Reduction B3 for proof of Proposition 3. Embedding DDH tuples to challenge ciphertexts:
moving the challenge ciphertexts Enc(m̄b) within the i-th insulated region to be random. ** indicates ∆0

and ∆fwri+1 are skipped in the computation.
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6 The BLMR Scheme of Boneh et al.

We present the original scheme given by Boneh et al. [BLMR13], which we denote by BLMR. The scheme
is a direct application of the key-homomorphic PRFs defined in the same paper: the authors observed that
the Naor-Reingold-Pinkas PRF [NPR99] is key homomorphic, and presented a number of other construc-
tions based on DLIN and LWE. The updatable encryption scheme BLMR [BLMR13], which is ciphertext-
independent and defined in Fig. 24, represented the first UE construction.

To present the schemes and the results in this section, we first need to introduce a definition of a key-
homomorphic PRF, and also the regular (left-or-right) IND-CPA security definition for symmetric encryption.

Definition 11 (Key-homomorphic PRF [BLMR13]). Let F : KS ×X → Y be some efficiently-computable
function, where (KS,⊕) and (Y,⊗) are groups. Then, (F,⊕,⊗) is a key-homomorphic PRF if F is a PRF,
and for every k1, k2 ∈ KS and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2).

Definition 12. Let SKE = {KG,E,D} be an symmetric encryption scheme. Then the IND-CPA advantage
of an adversary A against SKE is defined as

AdvIND-CPA
SKE, A (λ) =

∣∣∣∣Pr[ExpIND-CPA-1
SKE, A = 1]−Pr[ExpIND-CPA-0

SKE, A = 1]

∣∣∣∣,
where the experiment ExpIND-CPA-b

SKE, A is given in Fig. 23.

ExpIND-CPA-b
SKE, A (λ) :

k
$←− KG

(m0,m1, st)← AO.E(λ)
if |m0| 6= |m1| then

return ⊥
C̃

$←− SKE.Enc(k,mb)
b′ ← AO.E(C̃)
return b′

O.E(m) :
C← SKE.Enc(k,m)
return C

Figure 23: The experiments defining IND-CPA security for Symmetric Encryption schemes

BLMR.KG(λ) :

ke
$←− F.KG(λ)

return ke

BLMR.TG(ke, ke+1) :
∆e+1 ← ke ⊕ ke+1

return ∆e+1

BLMR.Enc(ke,m) :

N
$←− χ

C1
e ← F(ke,N)⊗m

Ce ← (C1
e ,N)

return Ce

BLMR.Dec(ke,Ce) :

parse Ce = (C1
e ,N)

m′ ← C1
e ⊗ F(ke,N)

return m′

BLMR.Upd(∆e+1,Ce) :

parse Ce = (C1
e ,N)

Ce+1 ← (C1
e ⊗ F(∆e+1,N),N)

return Ce+1

Figure 24: Updatable encryption scheme BLMR [BLMR13] for key-homomorphic PRF F.

Note that BLMR is trivially insecure in terms of IND-UPD (in any of its three flavors) since the adversary
can gain the epoch key for the epoch preceding the challenge epoch, allowing decryption of the challenge
input ciphertexts and consequently a direct comparison of nonce values between these input ciphertexts and
the challenge ciphertext.

32



LT18 detailed an extension of BLMR, denoted BLMR+, where the nonce is encrypted: this scheme is
described in Fig. 25. LT18 showed that BLMR+ is IND-ENC and weakIND-UPD secure, however it is not
detIND-UE secure, since the token contains the encryption key for the nonce value. More precisely, the
adversary runs as follows:

• Choose some m0, call O.Enc(m0) and receive some C.

• Call O.Next, choose m1 (that is distinct from m0), do O.Chall(C,m1) and receive C̃.

• Call O.Next, call O.UpdC̃, call O.Corr(token, 2) and O.Corr(key, 0).

• Do BLMR+.Deck0(C) to see its nonce, do Dk2
2
(C̃) to see nonce of challenge ciphertext and compare.

This is a very similar attack to the one LT18 used to demonstrate that BLMR+ is not detIND-UPD secure.

BLMR+.KG(λ) :

k1 $←− F.KG(λ)

k2 $←− SKE.KG(λ)
k← (k1, k2)
return k

BLMR+.TG(ke, ke+1) :

parse ke = (k1
e , k

2
e), ke+1 = (k1

e+1, k
2
e+1)

∆e+1 ← (k1
e ⊕ k1

e+1, (k
2
e , k

2
e+1))

return ∆e+1

BLMR+.Enc(ke,m) :

parse ke = (k1
e , k

2
e)

N
$←− χ

C1
e ← F(k1

e ,N)⊗m
C2
e ← SKE.E(k2

e ,N)
Ce ← (C1

e ,C
2
e)

return Ce

BLMR+.Dec(ke,Ce) :

parse ke = (k1
e , k

2
e)

parse Ce = (C1
e ,C

2
e)

N← SKE.D(k2
e ,C

2
e)

m′ ← C1
e ⊗ F(k1

e ,N)
return m′

BLMR+.Upd(∆e+1,Ce) :

parse ∆e+1 = (∆′e+1, (k
2
e , k

2
e+1))

parse Ce = (C1
e ,C

2
e)

N← SKE.D(k2
e ,C

2
e)

C1
e+1 ← C1

e ⊗ F(∆′e+1,N)
C2
e+1 ← SKE.E(k2

e+1,N)
Ce+1 ← (C1

e+1,C
2
e+1)

return Ce+1

Figure 25: Updatable encryption scheme BLMR+ [BLMR13, LT18a] for key-homomorphic PRF F and
symmetric key encryption scheme SKE.

Although BLMR+ is not detIND-UE secure, we can prove that it is weakIND-UE secure.

6.1 BLMR+ is weakIND-UE Secure.

Proof technique of Proposition 4. The proof technique is very similar the proof of weakIND-UPD secu-
rity of BLMR+ in LT18 [LT18a]. We consider two situations of the additional requirements of weakIND-UE
security and provide two proofs based on these situations. We only describe the first proof technique as both
proofs use the same strategy. We construct hybrid games across each epoch, such that distinguishing the end-
points represents success in the weakIND-UE game. Suppose Ai is an adversary trying to distinguish games
in hybrid i. We consider a modified hybrid game in which the first element of ciphertexts is a uniformly
random element. We can prove that the ability to notice this change is upper bounded by PRF advantage.
Then, we conclude the proof by switching out the nonce inside the encryption in the second component:
noticing this change is upper bounded by IND-CPA advantage of an adversary against SKE.

Proposition 4. Let BLMR+ be the updatable encryption scheme described in Fig. 25. For any weakIND-UE
adversary A against UE that asks at most QE queries to O.Enc before it makes its challenge, there exists an
IND-CPA adversary BIND-CPA

4 against SKE and an PRF adversary BPRF
4 against F such that

AdvweakIND-UE
BLMR+, A (λ) ≤ (n+ 1)3 ·

(
AdvIND-CPA

SKE, BIND-CPA
4

(λ) + 2AdvPRF
F, BPRF

4
(λ) +

2QE
2

|X |

)
.
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Proof. The additional requirement of weakIND-UE security states: If the adversary knows a secret key or a
token in epoch e∗ ∈ I∗, then for any e ∈ C∗, if the adversary corrupts ∆e or ∆e+1 then the adversary trivially
loses, i.e. twf ← 1. We consider two situations (whether or not I∗ ∩ (K∗ ∪ T ∗) = ∅) that might happen.
The reduction can flip a coin at the beginning of the simulation to guess which situation the adversary will
produce and set up the simulation appropriately.

Situation 1. Suppose the adversary knows a secret key or a token in epoch e∗ ∈ I∗.
(Step 1.) We construct a sequence of hybrid games. Define game Gi as ExpweakIND-UE-b

BLMR+, A except for:

• The challenge input (m̄, C̄), called in epoch j. If j ≤ i then return a ciphertext that is an update of C̄,
if j > i then return a ciphertext that is an encryption of m̄.

• After A outputs b′, returns b′ if twf 6= 1.

Similarly the advantage AdvweakIND-UE
BLMR+, A (λ) is upper bounded by |Pr[G−1 = 1]−Pr[Gn = 1]|. For any

i, we prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤ AdvIND-CPA
SKE, BIND-CPA

4
(λ) + 2AdvPRF

F, BPRF
4

(λ) +
2QE

2

|X |
.

Suppose Ai is an adversary trying to distinguish Gi from Gi−1. For all queries concerning epochs other
than i the responses will be equal in either game, so we assume Ai asks for a challenge ciphertext in epoch
i. That means if the adversary corrupts tokens in epoch i or epoch i+ 1, the trivial win condition is met and
the adversary loses.

(Step 2.) We consider a modified game GPRF which is the same as Gi except for: the first element of
ciphertexts given to the adversary in epoch i is a uniformly random element in Y . More precisely, in epoch
i, when Ai asks for O.Enc,O.Upd or a challenge-equal ciphertext to game Gb

PRF:

• An O.Enc(m) query: randomly choose a nonce N
$←− X \ X , set X ← X ∪ {N}, randomly choose

C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N), set L ← L ∪ {(·,Ci, i; N,m)}. Output Ci.

• An O.Upd(Ci−1) query: proceed if (·,Ci−1, i− 1; N,m) ∈ L. If N ∈ X , then abort the game;

otherwise, set X ← X ∪ {N}, randomly choose C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N), set L ←
L ∪ {(·,Ci, i; N,m)}. Output Ci.

• A challenge-equal ciphertext (with the underlying challenge input (m̄0, C̄)): proceed if (·, C̄, ẽ −
1; N1, m̄1) ∈ L. If N1 ∈ X , then abort the game; otherwise, set X ← X ∪ {N1}. Randomly choose a

nonce N0
$←− X \X , set X ← X ∪{N0}, randomly choose C1

i
$←− Y , compute C̃2

i ← SKE.E(k2
i ,Nb),

(C̃i, i; Nb, m̄b) ∈ L̃. Output C̃i.

We wish to prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤ AdvGPRF(λ) + 2AdvPRF
F, BPRF

4
(λ) +

2QE
2

|X |
.

If the following results are true, then we have the above result.

|Pr[Gi = 1]−Pr[G1
PRF = 1]| ≤ AdvPRF

F, BPRF
4

(λ) +
QE

2

|X |

and

|Pr[Gi−1 = 1]−Pr[G0
PRF = 1]| ≤ AdvPRF

F, BPRF
4

(λ) +
QE

2

|X |
.

We construct an PRF adversary BPRF
4 , detailed in Fig. 26, against F to simulate the responses of queries

made by Ai. The reduction does appropriate bookkeeping for the nonce, message, and ciphertexts in list L.
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Reduction BPRF
4 playing PRF in hybrid i:

do Setup
m̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄0, C̄), get C̃ẽ

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)
if I∗ ∩ (K∗ ∪ T ∗) = ∅ then

return ABORT

twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or
(∃e ∈ C∗ s.t. e or e + 1 ∈ T ∗)

if ABORT occurred or twf = 1 then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(λ)

b
$←− {0, 1};

∆0 ←⊥; e← 0; phase, twf ← 0;
L, L̃, C,K, T , X ← ∅
for j ∈ {0, ..., n} do

k∗∗j
$←− BLMR+.KG(λ)

∆∗∗∗j+1
$←− BLMR+.TG(kj , kj+1)

O.Enc(m) :
if e 6= i then

Ce ← BLMR+.Enc(ke,m)
if e = i then

N
$←− X \X;X ← X ∪ {N}

y ← O.f(N); C1
i ← y ⊗m embed

C2
i ← SKE.E(k2

i ,N)
Ci ← (C1

i ,C
2
i )

L ← L ∪ {(·,Ce, e; N,m)}
return Ce

O.Next :
e← e + 1

O.Upd(Ce-1) :
if (·,Ce-1, e-1; N,m) 6∈ L or

(e = i and N ∈ X) then
return ⊥

if e 6= i, i+ 1 then
Ce ← BLMR+.Upd(∆e,Ce-1)

if e = i+ 1 then
Ce ← (F(k1

e ,N)⊗m, SKE.E(k2
e ,N))

if e = i then
X ← X ∪ {N}
y ← O.f(N); C1

i ← y ⊗m embed
C2
i ← SKE.E(k2

i ,N)
Ci ← (C1

i ,C
2
i )

L ← L ∪ {(·,Ce, e; N,m)}
return Ce

O.Corr(inp, ê) :
if ê > e or e = i or

(e = i+1 and inp = token) then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

do CHALL with (m̄0, C̄) :

if (·, C̄, ẽ− 1; N1, m̄1) 6∈ L or N1 ∈ X then
return ⊥

N0
$←− X \ (X ∪ {N1}) ; X ← X ∪ {N0,N1}

yb ← O.f(Nb); C̃1
i ← yb ⊗ m̄b embed

C̃2
i ← SKE.E(k2

i ,Nb)
C̃i ← (C̃1

i , C̃
2
i )

for j ∈ {0, ..., i− 1} do
C̃j ← (F(k1

j ,N1)⊗ m̄1, SKE.E(k2
j ,N1)) left

for j ∈ {i+ 1, ..., n} do
C̃j ← (F(k1

j ,N0)⊗ m̄0, SKE.E(k2
j ,N0)) right

L̃ ← ∪nj=0{(C̃j , j)}
return C̃ẽ

O.UpdC̃
C ← C ∪ {e}
find (C̃e, e) ∈ L̃
return C̃e

Figure 26: Reduction BPRF
4 for proof of Proposition 4. Recall that in the PRF game in Definition, 2, the

oracle O.f responds to query input N with either F(k,N) or a random value. ** indicates k1
i are skipped in

the generation. *** indicates ∆i and ∆i+1 are skipped in the generation.
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Specifically, in epoch i, BPRF
4 collects used nonces in list X (initiated as empty set). Initially, the reduction

flips a coin b
$←− {0, 1}, simulates the challenge response with m̄0 if b = 0; otherwise, simulates the

challenge response with C̄. The reduction BPRF
4 generates all keys and tokens except for k1

i . In epoch i,
BPRF

4 calls its PRF challenger for help computing F(k1
i ,N). Eventually BPRF

4 receives b′ from Ai, and if
b′ = b, then BPRF

4 guesses that it is interacting with the ‘real’ PRF, i.e. outputs 0 to the PRF challenger,
otherwise BPRF

4 outputs 1.
When BPRF

4 interacts with ExpPRF-0
F, BPRF

4
, the simulation of Gi−1 (if b = 0) or Gi (if b = 1) is perfect

except if a nonce collision during the game has caused an abort, this term is bounded by QE
2

|X | . When BPRF
4

interacts with ExpPRF-1
F, BPRF

4
, the simulation of Gb

PRF to Ai is perfect. We have the desired result.

(Step 3.) Suppose Ai is an adversary trying to distinguish game G0
PRF from game G1

PRF. Then we
construct a reduction BIND-CPA

4 , detailed in Fig. 27, playing the IND-CPA game that runs Ai. We claim that

AdvGPRF
Ai

(λ) ≤ AdvIND-CPA
BIND-CPA
4

(λ).

Reduction BIND-CPA
4 generates all keys and tokens except for ki. In epoch i, BIND-CPA

4 uses the IND-CPA
challenger for assistance in computing SKE.E(k2

i ,N). In epoch i, the reduction forwards all nonces of
O.Enc and O.Upd to the IND-CPA challenger, and sets the reply in the second part of ciphertext, i.e. C2

i .
For challenge input (m̄, C̄), suppose C̄ has the underlying nonce N1, BIND-CPA

4 chooses nonce N0 while
encrypting m, sends (N0,N1) to the IND-CPA challenger as challenge input, and sets the reply in the second
part of the challenge ciphertext. The following shows how BIND-CPA

4 simulates the responses of queries made
by Ai:

Eventually, BIND-CPA
4 sends the guess bit of A to the IND-CPA challenger. We have the required result.

Situation 2. Suppose the adversary knows none of the secret keys and tokens in epoch e∗ ∈ I∗.
Since the adversary never knows the nonce in the challenge C̄, we do not need to worry if the adversary

knows a token in the challenge epoch or the next epoch will make the adversary trivially win the game.
We use the firewall technique to construct hybrid games: in hybrid i, we embed within the i-th insulated

region. This means that to the left of the i-th insulated region the game responds with an update of the
challenge input ciphertext and to the right of the i-th insulated region it gives an encryption of the challenge
input message. Similarly the advantage AdvweakIND-UE

BLMR+, A (λ) is upper bounded by (n + 1)2 · |Pr[G1
l =

1]−Pr[G0
1 = 1]|. For any 1 ≤ i ≤ l, we prove that

|Pr[G1
i = 1]−Pr[G0

i = 1]| ≤ AdvIND-CPA
SKE, BIND-CPA

4
(λ) + 2AdvPRF

F, BPRF
4

(λ) +
2QE

2

|X |
.

Suppose Ai is an adversary trying to distinguish game G0
i from game G1

i in hybrid i.
As the above step 2 proof, we consider a modified hybrid game in which the first element of ciphertexts

in epoch fwli is a uniformly random element in Y . The difference here is that if Ai asks for encryption
queries or challenge queries in an epoch within the i-th insulated region, the reduction will simulate these
queries in epoch fwli and then output the updated version (updated from epoch fwli to the queried epoch).
Since the update algorithm of BLMR+ is deterministic, this simulation is valid.

Similarly we can prove the modified hybrid game is indistinguishable from the original hybrid game, and
that the distinguishing advantage is upper bounded by the PRF advantage. Finally, similarly to the above
step 3 proof (the difference is the same as the difference mentioned in the former paragraph), the advantage
is upper bounded by IND-CPA advantage of SKE. We have the following result:

AdvweakIND-UE
BLMR+, A (λ) ≤ (n+ 1)3 ·

(
AdvIND-CPA

SKE, BIND-CPA
4

(λ) + 2AdvPRF
F, BIND-CPA

4
(λ) +

2QE
2

|X |

)
.
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Reduction BIND-CPA
4 playing IND-CPA in hybrid i:

do Setup
m̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
do CHALL with (m̄0, C̄), get C̃ẽ

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)
if I∗ ∩ (K∗ ∪ T ∗) 6= ∅ then

return ABORT

twf ← 1 if :
C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or
(∃e ∈ C∗ s.t. e or e + 1 ∈ T ∗)

if ABORT occurred or twf = 1 then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(λ)

b
$←− {0, 1};

∆0 ←⊥; e← 0; phase, twf ← 0;
L, L̃, C,K, T , X ← ∅
for j ∈ {0, ..., n} do

k∗∗j
$←− BLMR+.KG(λ)

∆∗∗∗j+1
$←− BLMR+.TG(kj , kj+1)

O.Enc(m) :
if e 6= i then

Ce ← BLMR+.Enc(ke,m)
if e = i then

N
$←− X \X;X ← X ∪ {N}

C1
i

$←− Y
C2
i ← O.E(N) embed

Ci ← (C1
i ,C

2
i )

L ← L ∪ {(·,Ce, e; N,m)}
return Ce

O.Next :
e← e + 1

O.Upd(Ce-1) :
if (·,Ce-1, e-1; N,m) 6∈ L or

(e = i and N ∈ X) then
return ⊥

if e 6= i, i+ 1 then
Ce ← BLMR+.Upd(∆e,Ce-1)

if e = i+ 1 then
Ce ← (F(k1

e ,N)⊗m, SKE.E(k2
e ,N))

if e = i then
X ← X ∪ {N}
C1
i

$←− Y
C2
i ← O.E(N) embed

Ci ← (C1
i ,C

2
i )

L ← L ∪ {(·,Ce, e; N,m)}
return Ce

O.Corr(inp, ê) :
if ê > e or e = i or (e = i+1 and inp = token) then

return ⊥
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

do CHALL with (m̄0, C̄) :

if (·, C̄, ẽ− 1; N1, m̄1) 6∈ L or N1 ∈ X then
return ⊥

N0
$←− X \ (X ∪ {N1}) ; X ← X ∪ {N0,N1}

C̃1
i

$←− Y
call CHALL with (N0,N1), get C̃2

i embed
C̃i ← (C̃1

i , C̃
2
i )

for j ∈ {0, ..., i− 1} do
C̃j ← (F(k1

j ,N1)⊗ m̄1, SKE.E(k2
j ,N1)) left

for j ∈ {i+ 1, ..., n} do
C̃j ← (F(k1

j ,N0)⊗ m̄0, SKE.E(k2
j ,N0)) right

L̃ ← ∪nj=0{(C̃j , j)}
return C̃ẽ

O.UpdC̃
C ← C ∪ {e}
find (C̃e, e) ∈ L̃
return C̃e

Figure 27: Reduction BIND-CPA
4 for proof of Proposition 4, the simulation is almost the same as reduction

BIND-CPA
4 does except for the underlined simulations. Recall the IND-CPA game in Definition 12: encryption

oracle O.E replies to input N with SKE.Enc(k,N). ** indicates ki are skipped in the generation. ***
indicates ∆i and ∆i+1 are skipped in the generation.
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7 The RISE Scheme of Lehmann and Tackmann

In this section we discuss the Elgamal-based updatable encryption scheme RISE, developed by Lehmann
and Tackmann [LT18a] and given in Fig. 28. KLR19 observed that for RISE, knowledge of an update token
allows the storage host to create arbitrary ciphertexts for messages of its choice: this is a very undesirable
feature for an UE scheme, and is not possible for SHINE.

RISE.KG(λ) :

x
$←− Z∗q

ke ← (x, gx)
return ke

RISE.TG(ke, ke+1) :
parse ke = (x, y), ke+1 = (x′, y′)
∆e+1 ← (x

′

x , y
′)

return ∆e+1

RISE.Enc(ke,m) :
parse ke = (x, y)

r
$←− Zq

Ce ← (yr, gr ·m)
return Ce

RISE.Dec(ke,Ce) :
parse ke = (x, y)
parse Ce = (C1,C2)

m′ ← C2 · C−1/x
1

return m′

RISE.Upd(∆e+1,Ce) :
parse ∆e+1 = (∆, y′)
parse Ce = (C1,C2)

r′
$←− Zq

C′1 ← C∆
1 · y′

r′

C′2 ← C2 · gr
′

Ce+1 ← (C′1,C
′
2)

return Ce+1

Figure 28: Updatable encryption scheme RISE [LT18a] for λ-bit prime q.

7.1 Proofs in LT18

In their IND-ENC and IND-UPD proofs for RISE, LT18 employ game hopping to reduce to DDH. An issue
arises in both proofs, which we identify here using the IND-ENC proof [[LT18b], § D.1]:

Game 0 is a faithful simulation of the IND-ENC game. In Game 1, the reduction does not update ci-
phertexts when O.Upd and O.UpdC̃ are called, and just encrypts as if the values were fresh. This requires
extra bookkeeping to keep track of the (m,C, e) tuples called previously but does not change the adversary’s
view. For Game 2, a hybrid argument separates challenge ciphertexts from actual epoch keys. Updates are
randomized so in the case that the adversary doesn’t know ∆ẽ or ∆ẽ+1, the challenge ciphertext given to the
adversary is different to the one used forO.Enc queries. This is justified using the key-anonymity [BBDP01]
property of Elgamal (under DDH). Unfortunately, the use of this property doesn’t work here since keys
are linked across epochs. The reduction between Game 1 and Game 2 must embed its DDH challenge
(g, gx, gy, gc) in some epoch, where x will play the role of the epoch key (thus let’s call gx the public key
for this epoch) and y will be the randomness used in to construct the challenge ciphertext. It does not know
when the challenge query will come from the IND-ENC algorithm so if the algorithm asks for an O.Enc
query in some epoch, it must use the ‘public key’ gx to create the encryption: ((gx)r, gr ·m). This provides a
correct ciphertext, but now the reduction can no longer answer aO.Corr(k) query for this epoch – regardless
of when the algorithm asks for the challenge ciphertext. Such issues emphasize the difficulty in constructing
proofs that successfully embed the challenge.

The problem can be solved by partitioning the epoch continuum using firewalls, i.e. incurring an (n+1)3

loss (guessing the firewalls incurs an (n + 1)2 loss, and the hybrid argument across epochs incurs an n + 1
loss). In fact, a proof is also possible for our new stronger notion, randIND-UE. In Section 7.2 we use novel
techniques to provide a proof that RISE in fact meets the stronger notion randIND-UE.

7.2 RISE is randIND-UE Secure

We now show that RISE is randIND-UE under DDH. First, we adapt (an extended version of) the Oracle-
DDH experiment to the epoch-based corruption model found in updatable encryption, in a way that ensures
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that it still reduces to DDH. In this way, we lift a lot of the bookkeeping and complexity. Then, the reduction
from randIND-UE to this oracle-based game is straightforward. We believe that this two-step proof strategy
may be useful for proving security of other UE schemes, under any of the security notions discussed so far.

Oracle-Decision-Diffie Hellman for RISE. We give an experiment O-DDHRISE, where each exponent
represents an epoch key, and corruption of keys and tokens is represented: the game allows the adversary to
acquire the difference of two exponents in the form ti = ei

ei−1
. In each ‘epoch’ the adversary can possibly ask

for a challenge viaO.Chall, which returns either a ‘real’ DDH tuple, with the epoch key defined as one of the
exponents, or a random tuple. The game is given in Fig. 29. Just as in the games for UE, the challenger keeps
track of the epochs in which the adversary has access to ‘updates’ of the ‘challenge’ (via CL∗), and access
to the keys (exponents, via EL∗). If these overlap then the adversary can trivially extract from the challenge
value whether it is ‘real’ or ‘random’ and win, so this is of course ruled out. The syntax also follows the
UE games in the sense that once the adversary asks for a challenge, it can only ask for ‘later’ challenges
(i.e. with a higher index) from this oracle – it can of course move this challenge ‘backwards’ into earlier
epochs/indices by applying ‘token’ t.

Definition 13. Fix a cyclic group G of prime order q with generator g. The advantage of an algorithm A
solving the Oracle-Decision Diffie-Hellman for RISE (O-DDHRISE) problem for G and g is

AdvO-DDHRISE

G, A =
∣∣∣Pr[ExpO-DDHRISE-1

G, A (λ) = 1]−Pr[ExpO-DDHRISE-0
G, A (λ) = 1]

∣∣∣
where the experiment ExpO-DDHRISE-b

G, A is given in Fig. 29.

ExpO-DDHRISE-b
G, A (λ) :

phase, i∗ ← 0
EL∗,CL∗ ← ∅
if b = 1 then
w1, ..., wn

$←− Z∗q
else
w1, ..., wn ← 0

e1, ..., en
$←− Z∗q

x1, ..., xn
$←− Z∗q

for i ∈ {0, ...n} do
si ← gei

Xi ← gxi

b′ ← AO.Open,O.Difr,O.Chall(g, {s1, ..., sn})
if EL∗ ∩ CL∗ 6= ∅ then

b′
$←− {0, 1}

return b′

O.Open(i):
update EL∗

return ei

O.Difr(i):
ti ← ei

ei−1

update EL∗,CL∗

O.Chall(i)
if phase = 1 and i < i∗ then

return ⊥
CL∗ ← CL∗ ∪ {i}
Zi ← sxi

i · gwi

if phase = 0 then
i∗ ← i
phase← 1

return (Xi, Zi)

Figure 29: O-DDHRISE experiment for G of order q (λ-bit prime) and generator g.

Theorem 5. Let G be a group of order q (a λ-bit prime) with generator g, and let RISE be the updatable
encryption scheme described in Fig. 28. For any randIND-UE adversary A against RISE, there exists an
adversary B5 against DDH such that

AdvrandIND-UE
RISE, A (λ) = 2(n+ 1)3 ·AdvDDH

G, B5(λ).

This theorem is proven by Lemmas 5.1 and 5.2.

Lemma 5.1. Let G be a group of order q (a λ-bit prime) with generator g. For any adversary A against
O-DDHRISE, there exists an adversary B5.1 against DDH such that

AdvO-DDHRISE

G, A (λ) = (n+ 1)3 ·AdvDDH
G, B5.1(λ),
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where n+ 1 is the number of exponents in the O-DDHRISE game.

Proof. We use a sequence of game hops and a hybrid argument. Define game Gb
i as ExpO-DDHRISE-b

G, A except
for O.Chall: if called in index j, if j < i then return a ‘real’ sample (with wj = 0), and if j > i return a

‘random sample’ (wj
$←− Z∗q). Thus G1

0 is ExpO-DDHRISE-1
G , i.e. all challenges result in ‘random’ DDH tuples,

and G0
n is ExpO-DDHRISE-0

G , i.e. all challenges result in ‘real’ DDH tuples. Thus distinguishing G1
0 from G0

n is
the task of distinguishing ExpO-DDHRISE-1

G, A from ExpO-DDHRISE-0
G, A for adversary A.

Notice that all queries in G0
i−1 and G1

i have the equal responses (For j ≤ i − 1, returns a real sample.

For j > i− 1, returns a random sample). We have AdvO-DDHRISE

G, A (λ) =
∑n

i=0 |Pr[G1
i = 1]−Pr[G0

i = 1]|.
Then we prove that |Pr[G1

i = 1]−Pr[G0
i = 1]| ≤ (n+ 1)2 ·AdvDDH

G, (λ) for any i.
Let Ai be an adversary trying to distinguish G1

i from G0
i . For all queries concerning epochs other than i

the responses will be equal in either game, so we assume that Ai asks for a challenge ciphertext in epoch i
and this is where we will embed in our reduction. We construct a reduction B5.1, detailed in Fig. 30, that is
playing the standard DDH game (Fig. 2) and runs Ai. This reduction guesses the locations of the firewalls
around the challenge query: if Ai adds any of the epochs within this insulated region to its EL∗ list then the
reduction fails. fwl and fwr could take any value in {0, ..., n}, so this loss is upper bounded by (n+ 1)2.

For all challenge queries smaller than i the reduction needs to faithfully respond with a ‘real’ tuple, that is
the exponent of Zj is the product of the exponent used in sj and the exponent in Xj . These queries must still
be consistent with each other, which is why even though the reduction is free to choose xj it must compute
the correct value of sj . For challenge queries larger than i the reduction produces a random value.

Note that Ai will have its own CL∗ and EL∗ lists and B5.1 will simulate these, however we omit this
calculation for readability.

If B5.1 is playing ExpDDH-1
G, B5.1 then it receives a random tuple from its challenger and thus provides a

random response to O.Chall(i), creating a perfect simulation of G1
i to Ai. If B5.1 is playing ExpDDH-0

G, B5.1 then
its tuple is real, providing a perfect simulation of G0

i . We have the required result.

Reduction B5.1 playing ExpDDH-b
G, B5.1(λ)

in hybrid i :
receive (g,X, Y, Z)

fwl, fwr
$←− {0, ..., n}

wi+1, ..., wn
$←− Z∗q

w0, ..., wi−1 ← 0
si ← Y
for j ∈ {0, ..., i-1} ∪ {i+1, ..., n} do
xj

$←− Z∗q ;Xj ← gxj

for j ∈ {0, ..., fwl-1} ∪ {fwr+1, ..., n} do
ej

$←− Z∗q ; tj ←
ej
ej-1
∗∗

; sj ← gej

for j ∈ {fwl+1, ..., fwr} do
tj

$←− Z∗q
for j ∈ {fwl, ..., i-1} do
sj ← Y −

∏i
k=j+1 tk

for j ∈ {i+1, ..., fwr} do
sj ← Y

∏j
k=i+1 tk

b′ ← AO.Open,O.Difr,O.Chall
i (g, {s1, ..., sn})

if ABORT occurred then
b′

$←− {0, 1}
return b′

O.Open(j):
if j ∈ {fwl, ..., fwr} then
ABORT

return ei

O.Difr(j):
if j ∈ {fwl, fwr+1} then
ABORT

return tj

O.Chall(j)
if j = i then
Xj ← X;Zj ← Z

if j 6= i then
Zj ← sj

xjgwj

return (Xj , Zj)

Figure 30: ReductionB5.1 for proof of Lemma 5.1. ** indicates t0 and tfwr+1 are skipped in the computation.
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Lemma 5.2. Let G be a group of order q (a λ-bit prime) with generator g, and let RISE be the updatable
encryption scheme described in Fig. 28. For any randIND-UE adversary A against RISE, there exists an
adversary B5.2 against O-DDHRISE such that

AdvrandIND-UE
RISE, A (λ) = 2 ·AdvO-DDHRISE

G, B5.2 (λ).

Proof. The reduction B5.2 is given in Fig. 31. The reduction B5.2 is playing O-DDHRISE game and runs A.
B5.2 flips a coin b, and simulates ExprandIND-UE-b

RISE, A by interacting with its own O-DDHRISE challenger.
To simulate updated non-challenge ciphertexts (i.e. respond to O.Upd queries), B5.2 must track the un-

derlying messages for these encryptions so that it can generate valid ‘fresh’ encryptions using the ‘public
key’ values {s1, ..., sn} received from its O-DDHRISE challenger. Since updated non-challenge ciphertexts
are of the form Ce = (sre, g

r ·m), where r is a fresh random value, the si values allow B5.2 to successfully
simulate updated non-challenge ciphertexts.

To simulate challenge ciphertext (i.e. respond to challenge query or O.UpdC̃), B5.2 must embed using
its own challenge. Recall that in the O-DDHRISE experiment in Fig. 29, a call to O.Chall(i) will result in
a response Zi = gkẽxi or gkẽxi+wi , and Xi = gxi . When B5.2 receives a challenge query (m̄0,C) (where
C = (gr2kẽ−1 , gr2m̄1) for some m̄1) from A, B5.2 tries to simulate RISE.Enc(kẽ, m̄0) = (gr1kẽ , gr1m̄0)

or RISE.Upd(∆ẽ−1,C) = (C
∆ẽ−1

1 gkẽr3 ,C2g
r3) = (gkẽ(r2+r3), gr2+r3m̄1), where r1, r3 are fresh random

values. B5.2 will embed Zẽ to the first part of the challenge ciphertext and embed Xẽ to the second part of
the challenge ciphertext, i.e. C̃ẽ = (Zẽ, Xẽ · m̄b). Similarly, B5.2 can simulate the response of O.UpdC̃
using the same approach.

Eventually, B5.2 receives the output bit b′ from Ai. If b′ = b, then B5.2 returns 0 to its O-DDHRISE

challenger, otherwise, B5.2 returns 1.
If B5.2 interacting with ExpO-DDHRISE-0

G, B5.2 , then it perfectly simulates ExprandIND-UE-b
RISE, A to A. If B5.2 inter-

acting with ExpO-DDHRISE-1
G, B5.2 , then it wins with probability 1/2. After some computation similar to that in the

proof of Theorem 1.3 we have the desired result.

Reduction B5.2 playing O-DDHRISE game:
receive g, {s1, ..., sn}
e← 0; phase← 0;L ← ∅
m̄0,C← AO.Enc,O.Next,O.Upd,O.Corr(λ)
phase← 1
if (·,C = (C1,C2), ẽ− 1; m̄1) 6∈ L then

return ⊥
call (Xẽ, Zẽ)← O.Chall(ẽ)
b

$←− {0, 1}
C̃← (Zẽ, Xẽ · m̄b)

b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)
if b′ = b then

return 0
else

return 1

O.Enc(m)

r
$←− Z∗q

Ce ← (sre, g
r ·m);L ← L ∪ {(·,Ce, ·; m)}

return Ce

O.Next
e← e + 1

O.Upd(Ce−1) :
if (·,Ce−1, ·; m) 6∈ L then

return ⊥
r

$←− Z∗q
Ce ← (sre, g

r ·m);L ← L ∪ {(·,Ce, ·; m)}
return Ce

O.Corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then

call eê ← O.Open(ê)
kê ← (eê, g

eê)
return kê

if inp = token then
call tê ← O.Difr(ê)
∆ê ← (tê, sê)
return ∆ê

O.UpdC̃
call (Xe, Ze)← O.Chall(e)
C̃← (Ze, Xe · m̄b)
return C̃e

Figure 31: Reduction B5.2 for proof of Theorem 5.2.

41



8 Conclusions, Discussion, and Future Work

In this work we provided a new updatable encryption scheme, SHINE, and a new definition of security
IND-UE (that implies prior notions) in which we prove its security. In the process, we provided a greater
understanding of the proof techniques that are inherent in the strong corruption model that is desirable for
updatable encryption – in particular in the context of deterministic updates that is desirable in practice.

One clear avenue for future work is achieving integrity protection and CCA security in an efficient
manner (i.e. without using the generic constructions of Klooß et al.). KLR19’s Theorem 1 states that an
updatable encryption scheme (consisting of separated components, a symmetric encryption scheme and an
update mechanism) that fulfils a number of properties provides an updatable encryption scheme that is secure
in terms of CCA attacks and integrity of ciphertexts. Judging whether or not SHINE can meet the required
properties is particularly challenging: the properties required of the ‘SKE’ scheme (i.e. the combination
of permutation and exponentiation) are strong-IND-CCA and strong-INT-CTXT, and directly proving these
properties for any instantiation is not immediate. Instead, we conjecture that a more direct approach should
be possible for proving (possibly equivalent) strong properties for UE schemes if SHINE’s permutation is
instantiated using authenticated encryption. We suggest that this efficient construction may be suitable for
many applications of updatable encryption, though a more thorough analysis is needed.

We do not wish to be overly prescriptive regarding implementation details for SHINE, or indeed other
SHINE-like systems. In the proof of Theorem 2 (and Proposition 3), we require that π is a random (un-
keyed) permutation, however we do not need any specific and strong properties that are provided by modern
constructions of blockciphers and sponges. As far as the proof goes, and in practice, the specific property
that we want from this permutation is that given a ciphertext and the inverse of the epoch key ke (yielding
π(IV||m)), the only way to extract useful information about m is to apply the inverse permutation π−1. The
random permutation model (or ideal cipher model) is thus the tool we need here to create a simple interface
for this aspect of our proof. If we were to specify that π must be, for example, a keyed blockcipher, then the
adversary in the security games would acquire this key in an O.Corr query (for any epoch) and this would
make simulation and embedding very challenging. We stress that this is a proof issue rather than a practical
problem, and using (for example) a blockcipher key of all zeros should not yield any security loss compared
with using a random key.
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