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Abstract. This paper presents an attack based on side-channel informa-
tion and information set decoding on the Niederreiter cryptosystem and
an evaluation of the practicality of the attack using a physical side chan-
nel. First, we describe a basic plaintext-recovery attack on the decryption
algorithm of the Niederreiter cryptosystem. Our attack is an adaptation
of the timing side-channel plaintext-recovery attack by Shoufan et al.
from 2010 on the McEliece cryptosystem using the non-constant time
Patterson’s algorithm for decoding. We then enhance our attack by uti-
lizing an Information Set Decoding approach to support the basic attack
and we introduce column chunking to further significantly reduce the
number of required side-channel measurements. Our practical evalua-
tion of the attack targets the FPGA-implementation of the Niederreiter
cryptosystem in the NIST submission “Classic McEliece” with a con-
stant time decoding algorithm and is feasible for all proposed parame-
ters sets of this submission. The attack idea is to distinguish between
successful and failed error correction based on the Hamming weight of
the decrypted plaintext using the electromagnetic field as side channel.
We theoretically estimate that our attack improvements have a signifi-
cant impact on reducing the number of required side-channel traces. We
confirm our findings experimentally and run successful attacks against
the “Classic McEliece” NIST submission parameter sets. E.g., for the
256bit-security parameter set kem/mceliece6960119 we require starting
from a basic attack with 6962 traces over a plain ISD approach with
5415 traces down to on average about 606 traces to mount a successful
plaintext recovery attack.

1 Introduction

Many fields of research and industry are having high hopes on the power of quan-
tum computing, e.g., for artificial intelligence, drug design, traffic control, and
weather forecast [Mar17]. This growing interest in quantum computing has led



to a rapid development of quantum computers in the last decade. At the Con-
sumer Electronics Show (CES) in 2019, IBM announced their first commercial
quantum computer with 20 qubits [Nay19]. Even larger experimental quantum
computers are operating in the labs of Google, IBM, and Microsoft. However,
besides the high hopes in a new area of quantum computing, quantum computers
pose a severe threat on today’s IT security: A sufficiently large and stable quan-
tum computer can give a quadratic speedup for brute-force attacks on symmetric
cryptographic schemes like AES and SHA using Grover’s quantum-computer al-
gorithm [Gro96]. This threat is relatively moderate and can be mitigated by dou-
bling security parameters, e.g., from AES-128 to AES-256. However, quantum
computers can solve the integer factorization and discrete logarithm problems in
polynomial time using Shor’s quantum-computer algorithm [Sho94,Sho99], thus
completely breaking most of the current asymmetric cryptography like RSA,
DSA, and DH as well as ECC schemes like ECDSA, and ECDH.

As an answer to this threat on asymmetric cryptography, the research field
of Post-Quantum Cryptography (PQC) has emerged in the last two decades,
developing and strengthening alternative cryptographic schemes that are able
to withstand attacks by quantum computers. The most popular approaches
are hash-, lattice-, code-, and isogeny-based as well as multivariate cryptog-
raphy [BBD09,FJP14]. Hash-based cryptography is used for very reliable sig-
nature schemes. An example is the IETF standard XMSS [BDH11,HBG+18].
Lattice-based cryptography has the reputation of being very efficient. However,
code-based cryptography using certain codes is often regarded as already more
mature and reliable. Conservative but less efficient examples for code-based cryp-
tography are the McEliece [McE78] and the Niederreiter [Nie86] cryptosystems
using binary Goppa codes. Multivariate schemes tend to be less popular due to
efficiency issues. Isogeny-based cryptography is the most juvenile class of PQC
and thus not yet fully trusted. In November 2017, the National Institute of Stan-
dards and Technology (NIST) started a public process for the standardization of
PQC schemes; schemes from all classes mentioned above have been submitted.

An important question in the standardization process besides the definition
of secure schemes and the choice of secure parameters is the impact of the imple-
mentation of a scheme on its security. A general requirement on the implemen-
tation of a scheme is that the runtime of the operations, e.g., key generation,
signing, or decryption, does not vary based on secret information like the private
key or the plaintext, i.e., a that the scheme has a constant-time implementation.
(Constant time in regard to public input data like the public key or the cipher-
text is not required for this property.) However, there are more side channels
besides timing that might enable an attacker to get access to private informa-
tion. Other side channels include power consumption and electromagnetic, pho-
tonic, and acoustic emission. For many PQC schemes, it is still unknown what
side-channel attacks are practically feasible and how to protect against them. A
general overview of the state of attacks on the implementation of PQC schemes
is presented in [TE15]. In this work, we focus on one of the conservative (i.e.,
well understood and trusted) candidates in the NIST standardization process,



the “Classic McEliece” cryptosystem, and describe a plaintext-recovery attack
on its decryption algorithm. The “Classic McEliece” cryptosystem — though
honouring Robert McEliece, on of the pioneers of the code-based crypto field,
with its name — is using the approach proposed by Niederreiter as described in
Section 2.2.

Related Work. In [SSMS10] a timing attack on the McEliece PKC is presented
that recovers the plaintext of a given ciphertext using a decryption oracle. In
this attack, a bit-flip error is added to the ciphertext, which results in a shorter
timing during decryption, if the flipped bit was set in the original error vector.
Fault attacks on the variables used during encryption by McEliece and Nieder-
reiter schemes are examined in [CD10]. A Differential Power Analysis (DPA)
attack is presented in [CEvMS16] which recovers the secret key of a QC-MDPC
McElice FPGA implementation by measuring the leakage of the carry occuring
during the key rotation operation. A similar attack on a software implementa-
tion is presented in [FJP14], using the detection of counter overflows. An attack
described in [RHHM17] uses rough information gained by DPA about the posi-
tions of set bits to recover the secret key in a cryptanalytic attack. A reaction
attack is described in [SSPB19], where an attacker enhances the cryptanalysis
of cryptosystems based on LRPC codes by exploiting their high decoding failure
rate.

Information set decoding (ISD) is a well known decoding technique dating
back to the work of Prange [Pra62] in the 1960’s. In essence, in ISD, one tries
to find a subvector (also referred to as Information set) of the error vector such
that it has some predetermined pattern. For example, in the most basic variant
by Prange - plain ISD, one tries to find a subvector that does not contain any
errors, and contains enough information (hence the name information set) to
decode uniquely a given word. Once an information set is found, decoding can
be done using simple linear algebra.

This basic approach has been improved throughout the years: Lee and Brick-
ell [LB88] proposed to allow errors in the information set which resulted in a poly-
nomial improvement of the plain ISD. This was followed by minor improvements
by Leon [Leo88]. Stern [Ste89] (and concurrently Dumer [Dum89]) first proposed
to use collision decoding (actually the term was introduced later [BLP11]) where
the search for the right information set is reduced to looking for collisions on sums
of few columns of the parity check matrix. All subsequent improvements build on
top of Stern’s algorithm by exploring more refined techniques for collision search.
The list is extensive and includes: [FS09,BLP11,MMT11,BJMM12,MO15].

We are not aware of a previous work that combines information set decoding
with side channel analysis.

Our Contributions. In this work, we show how to adapt the side-channel
attack from Shoufan et al. in [SSMS10] for plaintext recovery on the McEliece
cryptosystem to a side-channel attack on the Niederreiter cryptosystem. We
further improve our attack utilizing Information Set Decoding. Furthermore,
we optimize the number of required side-channel queries by introducing an ap-



proach that works based on chunks. We demonstrate the feasibility of our attack
using the hardware implementation by Wang et al. in [WSN18], which is ac-
companying the NIST submission “Classic McEliece” [BCL+17], exploiting an
electromagnetic field (EM) side channel.

Structure. Section 2 provides a some background information on the code-
based McEliece and Niederreiter cryptosystems and on Information Set Decoding
(ISD). Section 3 follows up with a brief introduction to the side-channel attack
from Shoufan et al. in [SSMS10], a description of our adaption of that attack
to Niederreiter, and our improvements for reducing the number of queries. In
Section 4, we provide a leakage analysis of the FPGA implementation from
[WSN18] using simulated power traces, our measurement and analysis methods
for the practical attack, as well as an evaluation of our approaches. Section 5
concludes the paper.

Notation. In the following w(x) denotes the function returning the Hamming
weight (HW) of an input vector x. Capital letters like H denote matrices. Small
letters denote integer values (e.g., m, n, k, i, j, and t) or vectors (e.g., plaintext
p, ciphertext c, and error vector e). GF(pq) denotes the Galois field for a prime
p with extension degree q.

2 Background

In this section, we briefly introduce the McEliece cryptosystem as well as the
Niederreiter cryptosystem including key generation, encryption, and decryption.

2.1 McEliece Cryptosystem

In 1978, McEliece proposed a cryptosystem using error correcting codes [McE78].
The basic idea of this cryptosystem is to use an efficient error correction algo-
rithm that can correct up to t errors as secret key and an obfuscated generator
matrix of the corresponding code as public key. With code length n and code
dimension k, the public key is a k×n generator matrix G. Encryption works by
computing a code word for the plaintext p using the generator matrix and by
adding an error e with w(e) ≤ t that is small enough so that the error correction
algorithm is able to correct the error. The ciphertext c is therefore computed as
c = Gp + e. The receiver simply corrects the error by applying his secret error
correction algorithm, and recovers the plaintext from the code word.

2.2 Niederreiter Cryptosystem

In 1986, Niederreiter proposed a dual variant of the McEliece cryptosystem us-
ing a (n− k)× n parity-check matrix H instead of a generator matrix as public
key [Nie86]. In this case, an error vector e of the weight w(e) = t is the plain-
text; the syndrome c = He of the error vector is the ciphertext. Here, an efficient



syndrome decoding algorithm is used for decryption. Due to the format require-
ments on the plaintext of having a certain length and weight, this scheme is
usually used as a hybrid scheme with a random error vector that is used with
a key derivation function to obtain a symmetric key for the encryption of the
actual message.

In general, any error correcting code can be used for the McEliece and Nieder-
reiter cryptosystems; however, in order to obtain an efficient and secure system,
the code must be efficient to decode in possession of the secret key and hard to
decode given only the public key and a ciphertext. McEliece proposed to use bi-
nary Goppa codes, which is still considered secure, while Niederreiter originally
proposed to use Reed-Solomon codes, which turned out to be insecure [SS92].
Today, there are many variations of the McEliece and Niederreiter systems us-
ing different codes with different properties. However, using binary Goppa codes
(for both McEliece and Niederreiter) is generally the most conservative choice. A
drawback of using binary Goppa codes is the large size of the public key of around
1MB for 256-bit security. In the following, we will focus on the Niederreiter
cryptosystem with binary Goppa codes with parameters as defined in the NIST
submission “Classic McEliece” for Round 1 [BCL+17] and Round 2 [BCL+19]
(see also [BCS13]).
Key generation of the Niederreiter cryptosystem using binary Goppa codes
works as follows (following the notation in [WSN17]): Choose a random irre-
ducible polynomial g(x) over GF(2m) of degree t and a list (α0, α1, . . . αn−1) ∈
GF(2m)n of distinct elements of GF(2m). From g(x) and (α0, α1, . . . αn−1), com-
pute the t× n parity-check matrix H as

H =


1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) α

t−1
1 /g(α1) · · · αt−1

n−1/g(αn−1)


over GF(2m). Transform H into a mt × n binary matrix H ′ by replacing each
GF(2m)-entry by a m-bit column. Finally compute the systematic form [Imt|K]
of H ′ and return g(x) and (α0, α1, . . . αn−1) as private key and K as public
key. The last step of computing the systematic form of the binary parity-check
matrix H ′ compresses the size of the public key from mtn bits to mt(n − mt)
bits, because the preceding identity matrix Imt does not need to be stored or
communicated.
Encryption works as follows: The sender constructs the tm× n binary parity-
check matrix H ′′ = [Imt|K] by appending K to the identity matrix Imt and
encrypts the error vector e ∈ GF(2)n (i.e., the plaintext) with w(e) = t to the
syndrome s ∈ GF(2)mt as s = H ′′e (i.e., the ciphertext).
Decryption of the syndrome depends on the error-correcting code that is used.
Examples are Paterson’s algorithm and the constant-time Berlekamp-Massey
(BM) algorithm. Using the BM algorithm as in [BCS13,WSN18], decryption
works as follows: Since the BM algorithm can only correct up to t/2 errors, use



Symbol Description

Parameter Sets
kem/mceliece-

6960119 8192128
m ∈ N Size of the binary field. m = 13 m = 13
t ∈ N Correctable errors. t = 119 t = 128
n ∈ N Code length. n = 6960 n = 8192
k ∈ N Code dimension (k = n−mt). k = 5413 k = 6528

g(x) Goppa polynomial over GF(2m) of degree t.
(α0, α1, . . . αn−1) ∈ GF(2m)n Support of n distinct elements of GF(2m).

H ∈ GF(2m)t×n Parity-check matrix.
H ′, H ′′ ∈ GF(2)mt×n Binary parity-check matrix.
H(2) ∈ GF(2m)2t×n Double-size parity-check matrix.
K ∈ GF(2)mt×(n−mt) Public key.

e ∈ GF(2)n Error vector (plaintext).
s ∈ GF(2)mt Syndrome (ciphertext).
s(2) ∈ GF(2m)2t Double-size syndrome.

σ(x) Error locator polynomial over GF(2m) of degree t.

Table 1. Symbols and parameter sets of Niederreiter for 256-bit security
[BCL+19,WSN18].

the trick attributed to Sendrier in [HG13] and compute the double-size 2t × n
parity-check matrix

H(2) =


1/g2(α0) 1/g2(α1) · · · 1/g2(αn−1)
α0/g

2(α0) α1/g
2(α1) · · · αn−1/g

2(αn−1)
...

...
. . .

...
α2t−1
0 /g2(α0) α

2t−1
1 /g2(α1) · · · α2t−1

n−1 /g
2(αn−1)


over GF(2m). Then compute the double-size syndrome s(2) = H(2) · (s|0) by
appending n−mt zeros to the syndrome s. Now, we can use the BM algorithm to
compute the error-locator polynomial σ(x) of s(2). The roots of σ(x) correspond
to the error-positions. Therefore, the error-vector bits can be determined by
evaluating σ(x) at all points in (α0, α1, . . . αn−1). If σ(αi) = 0, 0 ≤ i < n, the
ith bit of the error vector ei = 1 or otherwise ei = 0.

Table 1 shows the parameters kem/mceliece6960119 and kem/mceliece8192128
proposed by [BCL+19] for a security level of 256 bit (NIST category 5, i.e., 128-
bit “post-quantum” security) and the symbols used in the above description
following [WSN18].



2.3 Information Set Decoding

Suppose we are given a parity check matrix H and a syndrome s. An ISD algo-
rithm solves the decoding problem:

Find e, w(e) = w such that H · e = s. (1)

Basically, the algorithm tries to guess the error vector on k coordinates, and
then uses this information to obtain the rest of the error coordinates. We call
this set of k coordinates the information set, since it carries enough information
to recover the entire error vector. Indeed, the decoding problem gives rise to the
system: 

h1,1 h1,2 · · · h1,n

h2,1 h2.2 · · · h2,n

...
...

. . .
...

hn−k,1 hn−k,2 · · · hn−k,n



e1
e2
...
en

 =


s1
s2
...

sn−k

 (2)

with the error coordinates e1, . . . , en as unknowns. If k coordinates are correctly
guessed, the system (2) can be uniquely solved. We check the correctness of the
solution by measuring the weight of the error. If the guess was wrong, we guess
again.

Information set decoding was proposed by Prange [Pra62], and is also known
as plain ISD. In this simplest form, we assume an error-free information set. The
probability that we guess k error-free coordinates is

(
n−k
w

)
/
(
n
w

)
.

Stern’s variant [Ste89] first introduced collision decoding that makes use of
the birthday paradox. In essence, we allow some errors in the information set
which increases the probability of success. The information set is split into sets
with equal amount of errors p. Then the algorithm searches for collisions on these
two sets, such that the sum of p columns restricted to ` coordinates matches
the appropriate coordinates of the syndrome. It is the birthday decoding idea
that improves asymptotically with respect to the previous variants. This idea
was further generalized in the May-Meurer-Thomae (MMT) [MMT11] and the
Becker-Joux-May-Meurer (BJMM) [BJMM12] variants that use the more elabo-
rate generalized birthday problem. Here instead of looking for collisions between
two lists, the collision search is between 4 or 8 lists in multiple layers. May and
Ozerov [MO15] noticed that Stern’s approach can be improved by using more
sophisticated algorithms for approximate matching. Their approach is general
enough to be applied to other variants such as BJMM.

3 Reaction-based Side-Channel Analysis

In this section, we describe our plaintext-recovery attack on the Niederreiter
cryptosystem. In Section 3.1, we first briefly introduce the timing side-channel
attack by Shoufan et al. from [SSMS10] on the McEliece cryptosystem. Then we
explain how we adapt this attack to the Niederreiter cryptosystem in Section 3.2.



We describe how to reduce the number of queries required for a side-channel at-
tack when using ISD in Section 3.3 and we improve our basic attack in Section 3.4
using larger chunks in each query. Finally, we explain how to combine the ISD
techniques with our improved attack in Section 3.5.

3.1 Side-Channel Attack on McEliece

Shoufan et al. describe a plaintext recovery attack on the McEliece cryptosystem
in [SSMS10] that is based on distinguishing the number of added error bits during
the decoding step: The idea of the attack is to add (xor) an additional error bit
to a given ciphertext at a certain position. If previously there had not been an
error added to the code word on that position, in total, there is now one more
error added to the code word. If previously there had already been an error at
that position, the error is extinguished and there is now one error less. If the
attacker is able to distinguish these two cases based on some side channel, he
is able to mount the following attack: By iteratively adding an error to each
position of the ciphertext and determining via the side channel if in total the
number of errors has increased or decreased, the attacker is able to determine
the position of all error bits, to correct the errors, and to decode the ciphertext.

Patterson’s algorithm is a popular decoding algorithm for binary Goppa
codes. However, the runtime of Patterson’s algorithm depends on the number
of errors that have been added to the code word. Shoufan et al. are using these
timing variations in Patterson’s algorithm as side-channel information to mount
their attack: If an error is added to a previously error-free position, Patterson’s
algorithm has a slightly longer runtime; if an error is extinguished by the addi-
tional error bit, the runtime of Patterson’s algorithm is slightly shorter. Precisely
measuring and categorizing the runtime of Patterson’s algorithm gives the re-
quired information to recover the error positions.

3.2 Side-Channel Attack on Niederreiter

In the attack by Shoufan et al. in [SSMS10] on the McEliece cryptosystem, the
number of errors in the ciphertext is modified simply by adding one more er-
ror on varying positions to the original ciphertext. However, the Niederreiter
cryptosystem is not operating with erroneous code words as ciphertext but with
syndromes. The equivalent of adding an error to a code word in McEliece here
is to add a column of the parity-check matrix (i.e., the public key) to the syn-
drome (i.e., the ciphertext). Therefore, we adapt the attack from [SSMS10] to
the Niederreiter cryptosystem by systematically adding columns of the public
key one by one to the original syndrome. If the bit corresponding to the column
was not set in the original error vector (i.e., the plaintext), the number of errors
in the modified syndrome is increased. Accordingly, if the corresponding bit was
set, an error in the original error vector is effectively removed from the syndrome,
reducing the number of errors. If an attacker can find a side channel that enables
him to distinguish these two cases, he is able to mount an attack. Algorithm 1
shows the general approach for this attack. In order to distinguish the cases with



Algorithm 1: Iterative Reaction-based SCA
input : Classic McEliece parameters n,m, t ∈ N+,

binary parity-check matrix H ′′ = [Imt|K] := (hi,j) ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Error vector e ∈ GF(2)n.
1 e← (0, . . . , 0);
2 for i← 0 to n− 1 do
3 s′ ← s⊕H ′′[i];
4 if QueryOracle(s′) = true then
5 e[i]← 1;
6 end

7 end
8 return e;

a reduced number of errors from the cases with an increased number of errors,
a query to an oracle is required (line 4 in Algorithm 1) that returns true if the
number is reduced and thus an error position has been found.

This decryption oracle can practically be achieved by having the victim de-
crypt the manipulated ciphertext and by measuring the side channel during the
decryption. Therefore, when a non-constant time decoding algorithm like Pe-
terson’s algorithm is used, a timing side-channel attack as in [SSMS10] can be
mounted on Niederreiter as well. In modern implementations, often a constant
time algorithm, typically the BM decoding algorithm, is used in order to pre-
vent timing side channels. Thus, in this case another side channel is required to
mount the attack. In Section 4, we investigate EM side channels in the reference
hardware implementation by Wang et al [WSN18] using the BM algorithm to
demonstrate a practical attack. Another side-channel could for example be a
response in a communication protocol if adding an error results in a decoding
failure and if this failure is reported over the network.

The number of side-channel measurements that is needed for this basic iter-
ative attack algorithm is the number of columns n in the parity check matrix,
which is a few thousand for practical Niederreiter parameters (see Section 2.2).
However, depending on the attack scenario, the attacker might only be able to
take a limited amount of measurements, e.g., due to the cost of each measure-
ment, limited access to the device, or additional countermeasures on the device.
In the next sections, we describe improvements to this basic algorithm that allow
the attacker to significantly reduce the number of decoding operations that he
needs to query from the device under attack.

3.3 Reducing the Number of Queries with Information Set
Decoding

The reaction attack described in Algorithm 1 recovers the entire error vector
(all error coordinates) using side channel information. Thus, in order to be able



to decode, we need to collect at least n queries from the decryption oracle,
which is 6960 and 8192 queries for the NIST parameters of “Classic McEliece”
given in Table 1. However, we can reduce the number of queries substantially
by focusing on the recovery of an information set of size k < n, instead. Once
an information set is known, we can easily recover the entire error vector using
basic linear algebra (see Section 2.3). The information set can be recovered from
obtained queries or using some of the ISD algorithms described in Section 2.3.
We can also combine the two techniques — first collect a number of queries, use
them to reduce the problem to a smaller one, and then solve the smaller problem
using an ISD algorithm.

In more detail, let ISD(n, k, w,H, s) be any ISD algorithm, such as Stern’s or
Ball Collision decoding, that on input of a parity check matrix H ∈ GF(2)(n−k)×n

and syndrome s ∈ GF(2)n−k outputs an error vector e ∈ GF(2)n — a solution
to the decoding problem (1).

Suppose we are given an oracle as in Algorithm 1 that we can use to learn the
value of a coordinate ei of the error vector. Using the oracle, we learn a subset
of error indices Ê ⊂ E = {1, . . . , n} We denote the corresponding subvector
of e by ê = (ei)i∈Ê and its complement by ẽ = (ei)i∈E\Ê . We split similarly
the columns hi = (hj,i)j∈{1,...,mt} of the matrix H ′′. Let Ĥ ′′ = (hi)i∈Ê and
H̃ ′′ = (hi)i∈E\Ê . With this notation, from the obtained information, we can
transform the decoding problem (1) to:

H̃ ′′ · ẽ = s̃ (3)

where s̃ = s− Ĥ ′′ · ê.
So we have reduced our initial problem to a smaller decoding problem with

parameters k′ = k− |Ê|, n′ = n− |Ê|, w′ = w−w(ê). We solve this problem by
calling the available ISD algorithm ISD(n′, k′, w′, H̃ ′′, s̃). Note that, if |Ê| = k, we
have recovered an information set, and we only need to solve a linear system using
Gaussian elimination. Thus, for convention, we assume ISD(n, 0, w,H, s) simply
calls Gaussian elimination procedure. Algorithm 2 details the whole procedure.

The performance of Algorithm 2 depends directly on the size of set Ê, i.e., on
the number of queries to the oracle. There is a clear trade-off between the running
time and the queries to the oracle, which is depicted in Figure 1. Basically, the
attacker is free to choose the number of queries that they perform based on their
computational resources.

In our depiction of the trade-off, for simplicity, we used only two ISD algo-
rithms — Stern’s and MMT. We did not use the state of the art BJMM variant,
because there is no compact representation of the concrete complexity of this
algorithm.

3.4 Reducing the Number of Queries with Iterative Chunking

For the approach that we describe here, we need to slightly change the oracle
from the previous Section. In particular we assume the oracle returns true if



Algorithm 2: ISD-supported Iterative Reaction-based SCA
input : Classic McEliece parameters n,m, t ∈ N+,

binary parity-check matrix H ′′ = [Imt|K] := (hi,j) ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Error vector e ∈ GF(2)n.

1 Ê ⊂ E = {1, . . . , n}, |Ê| 6 k;
2 e← (0, . . . , 0);

3 for i ∈ Ê do
4 s′ ← s⊕H ′′[i];
5 if QueryOracle(s′) = true then
6 e[i]← 1;
7 end

8 end

9 s̃← s− Ĥ ′′ · ê;
10 ẽ := (ei)i∈E\Ê ;
11 H̃ ′′ := (hi)i∈E\Ê ;
12 ê := (ei)i∈Ê ;
13 ẽ← ISD(n− |Ê|, k − |Ê|, w − w(ê), H̃ ′′, s̃);
14 e← Reconstruct(ê, ẽ);
15 return e;

the number of errors has not increased (instead of reduced as in Section 3.2)
and false otherwise. Note that the real oracle that we construct in Section 4.2
actually captures both cases.

To get some intuition on how our iterative chunking works, we first present a
simpler variant that already reduces the number of needed queries by more than
35%.

Suppose that instead of a single error index, we query two error indices (a
chunk of two) at once. We first randomly select the chunk (i, j) of error indices,
i, j ∈ {1, . . . , n}, i 6= j. We add both columns hi and hj to the syndrome s,
to obtain the new syndrome s′. We give the input s′ to the decryption oracle.
Notice that the decryption oracle will output false only in the case when the
values at corresponding error indices in the error vector were (ei, ej) = (0, 0)
(a ’low’ chunk). In all the other cases (we refer to them as ’high’ chunks, to
indicate that there is at least one ’1’ in the chunk) the decryption oracle will
output true. Indeed, if (ei, ej) = (0, 0), after adding the pair of columns (hi, hj)
to the syndrome, we obtain (e′i, e

′
j) = (1, 1), and in total w + 2 errors. Hence,

the number of errors has increased and the decryption oracle will output false.
If (ei, ej) = (0, 1) or (ei, ej) = (1, 0), we get (e′i, e

′
j) = (1, 0) and (e′i, e

′
j) = (0, 1)

respectively, and in this case the number of errors does not change (it remains
w) so the decryption oracle returns true. In the last case, (ei, ej) = (1, 1), after
adding the columns we obtain (e′i, e

′
j) = (0, 0). So in this case, the number of
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Fig. 1. Time-queries trade-off when using ISD decoding algorithms.

errors reduces to w − 2, and the decryption oracle returns true as well. Table 2
summarizes the above.

What we can conclude from the previous is that if false is returned, we can
be sure that the corresponding error positions in the error vector were (ei, ej) =
(0, 0). Since the length of the error vector is much bigger than its Hamming
weight, most of the time the randomly chosen chunk will be (ei, ej) = (0, 0), and
we can confirm these values by only one query, instead of two as in the approach
from the previous section. We perform the procedure for new random pairs of
positions (i, j) until we find k/2 pairs whose initial state was (0, 0) i.e., until we
encounter k/2 false oracle answers. Note that after a pair has been queried, we
need to undo the changes made, i.e., return the pair to its initial state.

Proposition 1 can be used to estimate how many queries we need to perform
(how many queries we need to collect) in order to learn k = n − mt error
positions, and to be able to uniquely solve system (3). For example, for the NIST
parameters of Classic McEliece we need 3480 queries for kem/mceliece6960119
and 4096 queries for kem/mceliece8192128.

We extend our idea to chunks (ei1 , . . . , eiβ ) of size β. We keep the convention
of calling the all-zero chunk (0, . . . , 0) ’low’ chunk and all other chunks containing
1s ’high’ chunks. First note that we can not directly use the same approach for
chunks of size β > 2. For example for β = 3 we have Table 3 analogous to
Table 2.

Table 3 shows (columns 3 and 4) that there is ambiguity in the oracle an-
swers, so we can not distinguish whether the chunk was (0, 0, 0) or (0, 0, 1);
(0, 1, 0); (1, 0, 0). However, we can remedy this situation if we reduce the initial
number of errors from w to w − 1 as columns 5 and 6 from Table 3 show. This



initial after new N0(err) Oracle

(0, 0) (1, 1) w + 2 false
(0, 1) (1, 0) w true
(1, 0) (0, 1) w true
(1, 1) (0, 0) w − 2 true

Table 2. Overview of the output of the decryption oracle when querying chunks of
two at once. The first column shows the initial state of the queried chunk, the second
column shows the state of the pair after ’flipping’ the values, the third column shows
the total number of errors in the new state, and the last column shows the oracle
answer.

initial after new N0(err) (w) Oracle new N0(err) (w − 1) Oracle

(0, 0, 0) (1, 1, 1) w + 3 false w + 2 false
(0, 0, 1) (1, 1, 0) w + 1 false w true
(0, 1, 0) (1, 0, 1) w + 1 false w true
(1, 0, 0) (0, 1, 1) w + 1 false w true
(1, 1, 0) (0, 0, 1) w − 1 true w − 2 true
(1, 0, 1) (0, 1, 0) w − 1 true w − 2 true
(0, 1, 1) (1, 0, 0) w − 1 true w − 2 true
(1, 1, 1) (0, 0, 0) w − 3 true w − 4 true

Table 3. Overview of the oracle answers for β = 3 when the initial number of errors
is w and w − 1.

requires knowledge about the position of one 1 in the error vector. Adding the
corresponding column of the matrix H ′′ to the syndrome reduces the number of
errors to w − 1. We determine the position of one 1 by querying chunks of size
β = 2 until a high chunk is found. Querying all positions within the high chunk
we are certain reveals the position of the 1 (we will explain a more efficient divide
and conquer strategy later on in Algorithm 4). The same reasoning extends to
any chunk size β: If the number of errors before we start querying β size chunks
is w− (β − 2), the oracle answers false only for low chunks, and we can use this
information to distinguish low chunks.

Informally, we start with chunk size β1 = 2 and continue iteratively. For a
chunk size βj , suppose we have nj−1 columns (positions in the error vector) left,
and the number of errors remaining is wj−1. We query random chunks without
replacement until decoding succeeds. Success of the decoding indicates a high
chunk. We inspect the positions within the high chunk, and locate all 1s. If at
position i there is a 1, we add the corresponding column hi of the matrix H ′′ to
the syndrome. Suppose we found a total of Lj low chunks and the number of 1s
found in the high chunk is νj . After this procedure, we have found βjLj+βj linear
equations, the pool of available columns has reduced to nj = nj−1 − βjLj − βj ,
and the number of errors within those columns is wj = wj−1 − νj .



Next, we increase the chunk size to βj+1 = βj +νj , and repeat the same pro-
cedure. We continue until the chunk size reaches a threshold βT . The threshold
βT is an optimization parameter, and we determine its value so that the number
of necessary queries to recover an information set is minimized.

After the threshold is reached, we do not increase the chunk size any more.
Now, note the following important observation: Since we don’t need to increase
the chunk size, it is not essential to find error positions; we only want to find
enough low chunks so that we recover an information set. So in principle, we
do not care about high chunks, unless there are too few chunks remaining – not
enough to recover an information set. Therefore, instead of throwing away the
high chunks, we save them in a bucket, and potentially inspect some of them
if the number of columns in the bucket has surpassed n − k. This algorithm
is given in pseudo-code in Algorithm 3. The algorithm for inspecting the high
chunks and locating the set bits within the chunk is given in Algorithm 4. It
uses a divide and conquer strategy to reduce the number of needed queries.

Later in this section, we argue that actually for the optimal T we don’t need
to use the columns in the bucket. Intuitively, in this case, we do not inspect the
high chunks, which should reduce the total amount of necessary queries.

We next analyze the approach in order to determine the best threshold value,
and estimate the number of queries needed for the attack. First let’s make some
important observations. In the first part of the attack, we iteratively increase
the chunksize at each step, right after we find a high chunk. Let E(β, nβ , wβ)
denote the expected number of queries needed to find a high chunk of size β for
nβ available columns of total weight wβ . Then, the number of error positions
that we learn at this step is βE(β, nβ , wβ). Repeating the same for chunksizes
β1, β2, . . . , βT−1, we end up with nT = n −

∑βT−1

i=2 iE(i, ni, wi) unqueried error
positions, and we need to learn kT = k−

∑βT−1

i=2 iE(i, ni, wi) more error positions
in order to be able to solve uniquely the linear system (3). Furthermore, let
E(w(β)) denote the expected weight of the found high chunk. Then, there is an
expected number of wT = w −

∑βT−1

i=2 E(w(i)) errors among the unqueried nT

positions.
When we reach the threshold value βT we change the strategy, and continue

to query only chunks of size βT . Suppose we make cT queries. Clearly, nT >
βT cT . In order to be able to learn enough error positions in this part without
inspecting any high chunks, we need kT > βTE(cT ) where E(cT ) is the expected
number of low chunks among the cT queried chunks. Of course, we could inspect
high chunks as in Algorithm 3 if we do not obtain enough low chunks. However
this is not the optimal strategy, since we need on average 2 log βT additional
queries to learn βT error positions, and this quickly becomes too expensive.
Thus we need to find the maximal βT such that kT > βTE(cT ). We use the
following simple result. The proof is given in Appendix A.

Proposition 1. Let n be the length of the error vector, w be the weight of the
error vector, and let β be the chunk size that we query. We query chunks without
replacement, until we find a high chunk. The expected number of queries until



Algorithm 3: Chunk-based Side-channel Attack
input : Classic McEliece parameters n,m, t ∈ N+,

binary parity-check matrix H ′′ = [Imt|K] := (hi,j) ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt,
threshold βT .

output: Partial error vector e′ ∈ GF(2)n,
bucket of chunks containing an error position,
list of remaining column indices.

1 e′ ← [0, . . . , 0] ; // initialize with zero vector
2 β ← 2 ; // start with chunk size 2
3 s′[1]← s; s′[β]← s ; // list of syndromes s′[i] for each chunk size 0 < i ≤ βT

4 indices← [n, . . . , 0] ; // column indices in reverse order
5 bucket← [];
6 while Len(indices) > β do
7 chunk ← Pop(indices, β) ; // pop β-many indices
8 s′′ ← s′[β] + Sum([H ′′[i] for i in chunk]) ; // add columns in the chunk

to s′

9 if QueryOracle(s′′) = true then // there is an error position
10 if β < βT or |bucket| > n− k then // find errors until threshold is

reached
11 eid ← FindErrorPositions(chunk, s′, H ′′) ; // find errors in chunk
12 for i in eid do
13 e′[i]← 1 ; // update e′ with found errors
14 if β < βT then
15 s′[β + 1]← s′[β]−H ′′[i] ; // remove found errors from

syndrome
16 β ← β + 1 ; // increase chunk size, up to βT

17 end
18 end
19 else
20 bucket← bucket+ chunk ; // collect chunks with remaining errors
21 end
22 end
23 end
24 return e′, bucket, indices;

we find a high chunk of size β is:

E(β, nβ , wβ) =
1(
n
w

) ∑
i>0

(
n− iβ

w

)
. (4)

The expected weight of the high chunk of size β is E(w(β)) =
w′(n′−1

β−1

)(
n′

β

)
−

(
n′−w′

β

) .
where n′ is the number of unqueried error positions before the occurrence of the
high chunk, and w′ is the total number of errors at these positions.



Algorithm 4: FindErrorPositions
input : chunk ∈ Ni,

list of temporary syndromes s′ with s[i] ∈ GF(2)mt,
binary parity-check matrix H ′′ = [Imt|K] := (hi,j) ∈ GF(2)mt×n.

output: List with error indices.
1 stack ← [FirstHalf(chunk), SecondHalf(chunk)];
2 eid ← [];
3 while stack not empty do
4 chunk ← Pop(stack);
5 s′′ ← s′[Len(chunk)] + Sum([H ′′[i] for i in chunk]);
6 if Query(s′′) = true then // there is an error position
7 if Len(chunk) = 1 then
8 Push(eid, chunk[0]);
9 else

10 Push(stack, FirstHalf(chunk));
11 Push(stack, SecondHalf(chunk));
12 end
13 end
14 end
15 return eid;

Using the proposition we estimate the total number of queries for a given
threshold βT . Note that we use an algorithmic procedure since there is no com-
pact accurate expression. For the two parameter sets kem/mceliece6960119 and
kem/mceliece8192128 of the “Classic McEliece” submission (see Table 1) we es-
timated the expected number of queries for βT ∈ {2, . . . , 34}. The results are
depicted in Figure 2. The optimal threshold value for kem/mceliece6960119 is
βT = 16 (or βT = 17) for which the amount of needed queries is around 610 and
for kem/mceliece8192128 the optimal threshold is again βT = 16 (or βT = 17)
for which the amount of needed queries is around 700.

3.5 Combining Iterative Chunking with Information Set Decoding

The number of needed queries can be further decreased by combining Iterative
chunking with some ISD algorithm. Instead of recovering an entire information
set from queries, we can stop early, when we have learned only δk < k error
coordinates. Assume at this point we have n′ columns remaining, the weight of
the error vector on these coordinates is w′ and we need to recover k′ = k − δ
more elements from the information set.

Then we are left with the decoding problem with parameters (n′, k′, w′) which
we can solve using any ISD algorithm. Of course this comes with a price since
ISD algorithms are exponential in time. Finding the right trade-off depends on
the computational power (CPU hours) the attacker has at hand. Figure 3 gives
the trade-off when using Stern’s or MMT algorithm.
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4 Attack Evaluation

For the practical attack evaluation we adapted the implementation presented
in [WSN18] for Field Programmable Gate Arrays (FPGAs). In Section 4.1 we
describe our approach for preliminary leakage analysis of the description mod-
ule design and in Section 4.2 the construction of a practical decryption oracle.
Finally, in Section 4.3 we evaluate the practical attack.

4.1 Leakage Analysis

To construct a decryption oracle for our attack approach we investigated the
implementation by Wang et al. from [WSN18] in detail to find a proper point of
interest at which we can find significant leakage. The selected implementation



uses the constant-time BM algorithm for the error correction. The BM algorithm
returns an error-locator polynomial which has roots at the points that correspond
to an error position. Thus, if there are t′ ≤ t errors, t′ input points to the error-
locator polynomial evaluate to zero. If the number of errors is larger than t, a
random polynomial is returned by the BM algorithm, which most likely has a
very small number of roots. Thus, in order to distinguish whether the number
of errors has increased or decreased, we need to distinguish cases where the
reconstructed error vector has a low HW (for cases with an increased error
number where error correction failed) and where it has a high HW (for cases
with a decreased error number where error correction succeeded).

The FPGA implementation of the decryption module in [WSN18] consists
of five major steps: First, an additive Fast Fourier Transformation (FFT) eval-
uates the secret Goppa polynomial. Then the double syndrome is computed.
Afterwards the BM algorithm is performed and another additive FFT is applied
to evaluate the error-locator polynomial. In the final step, the error vector is
constructed.

In addition to the analysis of the source code we simulated the implemen-
tation for a preliminary leakage analysis in order to find possible leakage in a
noise-free simulated environment. We wrote a Python script that computes a
simulated power trace from a Value Change Dump (VCD) file of an Icarus Ver-
ilog (iverilog) simulation using a simple Hamming-distance model. This results in
a simulated power trace with cycle accuracy. Figure 4 shows the resulting graphs
of the simulation for two different simulated power traces, one for a successful
decoding (high HW error vector) and one for an unsuccessful decoding (low HW
error vector). The five steps of the decryption are highlighted. The first point
at which side-channel information is leaked is at the last round of the second
additive FFT operation which evaluates the error-locator polynomial from the
BM decoder. The result of this evaluation equals to zero if there is a root and
results in other values if not. Thus, it is distinguishable in general. However,
because the implementation of the additive FFT utilizes several multiplicator
instances in parallel, the logical noise added to the exploitable leakage is quite
high.

The second point is at the last step, the error vector construction. Here, the
graph of the high HW error vector (blue) increases during the construction in
contrast to the low HW error vector (red) such that there is a growing distance
between them. The reason for the increasing number of bit flips at this stage
is that the result of the error vector construction is shifted into a large flip-flop
shift-register step by step. To lower the effort compared to the analysis of the
second FFT we exploit the significant leakage of the iterative reconstruction
at the end of the decryption process. Therewith, the side-channel information
enables the construction of a decryption oracle.
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difference in the simulation is visible in the last step for the low and high HW results.

4.2 Building an Oracle in Practice

We decided to use the electromagnetic radiation (EMR) leakage emanated by
the FPGA during the decryption and developed a Differential Electromagnetic
Analysis (DEMA). Power leakage could be exploited in the same way.

To get a response for individual queried syndromes we apply Welch’s t-test
[Wel47] to compare the means of the traces from the error-vector construction
range against two known reference traces. The reference traces stem from de-
ciphering the original syndrome for which we know that it is decodable, and
from a faulty syndrome that includes more than t errors so that it cannot be
decoded. This has the disadvantage that it adds an overhead of two traces to
the total number of required traces. Alternatively, we could statistically deter-
mine a threshold to compare it to the result of a t-test with just one of the
reference traces, which would save one trace. However, we decided to spend one
additional trace and avoid the statistical computation. The faulty syndrome is
constructed by adding five columns randomly chosen from the public key ma-
trix H ′′. The probability that this results in syndrome with more errors than
can be corrected is high; nevertheless, we use a t-test comparison to the trace
of the original syndrome to ensure this requirement. Algorithm 5 details the
preparation procedure. Now, we take the difference of the p-values of the t-tests
comparing a trace Ti against the original syndrome trace Thigh and against the
faulty syndrome trace Tlow:

p∆ = t-test(Ti, Thigh)− t-test(Ti, Tlow) (5)
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Thus, if the p-value is positive the acquired trace is similar to the original syn-
drome trace and interpreted as decodable. Otherwise, if the p-value becomes
negative it is interpreted as not decodable. Figure 5 gives an example section
of p-values of consecutive oracle queries. The response when used as decryption
oracle therefore is:

response =

{
true (decodable), if p∆ > 0

false (not decodable), otherwise
(6)

Algorithm 6 shows a query process. This approach requires just a single trace
per query plus two traces for the reference traces at the beginning. In detail, we
cannot apply the t-test to the raw traces directly because of misalignment be-
tween the signals. To handle this, we apply trace compression similar as described
in [MOP07]. We use the clock signal and take the maximum peak-to-peak differ-
ence of the amplitudes of the power or EM signal in each first clock half-wave as
the new value. Instead of a t-test we could also apply an F-test to compare the
variances of the raw traces, but the analysis duration is higher on our system in
contrast to the t-test over the compressed traces.

4.3 Practical Evaluation

To evaluate the attack in practice, we ported the FPGA design of [WSN18] to
a Xilinx Kintex-7 (XC7K160T) on a SAKURA-X3 board running at 24MHz
clock frequency. We added a UART communication interface, a control unit
that handles the storage of the secret key parts (g(x), (α0, α1, . . . αn−1)), and a
trigger signal to one of the output ports that indicates the start and the end
3 http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html


Algorithm 5: GetReferences
input : Classic McEliece parameters n,m, t ∈ N+,

binary parity-check matrix H ′′ = [Imt|K] := (hi,j) ∈ GF(2)mt×n,
syndrome s ∈ GF(2)mt.

output: Reference traces T ′
high, T

′
low.

1 Decrypt(s) Thigh, Clkhigh;
2 T ′

high ← Compress(Thigh, Clkhigh);
3 s∗ ← s;
4 repeat
5 for i← 0 to 5 do
6 i ∈R {0 . . . n};
7 s∗ ← s∗ ⊕H[i];
8 end
9 Decrypt(s∗) Tlow, Clklow;

10 T ′
low ← Compress(Tlow, Clklow);

11 until t-test(T ′
high, T

′
low) ≈ 0;

12 return T ′
high, T

′
low;

Algorithm 6: DEMA-based QueryOracle
input : Manipulated syndrome s′ ∈ GF(2)mt,

Reference traces T ′
high, T

′
low.

output: Oracle response.
1 Decrypt(s′) Tj , Clkj ;
2 T ′

j ← Compress(Tj , Clkj);
3 p∆ ← t-test(T ′

j , T
′
high)− t-test(T ′

j , T
′
low);

4 return
{
true if p∆ > 0

false otherwise
;

of a decryption operation. We acquired the EMR profiles and the clock signal
using a LeCroy WavePro 715Zi oscilloscope at 500MSamples/s and a near-field
probe from Langer (RF-U 5-2). We added a 10MHz high-pass filter to remove
noise in the lower frequency range and used a customized Python script for an
automatic acquisition and analysis process. The ISD-support was implemented
using the GF(2) arithmetic of SageMath4.

We analyzed the design of the Niederreiter decryption for the two param-
eter sets (n,m, t) = {(6960, 13, 119), (8192, 13, 128)} as proposed for “Classic
McEliece” in the second round of the NIST PQC competition (corresponding to
kem/mceliece6960119 and kem/mceliece8192128, see Table 1); our approach
can be applied to the other “Classic McElice” parameters as well. Figure 6 shows

4 http://www.sagemath.org/

http://www.sagemath.org/
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Fig. 6. Example EM trace of the decryption process on a SAKURA-X (Xilinx Kintex-7,
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an example trace of a decryption run. Corresponding to the simulated trace in
Figure 4, the five individual parts of the decryption process are identifiable.

We evaluated the ISD-supported iterative approach (Section 3.3) and the
chunk-based approach (Section 3.4) using the oracle described in Algorithm 6
for both parameter sets. We are using plain ISD (Prange) as ISD algorithm,
replacing the “guessing” with queries to our oracle, effectively implementing the
ISD as Gaussian elimination on mt columns. If an attacker is able to invest
some computing power, he is able to reduce the number of traces even further,
trading in a higher complexity of the ISD. For each parameter set we tested
five different key pairs using five different plain-/ciphertext pairs for each key
pair (25 in total). We used the SageMath scripts which are enclosed with the
publicly available FPGA implementation of the Niederreiter cryptosystem from
Wang et al. to generate the required plain-/ciphertexts and key pairs using
different seeds. According to the theoretical analysis result showed in Figure 2
we evaluated the chunk-based approach for both proposed optimal values for the
chunksize threshold βT and some additional values.

For each approach we were able to recover the entire plaintexts in all cases.
Table 4 shows the results of the evaluation. For the ISD-supported iterative SCA
approach we performed the required k = n−mt measurements. The results of the
chunk-based approach meet the predicted theoretical values. The results show
that the number of traces can be lowered to approximately 10% compared to the
ISD-supported iterative approach. As predicted, the number of traces depends
on the choice of the chunksize threshold βT . A smaller chunksize causes more
queries. If the chunksize is too large the bucket gets filled up with not inspected,
as high responded queries and additional traces have to be acquired to collect
enough columns to apply plain ISD. We could also spend more computing power
to apply Stern or MMT as mentioned above to lower the number of traces further.



kem/mceliece- Approach Statistics Theory
min. avg. max.

6960119

ISD-sup. Iterative – 5415 (k + 2) –
Chunk-based, βT = 19 576 637.0 702 640
Chunk-based, βT = 18 547∗ 610.0∗ 666∗ 628
Chunk-based, βT = 17 537 599.88 649 607
Chunk-based, βT = 16 553 605.56 663 611
Chunk-based, βT = 15 571∗ 620.72∗ 682∗ 629

8192128

ISD-sup. Iterative – 6530 (k + 2) –
Chunk-based, βT = 19 652 723.72 803 744
Chunk-based, βT = 18 643 706.56 810 725
Chunk-based, βT = 16 637 694.84 770 696
Chunk-based, βT = 15 660∗ 714.76∗ 790∗ 719

Table 4. Statistical data for the required number of traces for a successful recovery
of an entire error vector gathered from 5 different key pairs and 5 different plain-
/ciphertexts per key pair for each parameter set. The values marked with an asterisk
are from a simulated oracle; we will provide values from the real oracle in the camera-
ready version of this paper.

5 Conclusion

In this paper we have shown that plaintext recovery attacks using side-channel
information against the Niederreiter cryptosystem and specifically the “Classic
McEliece” NIST submission are feasible with a relatively small amount of queries
and that therefore countermeasures are required if side channels can be exploited
by an attacker. Using plain ISD and our improved attack strategy, we require
less than 700 traces when attacking the reference FPGA implementation of the
“Classic McEliece” submission even for the largest parameter sets. The number
of traces can be further reduced by using state-of-the-art ISD algorithms in a
trade-off with the computing time of ISD.
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A Appendix

First we state a lemma whose validity can be easily checked, but it will be useful
in the proof of Proposition 1.

Lemma 1. For n,w, β, a ∈ N the following identity holds:

a∏
i=0

(
n−w−iβ

β

)(
n−iβ

β

) =

(
n−(a+1)β

w

)(
n
w

) .ut

A.1 Proof of Proposition 1

Proof. We denote by H(n, i, β) the event of hitting a high chunk in the i-th
query, after hitting low chunks in the first i− 1 queries. Then the probability of
the event H(n, i, β) is:

Pr(H(n, i, β)) =

(
n−w
β

)(
n
β

) · · · · ·
(
n−(i−2)β−w

β

)(
n−(i−2)β

β

) · (1−
(
n−(i−1)β−w

β

)(
n−(i−1)β

β

) ),

which by Lemma 1 is

Pr(H(n, i, β)) =

(
n−(i−1)β

w

)(
n
w

) −
(
n−iβ
w

)(
n
w

) .

Plugging in these values in the expectation

E(β) =
∑
i>0

i · Pr(H(n, i, β)),

we obtain equation (4).
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For the second part of the Proposition, let Pr(w(β) = j|High) denote the
probability that the weight of the chunk is j under the condition that it is a high
chunk. Then,

Pr(w(β) = j|High) =
Pr(w(β) = j)

Pr(High)
=

Pr(w(β) = j)

1− Pr(Low)
,

where Low is the event of a low chunk.
Since Pr(w(β) = j) =

(w
′

j )(
n′−w′
β−j )

(n′
β )

and Pr(Low) =
(n

′−w′
β )

(n′
β )

, we obtain

Pr(w(β) = j|High) =

(
w′

j

)(
n′−w′

β−j

)(
n′

β

)
−
(
n′−w′

β

) .
Now

E(w(β)) =

β∑
j=1

j · Pr(w(β) = j|High) =
1(

n′

β

)
−
(
n′−w′

β

) β∑
j=1

j ·
(
w′

j

)(
n′ − w′

β − j

)
=

=
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n′

β

)
−
(
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β

) β∑
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w′ ·
(
w′ − 1

j − 1

)(
n′ − w′

β − j

)
=

w′(
n′

β

)
−

(
n′−w′

β

)(n′ − 1

β − 1

)
.
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