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Abstract. A trapdoor over NTRU lattice proposed by Ducas, Lyuba-
shevsky and Prest (ASIACRYPT 2014) has been widely used in various
crytographic primitives such as identity-based encryption (IBE) and digital
signature, due to its high efficiency compared to previous lattice trapdoors.
However, the most of applications use this trapdoor with the power-of-two
cyclotomic rings, and hence to obtain higher security level one should double
the ring dimension which results in a huge loss of efficiency.

In this paper, we give a new way to overcome this problem by introducing a
generalized notion of NTRU lattices which we call Module-NTRU (MNTRU)
lattices, and show how to efficiently generate a trapdoor over MNTRU
lattices. Moreover, beyond giving parameter flexibility, we further show
that the Gram-Schmidt norm of the trapdoor can be reached to about q1/d,
where MNTRU covers d ≥ 2 cases while including NTRU as d = 2 case.
Since the efficiency of trapdoor-based IBE is closely related to the Gram-
Schmidt norm of trapdoor, our trapdoor over MNTRU lattice brings more
efficient IBE scheme than the previously best one of Ducas, Lyubashevsky
and Prest, while providing the same security level.

Keywords: SIS trapdoor; Module-NTRU lattice; Identity-based encryp-
tion

1 Introduction

In cryptography, a trapdoor is a special secret information which enables to
compute the inverse of a function which is hardly to be done itself. Due to the
strong property, trapdoor has been widely used in various fields of cryptography,
especially to construct digital signature and public-key encryption. There also have
been proposed several trapdoor constructions in lattice-based cryptography, which
is receiving world-wide attention due to its quantum-resistance and worst-case to
average-case reduction property [Pei16].



In [GPV08], Gentry, Peikert and Vaikuntanathan made one of the major break-
throughs in lattice-based trapdoor constructions: they showed how to efficiently
generate a trapdoor of Short Integer Solution (SIS) function fA(x) = A ·x (mod q)
for an n ×m random integer matrix A ∈ Zn×mq (q ≥ 2). Later, Micciancio and
Peikert [MP12] proposed more versatile trapdoor notion than that of [GPV08],
and a new trapdoor of Learning with Errors (LWE) function gA(s, e) = A · s + e
(mod q).

These lattice trapdoors enable to construct first lattice-based hash-and-sign
digital signatures and identity-based encryptions (IBE). However, these schemes
devised with the lattice trapdoors are quite inefficient since they require the
condition m = Θ(n log q). This condition is induced from the statistical property of
trapdoor constructions: In [GPV08], the trapdoor generation algorithm outputs a
pair (A,T) ∈ Zn×mq × Zm×m where T is a trapdoor for the SIS function fA. To
ensure the secrecy of T, the distribution of A is set to be statistically close to the
uniform distribution over Zn×mq which induces the large parameter m = Θ(n log q).

To overcome this bottleneck, Ducas, Lyubashevsky and Prest [DLP14] intro-
duced a variant of the SIS trapdoor proposed in [GPV08], which exploits computa-
tional property of NTRU [HHGP+03] instances instead of statistical property. For
a polynomial ring R := Z[X]/(φ(X)) with some monic polynomial φ(X) ∈ Z[X], a
new trapdoor generation algorithm outputs a pair hNTRU ∈ Rq and TNTRU ∈ R2×2

for Rq := R/qR satisfying (1,hNTRU) ·TNTRU = 0 mod q. The most distinctive
point is the secrecy of the trapdoor TNTRU is now obtained from the computational
hardness assumption of NTRU lattices. Since the new trapdoor is based on polyno-
mial ring and only requires m = 2n (contrary to m = Θ(n log q) before), it derives
much better efficiency compared to the previous lattice trapdoors, and hence several
practical cryptosystems has been proposed upon it; a practical lattice-based IBE
scheme [DLP14] and a digital signature scheme Falcon [PAFZ19].

However, despite of the efficiency of NTRU trapdoor compared to the previous
trapdoors, there still exist some issues related to parameters. Due to security
and efficiency issues, the most popular and natural choice of monic polynomial
φ(X) is Xn + 1 with power-of-two n. First on the security side, it is known that
NTRU instantiated with such polynomial has a provable security under appropriate
parameter regimes [SS11], which means φ(X) = Xn + 1 with power-of-two n has
more sound security ground than other choices. Of course this security reduction
does not rule out the usability of other polynomials, but the more important reason
lies on efficiency side; several implementation techniques [MSO17,PP19] are based
on that choice of φ(X), and especially the concrete analysis of [DLP14] also focuses
on it.

However, this use of power-of-two n leads to some inflexibility on the optimized
parameter selection for the desired security level. For example, [DLP14] analyzed
that ring dimension n = 512 provides about 80-bit security, and the next ring
dimension n = 1024 provides about 192-bit security. In this case, to obtain a
moderate security level like 128, one is forced to use n = 1024 which actually
provides much stronger security level, which leads to efficiency degradation. Re-
garding this problem, Falcon chooses non-power-of-two n = 768 and instantiate
NTRU trapdoor with a polynomial ring Z[X]/(Xn −Xn/2 + 1), with considerable

2



efforts to boost efficiency of NTRU trapdoor over this ring. However, currently
it cannot reach to power-of-two case performances, and requires too complicated
implementation details.

Meanwhile, ring-LWE-based cryptosystems had also suffered from a similar
problem, but they overcame this problem by introducing a general notion of ring-
LWE so called module-LWE [LS15]. Roughly speaking, a ring-LWE sample consists
of two elements in a polynomial ring Rq. Also for this case, φ(X) = Xn + 1 is
the most popular choice and hence the total dimension 2n is also quite restrictive.
Module-LWE solves this restriction by extending the concept of ring-LWE to d(≥ 2)
elements in a polynomial ring Rq. Clearly this yields the total dimension dn, and
this enables one to use non-power-of-two total dimension such as 768 (n = 256,
d = 3) and 1536 (n = 512, d = 2 or n = 256, d = 5), such as [BDK+18,DKL+18].

1.1 This Work

In this paper, we propose a generalized notion of NTRU lattices called module-
NTRU(MNTRU) lattices which enables to solve the dimension inflexibility of
NTRU-based cryptosystems. We also show efficient generation a trapdoor over
MNTRU lattices, and argue that our generalization yields better efficiency than
NTRU trapdoor as well as parameter flexibility. Based on our MNTRU trap-
door, we construct a new IBE scheme as a generalization of the Gentry-Peikert-
Vaikuntanathan (GPV) framework [GPV08] based on NTRU trapdoor. We also
rigorously analyze the parameter choices with respect to the correctness and the
security of the scheme. Our generalization derives much efficient parameter in-
stantiation upon previous IBE scheme over MNTRU lattices. Lastly, we provide
a proof-of-concept implementation result on our IBE scheme as summarized in
Table 1, which includes the comparison with the implementation result in [DLP14]5.

Generalization of NTRU trapdoor. As an analogue of generalization from
ring-LWE to module-LWE, we generalize a context of NTRU lattices in R2 to
MNTRU lattices in a higher-dimensional Rd. See Figure 1 for the overview.

We first review the generation of trapdoor over NTRU lattices. One first
randomly samples two small polynomial f and g, which we interpret this by

sampling a matrix SNTRU :=

(
g
−f

)
∈ R2×1. Assuming f is invertible in Rq, the

NTRU instance is defined by h := g/f ∈ Rq, where (1, h) ∈ R2
q satisfies

(1, h) · SNTRU ≡ 0 mod q.

5 We remark that this implementation is literally for a proof-of-concept, and speed results
should not be taken seriously. There has been many optimization techniques after
[DLP14], and our implementation does not consider them.

6 In [DLP14], this parameter set was claimed to have 192-bit security based on their own
security analysis. However we adapt the latest, rather conservative security analysis of
literature, and it concludes 87-bit security for that parameter set.
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[DLP14] Ours

(d, n, log2 q) (2, 1024, 26) (3, 512, 19)

Bit-security 876 147

Ciphertext size (bytes) 3328 2432

Master pk size (bytes) 3328 2432

User sk size (bytes) 2048 1152

User KeyGen (ms) 22.02 12.6

Enc + Dec (ms) 4.9 1.6

Table 1: Comparison between [DLP14] and our scheme. Both experiments are done
on Intel (R) Xeon (R) Silver 4144 processor (2.20GHz CPU). Full implementation
can be found on https://anonymous.4open.science/r/4a72c47d-d4d8-4034-

9b5c-61f236e9942d/.

NTRU trapdoor (d = 2 case)

1. Sample a matrix SNTRU ∈ R2×1 having
small entries.

2. Take a vector a = (a1, a2) ∈ R2 such
that a · SNTRU = 0.

3. Define an NTRU instance by

h = a−1
1 · a2 ∈ Rq

4. Solve the NTRU equation to have
F ∈ R2 and completes NTRU trapdoor
TNTRU = [SNTRU||F ] .

Hardness Assumption:

Hard to find TNTRU from h

MNTRU trapdoor

1. Sample matrix SMNTRU ∈ Rd×(d−1)

having small entries.
2. Take a vector a = (a1, · · · , ad) ∈ Rd

such that a · SMNTRU = 0.
3. Define an MNTRU instance by

h = a−1
1 · (a2, · · · , ad) ∈ R

d−1
q

4. Solve the MNTRU equation to have
F ∈ Rd and completes NTRU trapdoor
TMNTRU = [SMNTRU||F ] .

Hardness Assumption:

Hard to find TMNTRU from h

Fig. 1: Overview of NTRU generalization

Here the NTRU lattice is defined by

ΛNTRU :=
{

(u, v) ∈ R2 : u+ vh = 0 mod q
}
,

which can be understood as a integral lattice in Z2n that contains an unusual
short vector (g,−f). Now one who knows f and g can generate a trapdoor basis
TNTRU ∈ Z2n×2n of ΛNTRU by finding F,G ∈ R satisfying

gF − fG = q
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so-called NTRU equation, with

TNTRU =

(
A(g) A(G)
−A(f) −A(F )

)
where A represents the anti-circulant matrix transform of polynomials (for a
detailed definition, see Section 2.1).

We generalize this framework for d ≥ 2 cases. For that, we first randomly sample
a matrix SMNTRU ∈ Rd×(d−1) where each component has small coefficients. Then
we construct a vector hMNTRU = (h1, · · · , hd) ∈ Rd−1q satisfying

(1,hMNTRU) · SMNTRU ≡ 0 mod q,

from which we define a dn-dimensional MNTRU lattice

ΛMNTRU,d :=

{
(u0, · · · , ud−1) ∈ Rd : u0 +

d∑
i=1

uihi = 0 mod q

}
.

Such h = (h1, · · · , hd−1) is determined by deti/det1 mod q where deti is a determi-
nant of (d−1)×(d−1) submatrix of SMNTRU. Then, to extend the matrix SMNTRU

to a trapdoor TMNTRU ∈ Rd×d, we solve a generalized equation of fG− gF = q,
so-called the MNTRU equation

d∑
i=1

deti · Fi = q.

Now, the solution of the MNTRU equation F = (F1, ..., Fd)
t ∈ Rd completes the

trapdoor
TMNTRU ∈ Zdn×dn =

(
A(S)||A(F )

)
.

For the IBE scheme construction in GPV framework, the Gram-Schmidt norm
of ‖T∗MNTRU‖ plays a crucial role. In this point, we argue that with experimental
verification, it can be reached to some small multiple of q1/d, where the multiple
constant cd only depends on d. The effect of this Gram-Schmidt norm change is
addressed in the next subsection.

Remark 1. In [CG17], the MNTRU equation appeared in the context of construct-
ing NTRU-based hierarchical IBE (but not in a name MNTRU equation). However,
we cannot find any complete paper except a slide lacking in details, and hence we
cannot further compare this with our method.

IBE from MNTRU trapdoor in GPV framework. As we construct a general-
ized trapdoor TMNTRU for MNTRU lattice ΛMNTRU,d for d ≥ 2, we can also apply
the IBE construction of GPV framework, which includes [DLP14] as d = 2 case.
The master key pair is MPK = h and MSK = TMNTRU, and the user key extract
procedure outputs the last d − 1 entries of a vector s = (s0, s1, · · · , sd−1) ∈ Rd
sampled from discrete Gaussian over a lattice Λ(TMNTRU). The encryption and
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decryption can be understood as a module-LWE based encryption with secret key
s′ = (1,−s1, · · · ,−sd−1); precisely, the ciphertext of a binary-coefficient m ∈ R is
given by

c = r · (t, h1, · · · , hd−1) + e +
(⌊q

2

⌉
·m, 0, · · · , 0

)
where t ∈ Rq is a value that publicly computed from id, and r and e = (e0, · · · , ed−1)
are randomly chosen element in R having ternary(±1, 0) coefficients. The corre-
sponding decryption is done by computing

〈c, s′〉 =
⌊q

2

⌉
·m+ e0 + rs0 −

d−1∑
i=1

eisi.

For correct decryption, modulus q should be set sufficiently large so that the total
error term e0 + rs0 −

∑d−1
i=1 eisi is less than q/4. This is related to the size of

si which is sampled from a discrete Gaussian over a lattice Λ(TMNTRU) using
TMNTRU. Here, the minimal standard deviation σ of all known discrete Gaussian
samplers [DP16] is proportional to the Gram-Schmidt norm ‖T∗MNTRU‖. Since we
show that ‖T∗MNTRU‖ can be reached proportional to q1/d, the total error size is
reduced than NTRU (d = 2) case, and hence enables us to choose the smaller
modulus q. This leads to overall decreases on key sizes and ciphertext sizes. We also
give a proof-of-concept implementation based on the implementation of [DLP14],
whose results can be found by Table 1.

We finally remark that, although our implementation shows better performance
(speeds) than the implementation of [DLP14], the main point of our proposal should
be understood as a new way to have better parameters, and implementation issues
still remain as a future work. Indeed, there has been many optimization techniques
that can be applied to NTRU setting like [MSO17,PAFZ19,PP19], and hence the
current implementation of [DLP14] is much faster than its implementation of
[DLP14]. It would be a clear future work to check whether such techniques are
applicable to MNTRU case.

A Digital Signature Scheme. The key generation and extract procedure can be
exploited as a hash-and-sign digital signature, which is a Falcon’s design rationale.
In this case, there is no additional error term that was required for encryption,
and we do not have the modulus q size condition for correctness anymore. This
makes one almost freely chooses the modulus q, and hence we cannot expect global
improvement for this case. Indeed, as the public key consists of d− 1 polynomials
in Rq, and MNTRU trapdoor increases the public key size. Still, one may expect
the signature size drop because it still proportional to ‖T∗MNTRU‖, which would be
a glad change in the actual usage. However, as concrete parameter uses quite small
q (such as 12289 or 18433 in Falcon), our generalization fails to bring the actual
size improvement. For the detailed discussion, we refer Appendix B.

1.2 Roadmap

In Section 2, we define some notations and give preliminaries for understanding
trapdoor over NTRU lattices. Then in Section 3 we introduce a general notion
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of NTRU, what we called MNTRU, and discuss about the trapdoor. Based on
trapdoor over MNTRU lattices, we construct an IBE scheme in Section 4.

2 Preliminaries

2.1 Notations

We will work in the ring R := Z[X]/(Xn + 1) and denote Rq := R/qR =

Zq[X]/(Xn + 1). Let f :=
∑n−1
i=0 fiX

i and g :=
∑n−1
i=0 giX

i be polynomials in Rq
where fi, gi ∈ Zq for 0 ≤ i ≤ n− 1. Any polynomial operations in Rq are carried
out modulo Xn + 1; for instance f · g (or fg) denotes the multiplication in Rq. We
also denote the coefficient vector of f ∈ R (resp. Rq or R[X]/(Xn+1)) by (f) ∈ Zn
(resp. Znq or Rn). According to this, for a vector f = (f1, · · · , fd) ∈ R[X]/(Xn+1)d,

we denote ‖f‖ be the Euclidean norm of ((f1), · · · , (fd)) ∈ Rdn. For a finite set X,
we denote by x← X uniform randomly sampling x from X. We use ln to denote
the natural logarithm and log2 to denote the binary logarithm.

For f =
∑n−1
i=0 fiX

i ∈ R, we denote the n-dimensional anti-circulant matrix of
f by

An(f) :=


f0 f1 · · · fn−1

−fN−1 f0 · · · fn−2
...

. . .
. . .

...
−f1 −f2 · · · f0

 =


(f)

(xf)
...

(xN−1f)

 .

We omit the subscript n when it is clear from context. The anti-circulant matrix
preserves the addition and multiplication, that is, An(f) +An(g) = An(f + g) and
An(f)×An(g) = An(fg). The same notation applies for a vector v or a matrix
M over R by component-wise manner.

For a d×d′ matrix M over R, we denote an R-module generated by the columns

of M by ΛR(M) =
{

M · x : x ∈ Rd′
}
. Note that this object can be viewed as an

integral lattice Λ(An(M)) in Zdn generated by the columns of An(M).

2.2 Gaussian Measures

For a full-rank n-dimensional lattice Λ ⊂ Rn, the discrete Gaussian distribution
with width σ > 0 and center c ∈ Rn denoted by DΛ,σ,c is a distribution over Λ
which samples x ∈ Λ with the probability

DΛ,σ,c(x) :=
ρσ,c(x)∑
z∈Λ ρσ,c(z)

where ρσ,c(z) := exp

(
−‖z − c‖2

2σ2

)
.

There is an well-known parameter ηε(Λ) called smoothing parameter defined by
[MR07], which is defined by the smallest s > 0 such that

ρ1/s,0(Λ∗\{0}) ≤ ε,
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where Λ∗ is a dual lattice of Λ. We also denote the scaled-version η′ε(Λ) := 1√
2π
ηε(Λ).

In particular, it is known that from [GPV08]

η′ε(Z) ≈ 1

π
·

√
1

2
ln

(
2 +

2

ε

)
.

A Gaussian Sampler. An algorithm that approximately samples the discrete
Gaussian is proposed by [GPV08], and we will use for our MNTRU lattices and
IBE scheme. Here we omit the detail of the algorithm and simply define the syntax:
for a basis B of a lattice L, we denote the [GPV08] algorithm that approximately
samples DΛ,σ,c by

GaussianSampler(B, σ, c).

2.3 Kullback-Leibler Divergence

Instead of the traditional statistical distance concept to measure the distance of
two distributions, we especially will make use of Kullback-Leibler divergence (or
KL divergence) following the methodology of [DLP14].

Remark 2. In fact, the recent literature is using more general concept of distance
called Rényi divergence, for example in [PAFZ19]. However, the previous work
[DLP14] was analyzed with KL divergence, and hence in this paper we stick to the
KL divergence for a clear comparison.

Definition 1 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the support of P. The
Kullback-Leibler Divergence, noted DKL of Q from P is defined as:

DKL(P||Q) =
∑
i∈S

ln

(
P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

It is known that, if two distribution P and Q has small KL divergence, hardness
of any search problem that requires oracle queries for P is preserved even if the
oracle queries is replaced with Q.

Lemma 1 (Lemma 1 of [PDG14]). Let AP be an algorithm making at most
q queries to an oracle sampling from a distribution P and returning a bit. Let
A ≥ 0, and Q be a distribution such that DKL(P||Q) ≤ ε. Let x (resp. y) denote
the probability that AP (resp. AQ) outputs 1. Then,

|x− y| ≤
√
qε

2
.

Finally, we have the following fact for KL divergence of the ideal discrete
Gaussian and the Gaussian sampler that we will use.
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Theorem 1 (Theorem 2 of [DLP14]). For any ε ∈ (0, 1/4n), if σ ≥
η′ε(Z)‖B∗‖, then

DKL

(
DΛ(B),σ,c||GaussianSampler(B, σ, c)

)
≤ 2

(
1−

(
1 + ε

1− ε

)n)2

≈ 8n2ε2.

2.4 The NTRU Lattice

We recall the definition of the NTRU lattices.

Definition 2 (NTRU lattices). Let n be a power-of-two integer, and q be a
positive integer. For f, g ∈ R, let h = g/f mod q. The NTRU lattice ΛNTRU

associated to h and q is

ΛNTRU = {(u, v) ∈ R2 : u+ vh = 0 mod q}.

By the definition, ΛNTRU can also be seen as a full-rank lattice in Z2n generated

by the columns of ANTRU =

(
−An(h) qIn
In On

)
.

Several cryptosystems that deal with the NTRU lattices base their security on
the hardness assumption of the NTRU problem which states that if f, g ∈ Rq are
random small polynomials, their quotient g/f is indistinguishable from random in
Rq.

An interesting aspect of the NTRU lattice is that it can be easily instantiated
with a trapdoor basis. More precisely, as explained in [HHGP+03], one can find
another basis by computing F,G ∈ R such that gF − fG = q, and then a short
trapdoor basis of ΛNTRU is provided by the integral matrix

TNTRU :=

(
An(g) An(G)
−An(f) −An(F )

)
.

3 Module-NTRU Lattices

In this section, we introduce the generalized notion of NTRU lattices described
in Section 2.4. To give intuition, we understand the NTRU trapdoor generation
by following. First, it samples short polynomials f, g ∈ R, and we view this by

sampling a small matrix S =

[
g
−f

]
. Then, an NTRU instance h = g/f ∈ Rq

can be understood by an element obtained from a vector orthogonal to S. In this
case, such orthogonal vector is clearly (f, g) ∈ R2, and h comes from the quotient
vector (1, g/f) ∈ R2

q. Finally, we extend S to the trapdoor TNTRU by solving the

NTRU equation that satisfies gF−fG = q, and define TNTRU =

(
A(g) A(G)
−A(f) −A(F )

)
.

In Section 3.1, we elaborate the generalization of the above understanding of
NTRU instance and trapdoor generation, which we call module-NTRU (MNTRU)
instance and trapdoor. We will apply this new trapdoor for IBE scheme in later
sections, and the Gram-Schmidt norm of the trapdoor matrix is closely related
to its efficiency. Regarding this, we analyze and discuss about the Gram-Schmidt
norm of the trapdoor matrix in Section 3.2.
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3.1 Construction of MNTRU lattice and trapdoor

Our new construction essentially follows the above described framework for NTRU;
we first set a small matrix S ∈ Rd×(d−1) which corresponds to (g,−f)t, and consider
a vector orthogonal to S, say det = (det1, · · · , detd) 7. Then we define a MNTRU
instance by a vector h ∈ Rd−1q such that (1,h) = det−11 · det. Finally, we consider
a generalized version of NTRU equation defined by

d∑
i=1

deti · Fi = q,

and by concatenating F = (F1, · · · , Fd) to S, we complete the trapdoor TMNTRU

generation.
We elaborate from the generation of S. Firstly, we sample vector of polynomials

f i = (f1,i, · · · , fd,i) ∈ Rd for 1 ≤ i ≤ d − 1 where each fj,i is a small polyno-
mial(having small coefficients), and define a matrix S = [f1, · · · ,fd−1] ∈ Rd×(d−1),
and assume that S is full-rank in Rq which happens with high probability.

To find a vector orthogonal to S over R, we define Si be the (d− 1)× (d− 1)
matrix that results from deleting i-th row of S, and define deti = (−1)i−1 · det(Si).
Then the following lemma holds.

Lemma 2. The vector det = (deti)1≤i≤d satisfies dett · S = 0 over R.

Proof. We show dett is orthogonal to each column f i of S by considering a d× d
matrix Mi = [f i || S] . Since Mi has the same two columns, it has determinant 0.
Now the cofactor expansion by the first column implies det(Mi) = dett · f i, which
ends proof. ut

Assuming that det1 is invertible in Rq (hence S is full-rank in Rq), we define the
MNTRU instance hMNTRU ∈ Rd−1q as

hMNTRU = (h1, · · · , hd−1).

From Lemma 2, it holds that (1,hMNTRU) · S = 0 mod q. We then define the
dn-dimensional MNTRU lattice ΛMNTRU associated to h and q by

ΛMNTRU = {(u0, · · · , ud−1) ∈ Rd : u0 + u1h1 + · · ·+ ud−1hd−1 = 0 mod q},

whose basis is given by

AMNTRU :=


−A(h1) −A(h2) · · · −A(hd−1) qIn
In On · · · On On
On In · · · On On
...

...
. . .

...
...

On On · · · In On

 .

7 As its name indicates, this vector is indeed computed from the determinant of subma-
trices of S.
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We proceed to the generation of the MNTRU trapdoor TMNTRU ∈ Zdn×dn of
ΛMNTRU. For that, we consider the generalized NTRU equation (MNTRU equation)
which was previously defined in [PP19], where we utilize a restricted version: Given
S ∈ Rd×(d−1), find polynomials F1, ..., Fd ∈ R such that

d∑
i=1

deti · Fi = q (1)

where deti for 1 ≤ i ≤ d are defined above. This can be done by generalizing the
previous method in [HHGP+03], or applying more developed method of [PP19].
As our proof-of-concept implementation exploits the former method, we give the
detailed procedure in Appendix A for completeness. For a solution vector F =
(F1, ..., Fd) ∈ Rd of the MNTRU equation, we set the trapdoor TMNTRU ∈ Zdn×dn
as the concatenation of An(S) and An(F ), i.e.,

TMNTRU := (An(S)||An(F )) .

We know that (1,hMNTRU) · S = 0 mod q from Lemma 2, and moreover (1)
implies that 〈(1,hMNTRU),F 〉 = 0 mod q, and hence a lattice Λ(TMNTRU) is
contained in ΛMNTRU. Finally, Lemma 3 below says Λ(TMNTRU) is full-rank, which
completes the construction of trapdoor TMNTRU for the MNTRU lattice ΛMNTRU.

Lemma 3. Λ(TMNTRU) ⊃ qIdn.

Proof. We only need to show that ΛR(S||F ) ⊃ qRd. Let ei ∈ Rd denote the unit

vector whose i-th component is 1 for 1 ≤ i ≤ d. Since
∑d
i=1 deti · Fi = q, the

determinant of TMNTRU is (−1)d−1 · q. Let Mi,j be the (i, j)-minor of TMNTRU,
the determinant of (d− 1)× (d− 1) matrix results from deleting i-th row and j-th
column of TMNTRU, and define M i := (Mi,1,Mi,2, ...,Mi,d)

t ∈ Rd. Then, by the
cofactor expansion, it holds that

TMNTRU ·M i = (−1)i−1 · det(TMNTRU) · ei = ±qei,

which proves our claim. ut

Note that Lemma 3 only implies that Λ(TMNTRU) is a full-rank sublattice of
ΛMNTRU, but does not guarantee that Λ(TMNTRU) = ΛMNTRU, and hence TMNTRU

is not proven to be a trapdoor basis for ΛMNTRU; recall that for NTRU case, TNTRU

is a basis of ΛNTRU. We first note that it is well known(e.g., Lemma 7.1 of [MG02])
that TMNTRU can be efficiently converted into a basis B of ΛMNTRU such that
‖B∗‖ ≤ ‖T∗‖. As a more important remark, the full-rank set TMNTRU indeed
suffices for the trapdoor usage, and hence we never perform such basis-converting
process in our IBE scheme.

Hardness Assumption. The original NTRU trapdoor obtains its hardness from
NTRU assumption that as, for two small random polynomials f and g in R, their
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quotient h = fg−1 ∈ Rq is indistinguishable from uniform element in Rq. For our
case, we can establish a similar MNTRU assumption, saying

hMNTRU = det−11 · (det2, · · · , detd) ∈ Rd−1q

is indistinguishable from a uniform vector in Rd−1q .
In fact, what we exactly need is somewhat weaker notion; to apply the GPV

framework, we require SIS is hard over a random choice of A. Thus, our following
IBE scheme is secure under somewhat mild assumption that SIS is hard over
AMNTRU on average, where the randomness is from the random choice of S.

3.2 Minimize the Gram-Schmidt norm of TMNTRU

For an IBE scheme in GPV framework, the users’ secret key issue involves a discrete
Gaussian sampling over Λ(TMNTRU). As known discrete Gaussian samplers sample
Gaussian having size proportional to ‖T∗MNTRU‖, it is quite important to set
TMNTRU to have small Gram-Schmidt norm ‖T∗MNTRU‖. In this regard, we now
explain how we choose S ∈ R to minimize ‖T∗MNTRU‖.

We start from the following lemma adapted from Lemma 2 of [DLP14] that says
for MNTRU trapdoor, we only need to see d Gram-Schmidt norms to determine
‖T∗MNTRU‖.

Lemma 4. Let TMNTRU = [t1 · · · tdn] be the MNTRU trapdoor. Then

‖T∗MNTRU‖ = max{‖t∗1‖, ‖t∗n+1‖, · · · ‖t∗(d−1)n+1‖}

Intuitively, we expect that the minimal occurs when

‖t∗1‖ = ‖t∗n+1‖ = · · · = ‖t∗(d−2)n+1‖ = ‖t∗(d−1)n+1‖.

Since the first d − 1 norms depend on our choice of f i ∈ Rd, we first choose
f i+1 ∈ Rd for 1 ≤ i ≤ d− 2 for the first d− 2 equality by

‖tin+1‖ =

√
d

d− i
· ‖t1‖. (2)

As underlying idea for this choice, we see that t∗in+1 is a projection of tin+1 (of
dimension dn) over a subspace of dimension (d− i)n, and hence random choice of
f i implies

‖t∗(i−1)n+1‖ =

√
d− i+ 1

d
· ‖t(i−1)n+1‖.

We experimentally check this choice of f i indeed implies

‖t∗1‖ = ‖t∗n+1‖ = · · · = ‖t∗(d−2)n+1‖,

and Figure 2 in Appendix C shows the result with d = 4 case.
Finally the last one ‖t∗(d−1)n+1‖ depends on our choice of S = [f1, · · · ,fd−1],

and we investigate the optimal choice of ‖t1‖ while varying ‖t1‖. We presume that

12



such optimal choice is represented by cd · q1/d for some constant cd that depends
only on d, which implies the Gram-Schmidt norm of TMNTRU can be reached to

‖T∗MNTRU‖ ≤ cd · q1/d.

Note that this is consistent with the known result of [DLP14] with c2 =
√
e/2 ≈

1.1658, which is also provided with heuristic analysis. Regarding this, we experi-
mentally verify that it holds for c3 ≈ 1.2 as Figure 3 in Appendix C indicates.

4 IBE-Scheme from Module-NTRU

In this section, we describe our IBE scheme, whose security is based on MNTRU and
Module-LWE.

4.1 Scheme Construction

We start from master key generation procedure KeyGen. It basically generates the
MNTRU instance h = (h1, · · · , hd−1) ∈ Rd−1q as the master public key and the

MNTRU trapdoor matrix TMNTRU ∈ Zdn×dn as the master secret key. The master
secret key elements are sampled according to Section 3.2, which implies

‖T∗MNTRU‖ = cd · q1/d.

The detailed procedure is given by Algorithm 1.

Algorithm 1 KeyGen
Input: n, q, d
Output: MPK = h ∈ Rd−1

q and MSK = TMNTRU ∈ Zdn×dn
1: for i = 1 to d− 1 do

2: σi ←
√

d
d−i+1

cd · q1/d/
√
dN . According to Section 3.2

3: f i ← (f1,i, · · · , fd,i) where each coefficient of fj,i ∈ R is sampled from DZ,σi
4: end for
5: S← [f1, · · · ,fd−1]
6: det← (det1, · · · , detd) where deti = (−1)i−1 · det(Si)
7: h← det−1 · (det2, · · · , detd) ∈ Rd−1

q

8: Find a solution F = (F1, · · · , Fd) ∈ Rd of the MNTRU equation
∑d
i=1 deti · Fi = q

9: T← [A(S)||A(F )]
10: return MPK = h and MSK = T

The extract procedure issues the user secret key skid valid for user id. The main
task for this is sampling short s ∈ Rd such that

〈s, (1,h)〉 = H(id) mod q

where H : {0, 1}∗ → Rq is some hash function modeled as a random oracle.
This vector s is computed by Gaussian sampling over ΛMNTRU, and we use
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GaussianSampler with the master secret key TMNTRU. The standard deviation
σ is chosen to yield KL Divergence of GaussianSampler(TMNTRU, σ) and the ideal
discrete Gaussian DΛ(TMNTRU),σ less than 2−λ. It is given by σ = η′ε(Z) ·‖T∗MNTRU‖
where ε = 2−λ/2/(2

√
2 · dn), and more precisely

σ ≈ cd
π
·

√
ln 2

2

(
λ

2
+ log2(4

√
2 · dn)

)
· q1/d. (3)

We also remark that this extract procedure should be stateful, i.e., it should
stores every previously issued user secret keys, otherwise our scheme becomes
insecure by repeated queries on the same id; actually, every IBE scheme based on
GPV framework share the same feature, and some stateless variants are already
argued in previous works. For simplicity we omit them and refer [GPV08]. The
detailed procedure can be found in Algorithm 2 below.

Algorithm 2 Extract
Input: An identity id, the master secret key T, the master public key h and a hash

function H : {0, 1}∗ → Rq
Output: A user secret key skid ∈ Rd−1

1: if id is previously queried then
2: return skid in local storage
3: else
4: t← (H(id), 0, · · · , 0) ∈ Rdq
5: σ ← cd

π
·
√

ln 2
2

(
λ
2

+ log2(4
√

2 · dn)
)
· q1/d

6: c← GaussisanSampler(T, σ, t)
7: s = (s0, s1, · · · , sd−1)← t− c . 〈s, (1,h)〉 = t
8: Add skid = (s1, · · · , sd−1) in local storage and return skid
9: end if

Our encryption and decryption are done in the same manner to Module-LWE
based encryption. In particular, polynomials r, ei are uniformly sampled from
{−1, 0, 1}n. Moreover, our IBE scheme also combines KEM and one-time-pad (OTP)
as in [DLP14]. This combination of OTP is necessary for our case where the width
parameter σ is chosen to have negligible KL divergence of Gaussian sampler; KL
divergence argument only applies for search problems, and without the use of OTP,
we cannot guarantee indistinguishability based security of our scheme.

For the decryption correctness, observe that

w = 〈c, (1,−skid)〉 =
⌊q

2

⌉
·m+ e0 + rs0 −

d−1∑
i=1

eisi.

Then each coefficient of the error polynomial e0 + rs0 −
∑d−1
i=1 eisi should lie

over (−q/4, q/4). We first estimate the coefficient size of the error polynomial
by approximating it into (continuous) Gaussian distribution having the same
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Algorithm 3 Encrypt

Input: An identity id, a message µ ∈ {0, 1}m, the master public key h ∈ Rd−1
q , hash

functions H : {0, 1}∗ → Rq and H ′ : {0, 1}n → {0, 1}m
Output: A ciphertext C = (c, c′) where c ∈ Rdq and c′ ∈ {0, 1}m.
1: r, ei ← {−1, 0, 1}n for 0 ≤ i ≤ d− 1
2: k ← {0, 1}n . k is an ephemeral key
3: t← H(id)
4: c0 ← rt+ e0 +

⌊
q
2

⌉
· k

5: c0 ← 2dlog2 qe−3 ·
⌊

c0
2dlog2 qe−3

⌋
. Store only 3 most significant bits of c0

6: c← (c0, c1, · · · , cd−1) where ci = rhi + ei for 1 ≤ i ≤ d− 1
7: c′ ← µ⊕H ′(k)
8: return C = (c, c′)

Algorithm 4 Decrypt

Input: A ciphertext C = (c, c′), a user secret key skid ∈ Rd−1, and hash functions
H : {0, 1}∗ →Rq and H ′ : {0, 1}n → {0, 1}m

Output: A message µ ∈ {0, 1}m
1: s′ = (1,−skid)
2: w ← 〈c, s′〉
3: k ←

⌊
2
q
· w
⌉

4: return m← c⊕H ′(k)

variance. Precisely, it is assumed to behave like 0-centered Gaussian with variance
2
3 (‖skid‖2 + 1). Using a tail bound for Gaussian distribution, we have the following
condition for correctness:

q ≥ 32
√
λ ln 2

3
√

3
· ‖skid‖. (4)

Moreover, as in [DLP14], one can reduce the size of ciphertext by sending only
a few highest order bits of c0, which not much harm the correctness of decryption.

4.2 Security Analysis by Attack Algorithms

In this section, we give security analysis of our IBE scheme based on the following
facts from the literature. First, adapted from [PAFZ19]’s argument, if an N -
dimensional lattice Λ is known to have an unusually short vector v whose size is

evidently smaller than Gaussian Heuristic
(√

N
2πe · det(Λ)1/N

)
, it can be found by

BKZ with blocksize β satisfying

0.75
√
β/N · ‖v‖ ≤ δ2β−N0 det(Λ)1/N (5)

where the root Hermite factor δ0 of BKZβ is given by
(

β
2πe (πβ)

1
β

) 1
2(β−1)

[Che13].
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On the other hand, for any N -dimensional lattice Λ, if one wants to find a
vector v whose size is larger than det(Λ)1/N , the required root Hermite factor δ0 is
determined by

δN0 ≤
‖v‖

det(Λ)1/N
. (6)

Based on these facts, we mount lattice attacks on several possible attack points.

Master Key Recovery. One may try to recover MSK from MPK, by finding an
unusually short vector f i in a lattice with a basis AMNTRU. Since the short vector

f i is chosen to have norm smaller than
√

d
2 · cd · q

1/d, (5) implies that

0.75
√

β
dn ·

√
d
2 · cd · q

1/d

q1/d
≈ 0.75 · cd

√
β

2n
= δ2β−dn0 .

User Key Recovery. The attacker can try to obtain an user secret key id from
MPK = h, which involves finding any short s ∈ Rd satisfying 〈s, (1,a)〉 = H(id).
This can be done by finding a short vector (s, 1) in a dn+ 1-dimensional lattice
with determinant qn. For correct decryption, the target vector norm would be
approximately

√
dn · σ where σ comes from (3). Then (6) gives a condition

√
dn · σ

qn/(dn+1)
≈
√
dn · σ
q1/d

= δdn0 .

IND-CPA security. Our ciphertext is of the form

(c0, c1, · · · , cd−1) = (rt+ e0, rh1 + e1, · · · rhd−1 + ed−1)

for MPK = h. Like the above user key recovery case, one can try to find the
dn+ 1-dimensional vector (e0, · · · , ed−1, 1) in a lattice with determinant qn. Since
we know the unusual short vector (e0, · · · , ed−1, 1) of size ≈

√
2dn/3 in the lattice,

we apply (5)

0.75

√
β

dn
·
√

2dn/3 = 0.75

√
2β

3
≤ δ2β−dn0 q1/d.

4.3 Parameter Selections

We now set a concrete parameter (d, n, q), and compare our scheme with previous
results. First of all, we note that it should be noted that if one wants to use MNTRU
dimension d, the master key generation involves a sampling from a discrete Gaussian
with width σ ≈ q1/d/

√
dn. However for d > 3 case, σ becomes extremely small

(less than 0.5) for our interest modulus q and dimension n ranges. Thus, in order

7 One may use some portions of vectors among u1, · · · , ud−1 and v, but we also have the
same result.
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to hedge against any possible problems regarding this extremely small discrete
Gaussian, we conservatively consider only small d, explicitly d = 3. Moreover
besides this discrete Gaussian sampling issue, too large d implies too small width
parameter σ, and the resulting secret matrix S would be almost zero matrix, which
can be find out by simple exhaustive search.

In this regard, we instantiate our scheme with d = 3, with modulus parameter
q = 219 for n = 512, which satisfies the correctness condition (4). Upon our security
analysis of Section 4.2, the minimal block size for attacking our scheme is 506;
Master key recovery requires β ≥ 714, and user key recovery requires β ≥ 612, and
IND-CPA security requires β ≥ 506. According to methodology of [ADPS16], we
estimate BKZ call with block size β costs 20.292β time, and hence our instantiation
provides about 147 security level. For a pair comparison, we re-evaluate security of
[DLP14] parameter (d = 2, n = 1024, q = 227) according to our renewed security
analysis of Section 4.2; Master key recovery requires β ≥ 908, and user key recovery
requires β ≥ 867, and IND-CPA security requires β ≥ 300.

Finally we also compare key sizes and ciphertext size. Clearly the ciphertext
and master public key consists of d − 1 elements in Rq, so their bitsizes are
(d − 1)n(blog2 qc + 1). Next, the user secret key consists of d − 1 elements in R
whose coefficients are sampled from a discrete Gaussian of standard deviation

σ = cd
π ·
√

ln 2
2

(
λ
2 + log2(4

√
2 · dn)

)
· q1/d from (3); for our case σ ≈ 2.33 · q1/3, and

[DLP14] case σ ≈ 2.28 · √q (with λ = 192). This can be stored in various ways,
and we follow Falcon’s method that requires about (d− 1)n · (blog2(σ)c+ 2) .

We also check our proposal by a proof-of-concept implementation, and experi-
mental results consisting speed results and concrete bit-sizes can be found in Table
1.
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kyber: a cca-secure module-lattice-based kem. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

CG17. Peter Campbell and Michael Groves. Practical post-quantum hierarchical
identity-based encryption. In 16th IMA International Conference on Cryptog-
raphy and Coding, 2017. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/round-2-submissions.
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LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

MG02. Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a
cryptographic perspectiv. Springer, 2002.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 700–718. Springer, 2012.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM Journal on Computing, 37(1):267–302,
2007.

MSO17. Sarah McCarthy, Neil Smyth, and Elizabeth O’Sullivan. A practical implemen-
tation of identity-based encryption over ntru lattices. In IMA International
Conference on Cryptography and Coding, pages 227–246. Springer, 2017.

PAFZ19. Paul Kirchner Vadim Lyubashevsky Thomas Pornin Thomas Prest Thomas
Ricosset Gregor Seiler William Whyte Pierre-Alain Fouque, Jeffrey Hoffstein
and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact signatures
over ntru. Post-Quantum Cryptography Standardization Round2 Submissions,
2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

round-2-submissions.
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A Solving generalized NTRU equation

Let det = (det1, · · · , detd) ∈ Rd be a vector of polynomial, and let φ = Xn + 1.
Our goal is to find F = (F1, · · · , Fd) ∈ Rd satisfying

d∑
i=1

deti · Fi = q.

– First, compute si ∈ Z[X] such that

sideti = Ri mod φ,

where Ri ∈ Z is the resultant of deti and φ.
– Compute the GCD δ of Ri, with coefficients ui ∈ Z such that

d∑
i=1

uiRi = δ.

– If δ divides q, define

F ′i =
q · ui
δ

si.

The vector F ′ = (F ′1, · · · , F ′d) may have too large size, and hence we use Babai’s re-
duction on F ′ with a matrix S, which gives much shorter solution F = (F1, · · · , Fd)
of the MNTRU equation.

B Application to Signature

Our MNTRU trapdoor can be used for building a signature scheme. Let n be a
power-of-two integer, d ≥ 2 be a MNTRU dimension and q > 0 be modulus. In this
case, we use the same keygen algorithm to output a public verification key VK = a
and a secret signing key SK = TMNTRU. For a message µ, the signing procedure
runs the extract algorithm with t = H(µ) to output a sign s. The corresponding
verification procedure checks whether s is short and 〈s, (1,a)〉 = H(µ). The
public key size would be (d − 1)n · dlog2 qe, and the signature size would be
(d− 1)n · (blog2(σ)c+ 2) . Falcon chooses σ ≈ 1.312 · ‖T∗‖ from Rényi divergence
argument due to [Pre17], which translates into σ ≈ 1.55 · √q in Falcon case, and

σ ≈ 1.58 · q1/3 in our case.
For the signature usage, there is no encryption phase and we only consider the

secret key recovery (the master key recovery in IBE) and the signature forgery
(the user key recovery in IBE) attacks. In this case, one can check that the other
attacks are only relevant to the total dimension N = nd, in other words, q is
irrelevant to security level. Thus, under the same security level, the ring dimension
n is proportional to 1/d and hence we conclude that the pk size is asymptotically
proportional to 1 − 1

d , and the sign size is asymptotically proportional to d−1
d2 .

However, regarding the concrete parameters, such asymptotic decreases in sig size
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is not so huge due to the small choice of q, and indeed the expected size of signature
becomes rather larger than the NTRU case due to the constant terms. For example,
Falcon chooses q to be the smallest prime such that q = 1 mod 2n (12289) for
n = 512 and 1024 case, and q = 1 mod 3n (18433) for n = 768 case8. We focus on
n = 768 and d = 2 case having total dimension 1536, where we can divide the same
total dimension by n = 512 and d = 3, and use modulus q = 12289. Note that this
two parameter sets provide the same security levels, as they have the same total
dimension. The concrete sizes are compared in Table 2.

[PAFZ19] Ours

(d, n, q) (2, 768, 18433) (3, 512, 12289)

Bit-security 195 195

VK size (bytes) 1440 1792

Sig size (bytes) 864 892

Table 2: Comparison between [PAFZ19] and our scheme

However, we remark that our generalization can still contributes for digital
signatures by introducing parameter flexibility with power-of-two dimensional
rings. We leave an open question that whether many optimization techniques for
power-of-two ring case are applicable, which may lead to practical (M)NTRU-based
cryptosystem like MLWE-based schemes [BDK+18,DKL+18] in Post-Quantum
Cryptography realm.

8 This is for the purpose of using number theoretic transform(NTT), which enables fast
operations on Rq.
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C Plots of Section 3.2

‖t1‖
‖t∗n+1‖
‖t∗2n+1‖

Fig. 2: ‖t∗in+1‖ values with ‖tin+1‖ =
√

d
d−i · ‖t1‖ for i = 1, 2,

with (d, n, q) = (4, 256, 227)
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(d, n, q) = (3, 512, 221)

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

(d, n, q) = (3, 256, 227)

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

(d, n, q) = (3, 256, 224)

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

1.2 · q1/3
‖t1‖

y = x

‖t∗2n+1‖

Fig. 3: Values of ‖t∗(d−1)n+1‖ for d = 3,
which indicates c3 ≈ 1.2 regardless of n and q.
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