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Abstract. Learning with Errors (LWE) and Ring-LWE (RLWE) prob-
lems allow the construction of efficient key exchange and public-key en-
cryption schemes. However, while improving the security through the use
of error distributions with large standard deviations, the decryption fail-
ure rate increases as well. Currently, the independence of individual coef-
ficient failures is assumed to estimate the overall decryption failure rate
of many LWE/RLWE schemes. However, previous work has shown that
this assumption is not correct. This assumption leads to wrong estimates
of the decryption failure probability and consequently of the security level
of the LWE/RLWE cryptosystem. An exploration of the influence of the
LWE/RLWE parameters on the stochastic dependence among the coeffi-
cients is still missing. In this paper, we propose a method to analyze the
stochastic dependence between decryption failures in LWE/RLWE cryp-
tosystems. We present two main contributions. First, we use statistical
methods to analyze the influence of fixing the norm of the error distribu-
tion on the stochastic dependence among decryption failures. The results
have shown that fixing the norm of the error distribution indeed reduces
the stochastic dependence of decryption failures. Therefore, the indepen-
dence assumption gives a very close approximation to the true behavior
of the cryptosystem. Second, we analyze and explore the influence of the
LWE/RLWE parameters on the stochastic dependence. This exploration
gives designers of LWE/RLWE based schemes the opportunity to com-
pare different schemes with respect to the inaccuracy made by using the
independence assumption. This work shows that the stochastic depen-
dence depends on three LWE/RLWE parameters in different ways: i) it
increases with higher lattice dimensions (n) and higher standard devia-

tions of the error distribution (
√
k/2); and ii) it decreases with higher

modulus (q).

Keywords: Lattice-based Cryptography · Stochastic Dependence · Cor-
relation · Decryption Failure Rate.

1 Introduction

Post-Quantum cryptographic schemes based on the Learning with Errors (LWE)
and the Ring-LWE (RLWE) problems exhibit a non-vanishing decryption failure
rate. In order to decrease this failure rate without degrading the security level,

? G. Maringer and T. Fritzmann contributed equally to this work.
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frequently Error-Correcting Codes (ECC) are used [5]. A low decryption failure
rate does not only reduce the amount of re-transmissions but is also essential to
avoid attacks which are capable to exploit these failures [4]. Therefore, a small
decryption failure rate is desirable or in some settings even mandatory. The
intuitive question is how to determine the decryption failure rate. The quantifi-
cation of this failure rate is not straightforward due to the correlation between
the coefficients of the noise term. Despite within RLWE schemes the coefficients
of polynomials are sampled independently, their product does not keep the in-
dependent nature between the coefficients.

When no ECC is applied, simple inequalities, such as the Fréchet inequality,
can be used to determine an upper bound of the overall decryption failure rate.
For schemes that make use of an ECC, previous works assumed the coefficients
to fail independently in order to compute the overall failure rate [11, 6]. How-
ever, the influence of the correlation on the failure rate and the validity of the
independence assumption is still an open research question.

First discussions about the correlation were made in Hila5 [11], LAC [6],
and [5]. In [3], it is shown that the influence of the correlation for the NIST
submission LAC is larger than expected and therefore the failure rate was un-
derestimated. The authors experimentally verified that the norms of certain
polynomials are major contributors to the stochastic dependence. Conditioning
the failure probabilities on these norms reduces the stochastic dependence on
average. Assuming that the aforementioned averaged result also works for a sin-
gle fixed norm, the LAC team decided to fix the norms to a specific value for the
second round of the NIST competition. However, to the best of our knowledge,
the influence of fixing the norms to a specific value on the stochastic dependence
has not been analyzed so far. The constraint of fixing the norms significantly
reduces the possible space of error polynomials. Therefore, stochastic indepen-
dence when a specific value for the norms is chosen has to be analyzed. Moreover,
previous works have not analyzed the influence of the RLWE parameters n (lat-
tice dimensions), q (modulus), and k (related to the standard deviation of the
error distribution) on the stochastic dependence of decryption failures.

In this work, we analyze the origin of the stochastic dependence of decryption
failures and the effect of fixing the norms to their expected values. Moreover,
we analyze the influence of the RLWE parameters on the applicability of the
independence assumption. We introduce various measures for quantifying the
stochastic dependence between random variables and statistically estimate them.
The methods in this work are applied on RLWE schemes but are also suitable
for LWE schemes.

2 Preliminaries

2.1 Notation

All polynomials in this paper are printed in bold and are an element of the ring
R = Zq[x]/(xn + 1), where n and q are both integers. The polynomials can be

represented as a =
∑n−1

i=0 aix
i, where all coefficients ai are reduced after each

operation modulo q. Let a
$←− S denote the sampling process from a distribution

S. Let χk be a centered binomial distribution with standard deviation σ =
√
k/2.

The norm of a polynomial is defined as ‖x‖2 :=
√∑

i x
2
i and the norm of a vector
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of polynomials is defined as ‖Z‖2 :=
√∑

k‖zk‖22. Let PX be a distribution on
a random variable X. Its support supp(PX) denotes the set of all a such that
PX(a) > 0.

2.2 Ring Learning With Errors (RLWE)

The RLWE problem was introduced by Lyubashevsky et al. in [8] as a possibility
of speeding up cryptographic constructions based on the LWE problem proposed
by Regev in [10]. The hardness of this problem relies on recovering the secret
polynomial s from b = a · s + e, where the coefficients of the secret polynomial
s and error polynomial e are usually sampled from a discrete Gaussian or a
centered binomial distribution, and the coefficients of the public polynomial a
from a large uniform distribution. Moreover, it is known to be a hard problem
to distinguish (a, b) from a uniform sample in R×R. RLWE instances are used
as the main building blocks for several post-quantum cryptographic schemes.

2.3 Algorithmic Description

This subsection describes the general structure and basic principles of RLWE
based schemes.

RLWE-based schemes are mainly defined by the parameters (n, q, k), where
n determines the degree of the elements in R, q is the modulus, and k determines
the variance of the error distribution. The selection of the different parameter
values creates different instances of the RLWE problem and influences the secu-
rity level, key/ciphertext sizes, failure rate, and as we show in this work also the
stochastic dependence between decryption failures.

A PKE/KEM system based on RLWE is composed of three major opera-
tions: key-generation, encryption and decryption. These operations are shown in
Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

The key generation creates the private key sk = s and the public key
pk = (b, seed). It is composed of three steps. The first step generates the pub-
lic polynomial a by using a cryptographic pseudo random number generator
that is initialized with a truly random seed. All coefficients of a are uniformly
distributed between 0 and q − 1. In the second step, the sampling of the secret
polynomial s and the error polynomial e are performed. The coefficients of these
polynomials are usually taken from a binomial distribution, which is centered
at zero, having outcomes in [−k, k] mod q. After the sampling process, in the
third step, the RLWE instance b = as + e is computed.

During the encryption operation, any plaintext m is transformed into a ci-
phertext c = (u,v). It is composed of three steps. The first step generates the
polynomial a as well as the secret and error polynomials s′, e′ and e′′. In the
second step, before hiding the message m in the RLWE instance v, the message
is encoded into a polynomial. During this step, redundancy can be added to
allow error correction after decryption. Finally, in the third step, the two RLWE
instances u and v are created and can be sent securely over a public channel.

The decryption operation retrieves the hidden message m from c. It is com-
posed of two steps. In the first step, the largest noise term ass′ is removed from
v by subtracting us. In the second step, the ECC removes further errors. With
high probability no decryption failure occurs and m̂ = m.
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Algorithm 1: Key Generation

seed
$←− {0, 1}256

a← GenA(seed)

s, e
$←− χk

b← as + e
Result: pk = (b, seed), sk = s

Algorithm 2: Encryption

Input: pk = (b, seed), m ∈ {0, . . . , 255}32
a← GenA(seed)

s′, e′, e′′ $←− χk

u← as′ + e′

v ← bs′ + e′′ + Encode(m)
Result: c = (u,v)

Algorithm 3: Decryption

Input: c = (u,v), sk = s
m̂← Decode(v − us)
Result: m̂

3 Decryption Failures

As already indicated in Subsection 2.3, the efficient usage of an RLWE scheme
has intrinsically a certain probability that the message m is not retrieved cor-
rectly after the decryption process. The large term ass′ in v−us = es′−e′s+
e′′ + Encode(m) cancels out and only a relatively small difference noise term
remains additively on the encoded message

d = es′ − e′s + e′′ . (1)

Another representation of this noise term is

d = STC + G , (2)

where
S =

[
−s
e

]
, C =

[
e′

s′

]
, G = e′′ . (3)

A coefficient fails if its absolute value abs(di) > qt, where the threshold qt is
usually q/4 and di denotes the coefficients of d. Throughout this work, the event
of a failure in the i-th coefficient is denoted as Fi and a successful decryption is
denoted as Si. If an algebraic ECC is applied, up to t erroneous coefficients can
be corrected, where t depends on the minimum distance of the code. The overall
scheme fails when not all coefficients can be corrected. As a consequence, a re-
transmission of m might be necessary. The requirements for decryption failure
rates depend on the application. For an ephemeral CPA-secure key exchange,
a failure rate in the range of 2−40 might be acceptable because key agreement
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errors do not affect the security of the scheme [5]. However, CCA-secure PKE
schemes require a much lower failure rate. Many schemes aim for failure rates
that are lower than 2−128 (e.g., [2, 1]). The reason is that decryption failures can
be exploited by an attacker as shown in [4].

4 The Stochastic Dependence Problem

The computation of the exact value of the failure rate of RLWE schemes turns
out to be not straightforward. The reason is the stochastic dependence between
the coefficients of the difference noise term d, which emerges from the two poly-
nomial multiplications es′ and e′s.

In the past, for many algorithms based on the RLWE problem it was con-
sidered a valid assumption that the coefficients of d fail independently [11, 6, 5].
However, it was later shown that this is not the case in general. In [3], it was
shown experimentally that the stochastic dependence between decryption fail-
ures for the parameters used in LAC leads to an overestimation of the security
level. This effect has to be taken into account when choosing RLWE parameters.

4.1 Origin of the Stochastic Dependence

In this section, it is described why the stochastic dependence between coefficients
of the polynomials within LWE/RLWE-based algorithms occurs.

Let c ∈ R be the product of two polynomials a, b ∈ R

c = a · b mod (xn + 1) . (4)

The k-th coefficient of c is then given by

ck =

k∑
i=0

aibk−i −
n−1∑

i=k+1

aibn−i+k . (5)

A closer look at the first two coefficients of the product c0 and c1 already
shows that there is a dependence between the coefficients.

c0 = a0b0 − a1bn−1 − a2bn−2 − a3bn−3 − · · · − an−1b1 (6)

c1 = a0b1 + a1b0 − a2bn−1 − a3bn−2 − · · · − an−1b2 (7)

Note that both coefficients are composed from the same coefficients in a and
b, e.g., a0 is used as a factor in the first product of each sum.

4.2 Influence of the Correlation on the Failure Rate

The calculation of the failure rate for a single coefficient can be determined ex-
actly by convolving probability distributions in order to obtain the distribution
of di = (CTS+G)i as described in [5]. For LWE/RLWE schemes all coefficients

have the same failure probability pb = P [|(CTS + G)i| > q/4]. As described in
Section 3, when more than t coefficients fail, where t is the number of correctable
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coefficients, the decryption fails. If no error correction is applied, simple inequal-
ities, such as the Fréchet inequality, can be used to determine an upper bound
of the overall failure rate. This bound does not require independent coefficients.

If the noise terms di would be independent, the failure rate could be exactly
determined by

P [df ] = 1− (1− pb)n . (8)

The problem of calculating the failure rate of the scheme gets more difficult
when an ECC is applied. Current works assumed that the correlation between
the coefficients is very low and has only a minor influence on the results [11, 7,
5]. This allows to calculate the overall failure rate for RLWE based systems that
use an ECC by the formula

P [df ] = 1−
t∑

i=0

(
n

i

)
pib(1− pb)n−i . (9)

4.3 Reducing the Stochastic Dependence

In [3] is stated that the main sources of the stochastic dependence of decryption
failures are the norms of S and C. They assumed that the decryption failures
are independent conditioned on fixed values of ‖S‖2 and ‖C‖2.

If the decryption failures F0, . . . , Fn−1 are assumed to be mutually indepen-
dent conditioned on the norms of S and C the following equation holds:

P (F0, . . . , Fn−1 | ‖S‖2, ‖C‖2) =

n−1∏
i=0

P (Fi | ‖S‖2, ‖C‖2) (10)

If this assumption would be not only an approximation but rather exact,
fixing the norms of S and C would entirely remove the stochastic dependence
between decryption failures.

In the first round submission of the NIST-PQC, LAC used the centered bi-
nomial distribution as the error distribution. This sampling is in the following
referred to as Round 1 sampling. In order to sample a polynomial according to
the error distribution, each coefficient is sampled independently and identically.
As the independence assumption was experimentally shown not to be applicable
in that case [3] and due to proposed low Hamming weight attacks [6], for the
second round submission the amount of −1s, +1s and 0s in each error polyno-
mial was fixed to their expected value according to the error distribution. This
technique fixes its Hamming weight as well. This sampling is in the following
referred to as Round 2 sampling.

Equation (10) is only an approximation and its applicability has only been
checked experimentally averaged over all possible sets of norms of S and C.
However, for one specific norm-pair of S and C this has not been done so far.
As a fixed norm-pair only occurs with small probability this step is essential.

5 Methods for Quantifying the Stochastic Dependence

The existence of a correlation between the coefficients after the polynomial mul-
tiplication is evident. However, it is unclear how strong this correlation is and
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how the parameters of LWE/RLWE schemes affect this phenomenon. In Sub-
section 5.1, the selection of the statistical approach to quantify the stochastic
dependence between random variables is motivated. In Subsection 5.2 different
measures for the stochastic dependence of random variables are introduced.

5.1 Statistical Estimation of Stochastic Dependence

The joint probability distribution of the product coefficients after the multipli-
cation of two polynomials in R is unknown. To analytically compute this joint
probability distribution is not straightforward, especially if various error dis-
tributions are considered. Fortunately, it is possible to estimate properties of
random variables using statistical methods even if the respective random vari-
able is unknown, e.g. the estimation of the expectation of a random variable X
by taking the mean of N samples (x1, . . . , xN )

X =
1

N

N∑
k=1

xk (11)

which converges to the mean value if the variance of X is finite.
In this work, we propose a method which is based on statistical measure-

ments as well. Our framework works for different kinds of error distributions.
Therefore, we generate samples of s, e, s′, e′ and e′′ according to the error dis-
tribution. With each set of those samples the computation described in Eq. (1)
is performed. Due to limited simulation time only the stochastic dependence
between the first two coefficients of the result (d0 and d1) is considered for the
measures discussed in Section 5.2. However, the ideas shown in this work can be
extended to more than two coefficients.

We consider the random variables X and Y which map the respective values
of d0 and d1 to the set {S, F}, where S denotes a successful decryption and
F decryption failure. We formalize this for the random variable X. For Y , the
formalism works accordingly.

X : Zq → {S, F} (12)

d0 7→
{
F, if abs(d0) > qt
S, else

(13)

This means that there are four events possible for the joint outcome of X and
Y , F0F1, F0S1, S0F1 and S0S1. The first letter denotes the outcome of X and
the second letter the outcome of Y . The joint probability distribution PXY

and the marginal distributions PX and PY are estimated using histograms by
measuring the occurrence the respective outcome and dividing it by the number
of samples. The measures for stochastic dependence introduced in Section 5.2
are then computed from the estimated distributions.

5.2 Stochastic Dependence Calculation: Pearson Correlation,
l1-Distance and Mutual Information

The concept of stochastic independence is of major interest in probability theory.
In this work, we are interested in measuring the amount of stochastic dependence
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between two random variablesX and Y . It is crucial to find appropriate measures
for stochastic dependence between random variables. In this section, we intro-
duce three measures for stochastic dependence: Pearson correlation, l1-distance,
and mutual information.

The Pearson correlation coefficient measures the linear dependency between
two random variables. It is defined by Eq. (14).

ρ(X,Y ) :=
Cov(X,Y )√
V ar(X)V ar(Y )

(14)

Empirically the correlation coefficient is obtained by sampling long indepen-
dent identically distributed sequences of the random variables X and Y and
computing

rxy :=

∑n−1
i=0 (xi − x)(yi − y)√∑n−1

i=0 (xi − x)2
√∑n−1

i=0 (yi − y)2
(15)

where x = 1
n

∑n−1
i=0 xi and y = 1

n

∑n−1
i=0 yi.

The definition of the Pearson correlation coefficient only uses moments up
to second order of the respective random variables. This means that even if
the Pearson correlation between X and Y is zero the random variables are not
necessarily independent. However, if X and Y are stochastically independent
their Pearson correlation coefficient is zero.

Therefore, in the following alternative measures for stochastic dependence
are presented. Perhaps the most intuitive measure is the l1-distance, defined as

d(PXY , PXPY ) := ‖PXY − PXPY ‖1 =
∑

a∈X ,b∈Y

|PXY (a, b)− PX(a)PY (b)| (16)

where X and Y denote the sets of possible outcomes of the random variables,
PXY their joint distribution and PX , PY the marginal distributions of the ran-
dom variables.

The definition already shows that two random variables X and Y are stochas-
tically independent if and only if d(PXY , PXPY ) = 0. As the distance between
the joint distribution PXY and the product of the marginal distributions PXPY

is summed over all possible outcomes, the l1-distance is an obvious candidate
for a measure of stochastic dependence.

Another possible measure of stochastic dependence is mutual information.
It was introduced by Shannon in [12] and shows similar properties to the l1-
distance. The mutual information I(X;Y ) is defined as

I(X;Y ) :=
∑

(a,b)∈supp{PXY }

PXY (a, b) log2

(
PXY (a, b)

PX(a)PY (b)

)
. (17)

As for the l1-distance, the mutual information between X and Y is 0 if and
only if the random variables X and Y are stochastically independent. It is even
mentioned as a potential measure for stochastic dependence in [9].
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6 Experimental Results

Subsection 6.1 presents the influence of fixing the norm of the error distribu-
tion in LAC on the stochastic dependence of decryption failures. Subsection 6.2
shows the influence of the LWE/RLWE parameter sets (n, q, k) on the stochastic
dependence of decryption failures. The analysis in this work is performed for the
parameters used within the LAC-cryptosystem but the proposed methodology
can be applied to any RLWE-based system.

6.1 Fixing the norm of the error distribution in LAC

Table 1 shows the failure probabilities, the absolute value of the Pearson correla-
tion, the l1-distance and the mutual information for LAC128 and LAC256. The
results show a decrease of the failure probabilities for the sampling performed in
the second round submission of LAC in the NIST-PQC . The statistical results
for all previously introduced measures for stochastic dependence decrease for
Round 2 sampling and therefore indicate less stochastic dependence.

Figure 1 and Fig. 2 show the maximal failure rate for a given error correction
capability of the ECC for LAC128 and LAC256, respectively. Both figures show
four different data sets: 1) theoretical results only assuming stochastic indepen-
dence of decryption failures conditioned on the norms of S and C (method in
[3]); 2) experimental results using Round 1 sampling of LAC; 3) theoretical re-
sults using the independence assumption; 4) experimental results using Round 2
sampling of LAC (fixed Hamming weight). The figures for both parameter sets
show that the experimental results for Round 2 sampling perfectly match the
theoretical results using the independence assumption. Therefore, we conclude
that the stochastic dependence between decryption failures was significantly re-
duced compared to Round 1. This is in accordance with the results presented
in Table 1. As a result, the independence assumption approximates the real
behaviour of decryption failures significantly better for Round 2 sampling com-
pared to Round 1 sampling. Therefore, we consider the independence assumption
to be valid for Round 2 sampling.

Table 1. Results for LAC128 and LAC256 (1st/2nd Round), 1011 samples

Error distribution Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]

LAC128 Round 1 8.852e-06 3.248e-09 5.477e-11 9.230e-09 9.170e-05 9.178e-05 0.99982

LAC128 Round 2 5.083e-06 1.805e-09 1.900e-11 7.430e-09 8.874e-05 8.879e-05 0.99982

LAC256 Round 1 1.032e-04 2.288e-06 7.546e-09 3.201e-05 5.575e-03 5.575e-03 0.98882

LAC256 Round 2 6.077e-06 1.347e-07 2.633e-11 3.143e-05 5.572e-03 5.572e-03 0.98882

6.2 Influence of the LWE Parameter Set (n, q, k) on the Stochastic
Dependence

This subsection analyzes the influence of different RLWE parameters on the in-
dependence assumption. In this analysis, the centered binomial distribution is
used as the error distribution. Figures 3, 4 and 5 depict the relation of (n, q, k)
to the stochastic dependence of decryption failures. Experimentally determined
curves deviate stronger from the curves using the independence assumption if
the stochastic dependence between decryption failures is larger. In the following
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Fig. 1. Decryption failure probability depending on the error correction capability of
the ECC (LAC-128)
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Fig. 2. Decryption failure probability depending on the error correction capability of
the ECC (LAC-256)

LAC256 having (n, q, k) = (1024, 251, 1) is used as a reference. Proceeding from
this reference set each parameter has been varied to determine the respective pa-
rameter’s influence on failure rate and stochastic dependence. In each figure, the
experimentally determined decryption failure rates are compared with theoreti-
cal results obtained using the independence assumption. It is hard to analyze the
influence of k for different values in LAC as its dependence on the failure prob-
ability is extremely high. Therefore, in Appendix A experiments for NewHope
parameters with increased variance of the error distribution are depicted. In ad-
dition to Figures 3, 4 and 5, Table 2 shows the results obtained by the methods
introduced in Section 5. Both results show that a higher decryption failure rate
also leads to a larger deviation of the experimental data from the independence
assumption. Therefore, larger values for n and k and smaller values for q in-
crease the stochastic dependence of decryption failures and the independence
assumption approximates the exact behaviour of decryption failures worse.

In the following, an explanation for this behaviour is given. As noted in
Section 4.3 large norms of S and C increase the failure rate of RLWE based
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algorithms. The probability of obtaining large norms in S and C increases with
larger n and k. The decryption failure rate increases with larger norms of S and
C and decreases with larger q. A decryption failure can only occur if the norms
of S and C are larger than a certain threshold which depends on q. Obtaining
a decryption failure in one coefficient reduces the possible set of norms (and
increases the probability for higher norms), which increases the chance of a
decryption failure in other coefficients. Correct decryption of a coefficient in
comparison only changes the probabilities of the norms of S and C. Therefore,
as shown in the figures the stochastic dependence between decryption failures
increases with higher n and k and lower q. As a consequence the inaccuracy
implied by using the independence assumption for computing the failure rate
of a cryptographic scheme is higher for schemes which rely on strong ECCs to
obtain a low decryption failure rate.
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Fig. 3. Number of failed coefficients for fixed q = 251, and k = 1
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Fig. 4. Number of failed coefficients for fixed n = 1024, and k = 1
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Fig. 5. Number of failed coefficients for fixed n = 1024, q = 251

Table 2. Pearson correlation, l1−distance and mutual information for different param-
eter sets (n,q,k). 1011 samples, except for parameter set (1024, 251, 2) - 109 samples,
due to faster saturation of measures of stochastic dependence.

Parameter set Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]
(512,251,1) 8.852e-06 3.248e-09 5.477e-11 9.230e-09 9.170e-05 9.178e-05 0.99982
(768,251,1) 5.445e-05 3.017e-07 2.105e-09 2.005e-06 1.387e-03 1.387e-03 0.99722
(1024,251,1) 1.032e-04 2.288e-06 7.546e-09 3.201e-05 5.575e-03 5.575e-03 0.98882

(1024,231,1) 1.414e-04 5.976e-06 1.406e-08 1.180e-04 1.068e-02 1.068e-02 0.97853
(1024,251,1) 1.032e-04 2.288e-06 7.546e-09 3.201e-05 5.575e-03 5.575e-03 0.98882
(1024,271,1) 6.897e-05 7.640e-07 3.384e-09 7.947e-06 2.777e-03 2.777e-03 0.99444

(1024,251,1) 1.032e-04 2.288e-06 7.546e-09 3.201e-05 5.575e-03 5.575e-03 0.98882
(1024,251,2) 5.063e-04 2.411e-04 1.371e-07 2.751e-02 0.13817 0.13817 0.69616

7 Conclusion

In this work, we analyzed the influence of the LWE/RLWE parameter set on
the stochastic dependence between decryption failures caused by the difference
noise term. To reduce the stochastic dependence between decryption failures in
the second round LAC submission the Hamming weight of the error distribution
was fixed. In this paper, the effect of fixing the Hamming weight on the stochas-
tic dependence has been analyzed. Our results show that this measure achieves
a significant decrease of the stochastic dependence between decryption failures.
Therefore, if the error distribution chosen in the second round submission of LAC
is used, assuming independence of decryption failures can be considered a valid
simplification. Moreover, the results have shown that the standard deviation of
the error distribution, the polynomials length, and the modulus all have a signif-
icant influence on this dependence. To quantify the stochastic dependence, the
Pearson correlation, l1-distance and mutual information between the failures of
the individual coefficients were statistically determined. All those measures for
stochastic dependence indicate that stochastic dependence increases with higher
standard deviation, larger polynomial length, and smaller modulo reduction pa-
rameter. Although this work does not show an analytical solution to obtain the
stochastic dependence between decryption failures, the proposed methods are
suitable to compare different RLWE parameter sets.
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Fig. 6. Number of failed coefficients for fixed n = 1024, q = 12289

As mentioned in Subsection 6.2, NewHope parameters with an increased
variance of the error distribution are used to show the influence of k on the
stochastic dependence of decryption failures with finer granularity.

Figure 6 shows the influence of the variance of the error distribution on the
probability of the number of decryption failures. The results show that increasing
the variance increases the failure rate. It is also shown that the deviation between
independence assumption and experimentally determined curves is increased for
larger k.

Table 3 shows the Pearson correlation, l1-distance, and mutual information
for k = 40 and k = 52. The results show an increase of the stochastic dependence
when k is increased.

Table 3. Pearson correlation, l1−distance and mutual information for different stan-
dard deviations of the error distribution (1.8 · 109 samples)

Parameter set Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]

1024,12289,40 8.931e-05 2.484e-07 5.514e-09 5.472e-07 6.956e-04 6.963e-04 0.99861

1024,12289,52 2.944e-04 1.047e-05 6.072e-08 8.460e-05 8.971e-03 8.969e-03 0.98198


