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Abstract—Single Sign-On (SSO) is becoming an increasingly
popular authentication method for users that leverages a
trusted Identity Provider (IdP) to bootstrap secure authen-
tication tokens from a single user password. It alleviates
some of the worst security issues of passwords, as users no
longer need to memorize individual passwords for all service
providers, and it removes the burden of these service to
properly protect huge password databases. However, SSO
also introduces a single point of failure. If compromised, the
IdP can impersonate all users and learn their master pass-
words. To remedy this risk while preserving the advantages
of SSO, Agrawal et al. (CCS’18) recently proposed a dis-
tributed realization termed PASTA (password-authenticated
threshold authentication) which splits the role of the IdP
across n servers. While PASTA is a great step forward and
guarantees security as long as not all servers are corrupted,
it uses a rather inflexible corruption model: servers cannot
be corrupted adaptively and — even worse — cannot recover
from corruption. The latter is known as proactive security
and allows servers to re-share their keys, thereby rendering
all previously compromised information useless.

In this work, we improve upon the work of PASTA
and propose a distributed SSO protocol with proactive and
adaptive security (PESTO), guaranteeing security as long
as not all servers are compromised at the same time. We
prove our scheme secure in the UC framework which is
known to provide the best security guarantees for password-
based primitives. The core of our protocol are two new
primitives we introduce: partially-oblivious distributed PRFs
and a class of distributed signature schemes. Both allow
for non-interactive refreshs of the secret key material and
tolerate adaptive corruptions. We give secure instantiations
based on the gap one-more BDH and RSA assumption
respectively, leading to a highly efficient 2-round PESTO
protocol. We also present an implementation and benchmark
of our scheme in Java, realizing OAuth-compatible bearer
tokens for SSO, demonstrating the viability of our approach.

1. Introduction

Until today, passwords are still the primary means
of user-authentication towards online services. While
stronger approaches, such as two-factor or key-based au-
thentication have been considered and are partially de-
ployed, passwords are still ubiquitous due to their usability
advantages: users do not have to securely manage crypto-

graphic keys or hardware tokens, but only need to type-in
a human-memorizable phrase.

Unfortunately, password databases are a prime target
of potential attackers and even large companies seem to
struggle to protect this information properly [1], [2], [4].
In fact, server compromise is currently the biggest threat
to password security and has lead to a compromise of
over 1 billion passwords to date [35]. In combination with
user tendencies to re-use passwords at different services,
such data breaches can have a devastating impact for those
affected by the breach.

Using single sign-on services (SSO) alleviates some
of the worst security issues with passwords, and also
enhances the usability aspects for the end user. The SSO
approach centralizes the authentication task via a trusted
Identity Provider (IdP). The user only has to login towards
the IdP which then generates a short-term cryptographic
access token, allowing the user to authenticate herself
towards other services. The main advantage of SSO is
that it avoids tedious password handling with every single
service provider, and does not require users to trust each
of these providers to keep their passwords safe.

On the negative side, SSO introduces a single point
of failure: an attacker that compromises an IdP can take
over all of the users’ registered accounts and learns their
master passwords. For the latter, even protective measures
such as storing salted password hashes only have rather
limited impact, as any such information is still vulnerable
to offline guessing attacks due to the low entropy of
human-memorizable passwords [3].

1.1. Distributed Single Sign-On
The problem of offline dictionary attacks is inherent in

all solutions where a single server can test the correctness
of passwords: as soon as the server gets compromised,
the attacker can exploit it’s capability to mount massive
guessing attacks against the password hashes. The natural
solution to remedy such attacks is to distribute the task of
password verification over n servers. By carefully splitting
the verification process, security can be guaranteed as long
as not all (or a threshold) of these servers got hacked.
This approach has been used to salvage security for a
number of password-based primitives, such as threshold
password-authenticated key exchange (TPAKE) [26], [34],
[38], [41], threshold password-authenticated secret sharing
(TPASS) [7], [11], [9], [27], as well as plain distributed
password verification [19], [10], [18].
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Figure 1: Comparison between PESTO (Our Work), PASTA [5], and a standard Json Web Token (JWT) used for SSO.
For efficiency we count the most expensive operations, i.e., exponentiations and pairings per party.

The newest addition to this line of research is
password-based threshold authentication (PASTA) [5]
which allows to split the role of the IdP for SSO. The
PASTA protocol combines distributed password verifica-
tion with a distributed signature scheme, and achieves
many of the properties needed for distributed SSO: if t out
of n servers remain honest, the users’ master passwords
are safe against offline attacks and impersonation attacks
via forged signatures on access tokens are prevented too.

Proactive Security. While PASTA avoids the single point
of failure of standard SSO, it does not provide significantly
stronger security though due to the lack of a recovery
strategy — also known as proactive security. A crucial
feature in distributed protocols is to allow servers to
refresh their keys so that they can securely re-initialize
after a compromise. Without such a recovery mechanism,
it is only a matter of time until all servers have been
hacked and their data can be combined to an offline-
testable password table. For a distributed SSO, one would
probably not want to deploy much more than 2 or 3
servers, i.e., in a static setting the costs and time of an
attack would only double or triple.

UC Security. Another more subtle challenge is that of an
appropriate security model: Agrawal et al. [5] define the
desired security properties in form of game-based notions.
It is well-known that for password-based primitives these
notions cannot properly capture the way users (mis)handle
passwords [15]. When formulated through games, users
are assumed to choose their passwords at random from
known and independent distributions. The security notion
also gives the adversary access to “perfect” users only
which are always using the correct password. In reality,
however, users share, re-use, and leak information related
to their passwords, and often make typos when using
them which leads to running the protocol on incorrect
yet related passwords. In the Universal Composability
(UC) model, this is modeled naturally as the environ-
ment provides the passwords. That is, a UC security
notion guarantees the desired properties without making
any assumptions regarding the passwords’ distributions,
dependencies, or leakages.

Key Management. When aiming for a distributed system,
the key and secret state handling by the individual servers
should be as simple and concise as possible, as any com-
plexity increases the risks of (implementation) mistakes
and the attack surface for adversaries. Translated to the
task of SSO, each server should ideally have a single
secret key (per time epoch) only, whereas the dynamic
user-specific information should be non-sensitive. This
way, the secret key can enjoy stronger protection, e.g.,

through hardware, which is much harder to realize for the
large and dynamic user database. Unfortunately, PASTA
does not satisfy this design criteria, as the servers obtain
dedicated secret key material from each user which needs
to be protected accordingly. In fact, this choice is also one
of the reasons the PASTA protocol is not amendable to
proactive security measures.

Online Attacks. Finally, one reason to move to a dis-
tributed setting for password-based protocols such as SSO,
is to rely on honest servers for detecting and preventing
online guessing attacks. That is, an adversary targets a
dedicated account and tries to guess the users password
to gain access to her account. Honest servers can block
or throttle login attempts for a specific account when they
notice suspicious behaviour and thereby significantly limit
the adversary’s amount of guesses — roughly mimicking
the hardware protection our short 4-digit PIN numbers
for ATM cards enjoy. In the PASTA protocol the servers
do not learn whether a password attempt was successful
though, which restricts their capabilities to detect such on-
line guessing attacks. For instance, an adversary can cam-
ouflage its attack by spreading many password guesses
across a day and gain several hundreds or thousands of
undetected guesses, whereas a system in which servers
learn the outcome of the password verification would have
stopped the attack after a few failed attempts already.

1.2. Our Contributions
In this work we propose a distributed SSO proto-

col — PESTO — which achieves all the aforemen-
tioned properties. Similar to PASTA, we model SSO
through a password-authentication distributed signature
functionality. Therein, the distributed servers sign mes-
sages (uid ,m), i.e., they bind a user-provided message m
to the verified user name uid . They only do so after they
have verified that the user knows the password which has
been setup for uid . For SSO applications, the message m
will contain the unique ID of the targeted service provider
and a nonce that is usually specified by the provider.

Proactive and UC Security for Distributed SSO. We define
security of PESTO in form of an ideal functionality in the
UC framework, avoiding any unrealistic assumptions in-
herent in game-based definitions. We admit a fine grained
corruption model: first, servers can be corrupted in an
adaptive manner, i.e., the adversary can take control of any
initially honest party at any time. This improves upon [5]
which allows only static corruptions. Second, we allow
both transient and permanent corruptions. Transiently cor-
rupted parties can recover from an attack by going through
a dedicated refresh procedure, whereas permanently cor-



rupted ones cannot recover. Security is guaranteed as long
as not all servers are corrupt at the same time.

Our PESTO Protocol. We propose a protocol that securely
satisfies this strong notion. While our PESTO protocol
uses similar building blocks as PASTA, it significantly
differs in how they are used.

Roughly, we start with a distributed partially-oblivious
PRF (dpOPRF) to let users deterministically derive a
signing key pair from their username and password as
(upk , usk) ← dpOPRF(K, (uid , pw)). Thereby, the key
K is split among n servers and the evaluation is done
partially-blind: the servers learn uid but not pw . Disclos-
ing the uid allows us to use a single dpOPRF key per
server, yet allow user-specific rate limiting.

When creating her account, the user sends the derived
upk to all servers which store (uid , upk) along with a
signature on these values that is generated in a distributed
way. This jointly computed signature is crucial to ensure
that an adversary cannot gradually plant malicious public
keys for honest user accounts, when he transiently corrupts
individual servers. In contrast to PASTA, all user-specific
information stored by the servers is not security sensitive.

When asking for a SSO token on a message m for
username uid , the user repeats the dpOPRF part for
a password attempt pw ′ to re-construct her key pair
(upk , usk), and uses usk to sign a fresh nonce towards all
servers. The servers verify the signature against the stored
upk to determine whether the user provided the correct
password. If so, the servers jointly sign (uid ,m) using a
proactively-secure distributed signature scheme DSIG.

Proactively Secure dpOPRF and DSIG. Our protocol is
built from generic building blocks dpOPRF and DSIG we
introduce and which constitute contributions of indepen-
dent interest. For both we first present security models that
capture the strong type of adaptive and transient corrup-
tions, and then propose secure instantiations. The dpOPRF
is based on the classical 2Hash-Diffie-Hellman OPRF
construction [27] and DSIG is realized for a distributed
version of RSA signatures. The challenge in making these
schemes proactively and adaptively secure is to avoid
a loss in security by having to guess corrupted servers
upfront. While this loss can be tolerated once, it would
blow exponentially when moving into a proactive setting
where such a guess needs to be done at every epoch.

We avoid this by ensuring that none of the values sent
by servers commits them to their secret key shares. To do
this efficiently, we rely on a trusted setup that generates
pairwise seeds for all servers from which they derive
consistent blinding values to mask all outgoing messages.
In the security proof, this allows to choose a server’s keys
only at the moment that it is corrupted, without having to
guess anything upfront.

Finally, to allow servers to recover from transient
corruptions we assume that each server has access to a
special backup tape. Such a backup tape is necessary to
allow servers to re-boot with a clean and uncorrupted
state. We also leverage it to run the refresh in a non-
interactive (yet synchronized) manner. The backup tape
is only needed during the refresh procedure but does
not have to (and should not) be online during normal
operations. Transiently corrupted parties leak their full
state to the adversary, but not the content of their backup

tape, and recover with the next refresh. Permanently cor-
rupted parties additionally leak the backup tape and cannot
become uncorrupted again.

Implementation & Efficiency. Using the aforementioned
DDH-based dpOPRF and RSA-based DSIG instantiations,
we obtain an efficient 2-round PESTO protocol which we
test in a proof-of-concept implementation in Java. Our
implementation utilizes REST and TLS in order to give
a realistic benchmark on the efficiency to be expected in
a real-world deployment. Overall, our protocol requires 2
exp. and 1 pairing operation per server and authentication
request, which adds only minimal overhead compared
with PASTA yet provides significantly stronger security.
Concretely the time it takes for a complete sign-in opera-
tion, using a single threaded implementation, is only 124
ms even when both the user and servers are all located in
distinct countries.

1.3. Related Work
Apart from PASTA [5] which we discussed already,

our work takes inspiration from a number of previous
works we detail here. We also refer to [5] for a compre-
hensive overview of concepts related to distributed SSO.

Distributed Password Verification. The use of blinding val-
ues and offline backup tapes to recover from corruptions is
inspired by the distributed password verification protocol
by Camenisch et al. [10], that also aimed at proactive
security in the UC framework. The targeted problems are
different though, as their protocol considers a single login
server that protects it’s password database by relying on
n back-end servers to re-compute the password “hashes”.
The back-end servers in [10] are also fully oblivious: they
neither learn the uid ’s for which they verify a password
nor the result of the verification. Both significantly limit
the servers’ capabilities to prevent online attacks.

Furthermore, we make the proactive security proper-
ties accessible in a more modular and re-usable way, as
we already integrate them in our generic building blocks:
distributed partially-oblivious OPRFs and distributed sig-
natures. Both can be used in a plug-and-play fashion to
enhance security of protocols where their distributed yet
non-proactive versions have been used.

Partially-Oblivious PRF with Key Rotation. The Pythia
protocol [18] introduced the concept of partially-oblivious
PRFs which they used to build a password hardening
service with fine-grained rate limiting. However, Pythia
only uses a single backend PRF server. As a single key
cannot be re-shared, proactive security is achieved through
key rotation instead, i.e., the PRF server switches to a
fresh key and provides a short update token that allows to
update all previous PRF outputs accordingly.

Our work extends these partially-oblivious PRF to
a fully distributed setting, which naturally allows for a
more elegant refresh protocol without the need to update
any previously computed PRF outputs. Further, Pythia’s
approach requires direct access to the algebraic structure
of the OPRF which prevented them of using the outer
hash of the 2Hash-DDH construction and lead to weaker
overall security of the OPRF.

Recently, Jarecki et al. [30] presented a distributed
partially-oblivious PRF that uses a different and more



efficient way to achieve partial blindness. However, they
did not propose a security notion and, to the best of our
knowledge, their construction inherently does not allow to
re-share the key.

Password-Authenticated Secret Sharing. Finally, the first
part of our protocol essentially can be seen as a
proactively-secure version of password-authenticated se-
cret sharing (TPASS) [7], [27], [28], [29] and might
provoke the question why we need the second protocol
step and distributed SSO at all: the user could simply use
the reconstructed signing key pair (usk , upk) to directly
authenticate to the service providers in a secure, password-
less manner. However, using TPASS for such user au-
thentication would lead to a full loss of security when the
user’s device gets compromised during key reconstruction.
As the adversary then learns the user’s master key it
can impersonate the user towards all service providers.
Whereas in our PESTO approach, a compromised device
or password alone is not sufficient to gain access to the
user’s accounts. All servers still need to sign every single
access token, which provides a second line of defense:
They can refuse to complete these requests when they
notice suspicious access patterns, and the user can block
her account with the online servers when she suspects
that her device has been breached — thereby rendering
the compromised information useless.

2. Preliminaries

We denote with [k] the set {1, . . . , k} and say that a
non-negative function f(n) is negligible in n, or f(n) ≤
negl(n), if for every polynomial p(X) there exists a bound
t such that ∀t′ ≥ t : f(t′) ≤ 1

|p(t′)| . We denote the
computational security parameter throughout this work as
τ and the statistical security parameter as s.

2.1. Bilinear Groups

Definition 1 (Asymmetric Pairing). Let G1,G2,GT be
cyclic groups of order p with generators g1, g2, gT , re-
spectively. Furthermore, let e : G1 × G2 → GT be an
efficiently computable non-degenerate function such that
∀a, b ∈ Zp : e(ga1 , g

b
2) = gabT . Then e is called an

asymmetric pairing. G = (p, g1, g2, gT ,G1,G2,GT , e) is
called an asymmetric bilinear group setting, or bilinear
group for short.

We formulate two assumptions on G. The first as-
sumption is the standard DDH-generalization groups with
asymmetric pairings and has been used e.g. in [16].

Definition 2 (Bilinear DDH Assumption). Let τ ∈ N be a
security parameter and G = (p, g1, g2, gT ,G1,G2,GT , e)
be a bilinear group where log(p) = poly(τ). We say that
the Bilinear Decisional Diffie-Hellman (BDDH) assump-
tion holds for G if for any PPT (in τ ) algorithm A∣∣∣∣ Pr[A(G, gar , gbs, gct , R) = 1]−

Pr[A(G, gar , gbs, gct , e(g1, g2)abc) = 1]

∣∣∣∣ ≤ negl(τ)

where a, b, c are uniformly random in Zp, r, s, t ∈ {1, 2}
and R is uniformly random in GT .

For the second assumption we first define the follow-
ing experiment with an algorithm A:

Experiment ExpGA,Gapom-BDH(τ):
k ←R Zp, qC ← 0, X1 ← ∅, X2 ← ∅.
{(xi, yi, zi)}i∈[`] ← AOG-1,OG-2,OD-help,OC-help(G, gk2 )
return 0 if

0 ≤ `− 1 < qC or
∃i ∈ [`] : (xi 6∈ X1 ∨ yi 6∈ X2) or
∃i, j ∈ [`], i < j : (xi = xj ∧ yi = yj)

return 1 if ∀i ∈ [`] : e(xi, yi)
k = zi and 0 otherwise.

where the experiment uses the following oracles

OG-r()
return ⊥ if r 6∈ {1, 2}
x←R Gr
Xr ← Xr ∪ {x}
return x

OC-help(m)

return ⊥ if m 6∈ GT .
qC ← qC + 1
return mk

OD-help(m,w,m
′, w′)

return ⊥ if either m,w,m′, w′ not in GT
return 1 if logm(w) = logm′(w

′) and else 0

To win, A needs to find pairs (x, y, e(x, y)k) with-
out querying e(x, y) to OC-help and where A could not
rerandomize previous such pairs as it does not know the
discrete logarithm of any x, y (enforced by sampling them
at random using OG-r). A is equipped with a DDH oracle
OD-help in the group GT . The game Gapom-BDH follows
the definition in [18].

Definition 3 (Gap One-More BDH Assumption). Let
τ ∈ N be a security parameter and G =
(p, g1, g2, gT ,G1,G2,GT , e) be a bilinear group with
log(p) = poly(τ), then we then say that the Gap One-
More Bilinear Diffie-Hellman (Gapom-BDH) assumption
holds for G if for all PPT adversaries A there is a negli-
gible function negl(·) such that Pr[ExpGA,Gapom-BDH(τ) =
1] ≤ negl(τ).

2.2. Digital Signatures

We use a signature scheme SIG, consisting of al-
gorithms SIG.Setup(1τ ) →R pp, SIG.KGen(pp; r) →R

(sk , pk),SIG.Sign(sk,m) →R σ and SIG.Vf(pk,m, σ) →
{0, 1}. Note that we sometimes make the randomness r
used in key generation explicit. When used on the same in-
put and randomness, SIG.KGen behaves deterministically.

It is required that except with negligible probability
over τ , for a key pair (pk, sk), where sk output by
SIG.SKGgen(pp) and pk output by SIG.PKGgen(pp, sk),
it holds that SIG.Vf(pk,m, SIG.Sign(sk,m)) = 1 for
every message m ∈ {0, 1}∗ (for implicit pp generated
by SIG.Setup).

Security of a signature scheme is defined through the
standard unforgeability experiment ExpSIGA,forge(τ).

Experiment ExpSIGA,forge(τ):
pp←R SIG.Setup(1τ ), (sk, pk)←R SIG.KGen(pp)
(m∗, σ∗)←R AOSign(pk)

where OSign(m):
add m to Q, return SIG.Sign(sk ,m)

return 1 if SIG.Vf(pk,m∗, σ∗) = 1 and m∗ /∈ Q

Definition 4. A signature scheme SIG is existentially
unforgeable under adaptive chosen-message attacks, if



for all PPT adversaries A, there is a negligible function
negl(·) such that Pr[ExpSIGA,forge(τ) = 1] ≤ negl(τ).

3. Proactively Secure Distributed Signatures

In this section we formalize the notion of a proactively
secure distributed signature and present an instantiation
of it based on RSA signatures. A distributed signature
scheme DSIG is a tuple of polynomial-time algorithms
(Setup,KGen,Sign,Comb,Vf,Refresh) such that:
DSIG.Setup(1τ , 1s)→R pp: Given a computational secu-

rity parameter 1τ and a statistical security parameter 1s,
outputs public parameters pp.

DSIG.KGen(pp, n)→R (pk , (sk i)i∈[n], (bk i)i∈[n]): Given
public parameters pp and the number of parties n,
output a public key pk, secret signing key shares
sk1, . . . , skn and backup key shares bk1, . . . , bkn.

DSIG.Sign(sk i,m, `)→ σi: Given a key share ski, mes-
sage m, and query label `, output a signature share σi.

DSIG.Comb(σ1, . . . , σn)→ σ: Given signature shares
σ1, . . . , σn, output signature σ or ⊥.

DSIG.Vf(pk ,m, σ)→ b: Given a public key pk , a mes-
sage m and a signature σ, output a bit b such that b = 1
means valid and b = 0 means invalid.

DSIG.Refresh(bk i)→R (sk ′i, bk
′
i): Given a backup key

bk i, output new keys sk ′i and bk ′i.
We assume that the server’s index i can be efficiently

recovered from a key sk i and bk i, and that the public
parameters pp are available to all algorithms.

The Sign algorithm generates a signature share on
a message m and an additional parameter `, while ver-
ification only requires m. The parameter ` is used to
bind signature shares to a certain query label `. The
label ensures that signature share σ1, . . . , σn can only be
combined if all where received for the same `, i.e., even
shares for the same message cannot be combined if they
were derived for different ` 6= `′. This will prevent so-
called “mix-and-match” attacks.

Correctness. We define correctness of DSIG,
meaning that it provides the required functionality
of a signature when used as intended. Let
(skepi , bk

ep
i ) ← DSIG.Refreshep(bki) be the result

of applying DSIG.Refresh(. . . (DSIG.Refresh(bki))
for ep times where bk0

i = bk i. DSIG is correct if
for every ` ∈ {0, 1}∗, ep ∈ N+ and n > 1, it
follows that Vf(pk,m, σ) = 1 with overwhelming
probability over the internal randomness of
Setup,KGen,Refresh; where pp ← Setup(1τ ),
(pk, (sk i)i∈[n], (bk i)i∈[n]) ← KGen(pp, n),
σi ← Sign(skepi ,m, `) and σ = Comb(σ1, . . . , σn).

3.1. Proactive Security Model for DSIG

We now present the desired security definitions for
DSIG capturing proactive security against adaptive cor-
ruptions, and allowing the adversary to corrupt servers in
both a transient and permanent way.

We formalize three security properties: proactive un-
forgeability, which can be seen as the strengthening of
standard unforgeability to the proactive setting, as well
as share simulatability and signature indistinguishability.

The latter two are needed to give us the strong simulation-
based security needed prove UC security for PESTO.

The security games in the remainder of this section
require us to explicitly keep track of the different epochs
using an extra variable ep. This is done in order to express
the adversaries knowledge: for each epoch, the adversary
may obtain a different subset of keys skepi and different
sets of signatures shares. Our security properties must hold
as long as the adversary does not corrupt all servers at
the same epoch. Therefore, the security experiment has to
keep track of which information the adversary gets which
point of time.

Proactive Unforgeability. This notion generalizes standard
(strong) unforgeability to the proactive, distributed setting.
It is defined with oracles given in Fig 2 which allow the
adversary A to obtain signature shares, and key shares
(either only sk i or (sk i, bk i) depending on the corruption
mode) at will. The adversary can also trigger honest and
transiently corrupted servers to refresh their keys, thereby
moving the epoch forward and turning all transiently
corrupted parties into honest ones.

The adversary then wins if he successfully forges a
valid signature without either corrupting all parties or
requesting signature shares for the same message m and
query label ` for all uncorrupted parties in one epoch.

Definition 5 (Proactive Unforgeability). A distributed sig-
nature scheme DSIG is proactively unforgeable if for all
PPT adversaries A, there is a negligible function negl(·)
such that Pr[ExpDSIG,n

A,forge(τ, s) = 1] ≤ negl(τ, s).

Experiment ExpDSIG,n
A,forge(τ, s):

pp←R DSIG.Setup(1τ , 1s), set ep← 0, Ct,ep, Cp,ep ← ∅
(pk , (sk i)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
(m∗, σ∗)←R AOsign,Ocorrupt,Orefresh(pk)
return 0 if DSIG.Vf(pk,m∗, σ∗) = 0 or
∃ep where |Ct,ep ∪ Cp,ep| = n or
∃ep, ` s.t. DSIG.Comb(σ1, , . . . , σn) = σ∗

where ∀i /∈ Ct,ep ∪ Cp,ep (ep, i,m∗, `, σi) ∈ Q
and ∀i ∈ Ct,ep ∪ Cp,ep σi ← DSIG.Sign(i, skepi ,m

∗, `)
else return 1

Share Simulatability. The second property is needed to use
DSIG as a building block in a UC-secure protocol (aiming
at proactive security and allowing adaptive corruptions), as
therein security is proven by constructing a simulator that
mimics the ideal functionality in a way that is not notice-
able to the environment. The notion of share simulatability
expresses exactly that and ensures that we can simulate
signature and key shares of honest parties in a security
game without knowledge of the actual signing key. The
definition follows the simulation paradigm and either gives
the adversary access to real signature and key oracles (the
same ones we used in our unforgeability definition above)
or simulated ones. Share simulatability is satisfied when
the adversary cannot distinguish between both worlds.

Definition 6 (Share Simulatability). A distributed signa-
ture scheme DSIG is share simulatable if for all PPT
adversaries A, there exists a stateful PPT algorithm SIM
with input pk and a negligible function negl(·) such that∣∣∣Pr[ExpDSIG,n

A,sim,1(τ, s) = 1]− Pr[ExpDSIG,n
A,sim,0(τ, s) = 1]

∣∣∣ ≤
negl(τ, s).



Osign(i,m, `)

abort if i ∈ Ct,ep ∪ Cp,ep
σi ← DSIG.Sign(i, skepi ,m, `)
add (ep, i,m, `, σi) to Q
return σi

Orefresh()
for all i /∈ Cp,ep:
DSIG.Refresh(bkepi )→ (skep+1

i , bkep+1
i )

set ep← ep + 1, Ct,ep ← ∅, Cp,ep ← Cp,ep−1

Ocorrupt(i,mode)

if mode = trans:
abort if i ∈ Cp,ep
set Ct,ep ← Ct,ep ∪ {i}
return skepi

if mode = perm:
set Cp,ep ← Cp,ep ∪ {i}
return (skepi , bk

ep
i )

Osign(i,m, `)

abort if i ∈ Ct,ep ∪ Cp,ep
σ ← compSig(ep, i,m, `)
σ∗i ←R SIM(sign, i,m, `, σ)
add (ep, i,m, `, σi) to Q
return σ∗i

Orefresh()
invoke SIM(refresh)
set ep← ep + 1, and
Ct,ep ← ∅, Cp,ep ← Cp,ep−1

Ocorrupt(i,mode)

get L ← compList(ep, i)
if mode = trans:

abort if i ∈ Cp,ep
set Ct,ep ← Ct,ep ∪ {i}
sk∗i ←R SIM(corr,trans, i,L)
return sk∗i

if mode = perm:
set Cp,ep ← Cp,ep ∪ {i}
(sk∗i , bk

∗
i )←R SIM(corr,perm, i,L)

return (sk∗i , bk
∗
i )

Figure 2: Left: Oracles for our unforgeability and share-simulatability experiment (for b = 0). Right: simulated oracles for share-
simulatability and b = 1. Note that compSig used in the simulated sign-oracle will only return σ 6= ⊥ when the adversary is about
to complete the signature. Also, we omit the epoch or any previously computed output of SIM as explicit input to the simulator, as
SIM can simply keep track of that information itself.

Experiment ExpDSIG,n
A,sim,b(τ, s):

pp←R DSIG.Setup(1τ , 1s)
(pk, (ski)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
set ep← 0, Ct,ep ← ∅, Cp,ep ← ∅
b∗ ←R AOsign,Ocorrupt,Orefresh(pk)

if b = 0: left oracles as in Fig 2
if b = 1: right oracles as in Fig 2 (for SIM(init, pk))

return 1 if b∗ = b and ∀ep: |Ct,ep ∪ Cp,ep| < n

Roughly, A interacts with DSIG when b = 0, while for
b = 1 the signature and key shares are simulated by SIM.
The simulator thereby has no information about the under-
lying secret key shares. We have to be careful to be prevent
trivial wins though: Eventually, signature shares can be
completed into a full signature by A and verified against
the public key. Thus, we have to keep track when SIM is
about to reveal enough information (either via signatures
or key shares) that allow A to complete a signature. If
so, we generate the full signature A is about to learn
via σ ← Comb(Sign(sk1,m, `), . . . ,Sign(skn,m, `)) and
give σ as advise to SIM.

There are two scenarios where this can occur: in a
signature or in a corruption query. For the former, we use
a function compSigQ,Ct,Cp(ep, i,m, `)→ {σ,⊥} that tests
whether answering a signing query for (i,m, `) would,
together with the information already revealed to A (con-
tained in Q, Ct, Cp,), allow him to complete the signature.
If so, it returns the full signature σ for m.

For corruption queries, we use a similar function
compListQ,Ct,Cp(e, i) → L which checks which previ-
ously answered sign queries (ep, j,m, `) the adversary can
complete after corrupting party i in epoch ep. For each
such query, the function computes the corresponding full
signature and returns a set L of tuples (ep, j,m, `, σ).

For sake of brevity, we also sometimes omit the
subindex Q, Ct, Cp from the name of these func-
tions. The functions compSigQ,Ct,Cp(ep, i,m, `) and
compListQ,Ct,Cp(ep, i) are defined as follows:

compSigQ,Ct,Cp(ep, i,m, `):
if ∀j /∈ Ct,ep ∪ Cp,ep ∪ {i} ∃(ep, j,m, `) ∈ Q

get σi ← (DSIG.Sign(sk
ep
i ,m, `) for i ∈ [n]

return σ ← DSIG.Comb(σ1, . . . , σn)
else return ⊥

compListQ,Ct,Cp(ep, i):
set L ← ∅
for all (ep, j,m, `) ∈ Q:

if ∀j∗ /∈ Ct,ep ∪ Cp,ep ∪ {i} ∃(ep, j∗,m, `) ∈ Q
get σi ← (DSIG.Sign(sk

ep
i ,m, `) for i ∈ [n]

set σ ← DSIG.Comb(σ1, . . . , σn)
and set L ← L ∪ (ep, j,m, `, σ)

return L

Signature Indistinguishability. Our last definition also
covers some simulation-based aspects and guarantees
that signatures generated in a distributed way can-
not be distinguished from directly computed ones.
The notion guarantees that algorithms Sign∗,Comb∗

exist, such that Sign∗(Comb∗(sk1, . . . , skn),m) ≈
Comb(Sign(sk1,m, `), . . .Sign(skn,m, `)).

Signature indistinguishability can again rather be seen
as an artifact of using of DSIG in a UC-protocol: therein
the functionality produces signatures generated by Sign∗,
while the simulator has to mimic our distributed signature
scheme where each party runs Sign locally.

Definition 7 (Signature Indistinguishability). A
distributed signature scheme DSIG is signature
indistinguishable if for all PPT adversaries A,
there is a negligible function negl(·) such that∣∣∣Pr[ExpDSIG,n

A,ind,1(τ, s) = 1]− Pr[ExpDSIG,n
A,ind,0(τ, s) = 1]

∣∣∣ ≤
negl(τ, s).

Experiment ExpDSIG,n
A,ind,b(τ, s):

pp←R DSIG.Setup(1τ , 1s)
(pk, (ski)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
sk ← DSIG.Comb∗(pk, sk1, . . . , skn)
b∗ ←R AOchallb (pk, (sk1, . . . , skn), (bk1, . . . , bkn))

where Ochallb(σ1, . . . , σn,m):
σ∗0 ← DSIG.Comb(σ1, . . . , σn)
σ∗1 ← DSIG.Sign∗(sk,m)
abort if DSIG.Vf(pk,m, σ∗0) = 0
else return σ∗b

return 1 if b∗ = b

3.2. Our RSA-DSIG Instantiation
We now describe an instantiation of a such a proac-

tively secure distributed signature scheme. Our construc-
tion is a distributed variant of RSA signatures where the
secret key is distributed among the n parties; it also uses
two hash functions H, H̃ , modeled as random oracles in
the security proof, necessary to achieve proactive security.
The reason we chose RSA and not ECDSA is that even



without proactive security, signing requires interaction
between the servers [17]. Thus the latency of executing
this over WAN would overshadow the local computation
time of generating an RSA signature.

Generation and Refresh of Key Shares. The signature
scheme during KGen generates both the RSA modulus
N and the keys d, e as in regular RSA signatures. Next, it
generates n shares of d over the integers. This is necessary
as the multiplicative order ϕ(N) of the underlying group
must be unknown. The algorithm generates two different
levels of shares of key for each party, namely “offline”
key shares di and “online” shares fi.

First, it chooses di from an exponentially larger inter-
val than what the value d can have, which hides d even
when the adversary has shares di of n − 1 parties by a
standard argument. This “master” share di is stored per
party inside its backup key bk i, which is only used during
refresh and the adversary gets it only when he permanently
corrupts a certain party i. The actual signing share per
party and epoch is fi which each party derives by adding
an epoch-specific share of 0 to their di share. We again
choose fi to be from an exponentially larger interval than
di, thus hiding the “master” share from bk i for any A
only accessing sk i.

The adding of additive (pseudorandom) shares of 0 is
done in a non-interactive way by relying on pairwise ex-
changed seeds mk i,j which the servers can apply locally.
These seeds, generated during key generation in consistent
manner, are stored as part of the backup key and used to
obtain a fresh fi at every epoch.

Blinding of Signature Shares. For achieving proactive and
adaptive security it is crucial that servers do not commit to
their secret key share. We achieve this by applying fresh
shares βi of 1 to each signing share. We use a similar
trick for the fi values to do this in non-interactive yet
consistent manner: All servers share pairwise seeds si,j
that are generated during initial key generation and every
refresh. The blinding βi is derive through a random oracle
call on these seeds and a fresh label `. The random oracle
gives thus the flexibility we need in the security proof, and
the uniqueness of ` guarantees that we use every blinding
value at most once.

These blinding values also prevent mix-and-match
attacks, i.e., combining shares for different labels `, as
required by the proactive unforgeability notion, as the βi
values only cancel out when the user combines signature
shares for the same `.

Detailed RSA-DSIG Description. The algorithms for
our distributed and proactively secure signature scheme
RSA-DSIG are defined as follows. To ease presen-
tation, we define the function a : Zn → Z as
a(i, {xj}j∈[n]r{i}) =

∑
j∈[i−1] xj −

∑
j∈[i+1,n] xj .

We also stress that we assume that all servers use each
label ` only once, this can be ensured, e.g., by letting all
servers contribute to ` before using it. In fact, when using
DSIG in our PESTO protocol, the label will simply be
the ssid which is assumed to be unique for every call.
RSA-DSIG.Setup(1τ , 1s): Output pp ← (H, H̃) where

H : {0, 1}∗ → {0, 1}τ and H̃N : {0, 1}∗ → [N ].

RSA-DSIG.KGen(pp, n):

1) Pick random primes p, q of length τ/2, set N ← p·q.
2) Let e be a prime ≥ 3 and set d← e−1 mod ϕ(N).
3) Choose random γi,j , δi,j for i, j ∈ [n], i 6= j:

• γi,j ←R [−nN2s, nN2s] for i < j
• δi,j ← [−n2N22s,+n2N22s] for i < j
• γj,i ← γi,j , δj,i ← δi,j for i > j

4) For i ∈ [n − 1] set di ← a(i, γi,1, . . . , γi,n) while
dn ← a(n, γn,1, . . . , γn,n−1) + d . Furthermore, set
fi ← a(i, δi,1, . . . , δi,n) + di for all i ∈ [n].

5) Pick random blinding seeds si,j and master keys
mki,j for all i, j ∈ [n], i 6= j:
• si,j ←R {0, 1}τ , mk i,j ←R {0, 1}τ for i < j
• sj,i ← si,j , mk j,i ← mk i,j i > j

6) Output pk = (N, e) and sk i = (fi, {si,j}j∈[n]r{i}),
bk i = (di, {mki,j}j∈[n]r{i}) for every i ∈ [n].

RSA-DSIG.Sign(sk i,m, `):
1) Parse (fi, {si,j}j∈[n]r{i})← ski.
2) Let ∆i,j = 1 if i > j and else −1.
3) Compute βi =

∏
j∈[n]r{i} H̃N (`, si,j)

∆i,j mod N .
4) Output σi = H(m)fi · βi mod N .

RSA-DSIG.Comb(σ1, . . . , σn):
Output σ =

∏n
i=1 σi mod N .

RSA-DSIG.Vf(pk,m, σ): Parse (N, e) ← pk. Output
b = 1 if σe = H(m) mod N and b = 0 otherwise.

RSA-DSIG.Refresh(bki):
1) Parse (di, {mki,j}j∈[n]r{i})← bki.
2) Compute (mk′i,j , s

′
i,j , δi,j)← PRG(mki,j) for every

j ∈ [n]r{i} such that mk′i,j ∈ {0, 1}τ , s′i,j ∈ {0, 1}τ
and δi,j ∈ [−n2N22s,+n2N22s].

3) Set fi = di + a(i, δi,1, . . . , δi,n). Then output sk′i =
(fi, {s′i,j}j∈[n]r{i}) and bk′i = (di, {m′i,j}j∈[n]r{i}).

Theorem 1. Assuming hardness of RSA and modeling H̃
as a random oracle, the distributed signature RSA-DSIG
satisfies proactive unforgeability, share simulatability and
signature indistinguishability.

Towards correctness, note that∑n
i=1 a(i, γi,1, . . . , γi,n) =

∑n
i=1 a(i, δi,1, . . . , δi,n) = 0,

and thus
∑n

i=1 di =
∑n

i=1 fi = d. Signature
indistinguishability follows as the fi form an additive
sharing of d and from the uniqueness of the (combined)
signatures for each m.

For share simulatability we can generate all bk i with-
out knowledge of d as a secret-sharing of 0, which also
sets the fi to be a 0-sharing. This is ok because in order
to win, an adversary can obtain at most n − 1 of these
shares for which the secret-sharing is statistically hiding.
All but one of the signatures σi for a certain epoch ep
and input(m, `) can then be generated from the dummy fi
shares, whereas the last signature has to be made fit such
that σ =

∏
i σi. To make this consistent with transient or

permanent corruptions we exploit the programmability of
H̃ — and the fact that all labels ` will only be used once
per server — in the construction of βi.

Proactive unforgeability follows from the unforgeabil-
ity of the basic RSA signature scheme for one party
together with the share simulatability and signature in-
distinguishability argument.



The full proof can be found in Appendix A.

Comparison to other Threshold RSA Signatures. Early
works on threshold RSA were only proven secure against
static corruptions [20], [39], [23], [25]. Later, after the
introduction of the proactive security model [36] this was
extended to ‘static-proactive’ security, where the adversary
may corrupt parties only in the onset of each operational
phase [22], [21], [37], [33]. These works were strength-
ened towards security for adaptive-proactive corruptions
in [14], [24], [32], [6]. However, note that all those works
use a different definition for proactive security than ours:
they do not assume an inaccessible storage for temporarily
corrupted parties whereas our approach, following [10],
does (in the form of backup tapes). This allows us to
technically distinguish between corruptions inside and
outside the refresh phase, leading to different treatment of
permanent and transient corruptions. Our use of a backup
tape also means that the refresh is completely local, which
is not just highly efficient but also means that the overall
corruption bound is always optimal. Previous works had
to allow for a “cooling-down” after refresh of corrupted
parties, leading to non-optimal corruption threshold right
after parties got “uncorrupted”.

4. Proactively Secure Distributed Partially-
Oblivious PRF

In this section we provide both the ideal functionality
as well as a construction of a distributed partially-blind
oblivious PRF (dpOPRF). Both functionality and protocol
run in the presence of an arbitrary number of users as well
as n servers S1, . . . , Sn. For each dpOPRF evaluation
there will only be one user present and we denote this
user as U . The dpOPRF is partially blind in the sense
that in addition to the user input xpriv (which remains
hidden towards the dpOPRF servers) the evaluation is also
parameterized by a public value xpub.

4.1. Functionality FdpOPRF

We follow the previous line of work [28], [29], [31]
and model security for our dpOPRF via an ideal function-
ality FdpOPRF in the UC framework [12]. The function-
ality allows evaluation of a random function on chosen
inputs (xpriv, xpub), given all servers S1, . . . , Sn agree to
participate. Implementing a partially-oblivious function,
FdpOPRF tells the servers xpub before they have to make
their decision. The adversary may also evaluate the func-
tion on arbitrary inputs, but crucially requires participation
of all servers. Note that our FdpOPRF does not contain an
adversarial interface for offline evaluations, i.e., without
all servers participating, as is the case for other OPRF
functionalities [28], [29], [31]. We do not need such an
interface since we are only interested in security when
less than n servers are corrupted concurrently.

To model servers deviating from the protocol, FdpOPRF

allows A to modify the PRF key if not all servers are
honest. This is implemented by letting A input a label lbl
and FdpOPRF maintaining a different random function for
each lbl. Lastly, our FdpOPRF provides strong guarantees
by preventing "mix-and-match" attacks, where participa-
tion agreement of servers can be collected among differ-
ent evaluation requests (as possible in, e.g., [28], [29]).
FdpOPRF prevents such attacks by maintaining evaluation

ticket counters ctr[U, xpub] that are increased only when
all servers agree to participate in an evaluation initiated
by U using xpub as public input. Neither can other parties
"steal" those evaluation tokens, nor can U later decide to
instead evaluate on a different public input value.

Corruption and Proactive Security. FdpOPRF is designed to
work with adversaries performing adaptive permanent (of-
ten called standard or Byzantine) and transient corruptions
of servers Si. Transient corruptions are a special type of
corruption that we use to model proactive security. Upon a
transient corruption, a party’s internal state is given to the
adversary and he gains control over the party’s actions.
However, the adversary can decide to "uncorrupt" all
transiently corrupted parties. FdpOPRF is informed about
such corruption recovery via an input Refresh from one
of the servers.

The detailed functionality is given in Figure 3. For
brevity, we use the following writing conventions:

Writing Conventions for FdpOPRF (and FPESTO).
1) The functionality considers a specific session sid =

(S1, . . . , Sn, sid
′) and only accepts inputs from servers

Si that are contained in the sid .
2) We assume sub-session identifiers ssid to be unique.

All interfaces that take as input an ssid will only
accept one input per party and such ssid .

3) When the functionality is supposed to retrieve an
internal record, but no such record can be found, then
the query is ignored.

4) We assume private delayed outputs and inputs,
i.e., the adversary can schedule their delivery but
not learn the private content. E.g., for calls to
“(Eval, sid , ssid , payload) from a party P ”, the ad-
versary receives (Eval, sid , ssid , P ) i.e., he learns all
meta-data but not the payload.

5) Calls to all interfaces other than (KeyGen, sid) will
only be processed after KeyGen is completed.

4.2. Our DH-dpOPRF Construction
We now describe our protocol DH-dpOPRF, which

has at its core the distributed 2HashDH protocol for com-
puting H ′(xpriv, H(xpriv)

K) [27], but combines additional
features inspired by other works: partial obliviousness
using pairings [18], and proactive security [10].

In the 2HashDH protocol, the user blinds his input
xpriv with randomness r and sends x̄← H1(xpriv)

r to the
server, which she can remove again after receiving x̄K

from the server. The protocol can be made distributed by
simply setting K ←

∑
i∈[n] ki where ki are the individual

server keys and letting the user multiply the individual
PRF shares she receives.

To achieve partial blindness, servers contribute
e(x̄, H2(xpub))

ki with an asymmetric pairing e and a
public input xpub obtained from the user in the clear.
Overall, our protocol computes y ← PRFK(xpriv, xpub)
with:

y = H4

(
xpriv, xpub, e (H1(xpriv), H2(xpub))

∑
i∈[n] ki

)
Setup. For our construction, we assume a bilinear group
(p, g1, g2, gT ,G1,G2,GT , e) and hash functions H1 :



The functionality is parametrized by a security parameter τ . It interacts with servers S := {S1, ..., Sn} (specified in the sid ), arbitrary
other parties and an adversary A. FdpOPRF maintains a table T (lbl, xpub, xpriv) initially undefined everywhere, counters ctr[U, xpub]
initially set to 0 and sets Ct, Cp initially set to ∅. The label lbl is an arbitrary string {0, 1}∗, where hon denotes the “honest” label.

Key Generation
• On receiving (KeyGen, sid) from Si:

– Ignore if the sid is marked ready.
– If (KeyGen, sid) was received from all Si, mark sid as ready, and give output (KeyConf, sid) to all Si.

Evaluation
• On receiving (Eval, sid , ssid , xpub, xpriv) from any party U (including A):

– Record (eval, sid , ssid , U, xpub, xpriv), and send output (Eval, sid , ssid , xpub) to every Si.

• On receiving (EvalProceed, sid , ssid) from Si:
– Retrieve record (eval, sid , ssid , U, xpub, xpriv).
– If (EvalProceed, sid , ssid) has been received from all Si, set ctr[U, xpub]← ctr[U, xpub] + 1.

• On receiving (EvalComplete, sid , ssid , lbl∗) from A:
– Retrieve record (eval, sid , ssid , U, xpub, xpriv), only proceed if ctr[U, xpub] > 0, set ctr[U, xpub]← ctr[U, xpub]− 1.
– Set lbl← hon if all servers are honest, and lbl← lbl∗ else.
– If T (lbl, xpub, xpriv) is undefined, then pick ρ←R {0, 1}τ and set T (lbl, xpub, xpriv)← ρ.
– Output (EvalComplete, sid , ssid , T (lbl, xpub, xpriv)) to U .

Corruption and Refresh
• On receiving (Corrupt, sid , Si,mode) from A with Si ∈ S and mode ∈ {trans,perm}:

– If mode = trans, set Ct ← Si ∪ Ct; if mode = perm, then set Cp ← Si ∪ Cp.

• On receiving (Refresh, sid) from a server Si:
– Set Ct ← ∅, abort all ongoing Eval processes, reset all counter ctr[∗]← 0 and output (Refresh, sid) to A.

Figure 3: Ideal functionality FdpOPRF

{0, 1}∗ → G1, H2 : {0, 1}∗ → G2, H3 : {0, 1}∗ → GT ,
and H4 : {0, 1}∗ ×GT → {0, 1}τ .

Key Generation. For simplicity we assume the existence of
a trusted dealer that generates master keys for the servers.
Each server disposes of an offline backup tape that can
be plugged in for performing read and write operations
on it. A server Si, upon input (KeyGen, sid), sends
(KeyGen, sid) to the trusted dealer. The trusted dealer,
upon the first message (KeyGen, sid) for a particular sid
from a server Si, generates the signing keys for all n
servers in sid = (S1, . . . , Sn, sid

′). More precisely, the
dealer generates the secret key shares ki of an implicit
joint PRF key K ←R Zq, seeds si,j for blinding factors
as well as master keys mk i,j as follows:

• For all i ∈ [n]: choose ki ←R Zq
• For all i, j ∈ [n], i 6= j:

– si,j ←R {0, 1}τ , mk i,j ←R {0, 1}τ for i < j
– sj,i ← si,j , mk j,i ← mk i,j for j > i

It sends (ki, {si,j}j∈[n]\{i}, {mk i,j}j∈[n]\{i}) to Si over
a secure channel. Note that the seeds si,j = sj,i and
master keys mk i,j = mk j,i will be known only to
the servers Si and Sj , i.e., each pair of servers will
share a common master key and blinding seed that
is unknown to all other servers. For all further mes-
sages (KeyGen, sid) from the other servers Sj con-
tained in sid , the dealer simply responds with the al-
ready generated key shares for that server. Upon re-
ceiving (ki, {si,j}j∈[n]\{i}, {mk i,j}j∈[n]\{i}), Si stores
(ki, {si,j}j∈[n]\{i}) as the current epoch key, stores
(ki, {mk i,j}j∈[n]\{i}) on the backup tape and erases any
mk i,j from the memory.

Evaluation. The detailed protocol is given in Figure 4 and
lets the user U and all n servers jointly and (partially)
blind compute the function PRFK(xpriv, xpub) stated above
for private input xpriv and public input xpub.

For achieving proactive and adaptive security it is
again important to avoid any commitment to secret key
shares. We use the same approach as in our RSA-DSIG
construction and let servers mask all messages with a
blinding value βi which is a pseudorandom multiplicative
share of 1 that is constructed from the pairwise shared
si,j-values and the (unique) ssid .

Similar as in RSA-DSIG the purpose of the servers’
blinding values βi is two-fold as they also prevent mix-
and-match attacks, i.e., combining shares from different
sub-sessions ssid , as required by our functionality.

Refresh. The refresh is triggered when a server Si re-
ceives the input (Refresh, sid), upon which it sends
(Refresh, sid) over a secure broadcast channel to all
other servers Sj ∈ S\Si which now perform their updates
in a synchronized manner.

They first retrieve their values (ki, {mk i,j}j∈[n]\{i})
from the backup tape and then use a PRG to derive a
new master key, fresh seeds s′i,j for the blinding values,
and seeds δi,j for their update share. The latter is used
to refresh the PRF key share, which is simply done by
updating the old share ki with a share of 0. Relying on δi,j
which are deterministically derived from their pairwise
exchanged master keys mk i,j , the servers can compute
these shares of 0 in a non-interactive fashion.

More precisely, each server Si (either triggered via
(Refresh, sid) or by receiving (Refresh, sid) from a
server Sj ∈ S) runs the following update procedure:
• Retrieve (ki, {mk i,j}j∈[n]\{i}) from the backup tape.
• For all j ∈ [n] \ {i}: (mk ′i,j , s

′
i,j , δi,j)← PRG(mk i,j).

• Set k′i ← ki +
∑n

j=1,j 6=i ∆i,jδi,j mod q, where ∆i,j is
∆i,j = 1 if i > j, and ∆i,j = −1 else.

• Store (k′i, {s′i,j}j∈[n]\{i}) as the current epoch key and
(k′i, {mk ′i,j}j∈[n]\{i}) on the backup tape.

• Securely delete ki,mk i,j ,mk ′i,j , si,j , δi,j for all j ∈
[n] \ {i} from the memory, and (ki, {mk i,j}nj=1,j 6=i)
from the backup tape.



USER U SERVER Si : (ki, {si,j}j∈[n]\{i})

upon input (Eval, sid , ssid , xpriv, xpub)
r ←R Zq, x̄← H1(xpriv)

r -sid , ssid , xpub, x̄ output (Eval, sid , ssid , xpub)
upon input (EvalProceed, sid , ssid) :
y′i ← e(x̄, ti) for ti ← H2(xpub)

ki

βi ←
∏
j∈[n]\{i}H3(sid , ssid , si,j)

∆i,j

where ∆i,j = 1 if i > j, and ∆i,j = −1 else
upon receiving ȳi from all Si: � sid , ssid , ȳi ȳi ← y′i · βi
ȳ ←

∏
i∈[n] ȳ

1/r
i , y ← H4(xpriv, xpub, ȳ)

output (EvalComplete, sid , ssid , y)

Figure 4: Evaluation protocol of our DH-dpOPRF construction.

Note that retrieving an uncorrupted ki from the
backup tape is necessary to properly recover from tran-
sient corruptions, as the adversary may have altered ki
during its corruption.

4.2.1. Security of DH-dpOPRF. For our analysis, we
require that transiently corrupted parties are always "un-
corrupted" before plugging in their backup tape, such
that transient corruptions never reveal the backup tape
to the adversary. Formally, this is handled by defining a
corruption model for UC where, upon sending Refresh,
the adversary neither controls nor observes the state of
any formerly transient corrupted party anymore, and all
these parties are considered honest again. As a result, they
give inputs and receive outputs directly to/from FdpOPRF

instead of sending them via the adversary. For this cor-
ruption modeling to be meaningful, we assume that the
adversary can corrupt servers at any time, but if he does
so during KeyGen or Refresh, then he must perform a
permanent corruption.

Regarding communication channels, we assume pri-
vate and server-sided authenticated channels between each
user and each server. Such a channels can be implemented,
e.g., using TLS.

Theorem 2. The protocol DH-dpOPRF securely realizes
FdpOPRF in the random oracle model if PRG is secure
and the Gapom-BDH assumption holds in G, w.r.t en-
vironments restricted to corrupt at most n − 1 servers
concurrentlyusing adaptive permanent and transient cor-
ruptions.

Our proof leverages proof techniques used by other
works in a similar setting. In particular the overall idea
is very similar to the proof of Theorem 3 by Jarecki et
al. [29], which shows security of a fully oblivious PRF in
a static and non-proactive threshold setting, based on the
gap one-more threshold Diffie-Hellman assumption.

We follow their overall structure, but generalize to the
bilinear setting (as required by the partial obliviousness
of our scheme) and make a reduction directly to a non-
threshold assumption 1.

However, as we need both adaptive and proactive
security, their techniques are not enough. Hence we have
taken inspiration of blinding values and security of backup
keys from Camenisch et al. [10] for adaptive and proactive
password verification, also based on the Gap one-more
Diffie-Hellman assumption.

1. Jarecki et al. shows equivalence between the Gap one-more thresh-
old Diffie-Hellman assumption and the gap one-more Diffie-Hellman
assumption in the full threshold setting.

To be able to provide a transcript in case of adaptive
corruption, our simulator must ensure that every message
sent is not “committing” to the servers’ private keys. This
is handled by using blinding values H3(sid , ssid , si,j) that
will pad the only message exchanged that is not (random-
ized) output of a random oracle, namely H1(xpriv)

r. Be-
sides allowing the simulator to be able to simulate values
ȳi without committing to ki for each Si, it also ensures
randomness of messages from each server sent in different
epochs, even if a corrupt user makes the same query; thus
allowing for simulation. It also prevents the mixing of
unfinished executions of evaluation under different ssids.
However, we notice that there is one blinding key, si,j ,
between each pair of servers in an epoch and thus if the
adversary corrupts all but one server, then the message
from the last honest server will not be random. But this
message will instead be based on the true k and thus if
the adversary could emulate such a message then it would
solve the underlying Gapom-BDH experiment. Note that
indistinguishability is not a problem in this case since the
simulator can use the OC-help to construct a message for
the last honest party that has the correct form. This is also
how the reduction to the Gapom-BDH experiment works;
if the adversary can find ȳi for the last honest server Si
such that it generates the correct y, then this can be used
to win in the experiment.

We must ensure that the simulator can extract the input
xpriv of a malicious party and use this for the query in the
ideal functionality. However we notice that this cannot be
done from the message x̄ = H1(xpriv)

r sent by a corrupt
user. The reason being that this r is random and unknown
to the simulator. The simulator must instead wait until
it learns it from a query H4(xpriv, xpub, ȳ). The problem
is however that the ideal functionality must output an
acknowledgment to the honest servers on xpub and ssid
after receiving a query from a user. Thus the simulator
already here needs to input a value for xpriv to the ideal
functionality. What happens is that it inputs a random
dummy value for xpriv and then later when it receives the
query H4(xpriv, xpub, ȳ) it re-queries the ideal functionality
on a different ssid , but as the same corrupt user and
with the same xpub. It then learns the true output of the
ideal functionality and can simply substitute this into the
response of H4. This trick is achieved through the counters
ctr which basically allows several (possibly unfinished)
queries from the same user to take place. This trick is
also used in a similar setting in a proof by Camenisch et
al. [10, Sec. 4.2].

We must also ensure a consistent simulation even



when the adversary is using different keys than it was
assigned by the trusted third party. To achieve this, we
have to store a transcript of every query, and a unique
label for all different choices of keys the adversary has
used. Letting k′ = k −

∑
i∈C ki with k =

∑
i∈[n] ki

and C denoting the set of currently corrupt parties, then
the problem basically reduces to the simulator having to
detect if ȳ = e(H1(xpriv), H2(xpub))

k′ for some k′ seen
before. However since it cannot define all the honest
parties’ keys in the simulation and since the amount
of corrupted parties and the value of their keys change
between epochs, it will have to use the OC-help oracle to
get the value e(H1(xpriv), H2(xpub))

k and then use this
to get e(H1(xpriv), H2(xpub))

k+ε where ε is any additive
error the adversary might have added to the sum of its key
shares. The simulator can then use the OD-help to figure
out if this is an ε it has seen before and then use the
ideal functionality to give correct output accordingly. See
Appendix B for more details.

5. Proactively-Secure Distributed SSO
We now present our approach for proactively-secure

distributed SSO (PESTO). We start by describing the
high-level functionality and desired security properties.
In Section 5.1 we then present our formal security for
PESTO and give our protocol in Section 5.2.

High-Level Idea. From a user perspective, PESTO should
work just as standard SSO, but simply interacting with n
servers instead of only one. The servers hereby possess a
joint public verification key vk .

First, the user can create a user account for a certain
user name uid and a chosen password pw . Note that he
only uses one password to register will all n servers.
Upon successful registration, the user can request joint
signatures of all servers on messages m of his choice.
To do so, the user must authenticate under uid and a
password attempt pw ′. If the provided password matches
the one used at account creation for uid , the user receives
a signature σ, that was created by all servers for (uid ,m),
i.e., they bind the message to the verified user name. For
SSO applications, the message will contain the unique ID
of the targeted service provider and a nonce that is usually
specified by the provider. Finally, the signature σ can be
verified by everyone against the public key vk .

In terms of security we want PESTO to satisfy the
following properties.
Offline-Attack Resistance: An adversary corrupting at

most n−1 servers must not be able to run offline attacks
against the users’ account passwords.

Unforgeability of Tokens: An adversary corrupting at
most n − 1 servers cannot forge signatures that verify
under the joint public key vk . The only way to receive a
valid signature for an honestly created uid and adversar-
ially chosen message m∗ is by guessing the associated
password and getting the remaining honest server(s) to
explicitly approve the signature request.

Server-Controlled Rate Limiting: The servers have
strong control over the user accounts, meaning that
passwords can only be verified if all servers explicitly
agree to do so for the given uid . That is, servers can
prevent further verification when they detect online
guessing attempts against a certain user, or the user

asked to block or pause her account. Also, servers
explicitly learn at every signing request whether
the provided user password was correct or not (w/o
violating the offline-attack resistance) such that they
can base their further actions on this information, e.g.,
blocking accounts after 10 failed attempts.

Adaptive and Proactive Security: For modeling realis-
tic attacks, we allow the adversary to corrupt servers in
an adaptive fashion, i.e., he can take control of any ini-
tially honest party at any time. We further allow transient
corruptions as detailed in Section 4.2.1, ensuring that
our protocol features proactive security and the above
properties hold even when all servers get corrupted, as
long as not all of them are corrupted at the same time.

5.1. Security Model
In this section we present our formal security for

PESTO in form of an ideal functionality FPESTO in the
UC framework. The main entities in our system are a set
of servers S := {S1, ..., Sn} which are specified in the
sid = (S1, . . . , Sn, sid

′), where sid ′ is a unique string.
We now briefly discuss the interfaces our functionality
provides and how they enforce the desired security prop-
erties sketched above. The detailed definition is given in
Figure 5. For the sake of brevity, our FPESTO definition
assumes the writing conventions from Section 4.

Key Generation. The functionality is parametrized by
algorithms (KGen,Sign,Verify), and internally generates
a key pair (vk , sk) ← KGen(1τ ) when all servers
have explicitly triggered key generation by sending
(KeyGen, sid). From then on, FPESTO accepts calls to
the other interfaces and will guarantee unforgeability of
signatures w.r.t. vk . We stress that we will not rely on any
security properties of these algorithms but only use them
to let FPESTO output well-formed cryptographic values.

Account Creation. The creation of a new account for user-
name uid and password pw is initiated by a user on input
(Register, sid , ssid , uid , pw). To distinguish between
several account creation (and signing) sessions, we use
unique sub-session identifiers ssid . If uid has not been
registered yet, all servers S1, . . . , Sn are notified about
the request (but without learning the password) and must
approve it by sending (ProceedReg, sid , ssid , uid). The
functionality internally stores (uid , pw) and from then
on allows signing requests for uid . We flag accounts
created by malicious users, as the adversary will have
more control over these when signing.

Password-Authenticated Distributed Signing. After an ac-
count for uid was created, a user can request password-
authenticated signatures for a message m by sending
(Sign, sid , ssid ′, uid ,m, pw ′) where pw ′ denotes the
password attempt the user is logging in with. The servers
are notified — again without learning the password pw ′

— and the functionality only proceeds with the pass-
word verification when all servers have responded with
(ProceedSign, sid , ssid ′, uid).

Awaiting explicit approval of all servers gives each
the opportunity to block a session if they detect some
suspicious behaviour, or they have been asked by the user
to suspend her account. This is crucial to prevent offline
attacks against the password, as well as to detect and stop
online guessing attacks.



The functionality is parametrized by algorithms (KGen,Sign,Verify) and security parameter τ . It interacts with servers S :=
{S1, ..., Sn} (specified in the sid ), as well as arbitrary users, verifiers and an adversary A. Let Ct, Cp denote initially empty sets.

Key Generation
• On receiving (KeyGen, sid) from server Si:

– Ignore if a record (key, sk , vk) already exists.
– If (KeyGen, sid) was received from all Si:
∗ Create a record (key, sk , vk) with (vk , sk)← KGen(1τ ) and output (KeyConf, sid , vk) to all Si.

Account Creation
• On receiving (Register, sid , ssid , uid , pw) from user U :

– Proceed only if no record (account, uid , ∗) exists. Create record (register, ssid , U, uid , pw).
– Send a delayed output (Register, sid , ssid , uid) to all Si ∈ S.

• On receiving (ProceedReg, sid , ssid , uid) from server Si:
– Retrieve record (register, ssid , U, uid , pw). If (ProceedReg, sid , ssid , uid) has been received from all Si:
∗ Record (account, uid , pw); if U is corrupt, mark uid corrupted.
∗ Send a delayed output (Registered, sid , ssid , uid) to U .

Signing Request and Verification
• On receiving (Sign, sid , ssid ′, uid ,m, pw ′) from party U :

– Proceed only if a record (account, uid , pw) exists. Create record (sign, ssid ′, U, uid ,m, pw ′, b) with b← ⊥.
– Send a delayed output (Sign, sid , ssid ′, uid ,m) to all Si ∈ S.

• On receiving (ProceedSign, sid , ssid ′, uid) from server Si:
– Retrieve records (sign, ssid ′, U, uid ,m, pw ′, b) and (account, uid , pw).
– If (ProceedSign, sid , ssid ′, uid) has been received from all Si:
∗ If U is corrupt and pw = pw ′, mark uid corrupted and set b← 1.
∗ Send (match-ok, sid , ssid ′, b) to A and receive back (match-ok, sid , ssid ′, b∗).
∗ Update the sign record by (re-)setting the password verification bit b:
· If U and uid are corrupted, set b← b∗.
· Else, if all servers are honest set b← (pw = pw ′). If at least one Si is corrupt, set b← b∗ ∧ (pw = pw ′).

∗ Send a delayed output (Match, sid , ssid ′, b) to all Si ∈ S.
∗ Only proceed if b = 1, retrieve (key, sk , vk) and create the signature:
· Send (sign-ok, sid , ssid ′) to A and receive back (sign-ok, sid , ssid ′)
· Create σ ← Sign(sk , (uid,m)), abort if (sigrec, uid ,m, σ, vk ,false) exists.
· Record (sigrec, uid ,m, σ, vk ,true) and output (Signature, sid , ssid ′, σ) to U . (Correctness)

• On receiving (Verify, sid , uid ,m, σ, vk ′) from party V :
– If (sigrec, uid ,m, σ, vk ′, f ′) exists, set f ← f ′ (Consistency)
– Else, create a record (sigrec, uid ,m, σ, vk ′, f) where f is determined as follows:
∗ If vk = vk ′, set f ← false (Strong Unforgeability), else set f ← Verify(vk ′, (uid ,m), σ).

– Output (Verified, sid , uid ,m, σ, vk ′, f) to V .

Corruption and Refresh
• On receiving (Corrupt, sid , Si,mode) from A with Si ∈ S and mode ∈ {trans,perm}:

– If mode = trans, set Ct ← Si ∪ Ct; if mode = perm, then set Cp ← Si ∪ Cp.

• On receiving (Refresh, sid) from server Si:
– Set Ct ← ∅, abort all ongoing Register and Sign processes and output (Refresh, sid) to A.

Figure 5: Ideal functionality FPESTO for proactively-secure distributed SSO

When given approval, the functionality now checks
whether pw ′ matches the original password pw the user
has created her account with. If all servers and the user are
honest, the decision bit is simply set to b← (pw = pw ′).
If malicious parties are involved, the adversary has a bit of
wiggle room: If at least one server is corrupt, the adversary
can always make a correct login fail and enforce b ← 0
but not vice versa, i.e., he cannot make a mismatch of the
passwords look like a match. If the user account for uid
has been corrupted, either because it was created by the
adversary or the adversary correctly guessed the password
of an initially honest account, A now can freely set the
decision bit, modeling the fact that he has full control over
the account anyway. These capabilities of the attacker are
modeled by first telling A whether login was successful
via output match-ok, and then asking A for a bit b∗.
The functionality enforces its influence according to the
corruption setting. All servers receive the decision bit via
an output (Match, sid , ssid ′, b).

Finally, when the password was determined to

be correct, the signature is created. FPESTO gener-
ates σ ← Sign(sk , (uid,m)) and stores a record
(sigrec, uid ,m, σ, vk ,true) that will allow successful
verification of σ. Note that the record also contains uid
which enforces that the signature is only valid for that
particular user. The user receives the computed signature
via the output (Signature, sid , ssid ′, σ).

Verification. Everyone can check the validity of signa-
tures by sending (Verify, sid , uid ,m, σ, vk ′). If vk ′ =
vk , i.e,. verification is requested for the verification
key associated with sid , then FPESTO uses its internal
records to determine whether σ is valid for (uid ,m).
The output is set to f ← true only if a record
(sigrec, uid ,m, σ, vk ,true) exist. As such records
only get created through successful signing requests, the
desired unforgeability is enforced. For other verification
keys, the functionality uses the Verify algorithm to deter-
mine f . Allowing such verification for “incorrect” public
keys is necessary to avoid that FPESTO must realize a



trusted certification authority too.

Corruptions and Refresh. We use the same transient cor-
ruption model in UC as in Section 4.2.1, and thus FPESTO

provides the same corruption interfaces Corrupt and
Refresh for corrupting servers as FdpOPRF.
FPESTO does not provide a specific interface for user

corruption, but nonetheless is informed about such and
marks accounts belonging to the adversary accordingly.
We note that FPESTO naturally models adaptive user cor-
ruption thougheven if the adversary only corrupts ma-
chines before they start the protocol. This is because
FPESTO ignores which machine a user chooses, i.e., a
user might choose an honest machine for registering and
a corrupted one for logging in afterwards, leaking all
formerly hidden secrets to the adversary in an adaptive
fashion. Also, note that password guessing or leakage is
absorbed by the UC model already, as the environment
can leak passwords of honest users to the adversary.

5.1.1. SSO-specific Modeling Choices. Apart from bind-
ing the username uid to signed messages, there is another
subtle but important SSO-related aspect to our model.
Essentially, FPESTO can be seen as a complex signature
functionality. The common approach for UC signature
definitions [13] is to let the adversary provide the signature
values σ (either directly or by imputing algorithms with
hardcoded signing keys). Our FPESTO instead generates
signatures within the functionality for a key that is un-
known to the adversary. While this might seem like a
benign modeling choice — unforgeability does not depend
on σ but the records the functionality maintains — it
makes a big difference for our targeted SSO application:
Allowing the adversary to determine and learn signatures
of honest users would render the SSO aspect useless where
signatures serve as authentication tokens! The internal
approach taken by FPESTO ensures that only the affected
user learns her signature, but also makes proving security
much more challenging.

5.2. Our PESTO Construction
On a high level, our protocol ΠPESTO combines a

distributed partially-oblivious PRF dpOPRF, a distributed
signature scheme DSIG and standard signature SIG. The
dpOPRF is evaluated on the username uid (public) and
password (private), and the PRF value is interpreted as
long-term secret signing key usk of SIG. Servers store the
corresponding verification key upk in the user’s account.
When the user later requests a signature for message m
and uid , she re-derives usk and signs a session-specific
nonce to convince the servers of her possessing the right
password. Servers then jointly sign the message (uid ,m)
using the distributed signature scheme DSIG.

The distributed building blocks are as defined
in Section 3 and Section 4, and SIG is a con-
ventional signature scheme consisting of algorithms
(SIG.KGen,SIG.Sign,SIG.Vf). In our construction we will
make the randomness r used in SIG.KGen explicit, and as-
sume that key generation behaves deterministically when
used with the same r.

Key Generation. We assume a trusted dealer that pro-
vides all servers with their initial key shares and
backup keys. That is, when a server Si receives input

(KeyGen, sid) it checks that sid = (S1, . . . , Sn, sid
′). It

sends (KeyGen, sid) to FdpOPRF and (keygen, sid) to
the trusted dealer of the DSIG scheme.

The trusted dealer, upon the first message
(keygen, sid) for a particular sid from a
server Si generates the signing keys for all n
servers as (pk, (sk1, . . . , skn), (bk1, . . . , bkn)) ←R

DSIG.KGen(pp, n). It sets vk ← pk and returns
(vk , ski, bk i) over a secure channel to Si. For all
further messages (keygen, sid) from the other servers
contained in sid , the dealer simply responds with the
already generated key shares.

Each server stores (sid , sk i, vk) as the online signing
key, and keeps bk i on a secure and offline backup tape.

Account Creation. A user can create an account for user-
name uid and password pw with all n servers, by running
the protocol depicted in Figure 6. Roughly, the servers
perform a partially blind FdpOPRF evaluation where the
uid is the public and pw the blinded input. From the
received FdpOPRF output y, the user deterministically de-
rives a key pair usk , upk of a standard signature scheme,
and sends upk and a signature computed from usk back
to the servers. The servers now check the validity of the
upk and user signature, and then use their distributed sig-
nature scheme to sign (0, uid , upk). The jointly computed
signature σreg on these values ensures that an adversary
cannot gradually plant malicious public keys for honest
user accounts, when he transiently corrupts individual
servers. Prepending the 0-bit to the signed message is
done to enforce domain separation from the messages the
servers are signing for the users later on (using the same
distributed signature scheme). The account information
stored by each server is (uid , upk , σreg).

Signature Request & Verification. When an account has
been created successfully, the user can request signatures
for messages m of his choice, and authenticating as
uid using a password attempt pw ′. If the servers have
valid account information stored for uid and agree to
proceed, they first blindly compute the FdpOPRF output for
uid , pw ′. The user then (re-)derives its key pair usk , upk ,
where usk will be the matching secret key to the pub-
lic key stored by the servers. This is tested by letting
the user sign a fresh value, which is simply the query
identifier ssid ′, with its usk . Each server then verifies the
received signature to check if the user provided the correct
password. If that check passes, each server provides the
user with a signature share σi for (1, uid ,m). That is, the
servers sign the user’s message and bind it to its verified
username uid . Again, the prefix bit 1 serves for domain
separation. The user combines all shares into the final
signature. The detailed protocol is given in Figure 6.

Refresh. If a server Si receives input (Refresh, sid)
it broadcasts (refresh, sid) to all other servers Sj ∈
S\Si, and sends (Refresh, sid) to FdpOPRF. It then
updates its signature key share with the help of the secure
backup key, and securely deletes the old keys.
• retrieve backup key bk i
• get (sk′i, bk

′
i)←R DSIG.Refresh(bki)

• set ski ← sk′i and bk i ← bk′i
Server Sj receiving (refresh, sid) from Si, simply

runs the same update of the signature key shares described



USER U SERVER Si
(sk i, vk), {(uid `, upk `, σreg,`)}

Upon input (Register, ssid , uid , pw) -reg, ssid , uid abort if (uid , ∗, ∗) already exist; output
(Register, ssid , uid), only continue upon
input (ProceedReg, ssid , uid)

-(Eval, ssid , uid , pw) -(Eval, ssid , uid)
FdpOPRF

� (EvalProceed, ssid)If EvalProceed was received
from all Si, compute
“y ← PRF(k, (uid , pw))”

� (EvalComplete, ssid , y)

(upk , usk)← SIG.KGen(y)
σU ← SIG.Sign(usk , (uid , ssid)) -ssid , σU , upk abort if SIG.Vf(upk , (uid , ssid), σU ) = 0

σreg,i ← DSIG.Sign(sk i, (0, uid , upk); ssid)
broadcast σreg,i to all servers Sj ∈ S\Si
upon receiving σreg,j from all Sj :
σreg ← DSIG.Comb(σreg,1, . . . , σreg,n)
abort if DSIG.Vf(vk , (0, uid , upk), σreg) = 0

upon receiving ok from all Si ∈ S, output
(Registered, ssid , uid)

� ssid ,ok store (uid , upk , σreg)

Upon input (Sign, ssid ′, uid ,m, pw ′): -sign, ssid ′, uid ,m abort if no record (uid , upk , σreg) exist or
DSIG.Vf(vk , (0, uid , upk), σreg) = 0; output
(Sign, ssid ′, uid ,m), only continue upon
input (ProceedSign, ssid ′, uid)

-(Eval, ssid ′, uid , pw ′) -(Eval, ssid ′, uid)
FdpOPRF

� (EvalProceed, ssid ′)If EvalProceed was received
from all Si, compute
“y ← PRF(k, (uid , pw ′))”

�(EvalComplete, ssid ′, y)

(upk , usk)← SIG.KGen(y)
σ′U ← SIG.Sign(usk , (uid , ssid ′)) -ssid ′, σ′U if SIG.Vf(upk , (uid , ssid ′), σU ) = 0 output

(Match, ssid ′, 0) and end;
else compute
σi ← DSIG.Sign(sk i, (1, uid ,m); ssid ′)

upon receiving σi from all Si ∈ S: � ssid ′, σi and output (Match, ssid ′, 1)
σ ← DSIG.Comb(σ1, . . . , σn)
abort if DSIG.Vf(vk , (1, uid ,m), σ) = 0;
else output (Signature, ssid ′, σ)

Figure 6: Registration and sign procedures of ΠPESTO. For concise notation, we omit the sid from all in- and outputs.

above. Note that only the key shares change, but vk and
the signatures computed under the old keys remain valid
and require no updates.

The servers could now also engage in a protocol to
recover from potential loss or compromise of their states
(as the user accounts are not contained in the trusted
backup). That is, each server could first check if they
have records {(uid `, upk `, σreg,`)} for the same set of
users, and whether these tuples contain valid signatures
σreg,` under vk . If not, they can ask the other servers to
send their stored information. As long as one server is
honest, the others will receive the correct information and
can recover from state loss or compromise. Also note that
the signature σreg,` is computed with the distributed and
proactively secure DSIG scheme, thus malicious servers
cannot distribute incorrect yet valid account information.

We do not make such a recovery process explicit in
our protocol, and instead check the validity of the user
account at each login session.

5.2.1. Security of our PESTO Construction. We assume
private and server-sided authenticated channels between
each user and each server, e.g., using TLS. Further, we
assume a private and authenticated broadcast channel with

guaranteed delivery among the n servers. This channel is
used only when a new user is registered. We further as-
sume a trusted dealer during the setup and key generation
phase. All servers possess secure backup tapes that are
assumed to be not corruptible via transient corruptions
(cf. Section 4.2.1).

In the following theorem we slightly abuse notation
and let Comb∗ ◦ DSIG.KGen denote the algorithm that
first runs (vk , (sk i)i∈[n], (bk i)i∈[n]) ← DSIG.KGen(1τ ),
discards all bk i from the output and then obtains sk ←
Comb∗(vk , sk1, . . . , skn) (with Comb∗ being the algo-
rithm inherited from the signature indistinguishability no-
tion of DSIG).
Theorem 3. Consider the protocol described in Figure
6 and Section 5.2. If SIG is an existentially unforgeable
signature scheme, DSIG a distributed signature scheme
that is proactively unforgeable, signature indistinguish-
able w.r.t algorithms Comb∗,Sign∗ and share simulatable,
then ΠPESTO securely realizes FPESTO with algorithms
(Comb∗ ◦ DSIG.KGen,Sign∗,DSIG.Vf) in the FdpOPRF-
hybrid model, w.r.t adaptively corrupting environments
controlling at most n− 1 servers concurrently.

To prove the above theorem we need to show that



for any environment Z and adversary A there exists an
efficient ideal-world adversary algorithm, called simulator
S, such that the view of Z interacting with the real scheme
and A, is indistinguishable from the view that FPESTO and
S provide. Below, we sketch the behavior of our simulator
S, and give the detailed proof in Appendix C.

Proof. (Sketch) Before describing the simulation strategy,
we first point to some challenges we face in the proof.
• While S has control over the trusted dealer, signature

tokens are verified w.r.t vk chosen by FPESTO. S has to,
e.g., simulate signing key shares upon server corruption
that "look like" belonging to vk . We stress that S even
needs to simulate "full sets" of n signature shares that
Z observes through a corrupted user, and that combine
to a signature verifying under vk .

• As discussed in Sec. 5.1.1 our functionality differs from
standard UC signature definitions in that it generates
signatures entirely within the functionality for a key
that is unknown to the adversary (= S in the security
proof). The challenge now is to let S provide a view that
is consistent with these internally generated signatures
and public verification key.

• Modeling a password-authenticated primitive, FPESTO

protects against offline dictionary attacks and admits to
A only one online password guess (via the match-ok
message). Thus, S has to simulate the transcript from
only this one guess.

Honest server & corrupted user: S needs to simulate
signature shares of honest servers towards the corrupted
user, as well as key shares when a server gets corrupted.
The simulator has to manage this without knowing any
key shares, yet remain a consistent view w.r.t. the vk of
FPESTO which allows to verify (simulated) signatures.
For this, we introduced and proved a special property of
the DSIG scheme called share simulatability (cf. Def. 6),
which guarantees the availability of a simulator SIM that
produces signature and key shares indistinguishable from
real ones. In case Z sees a "full set" of signature shares,
it can test whether they combine to a signature verifying
under vk . Right before revealing a final share for such
a set, the SIM algorithm requires a valid completed
signature as auxiliary input (which allows to set the final
share correctly). Fortunately, in case of a corrupted user,
S receives such a signature from FPESTO and thus can
full advantage of the simulation that SIM provides.

Honest user & corrupted server: The challenge is to
simulate messages from an honest user, e.g., attempting
to get a signature token for uid ,m, towards a corrupted
server, without S knowing her password pw ′. However,
the simulator (playing the role of corrupt servers towards
FPESTO) learns the necessary information just in time
via the match-ok output which reveals whether pw ′

matches the password stored with uid ’s account. This
way, S knows whether to simulate a successful login of
the user or not.

Input Extraction: In UC, the simulator needs to provide
inputs of corrupted parties to the ideal functionality. In
protocols where inputs are supposed to be hidden — like
the passwords in FPESTO — this is often challenging or
expensive to realize, as it requires to extract secrets from
adversarially generated messages. In our proof, extraction

of a password from a corrupted user’s messages is easy
due to the usage of the hybrid FdpOPRF (which is run by
S in the simulation).

5.2.2. Adding Privacy to ΠPESTO. In our protocol, all n
servers learn the message m which in the SSO context
will contain the identity of the service provider the user
wishes to access. Learning this information might be
useful as it allows the servers to deploy additional security
checks. For example, they could refuse to sign access
requests towards blacklisted service providers, or identify
unreasonable access patterns. However, this also means
that all servers can track the online behavior of the user.

To increase user’s privacy, one could simply let servers
sign a commitment h = H(m, r) instead of m, where
r is randomly chosen by the user and only revealed in
the final signature. Note that signing a commitment to
m hides the message in the signing process but is not a
full-blown blind signature, as it does not guarantee the
unlinkability of the produced signature. However, in our
SSO application there is no unlinkability anyway as the
servers must still learn and sign the username uid along
with h to provide the expected user authentication.

6. Benchmarking
Here we report on our proof-of-concept implemen-

tation of our full PESTO protocol for signing a JWT
token. The implementation is in Java and used the
MIRACL - AMCL library [40] for pairing computation
and Java’s BigInteger class for implementing DSIG. We
used a Boneh-Lynn-Shacham (BLS) pairing [8] with 461
bits curves. For DSIG we used RSA of 2048 bits and
for SIG we used ECDSA with secp256r1. Our hash
function of choice is SHA-256, and we used Java’s
KeyPairGenerator class for non-distributed key gen-
eration and signing. We chose to use ECDSA instead of
RSA for non-distributed signing since its key generation
algorithm is significantly faster than RSA. In fact, pre-
liminary numbers showed that the RSA key generation
contributed an average of 95 ms to the client execution
time, whereas for ECDSA it was at most 1 ms. Further-
more, ECDSA signatures are smaller than RSA signatures
so the choice also limits bandwidth usage.

We ran our implementation on AWS Elastic Compute
Cloud (EC2) on m5.xlarge instances. That is, machines
running on Intel Xeon Platinum 8000 series CPU with 4
virtual CPUs, 16 GiB of RAM2, solid state storage and
with up to a 10 Gbps network. We ran our servers (and
user machine) on different data centers throughout Europe
to simulate a realistic setting of deployment and use of our
scheme. Alternatively we could have deployed all servers
in the same data center on the same physical machine
as done in [10]. However we do believe that deploying
machines at different physical locations (that could be run
by different providers) increases the security significantly
enough to merit the small overhead in runtime from the
communication to different data centers.

We show the benchmarks of our ΠPESTO protocol in
Tab. 1 and Tab. 2, using a two server setup with one in
England, one in Ireland and a user in Germany. We note

2. We note that the memory requirements of our implementation is
far, far below that offered by the server.



THROUGHPUT (OPS/S) LATENCY (MS)
mean mean std

Registration 51 138 8.0
Sign in 60 124 5.8

Table 1: Benchmark of full execution of ΠPESTO for n = 2.

dpOPRF
OTHER LOCAL COMPUTATION

REGISTRATION SIGN IN

mean std mean std mean std
Server 31.1 6.4 8.3 2.1 1.8 0.6
Client 28.5 1.9 2.2 0.4 1.9 0.7

Table 2: Micro benchmark of ΠPESTO and DH-dpOPRF for
n = 2.

that the latency of a ping between the user and the slowest
server is 22ms.

All of our tests were repeated 30 times, after 30
dummy iterations to make sure the JVM is properly
“warmed up”. Our implementation utilizes a full REST
stack with a TLS connection in place through Jetty - which
closer emulates the setting we imagine our scheme to be
deployed in. This of course gives a penalty on efficiency,
which can be seen by comparing the latency with the
micro benchmarks.

We note that our server implementation is single
threaded. The reason for not implementing a multi-
threaded version is that the bottleneck of the implemen-
tation is the underlying computation of pairings and stan-
dard signatures, which we did not implement as this has
not been the focus of our work. We computed our through-
put benchmarks for the servers only and excluded network
communication for these numbers. Concretely we forced
an instance of our program to run on a single core through
taskset and interpolated the throughput for the amount
of available cores. The numbers for latency express the
entire time it takes for the user from beginning to end
of the protocol, including network latency, establishing a
TLS connection and waiting for server replies.

The micro benchmark numbers only include local
computation, in particular for the dpOPRF, which the
same for both registration and sign in. It also expresses
the other local computation required for the registration,
respectively the sign in, in particular key generation, sig-
nature verification and distributed signing. In particular
the micro benchmarks do not include any of the overhead
of the REST/TLS communication stack.

Comparison. For comparison we note that PASTA [5]
takes 94.6 ms for sign in when comparing to the most
equivalent setting (WAN with 2 servers using an RSA
signature). Although for fairness we note that the latency
in their WAN setting is 80 ms whereas for us it is 22 ms.
However, our implementation also includes constructing
a full TLS connection which theirs (to the best of our
knowledge) don’t. For further comparison we also ran
benchmarks for construction of a JWT token (based on
RSA) using the our code base. This execution took an
average of 30.4 ms. We can thus conclude that PESTO
does add some overhead compared to previous schemes,
in particular due to the pairing operations. However we

believe that the added overhead is still small enough,
in absolute terms, for the scheme to be practical. In
particular when considering its security benefits over the
competition.
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Appendix A.
Proof of Theorem 1 (Security of RSA-DSIG)

The proof mainly relies on using “noise drowning”
techniques that hide a value s using an added x that
comes from an exponentially larger interval. This can be
formalized as follows:

Lemma 1. Let `, B, β ∈ N such that B > β. Further-
more, let χ be a random variable on Z whose outputs are
bounded by β. Then the following holds:

1) Let x← [−B,B] and s← χ. Then any (potentially
computationally unbounded) algorithm A can distin-
guish x from x+s with probability at most 4s+4

2B+2s+1 .
2) Let x1, . . . , x` ← [−B,B] and s ← χ. Then any

(potentially computationally unbounded) algorithm B
can distinguish

∑
i∈[`] xi from s +

∑
i∈[`] xi with

probability at most 4s+4
2B+2s+1 .

Proof. Consider the random variable X being input to A
which is either sampled as x or x+ s. We can see that X
must be bounded by B + s. By the bound on s it holds
that Pr[X ∈ [−B + β,B − β] | X = x + s] = Pr[X ∈
[−B + β,B − β] | X = x], so in that case the output of
A on X must be identically distributed. Thus A can only
distinguish the cases when X falls outside this interval,
which happens with probability at most 4s+4

2B+2s+1 .
Assume that there exists an algorithm B which can

distinguish the second experiment with probability at least
ε. Then, knowing B, we can take the random variable X
as defined above for the first experiment for A, sample
x2, . . . , x` ← [−B,B] and set Y ← X + x2 + · · · + x`,
which implies that the distribution of Y exactly matches
the input distribution from the second experiment - here,
X = x translates into the setting where Y = x + 1 +
· · · + x` while X = x + s translates into Y = x1 +
· · · + x` + s. Thus, we have constructed a distinguisher
for X which succeeds with the same probability ε. By the
aforementioned argument, we must have ε ≤ 4s+4

2B+2s+1 .

Proof. The aforementioned Lemma can now be used in
the proof of Theorem 1, which we present below for the
individual security properties.

Signature Indistinguishability. Algorithm
DSIG.Comb∗(pk, sk1, . . . , skn) parses
(fi, {si,j}j∈[n]r{i}) ← ski and computes sk =

∑n
i=1 fi

mod N . Algorithm DSIG.Sign∗(sk,m) outputs H(m)sk

mod N . Now, since the {fi}i form an additive sharing
of sk = d over the integers, the result of running
DSIG.Comb∗ on the secret keys to produce a single
secret key and then DSIG.Sign using that resulted secret
key is equivalent to running DSIG.Sign individually with
every ski to produce partial signatures and then running
DSIG.Comb on the partial signatures. The outputs of both
processes are identical by the linearity in the exponent.

Share Simulatability. We now describe the simulator SIM
and will afterwards argue indistinguishability.

Upon first call SIM will sample “shadow” sk
0

i , bk
0

i . It
therefore generates both keys according to Steps 3-6 of
DSIG.KGen, except that SIM will not add d to dn and not
add di to fi.



On query (Sign,m, `, σ), if σ = ⊥ then use
sk

ep

i to generate σi honestly. If σ 6= ⊥ then output
σ/(
∏
j∈[n]r{i} σj) where σj = DSIG.Sign(j, sk

ep

j ,m, `).
On query refresh, for all i ∈ [n] run

DSIG.Refresh(i, bk
ep

i ) → (sk
ep+1

i , bk
ep+1

i ) on all
keys that SIM generated.

On query (corr,mode, i,L), with mode ∈
{trans, perm}, the list L contains all those signatures
of the current epoch ep for which SIM has to ‘adjust’ the
output of the random oracle H̃N for key sk

ep

i . This is done
as follows: For each row (ep, i,m, `, σ) ∈ L, we already
have that the equation σ =

∏
j∈[n] σj holds, but we need

to adjust the computation of σi appropriately as we need
to reveal to the adversary either sk

ep

i such that σi =
H(m)fi ·

∏
j 6=i H̃N (`, si,j) = σ/

(∏
j 6=i σj

)
or bk

ep

i with
the same properties. Therefore, we can pick the smallest
k ∈ [n]r(Cp,ep∪Ct,ep) and program H̃N as H̃N (`, si,k) =

σ/
((∏

j 6=i σj

)
·H(m)fi ·

∏
j 6=i,k H̃N (`, si,j)

)
mod N . Observe that such a k must always exist
unless i is the last uncorrupted party, in which case SIM
will only output sk i, bk i = ⊥. If the random oracle
has been programmed on H̃N (`, si,k) already then by
linearity of the above expression it must have been
programmed to the same value.

We now argue why SIM’s output is indistinguishable.
First, observe that we only program the random oracle on
inputs where the key si,j has not yet been revealed before.
Therefore, we in the following assume that the adversary
has not queried H̃N on this input before since si,j has
length τ bits and is either chosen uniformly at random or
as the output of a PRG on a (by assumption) uniformly
random input of the same length.

In the generation of the bk i we generate mki,j as
before, but now sample dn differently, namely without
adding d. By Lemma 1 we have that the distributions of
dn are statistically indistinguishable due to the gap on the
bounds of d, dn.

Furthermore, by Lemma 1 it also follows that each sk i
is statistically indistinguishable from its real counterpart
generated by KGen, due to the gap of the bound of di and
fi.

For the generation of the σi we have that due to the
factor hi they are distributed uniformly at random in the
protocol, subject to the constraint that their product is σ
which is preserved by SIM.

When corrupting the last party, SIM will output ⊥
whereas the real experiment would output the correct
keys. Observe that in such a setting A cannot win the
experiment anymore, so the output of SIM can be arbitrary.

Unforgeability. First, consider the standard RSA signature
scheme SIG1 which generates σ(m)← H(m)d and veri-
fies by checking that H(m) = σe. Here sk = d and pk =
(e,N) and d is also chosen such that d ·e = 1 mod ϕ(N).

We show that the existence of an adversary An such
that ExpDSIG,n

An,forge
(τ) = 1 implies an adversary A1 such

that ExpDSIG,1
A1,forge

(τ) = 1 with essentially the same success
probability. That is, the existence of an adversary who
forges a signature in a setting where there are n signers
implies the existence of an adversary in a setting with
only one signer. Now, since the case with one signer is
identical to a standard signature scheme SIG, this means

that by existential unforgeability of SIG implies existential
unforgeability of DSIG.
A1 participates in experiment ExpDSIG,1

A1,forge
(τ) from

which it obtains the public key pkown = (N, e) and runs
An internally such that An participates in a simulation of
ExpDSIG,n
An,forge

(τ). To do so, A1 simulates DSIG.KGen(pp, n)
as in the proof of share simulatability to obtain (sk i, bk i)
for all i ∈ [n] where sk i = (fi, {si,j}j∈[n]r{i}) and
bk i = (di, {mki,j}j∈[n]r{i}) and public key pk = pkown.
A1 initializes ep ← 0, Ct,ep ← ∅, Cp,ep ← ∅ and

forwards pk to An. In addition, A1 simulates the oracles
responses to An by executing their code exactly as it
appears in Figure 2 except in the case in which the
requested signature is from the only party remaining for
which the adversary does not have a signature already
(or a potential to generate one). In that case A1 would
generate the output as in SIM.

Thus, the view of An in the internal simulation is
distributed identically to its view in a real experiment
assuming share simulatability, meaning that An wins in
ExpDSIG,n
An,forge

(τ) with the same probability that it wins in
the simulation, meaning that A1 wins ExpDSIG,1

A1,forge
(τ) with

the same probability as An.

Appendix B.
Proof of Theorem 2 (Security of DH-dpOPRF)

Informal proof. We show security through a hybrid argu-
ment with indistinguishability between a real execution
and the ideal execution through a simulator which is
allowed to “fail” in certain cases. We then modify the
simulator such that it uses an instance of Gapom-BDH
internally, arguing indistinguishability between the first
and second simulator and then showing that if “fail”
occurs then the adversary has actually been able to win
the experiment. We note that we also allow the simulator
to abort, but argue that it will only be allowed to do so
in events that have negligible probability. Concretely, only
if the adversary is able to either guess or find a collision
on random oracle queries on inputs of at least τ bits of
entropy.

We start by constructing our simulator to run simulated
versions of users and each Si for i ∈ [n] until the real
world adversary A corrupts one. Let the set of corrupt
parties be denoted by C := Ct ∪ Cp and C̄ := [n] \ C.
Because of the proactive security the size and parties in
C and C̄ can change.

Key Generation: S simulates the trusted third party
and constructs the long term keys (ki, {mk i,j}j∈[n]\{i})
along with epoch keys {si,j}j∈[n]\{i} for all i ∈ [n] s.t.
mk i,j = mkj,i and si,j = sj,i. Define k =

∑
i∈[n] ki

mod p.
Random Oracles: Every oracle stores a table of each

query which is used to answer repeat queries.
A new query H1(xpriv) is answered by the value x̃←

gv1 for v ←R Zp. The simulator then stores 〈H1, xpriv, v, x̃〉.
A new query H2(xpub) is answered by the value

c ← gw2 for w ←R Zp. The simulator then stores
〈H2, xpub, w, c〉.

A new query H3(sid , ssid , si,j) is answered by
a random di,j ←R Zp. The simulator then stores
〈H3, di,j , sid , ssid , si,j〉.



A new query to H4 on input (xpriv, xpub, ȳ) is han-
dled as follows: Check if tuples 〈H1, xpriv, v, x̃〉 and
〈H2, xpub, w, c〉 exist. If not, pick and return a ran-
dom value y ←R {0, 1}τ , otherwise look up all tuples
〈lbll, ∗, ∗, ỹl〉, then check if ỹl = ȳ1/(vw) for any l and
abort if it holds for multiple l’s. If there is such an index
then let lbl← lbll, otherwise pick a new random label lbl.
Sample a new ssid ′ and call (Eval, sid , ssid ′, xpub, xpriv)
and delay the message (Eval, sid , ssid ′, xpub) other-
wise returned to all honest parties by the environment.
Then call (EvalComplete, sid , ssid , lbl) to get the
message (EvalComplete, sid , ssid , y) and learn y ←
T (lbl, xpub, xpriv). S then stores 〈lbl, x̃, c, ȳ〉. Return y as
output to the query. In case the ideal functionality does
not return (EvalComplete, sid , ssid , y) from the call,
then S outputs fail.

The simulator aborts if a collision is detected for any
of the oracles.

The idea is that H4 will verify consistent malicious
behavior by checking if consistent keys (exponent) have
been used by an adversary. If so, the ideal functionality
will return a previously stored result, if not the ideal
functionality will return a new result on a different label. It
will later become apparent that fail will only occur when
the adversary has not received shares from all “honest”
parties.

Evaluation: We consider two scenarios: the querying
party U is honest and the querying party U is dishonest.
U is honest: In this setting the simulation starts

when S receives (Eval, sid , ssid , U, xpub) from
the ideal functionality and it must then simu-
late the query of an honest U . It does so by
emulating a query to H1, thus constructing the
value x̃ ← gv1 for v ←R Zp and storing
〈H1, ·, v, x̃〉. It then sends (Eval, sid , ssid , xpub, x̃)
to each Si ∈ C. When S has received
(EvalComplete, sid , ssid , Si, ȳi) from A for all
Si ∈ C and (EvalProceed, sid , ssid , Si) from the
ideal functionality on behalf of Si ∈ C̄ it must ask
the ideal functionality to give output to the honest
user which must be consistent with previous queries
in case the adversary has used different keys for
the malicious servers. It does so by simulating the
honest servers’ part of the computation by com-
puting ȳ =

(∏
Si∈C ȳi

)
·
(∏

Si∈C̄ ·
∏
Sj∈C d

∆i,j

i,j

)
·(∏

Si∈C̄ e(x̃, c)
ki
)

where ∆i,j = 1 if i > j
and ∆i,j = −1 otherwise. The values di,j are
found by looking up 〈H3, di,j , sid , ssid , si,j〉. (If
they don’t exist or 〈H2, xpub, w, c〉 does not ex-
ist then emulate the oracle calls.) If the adversary
has acted honestly (or is lucky) then ȳ1/(vw) =

e(x̃, c)v
−1w−1·

∑
i∈[n] ki = e(g1, g2)

∑
i∈[n] ki . If that is

the case we let lbl = hon, otherwise we look up the
tuples 〈lbll, ∗, ∗, ỹl〉 and check if ỹl = ȳ1/(vw). If we
find a label lbll where this holds let lbl← lbll, other-
wise let lbl be a new random label, then call the ideal
functionality with (EvalComplete, sid , ssid , lbll).
Receive back (EvalComplete, sid , ssid , y) and
store 〈lbl, x̃, c, ȳ1/(vw)〉.3

3. Note that the ideal functionality will always return, even if lbl =
hon.

U is dishonest: The message (Eval, sid , ssid , xpub, x̄)
is received by A on behalf of U towards some
Si ∈ C̄. Look up tuple 〈H2, xpub, w, c〉. If
it doesn’t exist, construct it. Pick a random
dummy value xpriv ←R {0, 1}τ then S sends
the query (Eval, sid , ssid , xpub, xpriv) to the ideal
functionality and asks it to give delayed output
(Eval, sid , ssid , xpub) to Si.
Each time S receives (EvalProceed, sid , ssid , Si)
from a Si ∈ C̄ from the ideal functionality it ig-
nores it if it cannot find (eval, sid , ssid , xpub, x̄)
for this ssid and Si. Otherwise it looks up the
values 〈H2, xpub, w, c〉 and 〈H3, di,j , sid , ssid , si,j〉
(and emulating the construction of these if they don’t
exist), computes the value ȳi like in the real proto-
col. Send (EvalComplete, sid , ssid , Si, ȳi) to A
as values returned to U from honest Si. Note that
the rest of the simulation for dishonest U is handled
by calls to H4.

Refresh: During refresh the simulator computes
(mk ′i,j , s

′
i,j , δi,j) ← PRG(mk i,j) for all j ∈ [n] \ {i}

for all permanently corrupted servers where mk i,j was
the master key given to the adversary when permanently
corrupting the server Si. For the honest, and previously
transiently corrupted servers it picks s′i,j , δi,j uniformly at
random and computes the new state for the honest parties
like in the real protocol.

Corruption: When A transiently corrupts a server Si
then S can hand over current epoch keys and transcript
as it knows the entire epoch state.

If an adaptive corruption happens of a user U then
the simulator must explain the user’s true input, xpriv,
and choice of nonce r′ where the simulator previously
sent a value x̃. See if there is an entry 〈H1, xpriv, v, g

v
1〉,

otherwise construct such an entry for xpriv. Then construct
a simulated nonce as r′ ← r/v and use this to return to
A, thus x̄ = H1(xpriv)

r′ = g
v·r/v
1 = gr1 .

When A permanently corrupts a server Si then S picks
mk i,j ←R {0, 1}τ (consistent with previously picked keys)
and use this to simulate the construction of the current
epoch keys, si,j . See that the backup keys mk i,j don’t
define the keys of the current and previous epoch keys,
si,j because of the generation through the PRG. Thus the
epoch keys used in the simulation for the previous epochs
can easily be given to the adversary as transcript.

Indistinguishability: It is easy to see that the ran-
dom oracles all return random values and that the key
generation is done like in the real execution. When U is
dishonest then everything sent to A is computed like in the
real execution. There are a few places where the simulator
emulates the oracles. Emulated calls to H2 do not pose a
problem since they are queried on the public value xpub
and thus whether we define the output when an adversary
performs a query or the first time the simulator needs it
does not matter. In regards to H3 we notice that this is
again only emulated for a query the adversary knows how
to issue, based on si,j .

Finally notice that in relation to oracle H4 the sim-
ulator will only query the ideal functionality in case of
a corrupt user and thus we don’t have the problem of
the simulator’s query being leaked to the environment
through the output to an honest user. In particular this
is so since if A queries H4 without corrupting the user



then even if A uses the correct xpriv (given by the envi-
ronment) it cannot return a correctly computed value ȳ
since it does not know the honest user’s randomization
exponent, r, which it cannot guess with non-negligible
probability. Furthermore we see that if U has been corrupt
then the only time where the ideal functionality will not
return (EvalComplete, sid , ssid , y) to the simulator is
if (EvalProceed, sid , ssid) has not been received from
all the honest Si for the same amount of concurrent
queries of U on xpub as the adversary has started. This
is is the only time fail will be output.

Reduction to the Gap om-BDH Problem: Suppose
we are given a PPT adversary A and a PPT environment
Z that can cause fail to happen. We now show how to
use these to construct an algorithm B that solves the gap
om-BDH problem with essentially the same probability. B
is given G and gk2 from the Gapom-BDH experiment and
also access to the oracles OG-1,OG-2, OD-help and OC-help.
We use this to implicitly define keys ki s.t. k =

∑
i∈[n] ki

mod p. However, since we don’t know k we can at most
explicitly define n− 1 of these. Each of these along with
the blinding seeds, si,j will only be fixed once a party
gets corrupted. Thus we avoid having B needing to guess a
server that will remain uncorrupted in each epoch. The key
observation in the following is then to notice that B never
needs to simulate values for all ki, because otherwise the
fail event will not occur since B will need to be missing at
least one share ȳi from an honest server to make it occur.

Key Generation is handled the same as before.
However at the beginning we also store the tuple
〈hon, g1, g2, e(g1, g

k
2 )〉 For the random oracles we now

use the OG-1,OG-2 oracles to sample random elements
for H1 and H2, x̃, respectively c. B then stores tuples
〈H1, xpriv, ·, x̃〉 and 〈H2, xpub, ·, c〉 now, since it does not
know the discrete logarithm of x̃, respectively c.

A new query to H4 on input (xpriv, xpub, ȳ) is now
handled as follows: B checks if tuples 〈H1, xpriv, ·, x̃〉 and
〈H2, xpub, ·, c〉 exist. If not, pick and return a random value
y ←R {0, 1}τ , otherwise look up all tuples 〈lbll, x̃l, cl, ỹl〉,
and query 1 ←? OD-help(e(x̃, c), ȳ, e(x̃l, cl), ỹl) to try to
find an index l where this holds. If that happens then
let lbl ← lbll, otherwise pick a new random label lbl.
Sample a new ssid ′ and call (Eval, sid , ssid ′, xpub, xpriv)
and delay the message (Eval, sid , ssid ′, xpub) other-
wise returned to all honest parties by the environment.
Then call (EvalComplete, sid , ssid , lbl) to get the
message (EvalComplete, sid , ssid , y) and learn y ←
T (lbl, xpub, xpriv). B then stores 〈lbl, x̃, c, ȳ〉. Return y as
output to the query. In case the ideal functionality does not
return (EvalComplete, sid , ssid , y) from the call, then
S outputs fail and adds (x̃, c, ȳ) to the list of solutions to
the experiment.

Note that we are here able to complete the check on
the stored tuples without knowing the discrete log of x̃ and
c because we have access to the DDH oracle instead. We
see that the check will verify if there is any tuple stored
with the same exponent to the query e(x̃, c), which should
be the base if ȳ is constructed correctly. Furthermore we
see that we can also detect when this occurs for the true
key k because we have stored a tuple for the base e(g1, g2)
since we got gk2 from the experiment.

Now consider the simulation for evaluation. Again we
have two cases; U is honest and U is dishonest.

U is honest: Simulate like before ex-
cept for when receiving the message
(EvalComplete, sid , ssid , Si, ȳi) from the
adversary. In that case do as before when
constructing the variable ȳ. However since we
don’t have the honest parties’ key shares, instead
use the oracle e(x̃, c)k ← OC-help(e(x̃, c)).
Add (x̃, c, e(x̃, c)k) to the list of solutions
to give to the Gapom-BDH experiment. Next
compute ȳ =

(∏
i∈C ȳi

)
·
(∏

i∈C̄ ·
∏
j∈C d

∆i,j

i,j

)
·(

e(x̃, c)k
)−∑

i∈C ki . Then look up the tuples
〈lbll, x̃l, cl, ỹl〉 and use the OD-help to compute
1 ←? OD-help(e(x̃, c), ỹ, e(x̃l, cl), ỹl). If we find a
label lbll where this holds let lbl ← lbll, otherwise
let lbl be a new random label, then call the ideal
functionality with (EvalComplete, sid , ssid , lbll).
Receive back (EvalComplete, sid , ssid , y) and
store 〈lbl, x̃, c, ȳ〉.

U dishonest: On receiving
(EvalProceed, sid , ssid , Si) from all, except
the last honest party Si ∈ C̄, simply return
(EvalComplete, sid , ssid , Si, ȳi) for ȳi ←R GT .
We see that this is fine, because there will be
at least one value di,j unknown in this case.
For the last honest party we need to make
things consistent. To do so use the oracle
e(x̄, c)k ← OC-help(e(x̄, c)) using x̄ already received
and c from the H2 table. Based on this compute

ȳi ←
(
e(x̄, c)k

)−∑
j∈C kj ·

(∏
j∈C d

∆i,j

i,j

)−1

·
∏
i∈C̄ ȳi

and return (EvalComplete, sid , ssid , Si, ȳi).
Furthermore add (x̄, c, e(x̄, c)k) to the list of
solutions to give to the experiment Gapom-BDH.
Note that multiple values for x̄ may have been
received. In that case use the one sent to the last
honest party.

Corruption and refresh: When A corrupts Si
then B chooses a random key ki and blinding seeds
{si,j}j∈[n]\{i} (unless already defined) at random. It then
defines the outputs of oracle H3 to match the simulated
random values sent, that is to ensure that ȳi = e(x̄, c)ki ·∏
j∈[n]\{i}H3(sid , ssid , si,j)

∆i,j (if U was dishonest of
that specific query). This is trivial as long as there is at
least one si,j unknown to the adversary, i.e. if there are at
least two honest parties. If there is only one honest party
remaining then notice that its value ȳi (when U is corrupt)
was defined such that it is consistent with the random
values picked for all the other honest parties. Next see
that if we need to simulate the response for honest servers
when U was honest (that is when the simulator didn’t
construct the values ȳi) the simulator can again simply
hand out random values as long as one si,j is unknown
and then for the last values simulate like in the case when
U is dishonest, using the value ȳ already defined internally
in the simulator.

If A permanently corrupts Si then B additionally
chooses random master keys mk i,j for j ∈ [n] \ {i} to
simulate the backup tape. When a transiently corrupted
server is refreshed then B takes back control and forget
all previously chosen keys for that server.

CDH Solutions: When fail occurs then B adds
one more CDH solution to the list of solutions than



the number of times it invoked the oracle. Specifically
note that the oracle is only invoked when B must sim-
ulate values from all honest servers (when the message
(EvalProceed, sid , ssid) is given to B by the ideal
functionality on request from Z). There B wins the
experiment by returning a list of values that wins the
Gapom-BDH experiment.

Appendix C.
Proof of Theorem 3 (Security of PESTO)

We first note that we can restrict the analysis to static
user corruptions, although our protocol provides security
against adaptively corrupted users. The reasoning for the
restriction is as follows: since users are supposed to
delete any secret values after usage (e.g., y and usk ), an
adversary does not gain any advantage from corrupting
a user ITI after the protocol started. For this, note that
party identifiers do not play any role in our protocol
besides providing routing information, and thus we can
assume that Z chooses a fresh user party for every fresh
subsession. Thus, statically corrupting a user who attempts
to log in with a previously honestly uid naturally models
adaptive user corruptions.

Game 1: Real execution. This is the real protocol exe-
cution running with A and hybrid functionality FdpOPRF.

Game 2: Adding F with KeyGen and Register.
We regroup the real protocol execution into one ITI called
simulator or S (we often refer to this as protocol simu-
lation; this now includes A,FdpOPRF, the trusted dealer
and the private backup tapes of servers). Additionally,
we add an ITI F with all interfaces of FPESTO except
for ProceedSign and Verify, but modified such that
F discloses passwords to the adversary. For KeyGen,
we let F read n, the number of participating servers,
from its sid . Then, F runs pp ← DSIG.Setup(1τ ),
(vk , sk1, . . . , skn) ← DSIG.KGen(pp, n) and sends
sk1, . . . , skn to S (we stress that we take away these keys
from S in a later game).

The simulator S is changed in the following way: S
uses key shares sk1, . . . , skn to simulate honest servers
and answer corruption queries issued by Z . S sends the
KeyConf output of an honest server to F . S delivers
outputs as soon as the corresponding message is deliv-
ered, or instantaneously if it was already delivered. The
correspondances are as follows:
• message (Register, sid , ssid , uid) sent ←→

deliver (Register, sid , ssid , uid) to Si
• message (Sign, sid , ssid , uid ,m) sent ←→

deliver (Sign, sid , ssid , uid ,m) to Si
• message (sid , ssid ,ok) sent ←→

deliver (Registered, sid , ssid , uid) to U
S directly acknowledges all inputs and starts simulating
the corresponding messages:
• input (Register, sid , ssid , U) ←→

ack. and simulate (reg, sid , ssid , uid)
• input (ProceedReg, sid , ssid , Si) ←→

acknowledge and simulate FdpOPRF usage
• input (Sign, sid , ssid , U) ←→

acknowledge and simulate (sign, sid , ssid , uid ,m)
We now detail how S provides inputs to F

in case of corrupted protocol participants. In case

of a corrupted user, whenever A sends an in-
put (Eval, sid , ssid , uid , pw) to FdpOPRF, if A sent
(Register, sid , ssid , uid) to any Si before, then
S sends an input (Register, sid , ssid , uid , pw) to
F on behalf of the corrupted U . Else, if A sent
(Sign, sid , ssid , uid ,m) to any Si before, then S sends
an input (Sign, sid , ssid , uid , pw) to F on behalf of the
corrupted user. In case of a corrupted server Si, S sends
inputs KeyGen and ProceedReg to F on behalf of Si
as soon as A sends a key request to the trusted dealer
or (EvalProceed, sid , ssid) to FdpOPRF, respectively,
where the latter query’s sub-session identifier ssid was
formerly received within an input (Sign, sid , ssid , ...)
from F .

As a last change in this game, we also add dummy
parties between F and Z , namely one per real party.

For indistinguishability, we first observe that the out-
put pattern of F matches the protocol and F starts
working in all corruption scenarios thanks to S providing
timely and complete inputs to F . Regarding completeness
of inputs it is worth noting that servers do not input
any secret values into FPESTO - the secret input value
is pw provided by the user. However, in case the user is
corrupted, S learns pw when the corrupted user queries
FdpOPRF.

If furthermore key generation and user registration is
equally successful in both games and all real-world pro-
tocol aborts can be enforced by S via F , then the outputs
are equally distributed in both games (since they come
unmodified from the real execution). For key generation,
in the real execution all honest servers react only on the
first KeyGen input and output vk obtained from FDKG,
which is exactly what happens in Game 2. For user regis-
tration, we have to argue that U outputs Registered in
Game 2 if and only if U outputs Registered in Game
1. This holds by correctness of SIG and DSIG and lists
given above showing how S can abort the protocol run in
Game 2 appropriately for all protocol messages between
user and servers. This concludes the indistinguishability
argument.

Game 3: Abort whenever SIG signature is
forged. Whenever Z sends a message (sid , ssid , upk , σU )
to a server on behalf of a corrupted user with
SIG.Vf(upk , (uid , ssid), σU ) = 1, where there was al-
ready a query (sid , ssid ′, uid ′, upk , σ′) with ssid 6= ssid ′

and a message (Registered, sid , ssid ′, uid ′) from F
to some honest user U delayed by S, then S aborts the
simulation.

Similarly, S aborts the simulation whenever Z sends
a message (sid , ssid , uid , σ′U ) to a server on behalf of
a corrupted user with SIG.Vf(upk , (uid , ssid), σ′U ) = 1
and upk being the public key registered with an un-
corrupted uid (i.e., a uid for which S never received
(match-ok, sid , ssid , 1) from F for a session ssid run
with a corrupted user).

The first case corresponds to Z maliciously registering
a user uid with public key upk , where upk is already
the public key of a successfully registered honest user
uid ′. Since the user is honest, Z does not know the
corresponding usk and thus a verifying σ would constitute
a forgery. It follows from existential unforgeability of SIG
that this happens only with negligible probability.



The second case corresponds to Z trying to imperson-
ate an honestly registered uid within a signing request.
Similar to the case before, since uid got registered in a
request issued by an honest user, Z does not know the
corresponding signing key usk . As before, unforgeability
of SIG signatures is enough to argue computational in-
distinguishability in this case. Altogether, it follows that
Game 2 is computationally indistinguishable from Game
3.

Game 4: Abort when forged DSIG signature is
verified. We let S abort the protocol simulation in case
of Z providing an input (Verify, sid , uid ,m, σ, vk) to
any party V where Verify(vk , (uid ,m), σ) = 1 and σ
was never contained in any former Signature output
of the execution, nor could it be assembled using keys of
corrupted parties and signature shares.

We show how to construct an adversary B winning the
proactive unforgeability experiment ExpDSIG,n

B,forge (τ) (cf. Def.
5) with non-negligible probability given a distinguisher D
between Game 4 and Game 3. B uses outputs from his
oracles to emulate either one of the consecutive games. B
gets as input pk and works as follows:
• Whenever F outputs (KeyConf, sid , vk), B over-

writes this with (KeyConf, sid , pk)
• Whenever F generates an output containing a

signature σ ← Sign(sk , (uid ,m)) within a
query (ProceedSign, sid , ssid , ...), B obtains
σi ← Osign(i, (uid ,m), ssid) for all i ∈ [n]
with Si being honest, and generates σi ←
DSIG.Sign(sk i, (uid ,m); ssid) using sk i for all cor-
rupted Si. Then B overwrites the output with σ ←
DSIG.Comb(σ1, . . . , σn)

• Similarly, B overwrites signatures σreg in uid records
stored at a server receiving a (Corrupt, sid , Si, ∗)
query, using his Osign oracle and DSIG.comb() in the
same way as above.

• Whenever a server sends an input (Refresh, sid)
to F , B calls his Orefresh oracle once

• Whenever Z issues a request
(Corrupt, sid ,Si,mode) for a currently honest
Si, B queries k ← Ocorrupt(i,mode) and sets k to
be the key(s) of Si

• Whenever an honest server Si generates a DSIG
signature share on message m to send it to
either a corrupted server or a corrupted user,
i.e., within a (ProceedSign, sid , ssid , ...) or
a (ProceedReg, sid , ssid , ...) query, B queries
Osign(i,m, ssid) and sets the answer σi to be the
signature share send by the honest server

This emulation is exactly a UC execution of Game
3 and Game 4, the only difference being that the DSIG
key pair is generated by the oracles of B instead of being
created within F . For this, it is crucial to see that the
above is a complete list of all key-related values that Z
can observe from the execution of Game 3 or Game 4.

A distinguisher D between both consecutive games
can only be successful if he causes the execution in Game
4 to abort, so if he submits a signature σ∗ on message m∗
for verification with the properties described above. Since
σ∗ cannot be assembled from secret key shares, we know
that there is no e such that |Ct,e∪Cp,e| 6= n. Since σ∗ was
also never output by FPESTO nor could be assembled by

combining signature shares (obtained through a corrupted
party or using known key shares), there is also no epoch in
which B requests Osign(i,m

∗, ssid) for all honest servers
Si and some ssid . By this, we see that (m∗, σ∗) consti-
tutes a forgery and lets B win his proactive unforgeability
game.

Game 5: Abort when forged DSIG signature is
stored with user account. S aborts in case of Si
storing record (uid , upk , σreg) in some epoch e that
differs from the record stored in epoch e − 1, where
DSIG.Vf(vk , (0, uid , upk), σreg) = 1 and where there
was a (Corrupt, sid , Si,trans) query in epoch e.

To argue indistinguishability, we can use the same
reduction to proactive unforgeability as in Game 4, i.e.,
the same adversary B to emulate an execution of Game 4
and Game 5.

Let us note that, due to the changes made in this
game and usage of a secure broadcast channel, in every
execution all honest servers who do not abort during a
signing procedure are guaranteed to have the same user
signing key upk stored for each account uid .

Game 6: Simulate DSIG key shares. We let
S generate and refresh secret key shares (to give
them to Z upon corruption) and signature shares
(simulating honest servers) using algorithms SIM(refresh),
SIM(corr, ...) and SIM(sign, ...) as mentioned in Figure
2. Whenever the two latter algorithms are used to
compute the last key or signature share missing to let
Z complete signatures (using only DSIG.Sign() and
DSIG.Comb()), S uses the key shares sk1, . . . , skn
forwarded by FPESTO to compute all those signatures as
DSIG.Comb(DSIG.Sign(sk1, ·), . . . ,DSIG.Sign(skn, ·))
and feed them to the SIM() algorithms. Else, S simply
runs SIM(sign, ·, ·, ·,⊥) or SIM(corr, ·, ·, ∅).

We show that if DSIG is share simulatable (cf. Def. 6),
then Game 6 and Game 5 are indistinguishable. The ad-
versary B running with experiment ExpDSIG,n

A,sim,b(τ) obtains
pk and works as follows:
• Whenever F outputs (KeyConf, sid , vk), B over-

writes this with (KeyConf, sid , pk)
• Whenever a server sends an input (Refresh, sid)

to F , B calls Orefresh()
• Whenever Z issues (Corrupt, sid , Si,mode) for a

currently honest Si, B queries k ← Ocorrupt(i,mode)
and sets k to be the key(s) of Si

• Whenever an honest server Si generates a
DSIG signature share on message m, i.e.,
within a (ProceedSign, sid , ssid , ...) or a
(ProceedReg, sid , ssid , ...) query, B queries
σi ← Osign(i,m, ssid) and sets σi to be the
signature share send by the honest server

For indistinguishability, we need to argue that B using
oracles from Figure 2 emulates the execution from Game
5, while B using oracles from Figure 2 emulates the
execution from Game 6.

For the former, we observe that the oracles from
Figure 2 follow the protocol instructions, e.g., signature
shares are computed using DSIG.Sign(sk i, ·, ·), which
matches the protocol simulation from Game 5. For the
latter, S uses the simulation algorithms in the same way
as the oracles from Figure 2, and using knowledge of
the true sk1, . . . , skn he can compute the auxiliary inputs



to these algorithms in the same way as done by the
compList, compSig algorithms. Thus, indistinguishability
of this and the previous game follows from the share
simulatability of DSIG.

Game 7: F generates, records and verifies signatures.
We add interfaces ProceedSign and Verify to F . For
this, we first let F assemble a single signing key sk ←
Comb∗(sk1, . . . , skn) from the key shares generated as
detailed in Game 2. Then, F sets Sign() := Sign∗() and
no longer forwards sk1, . . . , skn to S. (Note that F 6=
FPESTO since S still obtains the passwords).

The simulation is changed as follows: S acknowledges
ProceedSign for Si directly and then starts simulating
usage of FdpOPRF. S sends ProceedSign to F
on behalf of a corrupted user whenever A sends
(EvalProceed, sid , ssid) for an ssid that was
contained in a former input (Sign, sid , ssid , ...). S sets
b∗ = 1 if all of the (sid , ssid ′, σ′U ) messages delivered to
the n servers have SIG.Vf(upk , (uid , ssid ′), σ′U ) = 1; else
S sets b∗ = 0. S replies to a (match-ok, sid , ssid , b)
message from F with (match-ok, sid , ssid , b∗).
As a last change, whenever S receives output
(Signature, sid , ssid , σ) (where σ is a verifying
signature on message m) towards a corrupted U , S sets
σ to be the result of compSig(ep, i,m, ssid), where ep is
the current epoch computable from the number of times
S called SIM(refresh), and i is the last index missing
an entry (ep, ·,m, ssid) in Q for an honest Si. If Si is
corrupted, then S adds σ to the output of compList(ep, i).
Our indistinguishability argument will be split in four
cases. The first three argue indistinguishability of outputs
generated upon (Verify, ...) and (Sign, ...) queries,
and the latter argues that values computed by S are
distributed as in the last game.

First, regarding outputs for Verify queries, F over-
writes protocol outputs according to sigrec records, or
when no sigrec record exists and vk = vk ′. The former
is indistinguishable from Game 6 since (1) when sigrec
contains true, then b = 1, in which case the signing
procedure was completed honestly and resulted in a veri-
fying signature. (2), when sigrec contains false, then
the record was created by a verification request (i.e., no
regular signing procedure was completed for the signature
to be verified). Such a query resulted in V outputting
false already in Game 5 due to the changes made in
that particular game.

Secondly, consider the case where the signing pro-
cedure does not lead to U outputting Signature with
a signature. In Game 6 this happens when password
authentication failed (due to wrong password or A tam-
pering with message delivery). In Game 7 Signature
output depends on sigrec recording, which in turn
only happens when b = 1 (assuming that all servers
participate and the adversary always continues with ok
messages). Thus, we need to argue that b = 0 in Game 7
whenever U was not outputting Signature in Game 6.
By the protocol code (cf. Figure 6), the latter happens if
SIG.Vf(upk , (uid , ssid ′), σ′U ) = 0 for at least one of the
messages sent by U to a server. But in that case, the above
simulation ensures S sending b∗ = 0 and F adopting this
bit by setting b← b∗ (due to either a corrupted server or
a corrupted user).

Thirdly, consider the case where the signing proce-
dure leads to U outputting a signature. In this case, we
have to argue that signatures σ ← Sign(sk , (uid ,m))
generated by F in Game 7 are indistinguishable from
signatures generated as in the real protocol execution
using DSIG.Comb(σ1, . . . , σn), as done in Game 6. This
follows from the signature indistinguishability property of
DSIG (cf. Definition 7.

Lastly, regarding outputs of S, it is enough to verify
that S in Game 7 obtains all signatures from F that he
would compute in Game 6 within compSig and compList.
But this follows from the fact that Z cannot corrupt all
servers. Z can thus compute signatures not only from
secret key shares, but needs to observe signature shares.
Since these shares are sent over secure channels, it fol-
lows that Z can only compute signatures on behalf of
corrupted users. And since F sends (Signature, ..., σ)
outputs for corrupted users directly to S, it follows that
S obtains a signature from F in case Z can reconstruct
it using DSIG.Comb(). Notably, S never has to simulate
the "last" signature or signing key share before seeing the
full signature.

Altogether, it follows that both games are indistin-
guishable.

Game 8: Simulate without pw in honest case. We let
F no longer tell S about passwords (from Register
and Sign queries) in case everybody is honest. S is
changed as follows: it uses a dummy password pwS in the
protocol simulation in every Register or Sign input
of an honest user.

For indistinguishability, usage of secure channels
makes simulation of the transcript trivial in the honest
case. Regarding outputs F will create and output a veri-
fying signature in Game 8 (i.e., a sigrec records with
f = true. However, in case of everybody being honest,
in Game 7 a Sign query only leads to a signature output
to Z in case of matching passwords (otherwise F will
ignore all ProceedSign queries), and in this case it will
be a verifying signature since usage of secure channels
prevents A from tampering with messages such as the
signature shares.

Game 9: Simulate user’s transkript without pw in
case of corrupted servers. We consider the case where
some subset of servers is corrupted. Opposed to the all-
honest case before, we now have to provide a transkript
of messages from an honest user, but generated without
knowing the password of the user. We change the simu-
lation in case of a Sign, uid request of an honest user,
where (account, uid , ∗) is already registered in F . Let
upk denote the public key corresponding to uid that was
generated in the protocol simulation during the registration
phase, usk the corresponding secret key and lbl the label
that was sent by A in the corresponding FdpOPRF session
(i.e., lbl represents the pseudo-random function that was
evaluated during the registration of uid ). Upon receiving
an output (Match, sid , ssid , b) for a corrupted Si and a
session ssid invoked by an honest user U , if b = 1 then S
sends (sid , ssid , σ′U ) on behalf of U to all Si in the pro-
tocol simulation, where σ′U ← SIG.Sign(usk , (uid , ssid)).
If b = 0, S sends a random non-verifying σ′U .
In case of receiving (Eval, sid , ssid , uid , pw) from
a corrupted U intended to FdpOPRF, in case S re-



ceived (match-ok, sid , ssid , 1) from F , he sends
(EvalComplete, sid , ssid , y) to the corrupted U where
y is the former output of FdpOPRF from registration of uid
if A sent (EvalComplete, sid , ssid , lbl) (i.e., using the
same label lbl as during registration) and a freshly drawn y
otherwise. In case of receiving (match-ok, sid , ssid , 0)
from F , S answers to U with a freshly drawn y.

Regarding indistinguishability, let us first emphasize
again why we do not have to adjust the simulation to
simulate honest servers. Namely, the protocol simulation
is already a perfect simulation of honest servers since
F keeps no secret server inputs from S. For the case
of the honest user attempting to sign, only the message
(sid , ssid , σ′U ) has to be simulated. Since S obtains the
information of whether σ′U should be a verifying signature
of (uid , ssid) or not from F via a Match output towards
a corrupted server, this message is equally distributed as
in the previous game. For the case of a corrupted user,
we only need to argue that simulation of FdpOPRF is
indistinguishable in both games. For this, we only have
to argue that the match-ok message by F actually
provides S with the crucial information of whether to
adjust FdpOPRF outputs to the corresponding output in the
registration session of uid or not. To see this, note that
match-ok leaks whether input passwords matched or not
in case of a corrupted user.

Since S does not use the password provided by F
anymore, we remove its forwarding and now have F =
FPESTO. This concludes the proof of Thm. 3.


