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Abstract. We demonstrate that the Interpose PUF proposed at CHES 2019, an
Arbiter PUF based design for so-called Strong Physical Unclonable Functions (PUFs),
can be modeled by novel machine learning strategies up to very substantial sizes and
complexities. Our attacks require in the most difficult cases considerable, but realistic,
numbers of CRPs, while consuming only moderate computation times, ranging from
few seconds to few days. The attacks build on a new divide-and-conquer approach
that allows us to model the two building blocks of the Interpose PUF separately.
For non-reliability based Machine Learning (ML) attacks, this eventually leads to
attack times on (kup, kdown)-Interpose PUFs that are comparable to the ones against
max{kup, kdown}-XOR Arbiter PUFs, refuting the original claim that Interpose PUFs
provide security similar to (kdown + kup

2 )-XOR Arbiter PUFs (CHES 2019). On
the technical side, our novel divide-and-conquer technique might also be useful in
analyzing other designs where XOR Arbiter PUF challenge bits are unknown to the
attacker.
Keywords: Physical Unclonable Function · Strong PUFs · Machine Learning ·
Modeling Attacks · Interpose PUF (iPUF)

1 Introduction
1.1 Overview and Motivation
It is long known that “classical keys”, i.e., secret digital numbers stored permanently in non-
volatile memory, constitute an Achilles heel of modern security hardware. Sophisticated
adversaries often will not target the used cryptographic primitives such as RSA or AES
themselves, which have proven surprisingly attack resilient over the years. Instead, they
will frequently aim for the employed secret keys directly, utilizing a variety of different
physical or malware-based techniques [And08].

In said situation, both so-called Weak PUFs and Strong PUFs [RH14] can constitute
a useful tool for system designers. To start with, Weak PUFs (for example SRAM
PUFs [GKST07, HBF08] or DRAM PUFs [TKXC15, XSA+16]) allow the establishment of
system-specific digital keys in hardware that has no NVM on board. The keys are derived
from the individual, permanent manufacturing variations in the Weak PUF structure
itself (such as the SRAM or DRAM cells). These variations determine, for example, the
power-up states of the SRAM cells, or the exact decay behavior in DRAM cells, providing
each SRAM or DRAM array with some easily measurable, unique properties. The so
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obtained secret keys can be processed in the system by standard cryptographic techniques
— while only being derived and present in digital form when actually needed. This promises
a security gain for the resulting hardware systems against various physical and software
attacks [RH14].

Strong PUFs [RH14] take this approach yet one step further. In opposition to Weak
PUFs, manufacturing variability imposes an exponentially large amount of individual
behavior on them, captured as pairs of input and output, so-called challenge-response
pairs (CRPs). New, unknown CRPs shall be hard to predict numerically for an adversary
without physically possessing the Strong PUF, even if they know a large number of other
CRPs of this very PUF. Research over the last decades has shown that such “unpredictable”
CRPs can be used directly (and without post-processing by a crypto engine) in a variety
of protocols: for example, Strong PUF CRPs can be sent in the clear from a prover to a
verifier in remote identification schemes [PRTG02] or can be employed in plain form to
enable advanced cryptographic protocols such as remote key exchange, oblivious transfer,
or secure multi-party computation [TŠ07, Rüh10, BFSK11, DSFK+14]. Strong PUFs
may, of course, also be employed for internal key derivation, just like Weak PUFs; but,
successfully implemented, they promise a broader application spectrum. Together with
the fact that they do not require any isolation in hardware1, this turns the quest for secure
and practical Strong PUFs into a highly worthwhile and relevant research task.

Despite these clearly defined advantages, Strong PUFs (just like any other known
security primitive) cannot establish flawless or perfect security, though. One first class
of known, impactful attacks concerns some of the cryptogaphic protocols built on Strong
PUFs [RvD12, RvD13]. Secondly, so-called “modeling attacks” have plagued silicon Strong
PUF hardware essentially from its very beginning [GLC+04, LLG+05]. Their basic
idea is to collect a number of CRPs from a given PUF, and to apply machine learning
techniques in order to extrapolate the Strong PUF’s behavior on its (exponentially many)
other challenges. Almost all known silicon PUF designs have been attacked by various
machine learning algorithms in the past, at least up to certain sizes and complexities (see,
e.g., [GLC+04, LLG+05, ÖHS08, MKP08b, RSS+13, RS14, Bec15, XRHB15, GYG+16,
YHL16, Del19, WBM+19]). This has led to a perpetual battle between silicon Strong PUF
designers and attackers over the years, with no clear and definite outcome yet.

One of the most recent designs that have been suggested in this context is the so-called
Interpose PUF or iPUF, for short [NSJ+19]. It promises two distinctive and noteworthy
features: Firstly, it builds on the Arbiter PUF design, and therefore inherits the practicality
and CMOS-compatibility of the latter. It constitutes a lightweight design with almost
no or very little digital computation (in the form of XOR operations and an ’interpose’
operation). Secondly, it contains some novel design elements that practically thwart the
main ML-attacks on Arbiter PUF variants that exist up to this moment. This has made
the iPUF one of the most promising Strong PUF design proposal to-date.

The iPUF paper [NSJ+19] gives an overview (which we will not repeat here) of currently
known ’classical ML attacks’ and ’reliability based ML attacks.’ A classical ML attack only
uses CRPs while a reliability-based attack uses challenge-reliability pairs. For single-bit
responses, the reliability of a response reflects the probability that the outputted response
bit is equal to 0, respectively, 1, i.e., the reliability corresponds to the stability and
error level of the response bit. Here the probability is taken over measurement noise
(which depends on environmental parameters such as temperature, voltage, and age of
the PUF). The iPUF paper [NSJ+19] attempts in-depth mathematical arguments for
formally showing the security of the iPUF against the above two mentioned classes of
attacks. With respect to best known classical ML attacks it analyzed/simulated Logistic
Regression (LR) [Söl09, RSS+10, TB15], Covariance Matrix Adaptation Evolution Strategy

1A Strong PUF’s CRP-interface is public by definition in the above-mentioned protocols, and assumed
to be accessible by friends and foes alike [RH14].
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(CMA-ES) based on CRPs, and Deep Neural Networks (DNN) [SBC19]. As the best known
reliability-based attack, it analyzed/simulated Becker’s attack [Bec15] which uses CMA-ES
based on challenge-reliability pairs.

Our main criticism of the analysis presented in the iPUF paper is that it suggests
that its analysis covers all known classical ML algorithms, while in fact only the above
mentioned specific attacks are analysed and simulated, and no actual impossibility result
is mathematically proven. In particular its Definitions 1 and 2 on ’equivalence’ only point
out a measure with respect to how many Arbiter PUFs in an Arbiter PUF based design
effectively contribute to the response bit. They show that in this sense the (kup, kdown)-
iPUF is equivalent to an (kdown + kup

2 )-XOR Arbiter PUF, but this does not imply that their
security is equivalent as this paper demonstrates. The iPUF paper mistakenly suggests
this security equivalence. In similar vein, Section 6.5 of [NSJ+19] analyses LR attacks and
claims a general statement while only a ’holistic’ LR approach is analysed and not one
that attempts to use LR as a component in a new and more involved strategy as is done
in this paper.

This paper introduces a new tailor-made (non-reliability based) classical ML strategy
for the iPUF design. In fact, this shows that the (kup, kdown)-iPUF is at most as secure as
a max{kdown, kup}-XOR Arbiter PUF. First, this shows the contradiction mentioned above.
Specifically, the iPUF paper suggested that increasing kup, even if it stays smaller than
kdown, will improve security – but this is not true. Our result shows that only a parameter
setting of the form (kup = 1, kdown)-iPUF or (kup, kdown = 1)-iPUF in light of classical
ML attacks can be of interest. Second, our new strategy allows the iPUF to be attacked
up to substantial levels of size and complexity. In fact, these levels come uncomfortably
close to the real, practical stability limits that any iPUF design necessarily is bounded by.
This implies that there is only little or no room for mitigating our attacks in practice by
straightforwardly making the iPUF larger (in terms of the number of employed Arbiter
chains and the length of these chains themselves). Third, with respect to reliability based
ML attacks, the iPUF paper only analyses the currently best known one of Becker [Bec15];
since this attack was very successful, little research has been done in order to improve
this attack. In light of our result, we expect that an efficient taylor-made reliability based
attack may not be out of reach.

As a result of the attacks and experiments given in this paper, we conclude that new
advanced designs are necessary. They might try to mix some existing and useful design
elements from the iPUF (in particular, the so-called interpose trick which defeats the
best known reliability-based ML attack of [Bec15]) with new ideas to achieve long-term
resilience.

We comment that while this back-and-forth game may seem tiring, also other crypto-
graphic primitives have undergone a similar iterative process, before secure solutions were
found and accepted. We believe that the same will take place in the silicon Strong PUF
area in the next years — with a hard-to-predict outcome. The construction of a long-term
secure and highly efficient lightweight design still must be considered a partly open problem,
especially in the face of the results of this paper.

1.2 Our Contributions
In greater detail, our novel research contributions in this paper are as follows.

• We develop and implement a new tailor-made divide-and-conquer classical ML
strategy for the iPUF, and empirically test its concrete and asymptotic performance
on the iPUF on very large scales.

• Using this method, we are able to attack (kup, kdown)-iPUF structures for up to
kup = 8 and kdown = 8 with prediction accuracies above 95%. In the hardest-to-learn
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cases studied, i.e., for the (8, 8)-64-bit-iPUF, our attacks require up to 150 million
CRPs2, and computation times between one and two weeks on a high-end 8-core
machine. For simpler cases, i.e., smaller kup and kdown, they take seconds to hours
of computation times on the same hardware and far less CRPs. The previously best
existing attacks on the iPUF had reached up to (4, 4)-iPUFs only [SBC19].

• While our attacks are still exponential in the number of employed CRPs (like other
known classical ML attacks), they very strongly push the limit of attackable iPUF
sizes in practice. They so come uncomfortably close to those sizes of the iPUF that
are just about practical regarding their noise levels — recall that the noise of an
(kup, kdown)-iPUF also increases exponentially in kup and kdown.

• Concerning classical modeling attacks Nguyen et al. [NSJ+19] claimed that (kup, kdown)-
iPUFs are comparably secure to an (kdown + kup

2 )-XOR Arbiter PUF. As explained
above this is a false statement as it only holds true for a specific subset of classical
ML attacks. Using our novel attack methods, we now empirically show that the
Interpose PUF is at most as secure as a max{kup, kdown}-XOR Arbiter PUF.3

• We make the new technical observation that the logistic regression based PUF
modeling algorithm [RSS+10] can fully or partially recover XOR Arbiter PUFs even
in the presence of feature-noise in the training set, i.e. when some or many challenge
bits to an XOR Arbiter PUF are unknown or noisy. This may prove useful in design
and attack of future XOR Arbiter PUF-based designs. Previous work only showed
that the LR algorithm is robust with respect to label-noise, i.e., when the response
bits are noisy [RSS+10].

• We introduce the “mean time to first success” metric for attack times on XOR
Arbiter PUFs, taking into account the success rate of the LR algorithm.

1.3 Related Work and Brief Overview of PUF Modeling Attacks
Since the introduction of the first silicon Strong PUF in 2002, the so-called Arbiter
PUF [GCvD02], the secure realization of Strong PUFs has been the subject of intense
research, with attacks and countermeasures quickly superseding each other. To start
with, Arbiter PUFs themselves were attacked successfully for the first time already in
2005 [LLG+05] by support vector machines. New variants, such as the XOR Arbiter PUF
[SD07], Feed-Forward Arbiter PUF [GLC+04], and Lightweight Secure PUF (LS PUF)
[MKP08a] remained secure for several years, but were eventually tackled up to substantial
sizes by evolution strategies, and by a tailor-made variant of logistic regression at CCS
2010 [RSS+10], and also in follow-up works operating on “real”, silicon CRPs [RSS+13].
Recently, a specialized attack has yet further improved the modeling performance on the
LS PUF [WBM+19], and so has the use of strong computing resources [TB15].

Other promising Strong PUF variants, such as the (XOR) Bistable Ring PUF [CCL+11,
XRHB15], the Current Mirror PUF [KB14], or the Voltage Transfer Characteristics PUF
[VK15] were also tackled successfully up to certain sizes, using support vector machines
[XRHB15], genetic algorithms [GYG+16], simulated annealing and ant colonies [YHL16],
or even attacks without a mathematical PUF-model [GTFS16]. The abovementioned
empirical methods were complemented by formal proofs, for example in the PAC-framework
[GTS16, GTS15a].

2Which, could be collected from a silicon Strong PUF implementation with 1MHz CRP-frequency in
merely 150 seconds.

3Based on the study of the reliability, security and hardware footprint of the iPUF design, the authors
in [NSJ+19] suggested to work with (1, kdown)-iPUFs as the best choice of design parameters. This paper
provides the security reason to support this suggestion.
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Despite the success of these attacks, it should not be overlooked that the best known
“pure” modeling strategies (which use nothing else than sheer CRPs, and do not employ
stability information of the individual CRPs) on several silicon Strong PUF architectures
still take either exponential time, or exponential numbers of CRPs, or both. This includes,
for example, XOR Arbiter PUFs, LS PUFs, XOR Bistable Ring PUFs, or also the iPUF
itself. On the other hand, also the practical output stability of XOR-based Strong PUF
constructions is exponentially bad in the number of XORed sub-responses. This poses
hard limits on the scalability of such architectures, and turns their practical security in
parts a race between efficient ML algorithms and noise-free implementations.

In order to deal with said exponential modeling costs, side channel information has
been used in connection with ML. This has boosted attack complexity from exponential to
polynomial on various occasions. For example, certain power and timing side channels for
the fist time allowed attacking XOR Arbiter PUFs with merely polynomial complexity
[RXS+14]. The most easily applicable “polynomial” attack method on XOR Arbiter
PUFs today seems the adversarial exploitation of the output stability of PUF-CRPs as an
additional source of information in so-called “reliability attacks” [Bec15].

The described research landscape clearly illustrates the difficult quest for secure Strong
PUF designs. From the most popular and often-quoted architectures, only few have
survived the test of time in that no modeling attacks were ever published: Pappu et
al.’s specific optical PUF architecture [PRTG02]; Controlled PUFs and variants thereof
[GCVDD02, GDC+08, HRvD+17]; and so called SHIC PUFs [RJB+11] (with the latter
being the only known Strong PUF with information-theoretic and provable security against
modeling. However, all three designs exhibit some known practicality issues: Pappu et al.’s
optical PUF requires expensive external precision measurement; Controlled PUFs assume
strong physical adversarial access restrictions during their extensive internal and digital
post-processing steps; and SHIC PUFs possess relatively large areas (up to 1cm2) and
small read-out speeds (down to 100 bits/second).

This leaves the realization of efficient and secure Strong PUFs based on digital circuits
as a major open research problem in the field. Two of the recent, most promising designs
were the MUX-PUF [SMCN18] and the iPUF [NSJ+19]. Until now, both only had been
attacked up to relatively moderate sizes by deep learning methods [SBC19], such as up
to (4, 4)-iPUFs. Our new attacks strongly improve this outreach up to (8, 8)-iPUFs, by
employing novel, more efficient algorithms and relatively large numbers of CRPs.

1.4 Organization of this Paper
In Sec. 2, we give a short overview over used PUF architectures and employed methodology.
Sec. 3 introduces and discusses our attack strategy in detail. We present our empirical
results in Sec. 4. We conclude the paper in Sec. 5.

2 Background and Methodology
2.1 Arbiter PUF, Additive Delay Model, and Noise/Reliability
An Arbiter PUF is a special circuit that takes advantage of production imperfections,
which lead to varying signal propagation delays for different realizations of the same circuit
blueprint [GCvD02]. In an Arbiter PUF circuit, after an input (challenge) is applied, a
rising edge will be sent through it. Before entering the first of n stages, the rising edge
signal will be split in two. Both rising edges will traverse the PUF stage by stage. At each
stage, depending on the challenge bit applied, the signals will or will not be interchanged.
At the end of the Arbiter PUF, an arbiter element measures if a signal reaches the top or
bottom input first, determining the output (response) bit of the circuit.
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The behavior of an n-bit Arbiter PUF can be modeled using the additive delay
model. In this model, we use {−1, 1} to model the bit values4 of challenge and response
and n real values w ∈ Rn to model the physics of the production imperfections. By
an induction argument, an Arbiter PUF with n stages can be modeled as a function
f : {−1, 1}n → {−1, 1} where

f(c) = sgn
n∑

i=1
wi · cici+1 · · · cn.

The high accuracy of this model is confirmed unanimously in the Arbiter PUF literature,
Gassend et al. [GLC+04] were the first to study it’s accuracy.

Defining the bijection {−1, 1}n → {−1, 1}n, c 7→ x by setting xi = cici+1 · · · cn, we can
write the additive delay model as

f(c) = sgn
n∑

i=1
wi · xi = sgn〈w, x〉,

that is, the Arbiter PUF can be expressed as a hyperplane in an n-dimensional space.
In this work, we will refer to x as the transformed challenge and to c as the (physical)
challenge. Like above, the relation of c and x will not be made explicit if the context is
unambiguous. Note that the transformed challenge x does not depend on manufacturing
imperfections and can thus be computed by an attacker from the physical challenge c.

All known Strong PUFs implementations suffer from unreliability issues. To capture
the extent of reliability, we define the reliability rP of a PUF instance P to be the average
probability over all challenges that we get a noise-free response (i.e, not disturbed by
noise). Formally, we have

rP = E
c∈{−1,1}n

[
Pr

noise
(P(c) = Pnoise-free(c))

]
.

Although Pnoise-free cannot easily be determined in practice, it is easy to handle in
simulations. An alternative notion for reliability is stability, defined as the average
probability that two evaluations of the same challenge will show the same response.

In this work, a reliability of 1.0 is referring to simulation with zero noise; other values
of reliability are rounded to the nearest 1/10. We focused our attention on Interpose PUFs
with a reliability on or above 70%.

The reliability of Arbiter PUFs has been studied in detail by Delvaux and Verbauwhede
[DV13]. They model evaluation noise of any arbiter chain by adding a Gaussian noise
value ∆Dnoise to the accumulated delay difference ∆Dmodel. This results in the arbiter
chain’s response to be modeled as sgn(∆Dmodel + ∆Dnoise), i.e., challenges with values of
∆Dmodel closer to zero will be more likely to result in noisy responses. This artifact was
verified by experiments with arbiter chains implemented in ASIC.

2.2 XOR Arbiter PUF and Interpose PUF
To decrease the attack surface of Arbiter PUFs (see Section 1.3), it was proposed [SD07]
to evaluate several Arbiter PUFs in parallel and only output the XOR of the individual
response bits. (Note that in this context, we refer to the employed individual Arbiter PUFs
as arbiter chains.) The resulting XOR Arbiter PUF hence has two security parameters,
namely the number of challenge bits, in our work usually n, and the number of employed

4In {−1, 1} notation, the XOR operation is represented by multiplication. Note that in order to obtain
an isomorphism ϕ to the group F2 = ({0, 1}, +), we must assign ϕ(0) = 1 and ϕ(1) = −1, i.e. representing
True by -1 and False by 1. We can then write ϕ(a) = (−1)a, which corresponds to notation of the
additive delay model used in some related works.
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c1 = 1

c2 = −1

cn−1 cn

f(c)

(a) Schematic representation of an Arbiter PUF
with challenge length n.

⊕c1 = 1

c2 = −1

cn−1 cn

c1 = 1

c2 = −1

cn−1 cn

f(c)

(b) Schematic representation of a 2-XOR
Arbiter PUF with challenge length n.

kup

c1,...,32 c33,...,64

fu(c)

kdown

c1,...,32 c33,...,64

f(c)

(c) Schematic representation of a 64-bit Interpose PUF. Both upper layer and lower layer consist
of kup and kdown arbiter chains, respectively.

Figure 1: Schematics of Arbiter PUF, XOR Arbiter PUF, and Interpose PUF.

arbiter chains, here usually k, entering in the final XOR of their individual response bits.
A 2-XOR Arbiter PUF is schematically displayed in Fig. 1b.

Given the existing attacks on XOR Arbiter PUFs detailed in Section 1.3, Nguyen et al.
[NSJ+19] attempted to mitigate these known weaknesses in a new design attempt. Their
Interpose PUF or iPUF architecture essentially consists of a smart combination of two
XOR Arbiter PUFs. It is defined by a challenge length n, the number ku of XORs in the
first XOR Arbiter PUF and the number kd of XORs in the second XOR Arbiter PUF.
The first XOR Arbiter PUF, called upper layer has challenge length n and consists of
ku arbiter chains. When challenged with an input, its 1-bit response is interposed in the
middle bit position of the second XOR Arbiter PUF (lower layer), resulting in a challenge
length a total n+ 1 bit for the lower layer and kd independent arbiter chains. A schematic
representation of an Interpose PUF is displayed in Fig. 1c.

By virtue of the interposed bit on the lower layer, LR attacks cannot directly be
conducted, as information is missing from the training set. Applying LR naively with
omission of the interpose bit, constant or a random interpose bit (called “linearization attack”
by Nguyen et al. [NSJ+19]) will result in a maximum accuracy of 75%. Furthermore, as the
response bit of the upper layer will influence the bottom layer response for approximately
half of all challenges, the reliability-based attack is also mitigated by the iPUF design
[NSJ+19].

To prove the security of (kup, kdown)-iPUF with respect to classical modeling attacks,
the authors in [NSJ+19] studied its challenge-response behavior and claimed that the
security of (kup, kdown)-iPUF is equivalent to that of (kup/2 + kdown)-XOR Arbiter PUF.
In this paper, we show that the claim on the security based on the challenge-response
behavior is not correct, i.e., the security of (kup, kdown)-iPUF is only as most that of a
max{kup, kdown}-XOR Arbiter PUF.
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2.3 Numeric Generation of CRP-Sets
All results presented in this work are based on numerically simulated CRPs. Our simulations
use the additive delay model at their core, whose exactness has been proven on earlier
occasions (see Section 2.1). For a single arbiter chain instance, w ∈ Rn as defined in Eq. 2.1
is drawn independently from a Gaussian distribution; also all arbiter chains are assumed
to be unbiased. More complex XOR Arbiter PUFs and Interpose PUFs are constructed
out of these single arbiter chain simulations in the straightforward manner.

In the generation of noisy CRPs, or of CRP-sets with reliability smaller than 100%, for
each evaluation an independent amount of noise is drawn from a Gaussian distribution of
zero mean and prescribed variance is drawn and added to the modeled delay difference. In all
our experiments, we seeded the pseudo-random number generator (numpy’s implementation
of the Mersenne Twister) used to generate uniformly random challenges, Gaussian weights,
and Gaussian noise to obtain fully reproducible results.

Our software for simulating and attacking as well as for management of our experiments
is free open-source software available on github.com/nils-wisiol/pypuf. Written in
python, we rely heavily on numpy to achieve high performance. Further implementation
details that affect performance are discussed in Sec. 4.

2.4 Adversarial Model, Training and Test Set
As usual in the ML field against PUFs we assume that the adversary has unlimited access
to the Strong PUF at hand for very long time periods. Furthermore, the CRP interface is
unprotected. This leads the to a very large number of CRPs that can be collected5.

Following this simple adversarial model, we supply our attack algorithm with a training
set of predetermined size that contains N uniformly random challenges along with the
respective responses. By the design of the Interpose PUF, these are the challenges to the
upper layer and the responses of the lower layer of the target Interpose PUF. Additionally,
we supply the attack algorithm with a test set of a fixed 104 challenges that are also
uniformly random and chosen independently of the training set. For technical reasons,
the size of the test set remains the same for all of our experiments and is not included
in the total number of challenges given in Tab. 1. This test set is used by our attack for
an early stopping whenever a high model accuracy is detected. For small Interpose PUF
sizes, the early stopping rule has little absolute influence on the training times. However,
for large Interpose PUF sizes, the test size is immaterial compared to the total number
of challenge-response pairs required. All model accuracies reported in this paper are
computed on a fresh and uniformly random challenge set, i.e., chosen independently of
training and said test set, thus not seen before by the attacker. Its size consists of 104

CRPs.

2.5 Employed Computing Resources
The development and evaluation of our attack involved the modeling of over 200,000
simulated Interpose PUFs, and hence consumed an enormous amount of CPU time and was
conducted using our Institute’s High Performance Computing Center. However, in practice
the evaluation would use only a single Interpose PUF instance, which can be attacked
using a high-end workstation PC available for less than USD 1,000 or even with a regular
laptop computer, depending on the Interpose PUF security parameters. Additionally, our
implementation can be further optimized for performance and/or memory requirements.

5In [NSJ+19], regarding modeling attacks, the authors argued that the security of PUFs strongly
depends on the number of CRPs accessed by the adversary. Based on the empirical lower bound of
CPRs required for attacking XOR Arbiter PUFs in [TB15], the authors suggested 64-bit (1,10)-iPUF as a
practical design because few billion CRPs may be needed to model it successfully.

github.com/nils-wisiol/pypuf
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3 Modeling the Interpose PUF
This section details our machine learning-based modeling algorithm for the Interpose
PUF. First, we provide an intuition of the employed divide-and-conquer algorithm that
separately models upper and lower layer of the Interpose PUF. Sec. 3.1 describes how we
obtain an initial high-accuracy model for the lower layer of the Interpose PUF. Afterwards,
Sec. 3.2 and Sec. 3.3 show how this paves the way to obtain a complete model of the full
Interpose PUF. Empirical results of our attack are relegated to Sec. 4.

Our proposed attack technique on the Interpose PUF uses a divide-and-conquer
approach and is based on two crucial observations.

• First, when conducting the linearization attack proposed by Nguyen et al., the
resulting model will not only predict PUF responses with an accuracy up to 75%,
but already contains all secret information about the lower layer of the Interpose
PUF. That is, the reason for the relatively low accuracy of the linearization attack
is not the missing information about the lower layer, but exclusively the missing
challenge bit information.

• Second, the response bits of the upper layer can be heuristically guessed by the
attacker for about half the known challenge-response pairs with high accuracy by
Alg. 1.

Both observations will be detailed in the following.

3.1 Initial Modeling of the Lower Layer via Random Interpose Bits
This section describes the initial modeling of the lower layer of the given Interpose PUF.
Using a given challenge-response set (C,R), we argue why an attacker is capable of
obtaining a high-accuracy model of the lower layer of the Interpose PUF. Possession of
such a model subsequently enables the attacker to conduct the divide-and-conquer attack
as described in the following sections.

Any challenge-response set (C,R) of the full Interpose PUF contains already n out of
the n+ 1 challenge bits to the lower layer as well as the lower layer responses. Hence, the
only information hidden from the attacker aside from the manufacturing imperfections are
the challenge bits in the interpose position. However, our results show that this information
is not required to obtain a high-accuracy model of the lower layer. Instead, the attacker
can randomly guess the interpose bits, i.e., create the challenge-response set (Cd, R) by
himself where Cd is simply interposed with uniformly chosen random bits, i.e.

Cd =
{(
c1, . . . , cn/2, cr, cn/2+1, . . . , cn

)
| (c1, . . . , cn) ∈ C, cr ∼u {0, 1}

}
.

As previous research has shown [MKP08a, NSJ+19], the influence of the middle
challenge bit of any XOR Arbiter PUF on the response bit is about 50%, i.e., in about half
of the challenges, the response bit will flip if the middle challenge bit is flipped. Applied to
our situation, the response of the upper layer of the Interpose PUF will be irrelevant for
the PUF’s response in about 50% of cases. It follows that the information in (Cd, R) for
that half of challenges – where the middle bit does not have an influence on the response –
is correct. Furthermore, for the other half of challenges that do have an influence on the
response bit, the attacker’s guess will be correct with probability 50%, resulting in a total
accuracy of 75% for the self-created CRP (Cd, R) for the lower layer XOR Arbiter PUF.

A refined analysis will then show the following surprising result. Although the training
set (Cd, R) has only an anticipated 75% accuracy on the lower layer XOR Arbiter PUF
of the target Interpose PUF, the trained model obtained from learning with Logistic
Regression will model the lower layer with very high accuracy. This is a crucial result, as
the accuracy of the trained model surpasses the estimated accuracy of the training set.
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Recall that the Logistic Regression learning algorithm for XOR Arbiter PUFs uses
a gradient descent algorithm to train an XOR Arbiter PUF model that agrees with the
training set on as many as possible challenges. As stated above, a model of the lower
layer of the Interpose PUF will agree with the training set on 75% of challenges, including
models where the order of arbiter chains is permuted. Furthermore, models where one
half of the weights are inverted also agree with the training set on 75% of challenges and
model the PUF as if the interpose bit was negated. We will refer to these classes of models
as non-inverted and half-inverted, respectively. For both classes, small variations of the
models will agree with the training set on close to 75% of challenges.

On the other hand, with overwhelming probability, no unrelated XOR Arbiter PUF
model will agree with this training set on a portion larger than 75% of its CRPs. This is
due to the fact that the above constructed training set will very likely contain values that
cannot be described with an XOR Arbiter PUF model6. Hence, the non-inverted model
and the model with half-inverted weights of the lower layer both constitute global minima
in the Logistic Regression’s loss function.

Fig. 2 gives an overview of the lower layer’s model accuracy when trained on the
randomly interposed challenge-response set, which confirms that a high-accuracy model
can be obtained from a partially guessed training set (Cd, R). The accuracy shown is with
respect to both half-inverted weights and non-inverted weights, whichever is better. As we
will see below, the random choice of a model class will not affect the final accuracy or run
time of the attack in any way.

For variations of the Interpose PUF design it is important to note that this observation
can (to some extend) be generalized to the case of multiple interposed bits and several
layers of interposing7. In some extreme cases, we observed that the Logistic Regression
algorithm is capable of recovering a significant proportion of the secret information of an
XOR Arbiter PUF even if half of all challenge bits in the training set were replaced with
random bits. We hence recommend future PUF designs to be tested against this particular
vulnerability by analyzing the correlation of the learned model with the simulation under
test. We summarize again our above key points: A low accuracy of some training result
(set) is not sufficient to even prove resilience against the LR machine learning algorithm.

3.2 Modeling of the Upper Layer
Algorithm 1 can construct a training set for the upper layer when given a model with decent
accuracy for the lower layer and as well a training set for the complete Interpose PUF.
Intuitively, the algorithm first filters all challenges for the complete Interpose PUF where
the response of the upper layer does not matter for the final response, as those challenges
contain no information about the upper layer. Second, for all remaining challenges, the
model for the lower layer is evaluated on both possibilities, and the interpose bit producing
the correct response is added to the training set of the upper layer. For all challenges
where the model’s prediction for the lower layer is correct, the heuristic will correctly
determine the upper layer’s response bit. We formally show the correctness, effectiveness
and accuracy of this heuristic in the following.

Theorem 1. Given an n-bit (ku, kd)-Interpose PUF f , a set of challenges C with
corresponding response set R, and an ε-accuracy model f̂d of the lower layer with ε ≥ 1/2,
Algorithm 1 will return a training set (CH , RH) for the upper layer with accuracy at least
2ε− 1 and size expected to be at least (ε− 1/2) · |C|.

6To see this, recall that Arbiter PUFs can be modeled with linear threshold functions (LTFs). LTFs
are monotone in all input bits, but the above randomized challenge-response set (Cd, R), is likely not.
Although the monotonicity argument gets weaker for products of k LTFs, randomized values are still likely
to violate it.

7For a more rigorous treatment of feature and label noise in PUF modeling, we refer to Ganji et al.
[GTS18].
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Figure 2: Accuracy of the lower layer model f̂d after training using the CRP set (Cd, R)
with randomly guessed interpose bits for (1, k) and (k, k)-Interpose PUFs, as captured
after execution of line 3 of Alg. 2. Results shown are using the estimated best number
of challenge-response pairs (see also Table 1). As with ordinary learning of XOR Arbiter
PUFs, the probability to obtain a high-accuracy model of the lower layer depends on
the size of the Interpose PUF and the training set size. (Just for completeness, our
results are artificially capped at 95% due to termination-criteria of the algorithm which
increase performance. For models where the initial modeling resulted in the model for a
half-inverted lower layer, the accuracy on this is shown; for a justification see Sec. 3.3.)

Algorithm 1 Heuristic for creating upper-layer training sets

1: procedure Heuristic(C,R, f̂d)
2: initialize empty training set (CH , RH)
3: for c, r in C,R do
4: c(+) ← (c1, . . . , cn/2,+1, cn/2+1, . . . , cn)
5: c(−) ← (c1, . . . , cn/2,−1, cn/2+1, . . . , cn)
6: if f̂d(c(+)) = f̂d(c(−)) then
7: continue
8: end if
9: if f̂d(c(+)) = r then
10: add (c, 1) to (CH , RH)
11: else
12: add (c,−1) to (CH , RH)
13: end if
14: end for
15: return (CH , RH)
16: end procedure
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If f̂d instead has accuracy ε on the half-inverted lower layer, the training set is expected
to have accuracy at most 2ε − 2, i.e., it models the inversion of the upper layer with
accuracy at least 2ε− 1; the expectation of the size remains the same.

Proof. For any given challenge c ∈ {−1, 1}n, let c(+), c(−) ∈ {−1, 1}n+1 be defined as in
Algorithm 1. We first give a lower bound for the probability that the learned model f̂d for
the lower layer will predict both c(+) and c(−) correctly, based on a pigeon-hole-principle
argument. Subsequently, we deduce the accuracy and expected size of the returned
challenge-response set that is returned from Heuristic(C,R, f̂d).

For any challenge c ∈ {−1, 1}n, we associate with c(+) and c(−) a pair (c(+), c(−)). By
construction, there are 2n possible pairs containing all 2n+1 challenges of n+ 1 bits each.
By prerequisite, we have that Prc∈{−1,1}n+1 [f̂d(c) = fd(c)] = ε = 1/2 + α with 0 ≤ α ≤ 1/2.
That is, f̂d models at least 2n + 2α · 2n challenges correctly. Hence, by the pigeon hole
principle, all correctly predicted challenges require at least 2α · 2n pairs (c(+), c(−)). That
is,

Pr
c∈{−1,1}n

[
f̂d(c(+)) = fd(c(+)) and f̂d(c(−)) = fd(c(−))

]
≥ 2α = 2ε− 1.

I.e., if the model predicts f̂d(c(+)) 6= f̂d(c(−)), then with probability at least 2ε− 1 we
have fd(c(+)) 6= fd(c(−)) and let r′ denote the unique bit that will produce the correct
response, which is then indeed the correct response bit of the upper layer of the Interpose
PUF. Hence, for each (c, r′) added to the training set, the probability that the added
example is correct is at least 2ε−1. If f̂d is instead an ε-accuracy model for the half-inverted
lower layer, then r′ is the uniquely inverted interpose bit that will give the correct response
and the same argument applies.

As fd is an XOR Arbiter PUF, we expect Pr[fd(c(+)) 6= fd(c(−))] to be 1/2 on average
(with little variance). Our model will thus predict this situation correctly on at least an
2ε− 1 fraction of the cases, hence we expect the total number of challenge-response pairs
returned by Algorithm 1 to be at least (ε− 1/2) · |C|.

3.3 Divide-and-Conquer Attack

Algorithm 2 Divide-and-Conquer Interpose PUF Attack
1: procedure Attack(n, ku, kd, C,R)
2: Cd ← Interpose(C, random bits) . Guess training set for lower layer
3: f̂d ← LRkd

n+1(Cd, R) . Train model for lower layer
4: while test accuracy below target do
5: Cu, Ru ← Heuristic(C,R, f̂d) . Create training set for upper layer
6: f̂u ← LRku

n (Cu, Ru) . (Re-)train upper layer
7: Cd ← Interpose(C, f̂u(C)) . Create training set for lower layer
8: f̂d ← LRkd

n (Cd, R) . Re-train lower layer
9: end while
10: return f̂ : c 7→ f̂d(c1, . . . , cn/2, f̂u(c), cn/2+1, . . . , cn) . Final Interpose PUF model
11: end procedure

This section summarizes first our attack strategy and details then how we combine the
algorithms outlined in Sec. 3.1 and Sec. 3.2 to form our novel attack against the complete
Interpose PUF. The attack algorithm is described in Algorithm 2.

The initial modeling of the lower layer and the heuristic to create a training set for
the upper layer enable us to train a model for the upper layer and thereby launch a
divide-and-conquer attack on the complete Interpose PUF. In this attack, we are able to
model the upper and lower layer separately from each other. As can be seen from Fig. 2
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and Theorem 1, an initial accuracy of around 90% =: ε and an application of the above
heuristic will result in a training set for the upper layer of around 2ε− 1 = 80%. Please
note that the centering of the initial accuracy of the lower layer model at around 90% (as
seen in Fig. 2) is only an artifact of our termination criterion from our Logistic Regression
(LR) implementation. Of course, it is also possible to increase the initial accuracy close
to 100% and conduct the attack with just training a single model for the lower layer,
heuristically creating then a training set for the upper layer, and hereafter training a
model for the upper layer. However, for performance reasons, we opted for an iterative
approach. We simply terminate each run of the LR phase earlier and repeat the process of
training and re-training the upper and lower layer, until a high accuracy is achieved. In
this process, while the initial training set for the lower layer was created using randomly
guessed interpose bits, all following training phases of the lower layer use the upper layer
model to predict interpose bits (cf. lines 2 and 7 in Algorithm 2).

For a (kup, kdown)-Interpose PUF with challenges of n bit length, we conclude that
launching the divide-and-conquer attack on the Interpose PUF roughly requires the same
computational effort as training a model for a max{ku, kd}-XOR Arbiter PUF, although
several iterations of the attack8 are required. This provides a reduction of the Interpose
PUF security to the security of the XOR Arbiter PUF, supported by both theoretical
considerations and empirical results as presented in Section 4.

One caveat of our reduction lies in the nature of the heuristic in Algorithm 1: the
training set for the upper layer is at most half the size of all challenges available to the
attacker. While for kdown > kup, this does not a pose any challenge to the attacker,
but for designs with kup = kdown, this effectively forces the attacker to collect twice as
many challenge-response pairs, compared to attack an XOR Arbiter PUF. On the other
hand, relying on strict lower bounds for the number of challenge-response pairs is anyhow
problematic, as Tobisch and Becker [TB15] have shown.

As noted in Sec. 3.1, the lower layer can randomly be trained in a half-inverted fashion,
which will result in a training set with very low accuracy for the upper layer of around
10%. This in turn will result in the training of a model for the upper layer that will predict
the negated response of the actual model, and both effects will cancel out. Therefore, the
total accuracy of the trained model will not be affected by the random choice of the model
for the lower layer, and indeed the attacker (within our attacker model) has no way of
knowing which option is the correct one.

4 Results and Performance Analysis
This section presents a summary of empirical results obtained with our implementation
of the divide-and-conquer attack presented in Sec. 3. An overview of the attacks can be
found in Tab. 1.

As reported in other works [TB15, WBM+19], the training of models for large instances
of XOR Arbiter PUFs is not always successful. Indeed, the non-convexity of the loss
function of the LR algorithm for XOR Arbiter PUFs was already observed by Sölter
[Söl09]. To reflect the time unsuccessfully spent training a model, we define for chosen
security parameters n, kup, kdown, target reliability, training set size N , and employed
computing resources the time until first success as the expectation of time spend until
a model with prediction accuracy higher than 95%, relative to the PUF’s reliability, is
obtained. To empirically approximate the time until first success of our attacks, for each
group of experiments we computed the mean time of unsuccessful runs, tfail and the mean
time of successful runs tsuccess, as well as the relative frequency of successful runs hsuccess.
Assuming a Geometric distribution, we compute the expected number of required trials

8Note that for both PUFs, the re-training performance is much higher than the initial training
performance.
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until success as n1 = 1/hsuccess and the expected time until first success t1 as,

t1 = (n1 − 1) · tfail + tsuccess;

for hsuccess = 0 we set t1 =∞. We point out that different instances of XOR Arbiter PUFs
may differ in their resistance to modeling attacks [TB15], and t1 only refers to the average
time until success, not ruling out the possibility that some instances of the given size may
be harder or easier to model. All results shown in this work are with respect to the time
until first success.

We studied n-bit challenge (kup, kdown)-Interpose PUFs for sizes (1, k) and (k, k) for
k ≤ 8 and analyzed how the time to first success changes for different choices of security
parameters n and k as well as training set size N . For performance reasons, choices
different from n = 64 were only studied for the relatively low choices of kup, kdown ≤ 4.
Training set sizes were guessed using Tobisch and Becker’s [TB15] results and optimized
empirically. For results presented here, the choice of training set size which empirically
resulted in lowest t1 was chosen. As all training times refer to wall-clock time, attack
times across different CPUs are not comparable. We conducted all modeling attacks for
Interpose PUFs with varying reliability between 70% and 100%.

In Fig. 3, we summarize the required time until first success for smaller Interpose PUF
sizes and different choices for the used challenge length. It can be seen that the required
time increases approximately polynomial with the number of used challenge bits, which is
in line with polynomial-time results reported both in the practical and theoretical realm
of XOR Arbiter PUF attacks [RSS+13, GTS15b].

For different choices of the number of employed arbiter chains kup and kdown, we
observed an exponential increase in the number of required challenge-response pairs and
required attack time until first success, as shown in Fig. 4. Note that shown training set
sizes produced the best result among several guessed choices, but do not constitute strict
lower bounds. Careful optimization may lead to fewer required challenge-response pairs or
shorter time to first success.

In all of our experiments we observed that lower reliability of the Interpose PUF does
not have a big impact on the required training time.

For the choice of training set size and smaller choices of kup, kdown we observed a
saturation threshold, beyond which adding more challenge-response pairs to the training
set would increase training time instead of decreasing it. This may very well be related to
implementation details of the Logistic Regression learner including whether or not mini
batches are used. For Interpose PUF sizes larger than (6, 6), we were not able to confirm
or refute this observation due to limitations in computational power.

While the attack as given in Alg. 2 is using an infinite loop, practical experiments
were limited to at most five iterations, after which the learning attempt was given up. For
Interpose PUF sizes larger than (7, 7), we empirically observed that this is barely of any
use, and limited the number of iterations to two.

Memory footprint of the attacks is manageable and proportionate to the training
set size, where 100 million CRPs require about 6GB of memory. Our attack needs a
peak memory of about two times the training set size, implying that all attacks requiring
100 million CRPs or less can be carried out on an up-to-date laptop. Attacks on larger
instances require up to 300 million CRPs and thus require about 36GB of memory, an
amount currently easily to be found below USD 1,000. Details on memory consumption of
our attack implementation can be found in Table 1. Also note that memory consumption
depends on many implementation details. Our implementation currently does not swap
out memory and, as a time-memory trade-off, uses 1 byte to store 1 challenge bit.
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Table 1: Overview of Divide-and-Conquer-Attacks on 64-bit (kup, kdown)-Interpose PUFs.
For each size and reliability, the best-performing number of CRPs is shown, defined as the
setting that gave the shortest time to first success with our software; success is defined as
final prediction accuracy above 95%. We used two different Intel R© Xeon R© CPU types,
namely Gold 6130 at 2.1GHz (?) and E5-2630 v4 at 2.2GHz (•). For larger experiments, we
allowed the use of up to 10 parallel threads to achieve faster training times; note however
that for purely technical reasons the speed-up we observed did not exceed 4. Training
times across different CPU types are not compared against each other. Additionally to the
number of CRPs shown in the table, the attacker was provided with a test set containing
an additional 104 challenge-response pairs.

(kup, kdown) # CRPs rel. Mem. Time Success # Samples
(GB) (# Threads) Rate

(1, 5) 500k 0.8 0.4 10.36min (1/?) 1.00 100
(1, 5) 500k 0.9 0.4 8.70min (1/?) 1.00 100
(1, 5) 500k 1.0 0.4 9.14min (1/?) 1.00 100
(1, 6) 2M 0.8 0.5 1.62h (1/?) 1.00 57
(1, 6) 5M 0.9 0.9 1.42h (1/?) 1.00 55
(1, 6) 2M 1.0 0.5 1.48h (1/?) 1.00 70
(4, 4) 200k 0.7 0.3 2.95min (1/?) 0.97 91
(4, 4) 100k 0.8 0.3 1.71min (1/?) 0.98 83
(4, 4) 200k 1.0 0.3 2.03min (1/?) 0.91 91
(5, 5) 600k 0.8 0.4 16.95min (1/?) 0.85 195
(5, 5) 600k 0.9 0.4 16.13min (1/?) 0.88 191
(5, 5) 1M 1.0 0.4 14.59min (1/?) 0.98 93
(6, 6) 5M 0.7 0.9 3.79h (1/?) 0.63 54
(6, 6) 5M 0.8 0.9 2.86h (1/?) 0.78 58
(6, 6) 5M 0.9 0.9 2.62h (1/?) 0.83 58
(6, 6) 5M 1.0 0.9 2.50h (1/?) 0.75 53
(7, 7) 40M 0.7 5.1 1.73d (10/•) 0.40 100
(7, 7) 40M 0.8 5.1 1.11d (10/•) 0.62 100
(7, 7) 40M 0.9 5.1 23.38h (10/•) 0.68 100
(7, 7) 40M 1.0 5.1 17.21h (10/•) 0.74 100
(8, 8) 150M 0.7 18 ∞ (10/•) 0.00 43
(8, 8) 150M 0.8 18 2.07w (10/•) 0.25 48
(8, 8) 150M 0.9 18 1.59w (10/•) 0.33 55
(8, 8) 150M 1.0 18 1.54w (10/•) 0.35 49
(8, 8) 300M 1.0 36 1.92w (8/?) 0.32 72
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5 Conclusion
In this paper, we introduced novel attack methodology applicable to the Interpose PUF
and demonstrated practicality for Interpose PUFs of 64 bit challenge length for sizes up to
kup = kdown = 8 using computational power readily available to the general public. While
entirely conducted on simulations, we also demonstrated that the inevitable presence of
noise in real-world challenge-response pairs cannot prevent a successful attack. We must
conclude that Interpose PUFs of attacked sizes must be considered insecure and designers
must increase the security parameters.

For sizes other than the ones we empirically tested, available evidence presented in
this paper allows the conclusions that firstly, the challenge length, like in other Arbiter
PUF-based designs, cannot be used to achieve exponential advantage over the attacker.
Secondly, the number of employed arbiter chains does provide the designer with exponential
advantage, but the increase of kup and kdown is restricted by the exponential increase
of unreliability caused by the underlying arbiter chain design. In light of our results it
remains unclear if implementations of the Interpose PUF can be scaled to sizes that can be
considered secure even for larger-scale versions of the Divide-and-Conquer attack. However,
it must be noted that if implemented reliably, the iPUF still provides resilience against
Becker’s [Bec15] attack and hence constitutes a major improvement over the XOR Arbiter
PUF.

We conclude stating that the field of Strong PUFs remains a cat-and-mouse game of
designers and attackers, with the Interpose PUF being the latest major contribution to
the defensive side. While security of the Interpose PUF is significantly reduce by the
Divide-and-Conquer attack, we hope future designs can benefit from the interposing design
and the methodology of testing a novel design against all known attacks; a well-established
approach in block cipher design, where all known attacks are shown to be inapplicable for
a given new cipher.

Remaining open questions are whether the Interpose PUF can be implemented large
and reliably enough to defeat the Divide-and-Conquer attack, and whether or not changes
to the Interpose PUF design can mitigate the Divide-and-Conquer approach presented
here.
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