
On the Security of Sponge-type Authenticated
Encryption Modes

Bishwajit Chakraborty, Ashwin Jha,Mridul Nandi

Indian Statistical Institute, Kolkata, India
bishu.math.ynwa@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

Abstract. The sponge duplex is a popular mode of operation for constructing au-
thenticated encryption schemes. In fact, one can assess the popularity of this mode
from the fact that around 25 out of the 56 round 1 submissions to the ongoing
NIST lightweight cryptography (LwC) standardization process are based on this
mode. Among these, 14 sponge-type constructions are selected for the second round
consisting of 32 submissions. In this paper, we generalize the duplexing interface of
the duplex mode, which we call Transform-then-Permute. It encompasses Beetle as well
as a new sponge-type mode SpoC (both are round 2 submissions to NIST LwC). We
show a tight security bound for Transform-then-Permute based on b-bit permutation,
which reduces to finding an exact estimation of the expected number of multi-chains
(defined in this paper). As a corollary of our general result, authenticated encryption
advantage of Beetle and SpoC is about T (D+r2r)

2b where T , D and r denotes the
number of offline queries (related to time of the algorithm), number of construction
queries (related to data complexity) and rate of the construction (related to efficiency).
Previously the same bound has been proved for Beetle under the limitation that
T � min{2r, 2b/2} (that forced us to choose larger permutation with higher rate). In
the context of NIST LwC requirement, SpoC based on 192-bit permutation achieves
the desired security with 64-bit rate, which is not achieved by either duplex or Beetle
(as per the previous analysis).
Keywords: Sponge · duplex · Beetle · SpoC · lightweight · AE · tight bound

1 Introduction
The Sponge function was first proposed by Bertoni et al. at the ECRYPT Hash Workshop
[BDPA07], as a mode of operation for variable output length hash functions. It received
instant attention due to NIST’s SHA-3 competition, which had several candidates based on
the sponge paradigm. Most notably, JH [Wu11] and Keccak [BDPA13] were among the five
finalists, and Keccak became the eventual winner. In time, the Sponge mode found applica-
tions in message authentication [BDPA07, BDPA11b], pseudorandom sequence generation
[BDPA10], and authenticated encryption, the duplex mode [BDPA11a]. In particular, the
recently concluded CAESAR competition for the development of authenticated encryption
(AE) schemes had received a dozen sponge-based submissions. Ascon[DEMS16], a winner
in lightweight applications (resource constrained environments) use-case of the CAESAR
competition, also uses the duplex mode of authenticated encryption.

The Sponge construction is also one of the go-to mode of operation for designing
lightweight cryptographic schemes. This is quite evident from the design of hash functions
such as Quark [AHMN10], PHOTON [GPP11], and SPONGENT [BKL+13], and authenti-
cated encryption schemes such as Ascon [DEMS16] and Beetle [CDNY18]. In fact, majority
of the submissions to the ongoing NIST lightweight cryptography standardization process
are inspired by the Sponge paradigm.

mailto:bishu.math.ynwa@gmail.com, ashwin.jha1991@gmail.com , mridul.nandi@gmail.com

2 On the Security of Sponge-type Authenticated Encryption Modes

At a very high level, Sponge-type constructions consist of a b-bit state, which is split
into a c-bit inner state, called the capacity, and an r-bit outer state, called the rate, where
b = c + r. Traditionally in Sponge like modes, data absorption and squeezing is done
via the rate part, i.e. r bits at a time. SpoC [AGH+19], a round 1 submission to NIST
LwC standardization process, is a notable exception, where the absorption is done via
the capacity part and the squeezing is done via the rate part. In [BDPA08], Bertoni et
al. proved that the Sponge construction is indifferentiable from a random oracle with a
birthday-type bound in the capacity. While it is well-known that this bound is tight for
hashing, for keyed applications of the Sponge, especially authenticated encryption schemes,
such as duplex mode, it seems that the security could be significantly higher.

1.1 Existing Security Bounds for Sponge-type AE Schemes
Sponge-type authenticated encryption is mostly done via the duplex construction [BDPA11a].
The duplex mode is a stateful construction that consists of an initialization interface and a
duplexing interface. Initialization creates an initial state using the underlying permutation
π, and each duplexing call to π absorbs and squeezes r bits of data. The security of
Sponge-type AE modes can be represented and understood in terms of two parameters,
namely the data complexity D (total number of initialization and duplexing calls to π),
and the time complexity T (total number of direct calls to π). Initially, Bertoni et al.
[BDPA11a] proved that duplex is as strong as Sponge, i.e. secure up to DT � 2c. Mennink
et al. [MRV15] introduced the full-state duplex and proved that this variant is secure up
to DT � 2κ, D � 2c/2, where κ is the key size. Jovanovic et al. [JLM14] proved privacy
security up to DT � 2b, D � min{2b/2, 2κ}, T � min{2b/2, 2c−log2 r, 2κ}, and integrity
security up to DT � 2c, D � min{2c/2, 2b/2, 2κ, 2τ}, T � min{2b/2, 2c−log2 r, 2κ}, where
τ denotes the tag size. Note that the integrity security has an additional restriction
that D � 2c/2, where D is dominated by the decryption data complexity. Daemen et
al. [DMA17] gave a generalization of duplex that has built-in multi-user security. Very
recently, ([JLM+19]) tight privacy analysis is provided. However, one of the dominating
terms present in all of the existing integrity analysis of duplex authenticated encryption is

DT/2c.

Moreover, no known matching forgery attack on it is not known. A recent variant of
duplex mode, called the Beetle mode of operation [CDNY18], modifies the duplexing phase
by introducing a combined feedback based absorption/squeezing, similar to the feedback
paradigm of CoFB [CIMN17]. In [CDNY18], Chakraborti et al. showed that feedback based
duplexing actually helps in improving the security bound, mainly to get rid of the term
DT/2c. They showed privacy security up to DT � 2b, D � 2b/2, T � 2c, and integrity
security up to DT � 2b, D � min{2b/2, 2c−log2 r, 2r}, T � min{2c−log2 r, 2r, 2b/2}, with
an assumption that κ = c and τ = r.

1.1.1 Security of Sponge-typed AE in Light of NIST LwC Requirement:

In NIST’s LwC call for submissions, it is mentioned that the primary AE version should
have at least 128-bit key, at least 96-bit nonce, at least 64-bit tag, data complexity 250 − 1
bytes, and time complexity 2112. In order to satisfy these requirements, a traditional duplex-
based scheme must have a capacity size of at least 160-bit. All sponge-type submission to
NIST LwC standardization process uses at least 192-bit capacity, except CLX[WH19] for
which no security proof is available.

On the other hand, the known bound for Beetle imposes certain limitations on the
state size and rate. Specifically, Beetle-based schemes requires at least 120-bit capacity and
120-bit rate to achieve NIST LwC requirements. This means that we need a permutation

Chakraborti et al. 3

of size at least 240 bits. In light of the ongoing NIST LwC standardization, it would be
interesting to see whether we can get rid of the limitations in Beetle.

1.2 Our Contributions
In this paper, inspired by the NIST LwC requirements, we extend a long line of research on
the security of Sponge-type AE schemes. We study Sponge-type AEAD construction with
a generalization of the feedback function used in the duplexing interface, that encompasses
the feedback used in duplex, Beetle, SpoC etc. We show that for a class of feedback function,
containing the Beetle and SpoC modes, optimal AE security is achieved. To be specific,
we show that the AE security of this generalized construction is bounded by adversary’s
ability of constructing a special data structure, called the multi-chains. We also show a
matching attack exploiting the multi-chains. As a corollary of this we give

1. improved and tight bound for Beetle, and

2. a security proof validating the security claims of SpoC.
Notably, we show that both Beetle and SpoC achieve NIST LwC requirements with just
128-bit capacity and ≥ 32-bit rate. In other words, they achieve NIST LwC requirements
with just 160-bit state, which to the best of our knowledge is the smallest possible state
size among all known sponge like constructions which are proven to be secure.

1.3 Organization of the Paper
In section 2 we define different notations used in the paper. We give a brief description of
the design and security models of AEAD. We also give a brief description of coefficient
H technique. In Section 3 we state some multicollision results with proofs which are
used in the paper. In section 4 we define what we call the multi-chain structure and
give an upper bound on the expected number of multichains that can be formed by an
adversary in the case when L is invertible. In section 5 we study a Sponge-type AEAD
construction namely Transform-then-Permute with a generalization of the feedback function
used in the duplexing interface and give a security bound for the special case when the
feedback function is invertible. We show that it encompasses the feedback functions used
in duplex, Beetle, SpoC etc. We show that Beetle and SpoC modes fall under the class
where the feedback function is invertible and hence for those mode optimal AEAD security
is achieved. In section 6 Using the multi-chain security game from section 4 we give a
complete security proof of the AEAD security bound given in 5. Finally, in section 7 we
give some attack strategies to justify the tightness of our bound.

2 Preliminaries
Notational Setup: For n ∈ N, (n] denotes the set {1, 2, . . . , n} and [n] denotes the set
{0} ∪ (n], {0, 1}n denotes the set of bit strings of length n, and Perm(n) denotes the set of
all permutations over {0, 1}n.

For any bit string x with |x| ≥ n, dxen (res. bxcn) denotes the most (res. least)
significant n bits of x. For n, k ∈ N, such that n ≥ k, we define the falling factorial
(n)k := n!/(n− k)! = n(n− 1) · · · (n− k + 1).

For q ∈ N, xq denotes the q-tuple (x1, x2, . . . , xq). For q ∈ N, for any set X , (X)q denotes
the set of all q-tuples with distinct elements from X . Two distinct strings a = a1 . . . am and
b = b1 . . . bm′ , are said to have a common prefix of length n ≤ min{m,m′}, if ai = bi for
all i ∈ (n], and an+1 6= bn+1. For a finite set X , X←$X denotes the uniform sampling of
X from X which is independent to all other previously sampled random variables. X wor← X
denotes uniform sampling of X from X without replacement.

4 On the Security of Sponge-type Authenticated Encryption Modes

2.1 Authenticated Encryption: Definition and Security Model
Authentication Encryption with Associated Data: An authenticated encryption
scheme with associated data functionality, or AEAD in short, is a tuple of algorithms
AE = (E,D), defined over the key space K, nonce space N , associated data space A, message
space M, ciphertext space C, and tag space T , where:

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {⊥}.

Here, E and D are called the encryption and decryption algorithms, respectively, of
AE. Further, it is required that D(K,N,A,E(K,N,A,M)) = M for any (K,N,A,M) ∈
K × N × A ×M. For all key K ∈ K, we write EK(·) and DK(·) to denote E(K, ·) and
D(K, ·), respectively. In this paper, we have K,N ,A,M, T ⊆ {0, 1}+ and C =M, so we
useM instead of C wherever necessary.

AEAD Security in the Random Permutation Model: For b ∈ N, let Perm(b)
denote the set of all permutations over {0, 1}b, and Π←$ Perm(b). Let Func denote the set
of all functions from N ×A×M toM×T which are length preserving with respect to
M and Γ←$ Func. Let ⊥ denote the degenerate function from (N ,A,M, T) to {⊥}. For
brevity, we denote the oracle corresponding to a function (like E, Π etc.) by that function
itself. A bidirectional access to Π is denoted by the superscript ±.

Definition 1. Let AEΠ be an AEAD scheme, based on the random permutation Π, defined
over (K,N ,A,M, T). The AEAD advantage of any nonce respecting adversary A against
AEΠ is defined as,

Advaead
AEΠ

(A) :=

∣∣∣∣∣∣ Pr
K←$K

Π±

[
A EK,DK,Π± = 1

]
− Pr

Γ,Π±

[
A Γ,⊥,Π± = 1

]∣∣∣∣∣∣ . (1)

Here A EK,DK,Π± denotes A ’s response after its interaction with EK, DK, and Π±,
respectively. Similarly, A Γ,⊥,Π± denotes A ’s response after its interaction with Γ, ⊥,
and Π±. Note that here we consider only those adversaries A which do not make any
decryption query, which is the response of any previous encryption queries. In such case
the adversary can trivially distinguish between the real oracle from the ideal permutation
one.

In this paper, we assume that the adversary is nonce-respecting, i.e. it never makes
more than one encryption queries with same nonce. We further assume that the adversary
is non-trivial, i.e. it never makes a duplicate query, and it never makes a query for which
the response is already known due to some previous query. We use the following notations
to parameterize the adversary’s resources:

• qe and qd denote the number of queries to EK and DK, respectively. σe and σd denote
the total number of blocks of input (associated data and message) lengths across all
encryption and decryption(respectively) queries. We sometime also write q = qe + qd
and σ = σe + σd to denote the combined construction query resources.

• qf and qb denote the number of queries to Π+ and Π−, respectively. We sometime
also use qp = qf + +qb, to denote the combined primitive query resources.

We remark here that q and σ correspond to the online or data complexity, and qp corresponds
to the offline or time complexity of the adversary. Any adversary that adheres to the above
mentioned resource constraints is called an (qp, qe, qd, σe, σd)-adversary.

Chakraborti et al. 5

2.2 H-coefficient Technique

Consider a computationally unbounded and deterministic adversary A that tries to
distinguish the real oracle, say O1, from the ideal oracle, say O0. We denote the query-
response tuple of A ’s interaction with its oracle by a transcript ω. Sometimes, this may also
include any additional information that the oracle chooses to reveal to the distinguisher at
the end of the query-response phase of the game. We will consider this extended definition
of transcript. We denote by Θ1 (res. Θ0) the random transcript variable when A interacts
with O1 (res. O0). The probability of realizing a given transcript ω in the security game
with an oracle O is known as the interpolation probability of ω with respect to O. Since
A is deterministic, this probability depends only on the oracle O and the transcript ω. A
transcript ω is said to be attainable if Pr [Θ0 = ω] > 0. In this paper, O1 = (EK,DK,Π±),
O0 = (Γ,⊥,Π±), and the adversary is trying to distinguish O1 from O0 in AEAD sense.
Now we state a simple yet powerful tool due to Patarin [Pat91], known as the H-coefficient
technique (or simply the H-technique).

Theorem 1 (H-coefficient technique [Pat91, Pat08]). Let Ω be the set of all realizable
transcripts. For some εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying the
following:

• Pr [Θ0 ∈ Ωbad] ≤ εbad;

• For any ω /∈ Ωbad,
Pr [Θ1 = ω]
Pr [Θ0 = ω] ≥ 1− εratio.

Then for any adversary A , we have the following bound on its AEAD distinguishing
advantage:

Advaead
O1

(A) ≤ εbad + εratio.

A proof of this theorem is available in multiple papers including [Pat08, CS14, MN17].

3 Some Results on Multicollision

In this section we briefly revisit some useful results on the expected value of maximum
multicollision in a random sample. This problem has seen a lot of interest (see for instance
[Gon81, BYG91, SF96, RS98]) in context of the complexity of hash table1 probing. However,
most of the results available in the literature are given in asymptotic forms. We state some
relevant results in a more concrete form, following similar proof strategies and probability
calculations as before. Moreover, we also extend these results for samples which, although
are not uniform, have high entropy, almost close to uniform.

3.1 Expected Maximum Multicollision in a Uniform Random Sample

Let X1, . . . ,Xq ←$D where |D| = N and N ≥ 2. For the simplicity of notations, we write
log2N as n. We denote the maximum multicollision random variable for the sample as

1A popular data structure used for efficient searching applications.

6 On the Security of Sponge-type Authenticated Encryption Modes

mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|. For any integer ρ ≥ 2,

Pr[mcq,N ≥ ρ] ≤
∑
a∈D

Pr[|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(
qe

ρN

)ρ
.

We justify the inequalities in the following way: The first inequality is due to the union
bound. If there are at least ρ indices for which Xi takes value a, we can choose the first ρ
indices in

(
q
ρ

)
ways. This justifies the second inequality. The last inequality follows from

the simple observation that eρ =
∑
i≥0

ρi/i! ≥ ρρ/ρ!. Thus, we have

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN

)ρ
. (2)

For any positive integer valued random variable Y bounded above by q, we define another
random variable Y′ as

Y′ =
{
ρ− 1 if Y < ρ

q otherwise.
Clearly, Y ≤ Y′ and hence

Ex [Y] ≤ (ρ− 1) + q · Pr[Y ≥ ρ].

Using Eq. (2), and the above relation we can prove the following results for the expected
value of maximum multicollision. We write mcoll(q,N) to denote Ex [mcq,N]. So from the
above relation,

mcoll(q,N) ≤ (ρ− 1) + qN ·
(
qe

ρN

)ρ
(3)

for all positive ρ. We use this relation to prove an upper bound of mcoll(q,N).
Proposition 1. For n ≥ 2,

mcoll(q,N) ≤


4 log q

log log q if 4 ≤ q ≤ N

5nd q
nN e if N < q

Proof. We first prove the result when q = N . A simple algebra shows that for n ≥ 2,(
e logn

4n

)
≤ n− 1

2 . In other words,
(
e
ρ

)ρ
≤ N−2 where ρ = 4n/ logn. So

mcoll(q,N) ≤ ρ− 1 +N2 ·
(
e

ρ

)ρ
≤ ρ.

When q < N , we can simply bound Ex [mcq,N] ≤ Ex [mcq,q] ≤ 4 log q
log log q .

For N < q ≤ Nn, we choose ρ = 4n. Now,

mcoll(q,N) ≤ 4n− 1 + nN2 × (e4)4n

≤ 4n− 1 + nN2/4n < 5n.

When q ≥ nN , we can group them into dq/nNe samples each of size exactly nN (we
can add more samples if required). This would prove the result when q ≥ nN .

Chakraborti et al. 7

Remark 1. Note that, similar bound as in proposition 1 can be achieved in the case of
non-uniform sampling. For example, when we sample X1, . . . ,Xq

wor← {0, 1}b and then we
define Yi = dXier for some r < b. In this case, we have

Pr(Yi1 = a, · · · ,Yiρ = a) ≤ (2(b−r))ρ
(2b)ρ

≤ 1
2rρ .

This can be easily justified as we have to choose the remaining b − r bits distinct (as
X1, . . . ,Xq must be distinct). So, same bound as given in Proposition 1 can be applied for
this distribution.

3.2 A Special Example of Non-uniform Random Sample
In this paper we consider the following non-uniform random samples. Let x1, . . . xq be
distinct and y1, . . . , yq be distinct b bits. Let Π denote the random permutation over b bits.
We define Zi,j = Π(xi)⊕ Π−1(yj). Now, for all distinct i1, . . . , iρ, distinct j1, . . . , jρ and
a ∈ {0, 1}b, we want to bound Pr

[
Zi1,j1 = a, · · · ,Ziρ,jρ = a

]
. Without loss of generality

we can assume that ik = jk = k. Let N := 2b. We also assume a = 0b. Since otherwise, we
consider Π′(x) = Π(x)⊕ a which is also a random permutation and consider y′i = yi ⊕ a
instead of yi, ∀1 ≤ i ≤ ρ. Note that y′i’s are clearly distinct. So the problem reduces to
bounding

θ := Pr
[
Π2(x1) = y1, · · · ,Π2(xρ) = yρ

]
=
∑
cρ

Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ]

We say that cρ valid if ci = xj if and only if cj = yi. The set of all such valid
tuples is denoted as V . For any valid cρ, define S := {x1, . . . , xρ} ∪ {c1, . . . , cρ}. Then,
Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ] = 1

(N)|S| . On the other hand, if cρ

is not valid then the above probability is zero. Let Vs be the set of all valid tuples for
which |S| = s.

If |S| = 2ρ − k, then we must have exactly k many pairs (i1, j1), . . . (ik, jk) such
that ci = xj . Now The number of ways this k-many pairs can be chosen is bounded
by ρ2k. The remaining ρ − k many ci’s can be chosen in (N − k)ρ−k ways. Hence,
|V2ρ−k| ≤ ρ2k(N − k)ρ−k.

Pr
[
Π2(xi) = yi∀1 ≤ i ≤ ρ

]
=

2ρ∑
s=ρ

∑
cρ∈Vs

Pr [Π(xi) = ci,Π(ci) = yi∀1 ≤ i ≤ ρ]

≤
2ρ∑
s=ρ

|Vs|
(N)s

=
ρ∑
k=0

|V2ρ−k|
(N)2ρ−k

≤
ρ∑
k=0

ρ2k(N − k)ρ−k
(N)2ρ−k

≤ 2 ·
(

ρ2

N − 2ρ

)ρ
We denote the maximum multicollision random variable for the sample as mc′q,N . Then
we have as before

Pr
[
mc′q,N ≥ ρ

]
≤ 2N

(
qeρ

N − 2ρ

)ρ
.

8 On the Security of Sponge-type Authenticated Encryption Modes

We write mcoll′(q,N) to denote Ex
[
mc′q,N

]
. So from the above relation,

mcoll′(q,N) ≤ (ρ− 1) + 2qN ·
(

qeρ

N − 2ρ

)ρ
Proposition 2. For N > 216, n = logN

mcoll′(q,N) ≤
{

4n
logn if n2q ≤ N
4n

lognd
n2q
N e if n2q ≥ N.

Proof. Let q ≤ N
n2 . Since N > 216, if ρ = 4n

logn then, we have q ≤ N−2ρ
ρ2 . Hence,

2qN ·
(

qeρ
N−2ρ

)ρ
≤ N2 ·

(
e
ρ

)ρ
. Now,

(
e
ρ

)ρ
≤
(
e
4
)4n ≤ 1

N2 =⇒ N2 ·
(
e
ρ

)ρ
≤ 1.

Now for q ≥ N
n2 we can group them into dn

2q
N e samples each of size exactly N

n2 (we can
add more samples if required). This would prove the bounds.

4 Multi-chain Security Game
In this section we consider a new security game which we call multi-chain security game.
In this game, adversary A interacts with a random permutation and its inverse. It’s goal
is to construct multiple walks having same labels. We first need to describe some notations
which would be required to define the security game.

4.1 The Multi-Chain Structure

Labeled Walk: Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such
that u1, . . . ut are distinct and v1, . . . , vt are distinct. For any such list of pairs, we write
domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Let L be a linear function over b bits. Given such a list we define a labeled directed
graph GLL over the set of vertices range(L) ⊆ {0, 1}b as follows: A directed edge vi → vj
with label x (also denoted as vi

x→ vj) is in the graph if L(vi)⊕ x = uj . We can similarly
extend this to a label walk W from a node w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of the

walk.

Definition 2. Let L be a fixed linear function over b bits. Let r, τ ≤ b be some parameters.
We say that a set of labeled walks {W1, . . . ,Wp} forms a multi-chain with a label x :=
(x1, . . . , xk) in the graph GLL if for all 1 ≤ i ≤ p, Wi : vi0

x−→ vik and du1
0er = · · · = dup0er

and dv1
keτ = · · · = dvpkeτ . We also say that the multi-chain is of length k.

The maximum size of the set of multi-chain of length k (with some label x) is denoted
as Wk. Thus, for a fixed linear function L, Wk is completely determined by L. Now we
describe how the list L is being generated through an interaction of an adversary A and a
random permutation.

Chakraborti et al. 9

4.2 The Multi-Chain Advantage
Consider an adversary A interacting with a b-bit random permutation Π±. Suppose, the
adversary A makes at most t many interactions with Π±. Let (xi, diri) denote ith query
where xi ∈ {0, 1}b and diri is either + or − (representing forward or inverse query). If
diri = +, it gets response yi as Π(xi), else the response yi is set as Π−1(xi). After t many
interactions, we define a list L of pairs (ui, vi)i where (ui, vi) = (xi, yi) if diri = +, and
(ui, vi) = (yi, xi) otherwise. So we have Π(ui) = vi for all i. We call the tuple of triples
θ := ((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A interacting with
Π±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores the information about
the random permutation. For the sake of simplicity we assume that adversary makes no
redundant queries and so all u1, . . . ut are distinct and v1, . . . , vt are distinct. For a linear
function L and consider the directed graph GLθ′ . For any k, we have already defined Wk.
Now we define the maximum multi-chain advantage as

µd,t = max
A

max
k≤d

Ex
[

Wk

k

]
.

4.3 Bounding µd,t for Invertible L Functions
In this section, we derive concrete bounds for µd,t under a special assumption that the
underlying feedback function is invertible.

Theorem 2. If the feedback function L is invertible, then we have

µd,t ≤ mcoll(t, 2τ) + mcoll(t, 2r) + mcoll′(t2, 2b).

4.3.1 Proof of Theorem 2

We first make the following observation which is straightforward as L is invertible.

Observation 1: If vi
x→ vk and vj

x→ vk then vi = vj .

We now describe some notations related to multi-chain Wk.

1. Let Wfwd,a denote the size of the set {i : diri = +, dvieτ = a} and maxa Wfwd,a is
denoted as Wfwd. This denotes the maximum multi-collision among τ most significant
bits of forward query responses.

2. Similarly, we define the multi-collision for backward query responses as follows: Let
Wbck,a denote the size of the set {i : diri = −, dvier = a} and maxa Wbck,a is denoted
as Wbck.

3. In addition to the multicollisions in forward only and backward only queries, we
consider multicollisions due to both forward and backward queries. Let Wmitm,a

denote size of the set {(i, j) : diri = +, dirj = −, vi ⊕ uj = a} and maxa Wmitm,a is
denoted as Wmitm.

Lemma 1. For all possible interactions, we have

Wk ≤Wfwd + Wbck + k ·Wmitm.

Proof. We can divide the set of multi-chains into three sets:

Forward-only chains: Each chain is constructed by Π queries only. By definition, the
size of such multi-chain is at most Wfwd.

10 On the Security of Sponge-type Authenticated Encryption Modes

Backward-only chains: Each chain is constructed by Π− queries only. By definition,
the size of such multi-chain is at most Wbck.

Forward-backward chains: The multi-chain consists of at least one chain that uses
both Π and Π− queries. Let us denote the size of such multi-chain by Wfwd-bck

k .

Then, we must have
Wk ≤Wfwd + Wbck + Wfwd-bck

k .

Now, we claim that Wfwd-bck
k ≤ k ·Wmitm. Suppose Wfwd-bck

k = n. Then, it is sufficient to
show that there exist an index j ∈ [k], such that the size of the set {i : (dirij−1, dirij) ∈
{(+,−), (−,+)}, vij−1 ⊕ uij = xj} ≥ dn/ke. This can be easily argued by pigeonhole
principle, given Observation 1. The argument works as follows:

For each of the individual chain Wi, we have at least one index j ∈ [k] such that
(dirij−1, dirij) ∈ {(+,−), (−,+)}. We put the i-th chain in a bucket labeled j, if (dirij−1, dirij) ∈
{(+,−), (−,+)}. Note that, it is possible that the i-th chain can co-exist in multiple
buckets. But more importantly, it will exist in at least one bucket. As there are k many
buckets and n many chains, by pigeonhole principle, we must have one bucket j ∈ [k], such
that it holds at least dn/ke many chain indices. �

Now we complete the proof of Theorem 2. Observe that Wfwd and Wbck are the random
variables corresponding to the maximum multicollision in a truncated random permutation
sample of size t, i.e., distribution 1 of subsection 3.2. Further, Wmitm is the random variable
corresponding to the maximum multicollision in a sum of random permutation sample of
size t, i.e., distribution 2 of sub section 3.2. Now, using linearity of expectation, we have

µd,t ≤ Ex
[
Wfwd]+ Ex

[
Wbck]+ Ex

[
Wmitm]

≤ mcoll(t, 2τ) + mcoll(t, 2r) + mcoll′(t2, 2b).

4.4 Related work
In [Men18] Mennink analyzed the Key-prediction security of Keyed Sponge using a special
type of data structure which is close to but different from our multi-chain structure. Here
we give a brief overview of Mennink’s work in our notations and describe how our structure
is different from the structure considered by him.

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that u1, . . . ut
are distinct and v1, . . . , vt are distinct. Let c < b be any positive integer. For any such
list of pairs, we write domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}. Given such a
list we define a labeled directed graph GL over the set of vertices range(L) ⊆ {0, 1}b as
follows: A directed edge vi → vj with label x (also denoted as vi

x→ vj) is in the graph if
vi ⊕ x‖0c = uj . We can similarly extend this to a label walk W from a node w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of the walk.

The set yieldc,k(L) consists of all possible labels x such that there exists a k-length walk
of the form 0b x→ wk in the graph GL.

Let Q = (ui, vi)i∈(q] be the query transcript of the underlying permutation in any
Sponge. Consider the graph, GL. The configuration of a walk from w0 to wk is defined
as a tuple C = (C1, . . . , Ck) ∈ {0, 1}k where Ci = 0 if wi−1

xi−→ wi comes from a forward
primitive query and Ci = 1 if it corresponds to an inverse primitive query.

Mennink provided an upper bound of yieldc,k(L) by bounding the maximum number
of possible labeled walks from 0b to any given wk ∈ {0, 1}b with a given configuration C.

Chakraborti et al. 11

The use of tools like multi-collision and the similarity in the data structure of [Men18]
with our multi-chain structure can be misleading. Here we try to discuss the difference
between them and show that the underlying motivation behind both the problems are
philosophically as different as possible.

Note that using multi-chain structure, we try to bound the number of different walks
with the same label and distinct starting points whereas yieldc,k(L) is the number of
different walks with same starting point namely 0b and distinct labels. Hence the multi-
chain structure deals a different problem from yieldc,k(L). A notable change in our
work is to deal multicollision of sum of two permutation calls (call it meet in the middle
multicollision, see definition of Wmitm). This computation is not straightforward like usual
computation of expectation of multi-collision.

5 Transform-then-Permute Construction
In this section we describe Transform-then-Permute (or TtP in short), which generalizes
duplexing method used in sponge AEAD encompassing many other constructions such as
Beetle, SpoC etc.

5.1 Parameters and Components
We first describe some parameters of our wide family of AEAD algorithms.

1. State-size: The underlying primitive of the construction is a b-bit public permutation.
We call b state size of the permutation.

2. Key-size: Let κ denote the key-size. Here we assume κ < b.

3. Nonce-size: In this paper we consider fixed size nonce. Let ν denote the size of nonce.

4. Rate: Let r, r′ ≤ b denote the rate of processing message and associate data respec-
tively. The capacity is defined as c := b− r.

Let N0 be the set of all nonnegative integers and θ := b− κ− ν. For x ∈ N0, we define

a(x) :=
{

0 if x ≤ θ
dx−θr′ e otherwise

Parsing Function: Let D = N‖A where N ∈ {0, 1}ν and A ∈ {0, 1}∗ with a := a(|A|, ν).

– Case |A| ≤ θ: parse(N,A) = D ‖ 0θ−|A| ∈ {0, 1}b−κ.

– Case |A| > θ: parse(N,A) := (IV,A1, . . . , Aa) where D = IV ‖D′, IV ∈ {0, 1}b−κ

and (A1, . . . , Aa) r′← D′. Note that |D′| = |A| − θ and so when we parse D′ to blocks
of size r′, we get a(|A|) = d |A|−θr′ e many blocks.

In addition to parsing N‖A, we also parse a message or ciphertext Z as (Z1, . . . , Zm) r← Z
where m = d|Z|/re.

Domain Separation: To every pair of nonnegative integers (|A|, |Z|) with a = a(|A|),
m = d|Z|/re, and for every 0 ≤ i ≤ a+m, we associate a small integer δi where

δi =


0 if i 6∈ {a} ∪ {a+m}
1 if (i = a ∧ r′ | |A| − θ) ∨ (i = a+m ∧ r | |M |)
2 otherwise.

12 On the Security of Sponge-type Authenticated Encryption Modes

We collect all these δ values through the following function DS(|A|, |Z|) = (δ0, δ1, . . . , δa+m).

Encoding Function: Let DDS := {0, 1}2 ×{0, 1, 2} and rmax = max{r, r′}. Let encode :
{0, 1}≤rmax × DDS → {0, 1}b be an injective function such that for any D,D′ ∈ {0, 1}x,
1 ≤ x ≤ rmax and for all ∆ ∈ DDS , we have encode(D,∆)⊕encode(D′,∆) = 0b−x‖(D⊕D′).
Actual description of this encode function is determined by the construction.

Format Function: We define a formatting function Fmt which maps a triple (N,A,M)
to (D0, . . . , Da+m) ∈ ({0, 1}b)a+m+1 where a := a(|A|) and m = d|Z|/re. The exact
description of format function is described in Algorithm 1.

Algorithm 1 Description of the format function (Fmt)
function Fmt(N,A,Z)

a← a(|A|, |N |), m← d|Z|/re
(A0, A1, . . . , Aa)← Parse(N,A)
(Z1, . . . , Zm) r← Z

(δ0, . . . , δa+m)← DS(|A|, |Z|)
for i = 0 to a do

if i = a and m = 0 then
Di ← encode(Ai, (0, 1, δi))

else
Di ← encode(Ai, (0, 0, δi))

for i = 1 to m do
Da+i ← encode(Zi, (1, 0, δi+m))

return (D0, . . . , Da+m)

Feedback Functions: We also need some linear functions Lad, Le : {0, 1}b → {0, 1}b
which are used to process associate data and message respectively in an encryption
algorithm.

Now, given a linear function L : {0, 1}b → {0, 1}b, 1 ≤ x ≤ r, the following function
L′ : {0, 1}b×{0, 1}x×DDS → {0, 1}b×{0, 1}x, is used to process the j-th block Z (either
a plaintext or a ciphertext) using the output Y of the previous invocation of the random
permutation:

L′(Y,Z,∆) = (X := L(Y) ⊕ encode(Z,∆), Z ′ := dY e|Z| ⊕ Z)

For 1 ≤ i ≤ r, let Ld,i(x) to denote the linear function Le(x) ⊕ 0b−i‖dxei. Then, it
is easy to see from the property of encoding function that L′d,|C|(Y,C,∆) = (X,C) if
and only if L′e(Y,M,∆) = (X,C). Fig 1 provides an illustration how a message block is
processed.

5.2 The Description of Transform-then-Permute AEAD
We describe the Transform-then-Permute algorithm in Algorithm 2 which generalizes
duplexing method used in sponge AEAD. Figure 2 illustrates a simple case when |N | = b−κ.

Chakraborti et al. 13

ΠXold

⊕ M

C

Le ⊕

encode(M,∆)

Π

−r

−c

|
b Xnew

Ynew

Figure 1: Illustration of the feedback process for a message block M of |M | bits. Here
encode(M,∆) represents some encoding of |M | bits string to a b-bit string as described above and
Le is a linear transformation applied on b-bit strings.

ΠK‖N L′ad

encode(A1,∆1)

L′ad

encode(Aa,∆a)

Π L′e

encode(M1,∆a+1)

C1

L′e

encode(Mm,∆a+l)

Cm

Π T|
deτ

Figure 2: A Complete Diagram of the Transform-then-Permute AEAD mode. Here we assume
|N | = b−κ, L′ad(Y,A) = Lad⊕A. Lad, L′e, encode functions and ∆ values are as described before.

Algorithm 2 A complete Encryption/Decryption Algorithm for Transform-then-Permute
mode with Associated data. X = (x =? y : p, q) means X = p if x = y and X = q
otherwise.

1: function Enc(K,N,A,M)
2: a← a(|A|, |N |), m← d|M |/re
3: (D0, D1, . . . , Da+m)← Fmt(N,A,M)
4: (M1, . . . ,Mm) r←M

5: X0 ← K‖0b−κ ⊕D0

6: Y0 ← Π(X0)
7: for i = 1 to a do
8: Xi ← Lad(Yi−1)⊕Di
9: Yi ← Π(Xi)

10: for j = 1 to m do
11: i = a+ j

12: Xi ← Le(Yi−1)⊕Di
13: Cj ←Mj ⊕ dYi−1e|Mj |
14: Yi ← Π(Xi)

15: T ← dYa+meτ
16: return (C1‖ . . . ‖Cm, T)

1: function Dec(K,N,A,C, T)
2: a← a(|A|, |N |), m← d|C|/re
3: (D0, D1, . . . , Da+m)← Fmt(N,A,C)
4: (C1, . . . , Cm) r← C

5: X0 ← K‖0b−κ ⊕D0

6: Y0 ← Π(X0)
7: for i = 1 to a do
8: Xi ← Lad(Yi−1)⊕Di
9: Yi ← Π(Xi)

10: for j = 1 to m do
11: i = a+ j

12: Xi ← Ld,|Ci|(Yi−1)⊕Di
13: Mj ← Cj ⊕ dYi−1e|Cj |
14: Yi ← Π(Xi)

15: T ← dYa+meτ
16: return T ′ =? T : M1‖ . . . ‖Mm,⊥

Lemma 2. Given any two tuples (N,A,Z) 6= (N ′, A′, Z ′) and Fmt(N,A,Z) = (D0, . . . , Da+m)
and Fmt(N ′, A′, Z ′) = (D′0, . . . , D′a′+m′), we have

1. (D′0, . . . , D′a) 6= (D0, . . . , Da) whenever (N,A) 6= (N ′, A′) and a ≤ a′.

2. (D′a, . . . , D′a+m) 6= (Da, . . . , Da+m) whenever (N,A) = (N ′, A′) and m ≤ m′.

Proof. We write parse(N,A) = (A0, A1, . . . , Aa) and parse(N ′, A′) = (A′0, A′1, . . . , A′a′).

14 On the Security of Sponge-type Authenticated Encryption Modes

1. Let (N,A) 6= (N ′, A′). Then we have (A0, A1, . . . , Aa) 6= (A′0, A′1, . . . , A′a′). Now
if, a < a′ then we have Da = encode(Aa, 0, δ) where δ ∈ {1, 2} and D′a =
encode(A′a, 0, 0). Hence by injectivity of encode we have Da 6= D′a. If a = a′

then there exists nonnegative i ≤ a such that Ai 6= A′i and hence Di 6= D′i.

2. Let (N,A) = (N,A′). Then we have (A0, Ai, . . . , Aa) = (A′0, A′i, . . . , A′a). Note that
m,m′ both cannot be 0. So if m = 0, then m′ > 0 =⇒ Da = encode(Aa, 0, δ)
for some δ ∈ {1, 2} and D′a = encode(Aa, 0, 0). Hence Da 6= D′a. Let m,m′ > 0
then if, m < m′ then we have Da+m = encode(Mm, 1, δ) where δ ∈ {1, 2} and
D′a = encode(M ′m, 1, 0). Else if m = m′, then there exists positive i ≤ m such that
Mi 6= M ′i . Hence Da+i 6= D′a+i.

.

5.3 Security Analysis of TtP
We prove the following result on the AE security of Transform-then-Permute when the
linear functions Ld,i and Le are invertible for all 1 ≤ i ≤ r. Let qp, qe and qd define the
number of primitive, encryption and decryption queries respectively by an adversary and
let σe and σd define all the data blocks processed, including nonce, associated data and
message, in those encryption and decryption queries, respectively,.

Theorem 3 (main theorem). Let TtP be a construction where Ld,i for all i ∈ [r] and Le
are invertible. For any (qp, qe, qd, σe, σd)-adversary A , we have

Advaead
inv-TtP(A) ≤ σdmcoll(qp, 2τ)

2c + σdmcoll(qp, 2r)
2c +

σdmcoll′(q2
p, 2b)

2c

+ qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 8σeqp

2b + 3qpmcoll(σe, 2r)
2c

+ qpmcoll(σe, 2τ)
2b−τ + σe + qp

2b + qpσdmcoll(σe, 2r)
22c .

5.4 How to Convert a Generalized Sponge-type Constructions to TtP
In this section we describe why Transform-then-Permute captures wide class of permutation
based sequential construction in which only non-linear operation lie in the underlying
permutation. Let L : {0, 1}b × {0, 1}r → {0, 1}b × {0, 1}r be any linear function. Consider
the Sponge-type construction which takes state input Xi and data input Mi and generate
the data output Ci and next state input Xi+1 as follows:

Yi = Π(Xi);
[
Xi+1
Ci

]
= L ·

[
Yi
Mi

]

where L =
[
L1,1 L1,2
L2,1 L2,2

]
consists of b× b matrix L1,1, b× r matrix L1,2, r × b matrix L2,1,

r× r matrix L2,2. As L2,1 ·Y +L2,2 ·M = C we must have rank(L2,2) = r, since otherwise
encryption is not a bijective function from message space to ciphertext space. For the sake
of simplicity we can assume that L2,2 = Ir (the identity matrix of size r). Otherwise, we
can redefine message block as M ′ = L2,2 ·M .

Now we observe that rank(L2,1) = r. If not, then ∃γ, an 1 × r matrix, such that
γ · L2,1 = 0. Hence, γ · M = γ · C holds with probability 1. Since in case of ideal
permutation this event occurs with probability 1

2 . Hence there will be no privacy security

Chakraborti et al. 15

for such a construction. As rank(L2,1) = r, there exists an invertible matrix Zb×b such
that L2,1 · Z = Ir‖0r×(b−r). Let Le = L1,1 · Z. Then by simple matrix algebra we have[

Xi+1
Ci

]
=
[

Le L1,2
Ir‖0r×(b−r) Ir

]
·
[
Y ′i
Mi

]
where Y ′i = Z−1 · Yi. If we redefine the random permutation output as Z−1 ·Π(Xi) then it
is clearly again a random permutation. Let us denote encode(M) = L1,2 ·M and hence the
the general linear function based Sponge-type construction boils down to the construction
TtP.

5.5 New Improved Security of Beetle
In Beetle [CDNY18], the linear function Le is defined as Le(y‖x1‖x2) 7→ (y‖x2‖x2 ⊕ x1),
where (y, x1, x2) ∈ {0, 1}c × {0, 1}r/2 × {0, 1}r/2. The linear function Ld is defined by the
mapping Ld(y‖x1‖x2) 7→ (y‖x2⊕x1‖x1), where (y, x1, x2) ∈ {0, 1}c×{0, 1}r/2×{0, 1}r/2.
Clearly the Le and Ld functions are invertible.Further, they have full rank.

Remark 2. The PHOTON-Beetle [AGH+19] design which is currently in the round 2 of
NIST LwC competition uses a feedback function which is a linear transformation of the
feedback function of Beetle [CDNY18]. By applying the conversion method as described
in subsection 5.4 the PHOTON-Beetle design can be viewed as a TtP design with the same
linear function Le as described above.

Thus, from theorem 3, we have

Corollary 1. For any (qp, qe, qd, σe, σd)-adversary A , we have the primary version of
PHOTON-Beetle can be bounded by

Advaead
PHOTON-Beetle(A) ≤ 4τσd

2c + 4rσd
2c + 4bσd

2c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 8σeqp

2b

+ 12rqp
2c + 4τqp

2b−τ + σe + qp
2b + 4rqpσd

22c .

The secondary version of PHOTON-Beetle can be bounded by

Advaead
PHOTON-Beetle(A) ≤ 4τσd

2c + 4σd · qp
2b + 4bσd

2c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 8σeqp

2b

+ 15qpσe
2b + 4τqp

2b−τ + σe + qp
2b + 5qpσdσe

2b+c .

In [CIMN17], the authors proved that for any (qp, qe, qd, σe, σd)-adversary A ,

AdvAEBeetle(A) ≤ 2(σe + qp)σd
2b +

(
σe + qp

2r−1 + qp
2c

)r
+ rσd

2c + qv
2r . (4)

The primary version of the PHOTON-Beetle[BCD+19] mode of AEAD has r = τ =
c = 128 and b = 256. Comparing with the σ and qp values prescribed by NIST we have
2r = 2τ ≥ qp ≥ σ and 2b ≥ b2q2

p.
The secondary version of the PHOTON-Beetle[BCD+19] mode of AEAD has r = 32, c =

224, τ = 128 and b = 256. Comparing with the σ and qp values prescribed by NIST we
have 2τ ≥ qp ≥ σ, σ ≥ 2r and 2b ≥ b2q2

p.

16 On the Security of Sponge-type Authenticated Encryption Modes

By equation 4 the advantage of Beetle is bounded by
(qp

2r−1

)r. Hence for Beetle to be
secure, r has to be large.

It can be noticed that the primary version of PHOTON-Beetle has r = 128 > 112.
Hence by equation 4, it is secure within the NIST requirements.

For secondary version of PHOTON-Beetle, we have r = 32 < 112 and hence equation 4
fails to prove the security for this version under NIST requirements.

The major difference between our analysis and the analysis of [CIMN17] is that, we use
the expected number of multichains to bound the security of Beetle whereas in [CIMN17],
it was only done using multicollision probability at the rate part. Hence our new bound is
much tighter than that of the existing one.

Now Corollary 1 follows from, theorem 3,proposition 1 and proposition 2.
Further using the relation that σ ≤ qp (as per NIST LwC requirements) we can bound

the advantage for the primary version as,

Advaead
PHOTON-Beetle(A) ≤ qp

2κ +O
(rqp

2c
)
.

and the secondary version as,

Advaead
PHOTON-Beetle(A) ≤ qp

2κ +O
(qpσ

2b
)

Hence, by this new improved security bound, it is proved that both the primary and
the secondary version of PHOTON-Beetle are secured under the NIST requirements.

5.6 Security of SpoC
In SpoC [AGH+19], the linear function Le is identity, and the linear function Ld is defined
by the mapping L(x, y) 7→ (x, x‖0c−r ⊕ y), where (x, y) ∈ {0, 1}r × {0, 1}c. Clearly the Le
and Ld functions are involutions, and hence invertible. Further, it is easy to check that
they have full rank. Thus, from Eq. (??) and theorem 2, we have

Corollary 2. For any (qp, qe, qd, σe, σd)-adversary A , we have the primary version of
SpoC can be bounded as,

Advaead
SpoC(A) ≤ 5qpσd

2c+τ + 5qpσd·
2b +

4b3q2
pσd

2b+c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b

+ 8σeqp
2b + 12rqp

2c + 4τqp
2b−τ + σe + qp

2b + 4rqpσd
22c

The primary version of SpoC mode of AEAD has r = τ = 64, b = 192. Using the NIST
prescribed values of σ and qp we have σ < 2r but 2r = 2τ ≤ qp and 2b ≤ b2q2

p.
Hence Corollary 2 follows from theorem 3, proposition 1 and proposition 2.
Further using the relation that σ ≤ qp (as per NIST LwC requirements) we can bound

the advantage as,

Advaead
SpoC(A) ≤ qp

2κ +O
(σ

2τ
)

+O
(qpσ

2b
)
.

5.7 Interpretation of Corollary 1 and Corollary 2
Keeping in mind the NIST LwC requirement of time complexity qp = 2112 and data
complexity rσ = 253 we try to find out the smallest possible permutation under which the
Beetle and SpoC modes can achieve security. For this discussion we ignore the constants

Chakraborti et al. 17

appearing in bounding the advantage terms. we take 2r ≤ σ ≤ qp ≤ 2c. We further assume
that σ ≤ 2τ ≤ qp and 2b ≤ b2q2

p.
Then by applying proposition 1 and proposition 2 in Corollary 1 or Corollary 2 we

have,

Advaead
SpoC/Beetle(A) ≤ qp

2κ +O
(σ

2τ
)

+O
(σqp

2b
)
.

Hence ignoring the constant we conclude that, in case of Beetle and SpoC, with rate
r = 32 and permutation size b = 160, we achieve security almost close to the NIST LwC
requirements.

5.8 Security of Sponge
In case of the original Sponge construction, the Ld function is defined by Ld(x, y) 7→ (0r, y)
where (x, y) ∈ {0, 1}r × {0, 1}c. Note that the Ld function is not invertible. As described
in Theorem 2, we have a bound for µσd,qp in the cases where Ld is invertible or more
specifically in the cases where Observation 1 holds. Hence the results of Theorem 2 can
not be applied in case of original Sponge. However Since Le is invertible, with a similar
analysis as in the case of TtP we get,

Advaead
Sponge(A) ≤

σd · µσd,qp
2c + qp

2κ + 2qd
2τ + 2σd(σ + qp)

2b + 8σeqp
2b + 3qpmcoll(σe, 2r)

2c

+ qpmcoll(σe, 2τ)
2b−τ + σe + qp

2b + qpσdmcoll(σe, 2r)
22c . (5)

Bounding µσd,qp in case of Sponge is an interesting problem which is open to further
research. However, it seems very hard to have a tight estimate of µσd,qp for duplex case.
A straightforward estimate of µσd,qp leads to the known bound of σdqp/2c. So as of now
the tight security bound of Sponge duplex is still an open problem. However, our result
helps in reducing the problem of finding tight bound to solving some functional graph
problem (estimation of µσd,qp). The functional graph of random functions are well-studied
in cryptanalysis of iterated hash functions and MACs [PW14, BWGG17, BGW18]. It is
quite possible that similar approach may lead to a better understanding of the security of
Sponge duplex.

6 Proof of Theorem 3
The proof employs coefficient H-technique of Theorem 1. To apply this method we need
to first describe the ideal world which basically tries to simulate the construction. The
real world behaves same as the construction and would be described later. For the sake of
notational simplicity we assume size of the nonce is at most b− κ. Later we mention how
one can extend the proof when nonce size is more than b− κ. We also assume that the
adversary makes exactly qp, qe and qd many primitive, encryption and decryption queries
respectively.

6.1 Ideal World and Real World
Online Phase of Ideal World. The ideal world responds three oracles, namely
encryption queries, decryption queries and primitive queries in the online phase.

18 On the Security of Sponge-type Authenticated Encryption Modes

(1) On Primitive Query (Wi, diri):

The ideal world simulates Π± query honestly.2 In particular, if diri = 1, it sets
Ui ← Wi and returns Vi = Π(Ui). Similarly, when diri = −1, it sets Vi ← Wi and
returns Ui = Π−1(Vi).

(2) On Encryption Query Qi := (Ni,Ai,Mi):

It samples Yi,0, . . . ,Yi,ti ←$ {0, 1}b where ti = ai + mi, ai = a(|Ai|) and mi =
d |Mi|

r e. Then, it returns (Ci,1‖ · · · ‖Ci,mi ,Ti) where (Mi,1, . . . ,Mi,mi)
r← Mi , Ci,j =

dYi,ai+j−1e|Mi,j | ⊕Mi,j for all j ∈ [mi] and Ti ← dYi,tieτ .

(3) On Decryption Query Qi := (N∗i ,A∗i ,C∗i ,T∗i):
According to our convention we assume that the decryption query is always non-trivial.
So the ideal world returns abort symbol M∗i := ⊥.

Offline Phase of Ideal World. After completion of oracle interaction (the above
three types of queries possibly in an interleaved manner), the ideal oracle sets E , ,D,P to
denote the set of all query indices corresponding to encryption, decryption and primitive
queries respectively. So E t D t P = [qe + qd + qp] and |E| = qe, |D| = qd, |P| = qp. Let
the primitive transcript ωp = (Ui,Vi, diri)i∈P and let ω′p := (Ui,Vi)i∈P . The decryption
transcript ωd := (M∗i)i∈D where M∗i is always ⊥.

Now we describe some extended transcript (releasing additional information) for
encryption queries. It samplesK ←$ {0, 1}κ. For all i, let Fmt(Ni,Ai,Mi) = (Di,0, . . . , Di,ti)
and for every 0 ≤ j ≤ ti, the intermediate input (X-value) is defined as

Xi,j =
{
Di,0 ⊕K‖0b−κ if j = 0
Le(Yi,j−1)⊕Di,j if 1 ≤ j ≤ ti

The encryption transcript ωe = (Xi,jYi,j)i∈E,j∈[0..ti]. So, the transcript of the adversary
consists of ω := (Q,ωp, ωe, ωd) where Q := (Qi)i∈E∪D.

Real World. In the online phase, the AE encryption and decryption queries and
direct primitive queries are faithfully responded based on Π±. Like the ideal world, after
completion of interaction, the real world returns all X-values and Y -values corresponding
to the encryption queries only. Note that a decryption query may return Mi which is not
⊥.

6.2 Bad Transcripts
We define the bad transcripts into two main parts. We first define bad events due to
encryption and primitive transcript. The following bad events says that (i) there is a
collision among inputs/outputs of ωp and ωe (ii) there is a collision among input/outputs
of ωe. So, given that there are no such collision, all inputs and outputs are distinct and
hence ωe ∪ ωp is permutation compatible (can be realized by random permutation). More
formally, we define the following bad events:

B1: For some (U,V) ∈ ωp, K = bUcκ.

B2: For some i ∈ E , j ∈ [ti], Yi,j ∈ range(ωp), (in other words, range(ωe)∩ range(ωp) 6= ∅)

B3: For some i ∈ E , j ∈ [ti], Xi,j ∈ domain(ωp), (in other words, domain(ωe) ∩
domain(ωp) 6= ∅)

2For example, one can use lazy sampling to simulate random permutation.

Chakraborti et al. 19

B4: For some (i ∈ E , j ∈ [ti]) 6= (i′ ∈ E , j′ ∈ [ti′]), Yi,j = Yi′,j′ ,

B5: For some (i ∈ E , j ∈ [ti]) 6= (i′ ∈ E , j′ ∈ [ti′]), Xi,j = Xi′,j′ ,

Now we describe the bad event due to decryption queries. Suppose the bad events
(B1∨ · · · ∨ B5) as defined above due to encryption queries and primitive don’t occur i.e. we
have ωp ∪ ωe is permutation compatible. Suppose Π′ is the partially defined permutation
defined over domain of ωp ∪ ωe and mapping the corresponding range elements. For each
decryption query Qi = (N∗i ,A∗i ,C∗i ,T∗i), we compute ai = a(|A∗i |), mi = d|C∗i |/re and
Fmt(N∗i ,A∗i ,C∗i) = (D∗i,0, . . . , D∗i,ti). We define p′i is the largest index j for which the input
Xj is in the domain of ωe ∪ ωp while we run the decryption algorithm using Π′ for Qi.
Now, if p′i = ti i.e. if the complete decryption algorithm computation for the query is
determined by the ωe ∪ωp transcript then in such a case we define bad (called mBAD) if the
corresponding tag also matches. Note that for this bad transcript the real world should
not abort the decryption query. We also define some more auxiliary bad events. Now we
define all bad events in a more formal way.
Definition of pi. Before we define p′i, we first define pi which is the input index we can
compute for the decryption query only using encryption queries transcript. Formally, pi is
defined as −1 if for all i′ ∈ E , Ni′ 6= N∗i . Otherwise, there exists a unique i′ ∈ E such that
Ni′ = N∗i (as we consider nonce-respecting adversary only). Let pi + 1 denote the length of
the longest common prefix of (Di′,0, · · · , Di′,ti′) and (D∗i,0, · · · , D∗i,ti). Note that pi = −1
in case there is no common prefix.

We now define Y∗i,0..pi = Yi′,0..pi , X∗i,0..pi = Xi′,0..pi when pi ≥ 0 and

X∗i,pi+1 =
{
Le(Yi′,pi) ⊕ D∗i,pi+1 if pi ≥ 0.
K‖N∗i if pi = −1.

By lemma 2, pi < ti, pi < ti′ . By definition of longest common-prefix, we have
X∗i,pi+1 6= Xi′,pi+1.

Definition of p′i. If pi < ai or if X∗i,pi+1 /∈ domain(ωp) define p′i = pi. Else, we further
extend X∗-values and Y∗-values based on the primitive transcript ωp. Let xi,j := D∗i,j for
all i ∈ D, 1 ≤ j ≤ ti. If there is a labeled walk (in the labeled directed graph induced by
ωp as described in section 4 from Y∗i,pi+1 with label (xi,pi+2, . . . , xi,j) then we denote the
end node as Y∗i,j . In notation we have

Y∗i,pi+1
(xi,pi+2,...,xi,j)−→ Y∗i,j .

Let p′i denotes the maximum of all such possible j’s. For all those i and j in which Y∗i,j
has been defined as described above, we define X∗i,j+1 := Ld(Y∗i,j)⊕ xi,j+1.

Bad events due to decryption transcript:

mBAD: For some i ∈ D with p′i = ti and dY∗i,tieτ = T∗i .

B6: For some i ∈ D, p′i < ti and, X∗i,p′
i
+1 ∈ domain(ωe) ∪ domain(ωp).

We write BAD to denote the event that the ideal world transcript Θ0 is bad. Then, with
a slight abuse of notations and union bound, we have

BAD = mBAD ∪
(6⋃
i=1

Bi
)
. (6)

20 On the Security of Sponge-type Authenticated Encryption Modes

Lemma 3.
Pr [mBAD] ≤

σd · µσd,qp
2c

Lemma 4.

Pr
[6⋃
i=1

Bi

]
≤ qp

2κ + 8σeqp
2b + 2σ2

e

2b + 3qpmcoll(σe, 2r)
2c

+ qpmcoll(σe, 2r)
2b−τ + σe + qp

2b + qpσdmcoll(σe, 2r)
22c .

We postpone the proof of lemma 3 and 4 to subsection 6.5.

6.3 Good Transcript Analysis
The motivation for all the bad events would be clear from the understanding of a good
transcript (i.e., not a bad transcript). Let ω = (Q,ωp, ωe, ωd) be a good transcript. For the
sake of notation simply we ignore the query transcript Q as it is not required to compute
the probability of a transcript.

1. The tuples ωe is permutation compatible and disjoint from ωp. So union of tuples
ωe ∪ ωp is also permutation compatible.

2. Let D1 (type-1 decryption query) be the set of all i ∈ D, if p′i = ti with dY∗i,tieτ 6= T∗i .
In this case, decryption algorithm should abort with probability one. Set of all
other indices is denoted as D2 (type-2 decryption query). In this case, p′i < ti but
X∗i,p′

i
+1 6∈ domain(ωe ∪ ωp). So, Y∗i,p′

i
+1 value and subsequent Y -values will have

almost b-bit entropy. Thus, with a negligible probability we may not abort the query.

Ideal World Interpolation Probability. Let Θ0 and Θ1 denote the transcript
random variable obtained in the ideal world and real world respectively. As noted before,
all the input-output pairs for the underlying permutation are compatible. In the ideal
world, all the Y values are sampled uniform at random; the list ωp is just the partial
representation of Π; and all the decryption queries are degenerately aborted; whence we
get

Pr[Θ0 = ω] = 1
2bσe(2b)qp

.

Here σe denotes the total number of blocks present in all encryption queries including
nonce. In notation σe = qe +

∑
imi.

Real World Interpolation Probability. In the real world, for ω we denote the en-
cryption query, decryption query, and primitive query tuples by ωe, ωd and ωp, respectively.
Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]
= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·
(

1−
∑
i∈D2

Pr[¬ωd,i | ωe, ωp]
)

(7)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that the i-th
decryption query successfully decrypts and and ¬ωd is the union ∪i∈D2¬ωd,i (i.e. at least

Chakraborti et al. 21

one decryption query successfully decrypts). The encryption and primitive queries are
mutually permutation compatible, so we have

Pr
Θ1

(ωe, ωp) = 1/(2b)σe+qp ≥ Pr
Θ0

(ωe, ωp).

Now we show an upper bound PrΘ1(¬ωd,i | ωe, ωp) ≤
2(σ+qp)

2b + 2
2τ for every type-2

decryption query. We quickly recall that Fmt(N∗i ,A∗i ,C∗i) = (D∗i,0, . . . , D∗i,ti). So, ¬ωd,i is
same as dΠ(X∗i,ti)eτ = T∗i where X∗i,j values have been defined recursively as follows

X∗i,j = Ld
(
Π(X∗i,j−1)

)
⊕D∗i,j , p′i + 1 < j ≤ ti.

Let I and O denote the set of inputs and outputs for Π which are present in the
transcript (ωe, ωp). Recall that X∗i,p′

i
+1 is fresh, i.e., X∗i,p′

i
+1 6∈ I.

Claim 1. Pr(X∗i,j is fresh) ≥ (1− 2(σe+qp+ti)
2b) ∀ p′i + 1 < j ≤ ti.

Proof. Since X∗i,p′
i
+1 is not the last block, then the next input block may collide with some

encryption or primitive input block with probability at most σe+qp
2b−σe−qp . Applying this

same argument for all the successive blocks till the last one, we get that if none of the
previous block input collides then the probability that the last block input collides is at
most (σe+qp+ti−p′i+2)

2b−σe−qp−ti+p′i+2 ≤
2(σe+qp+ti)

2b .

Claim 2. Pr(¬ωd,i | X∗i,j are fresh) ≤ 2
2τ .

Proof. Since the last input block X∗i,ti is fresh, hence Π(X∗i,ti) = T∗i with probability at
most 2/2τ (provided σe + qp ≤ 2b−1 which can be assumed, since otherwise our bound is
trivially true).

Let Ej denote the event that X∗i,j is fresh and E := ∧tij=p′
i
+1Ej

Using the claims, we have

Pr
Θ1

(¬ωd,i | ωe, ωp) ≤ Pr
Θ1

(¬ωd,i ∧ E | ωe, ωp) + Pr(Ec).

≤ 2
2τ +

ti∑
j=p′

i
+1

σd + σe + qp
2b−1 .

The last inequality follows from the above claims. Now, we can proceed by using the union
bound as follows.

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

2ti(σe + qe + σd)
2b + 2

2τ

≤ 2σd(σe + σd + qp)
2b + 2qd

2τ

= 2σd(σ + qp)
2b + 2qd

2τ

Theorem 3 follows from H-technique theorem 1 combined with theorem 2, lemma 3,
lemma 4 and Eq. (7). �

22 On the Security of Sponge-type Authenticated Encryption Modes

Remark 3. As described in the algorithm, in the case where nonce size is greater than
b− κ, we treat the excess length of the nonce as part of the associated data. For such a
TtP construction the internal values of the encryption transcripts are chosen in a prefix
respecting manner. Suppose the i, i′-th queries (Di,0, . . . , Di,ti) and (Di′,0, . . . , Di′,tj) have
a maximum common prefix of length pi and let without loss of generality i < i′. Then we
set Yi,j = Yi′,j and Xi,j = Xi′,j∀0 ≤ j ≤ pi. The rest of the proof remains the same.

6.4 Proof of Lemma 3 (Multi-chain Bad Transcript Analysis)
Suppose the event holds for the i-th decryption query and N∗i = Ni′ . So,

(
X∗i,pi+1,Y∗i,pi+1

)
must be the one of the starting node of the multi-chain. Hence as in definition 2, if
(U, V) be any other starting node of the multichain, then we must have dUer = dX∗i,pi+1er.
Now as before , let Wti−pi denote the maximum size of the set of multi-chain of length
ti − pi, induced by Ld and ωp. As bYi′,picc is chosen at random (and independent of
ωp), and C∗i,pi+1 is fixed, the probability to hold mBAD for i-th decryption query is at
most Wmi/2c given the transcript ωp. So by union bound, the conditional probability
Pr[mBAD | ωp] ≤

∑
i∈D

Wmi

2c .

Since the decryption query data complexity of the adversary is bounded by σd blocks
we have

∑
i∈Dmi ≤ σd. Now,∑

i∈D
Wmi ≤

∑
i∈D

(
max
k≤mi

Wk

k
×mi

)
≤ max
k≤σd

Wk

k
× σd.

Hence,

Pr [mBAD] ≤
∑
i∈D

Ex [Wmi]
2c ≤ max

k≤d
Ex
[

Wk

k

]
× σd

2c ≤
σd · µσd,qp

2c .

6.5 Proof of Lemma 4 (Bad Transcript Analysis)
From the union bound we have

Pr
[8⋃
i=1

Bi

]
≤ Pr [B1] + Pr [B2] + Pr [B3|¬B1] + Pr [B4] + Pr [B5]

+ Pr [B6|¬B1] + Pr [B7|¬B1] + Pr [B8].

It is sufficient to upper bound each of these individual probabilities. We bound the
probabilities of these events in the following:
Bounding Pr[B1]: This is basically the key recovery event, i.e., the event that the
adversary recovers the master key K by direct queries to the internal random permutation
(can be both forward or backward). For a fixed entry (U,V) ∈ ωp, the probability that
K = bUcκ is bounded by at most 2−κ, as K is chosen uniform at random from {0, 1}κ.
Thus, we have

Pr[B1] ≤ qp
2κ .

Bounding Pr[B2] : This event can be analyzed in several cases as below:
Case 1: ∃i, j, a, Yi,j = Va, encryption after primitive: This case can be bounded by prob-
ability at most 1/2b. We have at most σe many (i, j) pairs and qp many a indices. Since
Le has rank b′, this this can be bounded by at most σeqp/2b.
Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive: This case can be bounded
by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp

Chakraborti et al. 23

many a indices. Thus this can be bounded by at most σeqp/(2b − qp + 1) ≤ 2σeqp/2b (as
qp ≤ 2b−1).
Case 3: ∃i, j 6= ti, a, Yi,j = Va, dira = −, encryption before primitive: Here the adversary
has access to dYi,jer, as this value has already been released. Let Φout denote the number
of multicollisions among all dYi′,j′er values. Now, we have

Pr[Case 3] =
∑
Φout

Pr[Case 3 | Φout] · Pr[Φout]

≤
∑
Φout

Φout × qp
2c · Pr[Φout]

≤ qp
2c × Ex [Φout]

≤ qpmcoll(σe, 2r)
2c .

Case 4: ∃i, a, Yi,ti = Va, dira = −, encryption before primitive: This case is same as case-
3 plugging in r as τ and c as b − τ . So, Pr[Case 4] ≤ qpmcoll(σe,2τ)

2b−τ By using the union
bound, we have

Pr[B2] ≤ 3σeqp
2b + qpmcoll(σe, 2r)

2c + qpmcoll(σe, 2τ)
2b−τ .

Bounding Pr[B3 ∧ ¬B1] : This means ∃i, j, a, Xi,j = Ua where j > 0 (as B1 does not
hold). So, we can have the following cases with j > 0:
Case 1: ∃i, j, a, Xi,j = Ua, encryption after primitive: This case can be bounded by prob-
ability at most 1/2b, as Yi,j−1 is chosen uniform at random and Le in invertible. We have
at most σe many (i, j) pairs and qp many a indices. Thus this can be bounded by at most
σeqp/2b.
Case 2: ∃i, j, a, Xi,j = Ua, dira = −, encryption before primitive: This case can be bounded
by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp many
a indices. Thus this can be bounded by at most 2σeqp/2b.
Case 3: ∃i, j, a, Xi,j = Ua, dira = +, encryption before primitive: Since Le is invertible,
we can define V′ = L−1

e (Ua ⊕Dj). Then using the invertibility of Le we have this event is
same as the event ∃i, 0 < j, Yi,j−1 = V′ for some V′ ∈ ωp. Since j ≤ ti we have this event
is the same as Case 3 of B2. Hence,

Pr[Case 3] ≤ qpmcoll(σe, 2r)
2c .

Pr[B3|¬B1] ≤ 3σeqp
2b + qpmcoll(σe, 2r)

2c .

Bounding Pr[B4] and Pr[B5]: The probability of this event can be simply bounded by
birthday paradox and so it is at most σe(σe − 1)/2b.
Bounding Pr[B6|¬B1]: This event can be analyzed in several cases.
Case 1 p′i < ai: Since during associated data processing no information is leaked to the
adversary and Y ∗i,j-s are sampled uniformly at random hence for p′i < ai , the distribution
function of X∗i,p′

i
+1 = Y ∗i,p′

i
⊕D∗i, p′i + 1 is uniform. Hence

Pr [Case 1] ≤ σe + qp
2b .

24 On the Security of Sponge-type Authenticated Encryption Modes

Case 2 pi = p′i = ai: Similar to B3|¬B1, Pr [Case 2] can be bounded by at most 2σeqp
2b +

qpmcoll(σe,2r)
2c .

Case 3 ai ≤ pi < p′i: This corresponds to the case when the first non-trivial decryption
query block matches with a primitive query, and follows a partial chain and then matches
with some encryption query block. Doing similar analysis as in Case 3 of B3|¬B1, The
probability that this happens for i-th decryption is at most qp/2c ×miΦout/2c. Summing
over all i ∈ D, the conditional probability is at most qpσdΦout

22c . By taking expectation we
obtain the following:

Pr[Case 3] ≤ qpσdmcoll(σe, 2r)
22c .

Pr [B6|¬B1] ≤ σe + qp
2b + 2σeqp

2b + qpmcoll(σe, 2r)
2c + qpσdmcoll(σe, 2r)

22c .

By adding all these probabilities we prove our result.

7 Matching Attack on Transform-then-Permute
Now we see some matching attacks for the bound. We explain the attacks for the simplified
version (by considering empty associated data).

1. Suppose σdµσd,qp
2c maximizes for some adversary B interacting with Π. Now, the AE

algorithm A will run the algorithm B to get the primitive transcript ωp. We first
make qd many encryption queries with single block messages with distinct nonces
N1, . . . , Nqd and hence for all 1 ≤ i ≤ qd, dYi,0er, dXi,1er and dYi,1eτ values are
known. Suppose for length mi, the multi-chain for the graph induced by ωp start
from the nodes (whose r most significant bits of the domain is ui) to the nodes
(whose τ most significant bits of the range is Ti) and with label xi. Now we choose
the appropriate ciphertext C∗1 such that dX∗i,1er = ui. Moreover, we choose C∗i,j such
that C∗i,j is same as xi,j (here we assume that B makes queries so that the labels are
compatible with encoding function).
Now, we make decryption queries (Ni, C∗i , Ti). With probability Wmi/2c, the ith
forgery attempt would be successful. Then maximizing Wmi

mi
and by taking expecta-

tion, we achieve the desired success probability.

2. Guessing the key K through primitive query would lead a key-recovery and hence all
other attacks. The correct guess of the key can be easily detected by making some
more queries for each guess to compute an encryption query. This attack requires
qp = O(2κ). Similarly random forging gives success probability of forging about
O(qd/2τ).

3. Another attack strategy can be adapted to achieve σeqp/2b bound. We look for a
collision among X-values and primitive-query inputs. This can be again detected
by adding one or two queries to each guess. The same attack works with success
probability qp/2c if we make primitive queries after making all encryption queries.

4. A similar attack strategy can be adapted to achieve qp/2b−τ bound. We look for a
collision among T -values and primitive-query inputs where primitive queries are done
after the encryption queries to predict the unknown b− τ bits of the final output
value.

These attacks show that the bounds in theorem 3 and equation (5) are tight.

Chakraborti et al. 25

8 Conclusion
In this paper we have proved improved bound for Beetle and provided similar bound
for newly proposed mode SpoC. Our bound resolves all limitations known for Beetle and
Sponge duplex. We are able to provide tight estimation of µ when the feedback function for
decryption is invertible. This is the case for Beetle and SpoC, but not for Sponge duplex.

Although as discussed in section 7, we obtain tight expression for AE advantage for
Sponge duplex, the variable qdµqp,m∗/2c (present in our upper bound assuming that all
decryption queries are of length m∗) needs to be tightly estimated.

References
[AGH+19] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Mandal,

Mridul Nandi, and Raghvendra Rohit. Spoc. Submission to NIST LwC
Standardization Process (Round 2), 2019.

[AHMN10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia.
Quark: A lightweight hash. In Cryptographic Hardware and Embedded Systems,
CHES 2010. Proceedings, pages 1–15, 2010.

[BCD+19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. PHOTON-Beetle. Submission to NIST
LwC Standardization Process (Round 2), 2019.

[BDPA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT Hash Workshop 2007. Proceedings, 2007.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Advances in Cryptology -
EUROCRYPT 2008. Proceedings, pages 181–197, 2008.

[BDPA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-
based pseudo-random number generators. In Cryptographic Hardware and
Embedded Systems, CHES 2010. Proceedings, pages 33–47, 2010.

[BDPA11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Selected Areas in Cryptography - 18th International Workshop, SAC 2011.
Revised Selected Papers, pages 320–337, 2011.

[BDPA11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the security of the keyed sponge construction. In Symmetric Key Encryption
Workshop 2011. Proceedings, 2011.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Advances in Cryptology - EUROCRYPT 2013. Proceedings, pages 313–314,
2013.

[BGW18] Zhenzhen Bao, Jian Guo, and Lei Wang. Functional graphs and their ap-
plications in generic attacks on iterated hash constructions. IACR Trans.
Symmetric Cryptol., 2018(1):201–253, 2018.

[BKL+13] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. SPONGENT: the design space of lightweight
cryptographic hashing. IEEE Trans. Computers, 62(10):2041–2053, 2013.

26 On the Security of Sponge-type Authenticated Encryption Modes

[BWGG17] Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. Functional graph revisited:
Updates on (second) preimage attacks on hash combiners. In Advances in
Cryptology - CRYPTO 2017. Proceedings, Part II, pages 404–427, 2017.

[BYG91] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Handbook of Algorithms and
Data Structures in Pascal and C. Addison-Wesley, 1991.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[CIMN17] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In
Cryptographic Hardware and Embedded Systems - CHES 2017. Proceedings,
pages 277–298, 2017.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Advances in Cryptology - EUROCRYPT 2014. Proceedings, pages
327–350, 2014.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon. CAESAR recommendation for lightweight applications, 2016.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex
with built-in multi-user support. In Advances in Cryptology - ASIACRYPT
2017. Proceedings, Part II, pages 606–637, 2017.

[Gon81] Gaston H. Gonnet. Expected length of the longest probe sequence in hash
code searching. J. ACM, 28(2):289–304, 1981.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family
of lightweight hash functions. In Advances in Cryptology - CRYPTO 2011.
Proceedings, pages 222–239, 2011.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2 c/2 security in
sponge-based authenticated encryption modes. In Advances in Cryptology -
ASIACRYPT 2014. Proceedings, Part I, pages 85–104, 2014.

[JLM+19] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Yasuda.
Beyond conventional security in sponge-based authenticated encryption modes.
Journal of Cryptology, 32(3):895–940, 2019.

[Men18] Bart Mennink. Key prediction security of keyed sponges. IACR Transactions
on Symmetric Cryptology, 2018(4):128–149, Dec. 2018.

[MN17] Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual:
Towards optimal security using mirror theory. In Advances in Cryptology -
CRYPTO 2017. Proceedings, Part III, pages 556–583, 2017.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state
keyed sponge and duplex: Applications to authenticated encryption. In
Advances in Cryptology - ASIACRYPT 2015. Proceedings, Part II, pages
465–489, 2015.

[Pat91] Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires
Basés sur le Schéma du DES. PhD thesis, Université de Paris, 1991.

Chakraborti et al. 27

[Pat08] Jacques Patarin. The ”coefficients H“ technique. In Selected Areas in Cryp-
tography - SAC 2008. Revised Selected Papers, pages 328–345, 2008.

[PW14] Thomas Peyrin and Lei Wang. Generic universal forgery attack on itera-
tive hash-based macs. In Advances in Cryptology - EUROCRYPT 2014.
Proceedings, pages 147–164, 2014.

[RS98] Martin Raab and Angelika Steger. "balls into bins" - A simple and tight
analysis. In Randomization and Approximation Techniques in Computer
Science, Second International Workshop, RANDOM’98. Proceedings, pages
159–170, 1998.

[SF96] Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of
algorithms. Addison-Wesley-Longman, 1996.

[WH19] Hongjun Wu and Tao Huang. Clx. Submission to NIST LwC Standardization
Process (Round 1), 2019.

[Wu11] Hongjun Wu. The hash function jh. SHA-3 candidate submitted to NIST,
2011.

	Introduction
	Existing Security Bounds for Sponge-type AE Schemes
	Our Contributions
	Organization of the Paper

	Preliminaries
	Authenticated Encryption: Definition and Security Model
	H-coefficient Technique

	Some Results on Multicollision
	Expected Maximum Multicollision in a Uniform Random Sample
	A Special Example of Non-uniform Random Sample

	Multi-chain Security Game
	The Multi-Chain Structure
	The Multi-Chain Advantage
	Bounding d,t for Invertible L Functions
	Related work

	Transform-then-Permute Construction
	Parameters and Components
	The Description of Transform-then-Permute AEAD
	Security Analysis of TtP
	How to Convert a Generalized Sponge-type Constructions to TtP
	New Improved Security of Beetle
	Security of SpoC
	Interpretation of Corollary 1 and Corollary 2
	Security of Sponge

	Proof of Theorem 3
	Ideal World and Real World
	Bad Transcripts
	Good Transcript Analysis
	Proof of Lemma 3 (Multi-chain Bad Transcript Analysis)
	Proof of Lemma 4 (Bad Transcript Analysis)

	Matching Attack on Transform-then-Permute
	Conclusion

