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Abstract Vélu’s formulas for computing isogenies over Weierstrass model of elliptic curves
has been extended to other models of elliptic curves such as the Huff model, the Edwards
model and the Jacobi model of elliptic curves. This work continues this line of research by
providing efficient formulas for computing isogenies over elliptic curves of Hessian form.
We provide explicit formulas for computing isogenies of degree 3 and isogenies of degree
` not divisible by 3. The theoretical cost of computing these maps in this case is slightly
faster than the case with other curves. We also extend the formulas to obtain isogenies over
twisted and generalized Hessian forms of elliptic curves. The formulas in this work have
been verified with the Sage software and are faster than previous results on the same curve.
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1 Introduction

Isogenies are morphisms of finite nucleus groups between two elliptic curves. Given an
elliptic curve E over a field K and a finite subgroup G of E(K) the Vélu formulas [30]
explicitly determine an elliptic curve E ′ and an isogeny from E to E ′ with kernel G. Isoge-
nies are widely used in the study of elliptic curves [28]. They are also very used in elliptic
curve cryptography in particular to accelerate the scalar multiplication over elliptic curves
as shown in [13], [14], [8] and [23]. Isogenies are also used in the SEA algorithm to com-
pute the cardinality of an elliptic curve [1], [12] and [26]. Also, mathematical primitives
in the construction of cryptographic one-way functions such as hashes and pseudo-random
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number generators using isogenies have been proposed in [5] and [16]. More interestingly
is the construction of a quantum-resistant public crypto-systems based on super-singular el-
liptic curves isogenies (SIDH) [10]. The research works previously cited are based mostly
on the classical Weierstrass model of an elliptic curve. Several other models exist in the
literature such as the Hessian model, the Edward model, the Jacobi model, the Huff model.
These curves are almost all birationally equivalent to the Weierstrass model but depending
on the properties of each curve such as arithmetic of points, a careful choice of the model
may be necessary. For example, an elliptic curve with complete addition formulas and/or
unified addition formulas ensures protection against exceptional procedure attacks [17] and
side-channel attacks respectively on protocols based on the curves used. Also, addition for-
mulas that can be parallelized may be preferable in term of efficiency of the computations.
The Hessian model of elliptic curves [29] has been proven to have unified addition formulas
[18] which can be computed in a parallel way [29]. Also this model presents a nice geo-
metric interpretation of the group law that allows to obtain competitive costs in pairing’s
computation with respect to well known models of curves such as the Weierstrass and the
Edward model [15], [11]. Also, some standard curves from IEEE, SECG can be transformed
to Hessian curves as pointed out by Smart [29]. Analogues of Vélu’s formulas for Edward,
Huff and Jacobi models of elliptic curves are given in [24] and [31]. Expressing isogenies
on other models of elliptic curves (Edward, Huff, Jacobi, Hessian ... .etc) can improve the
efficiency of the considered algorithms. The computation of Isogenies over Edward elliptic
curve has been improved in several works such as [20], [19] and in [2] to improve the ef-
ficiency of SIDH. Orhon et al. [25] provide a faster inversion-free point addition formulas
using 2-isogenies on Huff curve. Meyer et al. [22] improved the efficiency of the commuta-
tive SIDH using Edward isogenies. Improved Isogenies over Edward curves are also used to
ensure resistance against timing attack and fault injection attack on the commutative SIDH
[4]. Isogenies over Montgomery curves have been used to propose a variant of the CGL hash
[5] that is faster than the original algorithm and preimage and collision resistant. The above
discussion on the possible efficiency and alternate use of isogenies over different models of
elliptic curves justify this work aiming to provide competitive formulas for isogenies over
Hessian elliptic curves.
To our knowledge, only formulas for degree-2 isogenies exist over this curve [6]. At the time
we are submitting this work, we are aware of the latest preprint [7] just uploaded online and
computing also isogenies over Hessian curves. But the formulas for isogenies of odd de-
gree ` = 2r + 1 are extremely costly ((5r + 3)M + 4S+ 8rC), which is even slower than
Edward, Huff and Jacobi isogenies, contrary to the efficient formulas obtained in this work
costing ((3r+3)M +3S+3rC) where M,S and C denote the cost of a field multiplication,
squaring and multiplication by a constant. Also this work provides a fastest (3M+3S+6C)
degree-3 isogeny with respect to Edward (6M + 4S + 3C), Huff (7M + 3S + 4C) and Ja-
cobi (6M+3S+11C) isogenies. Furthermore we provide explicit formulas verified with the
Sage script available in [21] for the Hessian curves, the generalized and the twisted Hessian
curves both for degree 3 isogenies and odd degree ` isogenies.
The remainder of this document is be organized as follows: in Section 2 we will recall the
Vélu formulas [30] as well as the definition and arithmetic of Hessian curve. In Section 3
we derive explicit formulas for isogenies of degree 3 over the Hessian Curves. The result
is extended to the twisted and generalized Hessian curves. In Section 4 we treat the more
general case of isogenies of degrees not divisible by 3. The Section 5 will be devoted to a
comparison of the computational cost in term of basic fields operations of isogenies over
Edward, Huff, Jacobi quartic and Hessian models of elliptic curves. The work is concluded
in Section 6.
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2 Background on Isogenies and Hessian Elliptic Curves

This section briefly recalls the Vélu formulas for computing isogenies over elliptic curves.
The arithmetic over Hessian model and maps between twisted and generalized Hessian mod-
els of elliptic curves are described as well.
In what follows, K denotes a finite field with characteristic different from 2 and 3.

2.1 Review of Vélu’s Formulas

Let E : y2 = x3 +ax+b be an elliptic curve defined over K . Let ` be an odd prime and G an
subgroup of order `. The map φ defined by

φ(P) = (xP + ∑
Q∈G−{∞}

(xP+Q− xP),yP + ∑
Q∈G−{∞}

(yP+Q− yP))

is invariant under translation by elements of G, and the kernel of φ is G. Using the group
law on the curve, we also see that φ can be written in terms of rational functions. Indeed
let G∗ = G−{∞}. Partitionning G into two sets G+ and G− such that G∗ = G+ ∪G−, and
P ∈ G+ iff −P ∈ G− and for each point P ∈ G+, we define the following quantities

gx
P = 3x2

P + a,gy
P = −2yP,vP = 2gx

P,uP = (gy
P)

2,v = ∑P∈G+ vP and w = ∑P∈G+(uP +
xPvP), then the `-isogeny φ : E −→ E ′ is given by

φ(x,y) =

(
x+ ∑

P∈G+

(
vP

x− xP
− uP

(x− xP)2 ),y− ∑
P∈G+

(
2yuP

(x− xP)3 + vP
y− yP−gx

Pgy
P

(x− xP)2 )

)
The equation for the image curve is E ′ : y2 = x3 +(A−5v)x+(B−7w).

2.2 The Hessian Model of Elliptic Curve

2.2.1 The Hessian and the Generalized Hessian Elliptic Curve

Definition 1 [18] A Hessian curve over K is a cubic equation Hd : X3 +Y 3 +Z3 = dXY Z
in the projective space P2(K) with d ∈ K and d3 6= 27. The affine equation is given by
Hd : x3 + y3 +1 = dxy.

The generalized Hessian curve which cover more isomorphism classes of elliptic curves
than Hessian curves is defined in [9].

Definition 2 [9] Let c,d be elements of K such that c 6= 0 and d3 6= 27c. The generalized
Hessian curve Hc,d over K is defined by the equation

Hc,d : X3 +Y 3 + cZ3 = dXY Z.

Clearly, a Hessian curve Hd is a generalized Hessian curve Hc,d with c = 1. Moreover, a
generalized Hessian curve Hc,d over K is isomorphic over K̄ to the Hessian curve Hd/ 3√c :
x̃3 + ỹ3 +1 = (d/ 3

√
c)x̃ỹ via the map f : (x;y) 7→ (x̃; ỹ) defined by x̃ = x/ 3

√
c and ỹ = y/ 3

√
c

with 3
√

c3
= c. The inverse is f−1(x,y) = ( 3

√
cx, 3
√

cy). The common j-invariant is j(Hc,d) =

j(Hd/ 3√c) =
1
c

(
d(d3+63c)

d3−33c

)3
.
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Remark 1 .

1. Hc,d has exactly three points at infinity (1 : −1 : 0),(1 : − j : 0) and (1 : − j2 : 0) with
j2 + j+1 = 0. In characteristic 3 there is only one point at infinity (1 :−1 : 0).

2. By putting x = y we show that the points whose ordinate is equal to the abscissa satisfy
2x3 + c−dx2 = 2y3 + c−dy2 = 0.

3. By putting x = 0 (resp y = 0) on Hc,d , we obtain the points (0 : − 3
√

c : 1) (resp (− 3
√

c :
0 : 1) )with 3

√
c3

= c. In the particular case of Hessian curve H1,d , if car(k) 6= 3 we
have the points (0 :−1 : 1),(0 :− j : 1) and (0 :− j2 : 1) (resp (−1 : 0 : 1),(− j : 0 :
1) and (− j2 : 0 : 1) )with j2 + j+ 1 = 0. In characteristic 3 there is only one point
(0 :−1 : 1) (resp (−1 : 0 : 1))

2.2.2 Addition Formulas on Hessian Elliptic Curves

Unified addition formulas on generalized Hessian elliptic curve are given in [9]. Given two
points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) on the curve, their sum is the point (X3 : Y3 : Z3) given
by

(X3 : Y3 : Z3) = (cY2Z2Z2
1 −X1Y1X2

2 : X2Y2Y 2
1 − cX1Z1Z2

2 : X2Z2X2
1 −Y1Z1Y 2

2 )

Remark 2 .

1. (1 :−1 : 0) is the neutral element and inverse of (X : Y : Z) is (Y : X : Z).
2. the points of order 2 are the points whose ordinate is equal to the abscissa.
3. (X : Y : Z)+ (− 3

√
c : 0 : 1) = ( 3

√
cY : 3
√

c2Z : X) (we suppose X 6= 0), (X : Y : Z)+ (0 :
− 3
√

c : 1) = ( 3
√

c2Z : 3
√

cX : Y ) (we suppose Y 6= 0) and (X : Y : Z)+(1 :− j : 0) = ( jX :
j2Y : Z)

4. For each 3
√

c ∈ k̄ such that 3
√

c3
= c, {(1 : −1 : 0),(− 3

√
c : 0 : 1),(0 : − 3

√
c : 1)} is a

sub-group of order 3.
5. If car(k) 6= 3, The three points at infinity form a sub-group of order 3 {(1 :−1 : 0),(1 :
− j : 0),(1 :− j2 : 0)}.

2.2.3 Birational Transformation and Twisted Hessian Curves

We note that the elliptic curve E over K has a point of order 3 if and only if it has a Weier-
strass model Ea1,a3 : y2z+a1xyz+a3yz2 = x3 [3] .

Theorem 1 [9] Let E be an elliptic curve over K. If the group E(K) has a point of order
3 then E is isomorphic over K( j) ( with j2 + j + 1 = 0) to a generalized Hessian curve
. More precisely E : y2z+ a1xyz+ a3yz2 = x3 is isomorphic over K( j) to the generalized
Hessian curve Hc,d : x3 + y3 + c = dxy where d = 3a1 and c = a3

1 − 27a3 via the map:
ϕc,d(X : Y : Z) = ( ja1X +( j−1)Y +(2 j+1)a3Z :−( j+1)a1X− ( j+2)Y − (2 j+1)a3Z : X)

from E to Hc,d and inverse transformation is given by

ϕ
−1
c,d (X : Y : Z) = (3a3Z : (−a3)X +(−a3)Y −a1a3Z : (− j)X +( j+1)Y −a1Z)

The sage script available in [21, isom.ipynb] can be used to verify that ϕc,d ◦ϕ
−1
c,d = IdHc,d

and ϕ
−1
c,d ◦ϕc,d = IdE . We note that ϕc;d is not a group isomorphism because ϕc,d(0 : 1 : 0) =

(1 : − j2 : 0). But using a translation one obtains ϕd(X : Y : Z)+ (1 : − j : 0) = ( j2a1X +
(−2 j− 1)Y +(− j− 2)a3Z : ja1X +(2 j+ 1)Y +( j− 1)a3Z : X) which is an isomorphism
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of group because ϕc,d(0 : 1 : 0)+ (1 : − j : 0) = (1 : −1 : 0) and its inverse is ϕ
−1
c,d ((X : Y :

Z)+(1 :− j2 : 0)) = (3a3Z : (( j+1)a3)X +(− ja3)Y −a1a3Z :−X−Y −a1Z)
we can see that a uniformiser at neutral point (1 :−1 : 0) is t = 1

(( j+1))x+ jy+a1
= 3

3 j2x+3 jy+d

for the future we will take t = 1
3 j2x+3 jy+d

Definition 3 [3] A projective twisted Hessian curve over K is a curve of the form Ha,d :
aX3+Y 3+Z3 = dXY Z in P2(K) with specified point (0 :−1 : 1), where a and d are elements
of K with a(27a−d3) 6= 0.

We give here the addition formulas from [3] called rotated addition. The inverse of a point
(X1 : Y1 : Z1) is −(X1 : Y1 : Z1) = (X1 : Z1 : Y1) and the sum of two points (X1 : Y1 : Z1) and
(X2 : Y2 : Z2) of Ha,d is the point (X ′3 : Y ′3 : Z′3) defined by
X ′3 = Z2

2X1Z1 −Y 2
1 X2Y2,Y ′3 = Y 2

2 Y1Z1 − aX2
1 X2Z2 and Z′3 = aX2

2 X1Y1 − Z2
1Y2Z2. Points of

twisted Hessian curve corresponding to X = 0 (resp Y = 0 or Z = 0) are (0 :−1 : 1),(0 :− j :
1) and (0 : − j2 : 1) (resp (1 : 0 : − 3

√
a) or (1 : − 3

√
a : 0) ) if car(K) 6= 3.{(0 : −1 : 1),(0 :

− j : 1),(0 : − j2 : 1)} and {(0 : −1 : 1),(1 : 0 : − 3
√

a),(1 : − 3
√

a : 0)} are the subgroups of
order 3. The points of order 2 has coordinates (γ,1) where aγ3 +2−dγ = 0.

It is easy to establish the following Lemma 1 that gives an isomorphism between the
twisted Hessian curve (provided of addition law of subsection 2.2.3) and generalized Hes-
sian curve (provided of addition law of subsection 2.2.2).

Lemma 1 The map f ′ defined by f ′(x,y) = ( 1
x ,

y
x ) is an isomorphism from the twisted Hes-

sian curve Ha,d to the generalized Hessian curve Ha,d . Its inverse is f−1(x,y) = ( 1
x ,

y
x )

3 Formulas for Isogenies of Degree 3 on Hessian Curve

In this section, we consider a Hessian curve Hd over K and we derive formulas for isogenies
with kernel a subgroup of Hd(K) of order 3. Furthermore we consider also a subgroup G of
Hd(K) of order an odd integer ` not divisible by 3 and we find an elliptic curve H ′d and an
isogeny from Hd to H ′d with kernel G.

Theorem 2 Let Hd be an Hessian curve over K and G a subgroup of Hd(K) of order 3. We
define a curve Hd′ and give an isogeny g : Hd −→Hd′ of kernel G, for each possibility of G.

(a) if G = {(1 :−1 : 0),(−1,0),(0,−1)} then the affine map

g : Hd −→ Hd′

(x,y) 7→ (m x+x2y+y2

xy ,m y+y2x+x2

xy )

projectively defined by

(X : Y : Z) 7−→ (m(XZ2 +X2Y +ZY 2) : m(Z2Y +Y 2X +ZX2) : XY Z)

is an isogeny of kernel G. The coefficient of the curve Hd′ is given by d′ = m(d + 6)
where m3 = 1

d2+3d+9
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(b) if G = {(1 :−1 : 0),(− j,0),(0,− j)} then
the affine map

g : Hd −→ Hd′

(x,y) 7→ (m jx+ j2x2y+y2

xy ,m jy+ j2y2x+x2

xy )

projectively defined by

(X : Y : Z) 7−→ (m( jXZ2 + j2X2Y +ZY 2) : m( jZ2Y + j2Y 2X +ZX2) : XY Z)

is an isogeny of kernel G. The coefficients of the curve Hd′ is given by d′ = m( j2d +6)
where m3 = 1

jd2+3 j2d+9

(c) if G = {(1 :−1 : 0),(− j2,0),(0,− j2)} then
the affine map

g : Hd −→ Hd′

(x,y) 7→ (m jx+x2y+ j2y2

xy ,m jy+y2x+ j2x2

xy )

projectively defined by

(X : Y : Z) 7−→ (m( jXZ2 +X2Y + j2ZY 2) : m( jZ2Y +Y 2X + j2ZX2) : XY Z)

is an isogeny of kernel G. The coefficients of the curve Hd′ is given by d′ = m(d +6 j2)
where m3 = 1

j2d2+3 jd+9

(d) if G = {(1 :−1 : 0),(1 :− j : 0),(1 :− j2 : 0)} then the affine map

g : Hd −→ Hd′

(x,y) 7→ (m− jx3+1−d(−1/3 j+1/3)xy
xy ,m− jy3+1−d(−1/3 j+1/3)xy

xy )

projectively defined by (X :Y : Z) 7−→ (m(− jX3+Z3−d(−1/3 j+1/3)XY Z) : m(− jY 3+
Z3 − d(−1/3 j + 1/3)XY Z) : XY Z) is an isogeny of kernel G. The coefficients of the
curve Hd′ is given by d′ = dm( j+2) where m3 =−3 2 j+1

d3−27

Proof . The expressions of these maps are easily inspired from the composition of the iso-
morphism between Weierstrass and Hessian curves and the Weierstrass isogenies.

– Proof of the case (a) where G = {(1 : −1 : 0),(−1,0),(0,−1)} and g(X : Y : Z) =
(m(XZ2 + X2Y + ZY 2) : m(Z2Y +Y 2X + ZX2) : XY Z). We start to show that for all
(x,y) ∈ Hd , g(x,y) ∈ Hd′ . After reducing the power of x greater than 3 in the numer-
ator of g3

x + g3
y + 1− d′gxgy by using the equation of Hd and using the fact that d′ =

m(d+6), g3
x +g3

y +1−d′gxgy becomes ((−d3−3d2−9d)m3+d)yx+((d2+3d+9)m3−1)y3+(d2+3d+9)m3−1
x3

which is zero since m3 = 1
d2+3d+9 . The sage script available in [21, 3-isogenies.ipynb

(first cell)] can be used to check the computation of numerator and denominator of
g3

x +g3
y +1−d′gxgy . Also g(1 :−1 : 0) = g(−1 : 0 : 1) = g(0 :−1 : 1) = (1 :−1 : 0) so g

is an isogeny and G⊆ ker(g) . g(1 :− j : 0)= (1 :− j : 0) and g(1 :− j2 : 0)= (1 :− j2 : 0)
so (1 :− j : 0) and (1 :− j2 : 0) /∈ ker(g). ker(g) does not contain a point at infinity. Let
(x,y)∈Hd so that g(x,y) = (1 :−1 : 0) using the projective form of g we have xy = 0 so,
(x,y) = ∓(−1,0),∓(− j,0) or ∓(− j2,0) but g((− j,0)) = g((−1,0)+ (1 : − j : 0)) =
(1 : − j : 0) and g((− j2,0)) = g((−1,0)+ (1 : − j2 : 0)) = (1 : − j2 : 0) (since g is an
isogeny) so (x,y) =∓(−1,0) and G = ker(g).
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– Proof of the case (b) where G = {(1 :−1 : 0),(− j,0),(0,− j)} and

g(X : Y : Z) = (m( jXZ2 + j2X2Y +ZY 2) : m( jZ2Y + j2Y 2X +ZX2) : XY Z)

We start to show that for all (x,y) ∈ Hd , g(x,y) ∈ Hd′ . After reducing the power of x
greater than 3 in the numerator of g3

x +g3
y +1−d′gxgy by using the equation of Hd and

using the fact that d′ = m( j2d +6), g3
x +g3

y +1−d′gxgy becomes
((− jd3+(3 j+3)d2−9d)m3+d)yx+(( jd2+(−3 j−3)d+9)m3−1)y3+( jd2+(−3 j−3)d+9)m3−1

x3

which is zero since m3 = 1
jd2+3 j2d+9 . The sage script available in [21, 3-isogenies.ipynb

(second cell)] can be used to check the computation of numerator and denominator of
g3

x +g3
y +1−d′gxgy . Also g(1 :−1 : 0) = g(− j : 0 : 1) = g(0 :− j : 1) = (1 :−1 : 0) so

g is an isogeny and G⊆ ker(g) .
g(1 :− j : 0)= (1 :− j : 0) and g(1 :− j2 : 0)= (1 :− j2 : 0) so (1 :− j : 0) and (1 :− j2 : 0)
/∈ ker(g). ker(g) does not contain a point at infinity.
Let (x,y) ∈ Hd so that g(x,y) = (1 : −1 : 0) using the projective form of g we have
xy = 0 so, (x,y) = ∓(−1,0),∓(− j,0) or ∓(− j2,0) but g((−1,0)) = g((− j,0)+ (1 :
− j2 : 0)) = (1 :− j2 : 0) and g((− j2,0)) = g((− j,0)+(1 :− j : 0)) = (1 :− j : 0) (since
g is an isogeny) so (x,y) =∓(− j,0) and G = ker(g).

– Proof of the case (c) where G = {(1 :−1 : 0),(− j2,0),(0,− j2)} and

g(X : Y : Z) = (m( jXZ2 +X2Y + j2ZY 2) : m( jZ2Y +Y 2X + j2ZX2) : XY Z)

We start to show that for all (x,y) ∈ Hd , g(x,y) ∈ Hd′ . After reducing the power of x
greater than 3 in the numerator of g3

x +g3
y +1−d′gxgy by using the equation of Hd and

using the fact thatd′ = m(d +6 j2), g3
x +g3

y +1−d′gxgy becomes
(((− j2)d3−3 jd2−9d)m3+d)yx+((( j2)d2+3 jd+9)m3−1)y3+(( j2)d2+3 jd+9)m3−1

x3 which is zero since
m3 = 1

j2d2+3 jd+9 . The sage script available in [21, 3-isogenies.ipynb (third cell)] can be

used to check the computation of numerator and denominator of g3
x + g3

y + 1− d′gxgy.
We also have that g(1 :−1 : 0) = g(− j2 : 0 : 1) = g(0 :− j2 : 1) = (1 :−1 : 0) so g is an
isogeny and G ⊆ ker(g) . g(1 : − j : 0) = (1 : − j : 0) and g(1 : − j2 : 0) = (1 : − j2 : 0)
so (1 :− j : 0) and (1 :− j2 : 0) /∈ ker(g). ker(g) does not contain a point at infinity. Let
(x,y)∈Hd so that g(x,y) = (1 :−1 : 0) using the projective form of g we have xy = 0 so,
(x,y) =∓(−1,0),∓(− j,0) or ∓(− j2,0) but g((−1,0)) = g((− j2,0)+(1 :− j : 0)) =
(1 : − j : 0) and g((− j,0)) = g((− j2,0)+ (1 : − j2 : 0)) = (1 : − j2 : 0) (since g is an
isogeny) so (x,y) =∓(− j2,0) and G = ker(g).

– Proof of the case (d) where G= {(1 :−1 : 0),(1 :− j2 : 0),(1 :− j : 0)} and g(X :Y : Z)=
(m(− jX3 +Z3−d(−1/3 j+1/3)XY Z) : m(− jY 3 +Z3 −d(−1/3 j+1/3)XY Z) : XY Z)
We start to show that for all (x,y) ∈ Hd , g(x,y) ∈ Hd′ . After reducing the power of x
greater than 3 in the numerator of g3

x +g3
y +1−d′gxgy by using the equation of Hd and

using the fact that d′ = dm( j+2), g3
x +g3

y +1−d′gxgy becomes
(((− 2

9 j− 1
9 )d4+(6 j+3)d)m3+d)yx+((( 2

9 j+ 1
9 )d3+(−6 j−3))m3−1)y3+(( 2

9 j+ 1
9 )d3+(−6 j−3))m3−1

x3 which is zero since
m3 =−3 2 j+1

d3−27 . The sage script available in
[21, 3-isogenies.ipynb (fourth cell)] can be used to check the computation of numera-
tor and denominator of g3

x + g3
y + 1− d′gxgy. We also have that g(1 : −1 : 0) = g(1 :

− j2 : 0) = g(1 : − j : 0) = (1 : −1 : 0) so g is an isogeny and G ⊆ ker(g) . g(−1 : 0 :
1) = (m( j+ 1) : m : 0) = (1 : − j : 0) and g(0 : −1 : 1) = (1 : − j2 : 0). Let (x,y) ∈ Hd
so that g(x,y) = (1 : −1 : 0) using the projective form of g we have xy = 0 so, (x,y) =
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∓(−1,0),∓(− j,0) or∓(− j2,0) but g((− j2,0)) = g((−1,0)+(1 :− j2 : 0)) = (1 :− j :
0) and g((− j,0)) = g((−1,0)+ (1 : − j : 0)) = (1 : − j : 0) (since g is an isogeny) so
ker(g) does not have the point in affine coordinate G = ker(g).

3.0.1 Generalization of Formulas to Generalized Hessian curve

Theorem 3 Let Hc,d be the generalized Hessian curve over the field K. For each of the
following subgroup G of Hc,d(K) order 3 we give an isogeny g′ : Hc,d −→Hc′,d′ of kernel G:

(a) if G = {(−1 : 1 : 0),(0,− 3
√

c),(− 3
√

c : 0)} then

g′ : Hc,d −→ Hc′,d′

(x,y) 7→ ( x2y+ 3√cy2+ 3√c2x
xy , y2x+ 3√cx2+ 3√c2y

xy )

is an isogeny of kernel G. The coefficients of the curve Hc′,d′ are given by d′ = d +6 3
√

c
and c′ = d2 3

√
c+3d 3

√
c2

+9c
(b) if G = {(0 :−1 : 1),(0 :− j : 1),(0 :− j2 : 1)} then

g′ : Hc,d −→ Hc′,d′

(x,y) 7→ ( (−2 j−1)x3+( jd 3√c)xy+(− j+1)c
xy , (−2 j−1)y3+( jd 3√c)xy+(− j+1)c

xy )

is an isogeny of kernel G. The coefficients of the curve Hc′,d′ are given by d′ = 3d and
c′ = d3−27c

Proof 1. Proof of part (a). Using the isomorphism f : Hc,d −→ Hd/ 3√c, f (x,y) = ( x
3√c
, y

3√c
)

(given in Subsection 2.2.1 between the generalized Hessian curve and the Hessian curve)
the image of the subgroup G = {(1 :−1 : 0),(0,− 3

√
c),(− 3

√
c,0)} is the subgroup G′ =

{(1 : −1 : 0),(−1,0),(0,−1)}. We apply Theorem 2 (first case) to have an isogeny
g : Hd/ 3√c −→ Hd1 , g(x,y) = (m x+x2y+y2

xy ,m y+y2x+x2

xy ) with d1 = m( d+6 3√c
3√c

) and

m3 = c
d2 3√c+3d 3√c2

+9c
. So d1 =

3√c
3
√

d2 3√c+3d 3√c2
+9c

( d+6 3√c
3√c

) = d+6 3√c
3
√

d2 3√c+3d 3√c2
+9c

. Using the

inverse transformation f−1 : H d+6 3√c
3
√

d2 3√c+3d 3√c
2
+9c

−→H
d2 3√c+3d 3√c2

+9c,d+6 3√c
(given in Subsection

2.2.1 between generalized Hessian curve and Hessian curve) we have

f−1(x,y) = (
3
√

d2 3
√

c+3d 3
√

c2
+9c · x, 3

√
d2 3
√

c+3d 3
√

c2
+9c · y) so that

f−1 ◦g◦ f (x,y) = ( x2y+ 3√cy2+ 3√c2x
xy , y2x+ 3√cx2+ 3√c2y

xy ). The sage script available in [21, Ex-
tension 3isog.ipynb (first cell) ] can be used for verification.

2. Proof of part (b). Using the isomorphism f : Hc,d −→Hd/ 3√c, f (x,y) = ( x
3√c
, y

3√c
) (given

in Subsection 2.2.1 between the generalized Hessian curve and the Hessian curve) the
image of the subgroup G = {(1 :−1 : 0),(1 :− j : 0),(1 :− j2 : 0)} (in the curve Hd/ 3√c

) is the subgroup G′ = {(1 : −1 : 0),(1 : − j : 0),(1 : − j2 : 0)}. We apply Theorem 2
(fourth case) to have an isogeny g : Hd/ 3√c −→ Hd1 defined by

g(x,y) = (m− jx3+1−d(−1/3 j+1/3)xy
xy ,m− jy3+1−d(−1/3 j+1/3)xy

xy ) with d1 = m( j+ 2) d
3√c

and

m3 = −3c 2 j+1
d3−27c . So m =

3√c 3
√
−3(2 j+1)

3
√

d3−27c
= (− j + 1)

3√c
3
√

d3−27c
and d1 = ( j + 2)(− j +

1)
3√c

3
√

d3−27c
d
3√c

= 3d
3
√

d3−27c
. By using the inverse transformation f−1 : H 3d

3√
d3−27c

−→
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Hd3−27c,3d (given in Subsection 2.2.1 between the generalized Hessian curve and the
Hessian curve) we have f−1(x,y) = ( 3√d3−27c · x, 3√d3−27c · y) so that
f−1 ◦ g ◦ f (x,y) = ( (−2 j−1)x3+( jd 3√c)xy+(− j+1)c

xy , (−2 j−1)y3+( jd 3√c)xy+(− j+1)c
xy ). The sage script avail-

able in [21, Extension 3isog.ipynb (second cell) ] can be used to check calculation of
f−1 ◦g◦ f (x,y)

3.0.2 Generalization of Formulas to Twisted Hessian curve

Theorem 4 Let Ha,d be a twisted Hessian curve over K. For the followings subgroups G
of order 3 we give an isogeny g : Ha,d −→Ha′,d′ of kernel G:

(a) if G = {(0 :−1 : 1),(1 : 0 :− 3
√

a),(1 :− 3
√

a : 0)} then

g : Ha,d −→ Ha′,d′

(x,y) 7→ ( xy
3√axy2+ 3√a2x2+y

,
3√a2x2y+y2+ 3√ax
3√axy2+ 3√a2x2+y

)

is an isogeny of kernel G. The coefficients of the curve Ha′,d′ are given by d′ = d+6 3
√

a
and a′ = d2 3

√
a+3d 3

√
a2

+9a.
(b) G = {(0 :−1 : 1),(0 :− j : 1),(0 :− j2 : 1)} then

g : Ha,d −→ Ha′,d′

(x,y) 7→ ( xy
3ax3+( j−1)d 3√axy−3 j

, 3ax3−3 jy3+( j−1)d 3√axy
3ax3+( j−1)d 3√axy−3 j

)

is an isogeny of kernel G. The coefficients of the curve Ha′,d′ are given by a′ = d3−27a
and d′ = 3d.

Proof .

1. Proof of part (a). Using the isomorphism f ′ : Ha,d −→Ha,d , f ′(x,y) = ( 1
x ,

y
x ) of Lemma

1, the image of the subgroup G = {(0 :−1 : 1),(1 : 0 :− 3
√

a),(1 :− 3
√

a : 0)} is the sub-
group G′ = {(1 :−1 : 0),(− 3

√
a,0),(0,− 3

√
a)}. We apply Theorem 3 (first case) to have

an isogeny
g′ : Ha,d −→ H

d2 3√a+d 3√a2
+9a,d+6 3√a

defined by

g(x,y) = ( x2y+ 3√ay2+ 3√a2x
xy , y2x+ 3√ax2+ 3√a2y

xy ). The application of Lemma 1 gives the in-
verse transformation
f ′−1 : H

d2 3√a+d 3√a2
+9a,d+6 3√a

−→H
d2 3√a+d 3√a2

+9a,d+6 3√a
defined by

f ′−1(x,y) = ( 1
x ,

y
x ) so that f ′−1 ◦g′ ◦ f ′(x,y) = ( xy

3√axy2+ 3√a2x2+y
,

3√a2x2y+y2+ 3√ax
3√axy2+ 3√a2x2+y

) The sage script
available in [21, Extension 3isog.ipynb (third cell) ] can be used for the verification.

2. Proof of part (b).
Using the isomorphism f ′ : Ha,d −→ Ha,d , f (x,y) = ( 1

x ,
y
x ) of Lemma 1 the image of

the subgroup G = {(0 :−1 : 1),(0 :− j : 1),(0 :− j2 : 1)} is the subgroup G′ = {(1 :−1 :
0),(1 :− j : 0),(1 :− j2 : 0)}. We apply Theorem 3 (second case) to have an isogeny
g′ : Ha,d −→ Hd3−27a,3d defined by

g′(x,y) = ( (−2 j−1)x3+( jd 3√a)xy+(− j+1)a
xy , (−2 j−1)y3+( jd 3√a)xy+(− j+1)a

xy ) . The application of
Lemma 1 gives the inverse transformation
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f ′−1 : Hd3−27a,3d −→Hd3−27a,3d defined by f−1(x,y) = ( 1
x ,

y
x )

so that f ′−1 ◦ g′ ◦ f ′(x,y) = ( xy
3ax3+( j−1)d 3√axy−3 j

, 3ax3−3 jy3+( j−1)d 3√axy
3ax3+( j−1)d 3√axy−3 j

). The sage script
available in [21, Extension 3isog.ipynb (fourth cell) ] can be used for the verification.

4 Formulas for Isogenies of Degree not Divisible by 3 over Hessian Elliptic Curves

In this section, we are given an Hessian elliptic curve Hd over K and G a subgroup of Hd of
finite order ` non-divisible by 3. We then construct an elliptic curve H ′d defined over K and
an explicit isogeny given in term of rational functions from Hd to Hd′ with kernel G. This
formula is easily extended to twisted Hessian curves and generalized Hessian curve.
We throw out the neutral point (1 : −1 : 0) from G and denote G∗ = G−{(1 : −1 : 0)}.
Let S be all the 2-torsion points of G∗ and R be the rest of the points in G∗. We split R into
two equal size sets R− and R+ so that a point P is in R+ if and only if −P is in R−. We
will take r = #R− and s = #S so that `= #G = 2r+ s+1. we denote Sn,n−1(x1,x2, ...,xn) =

∑1≤i1<i2...<in−1≤n xi1 xi2 ···xin−1 the (n−1)-th elementary symmetric polynomial of k[x1,x2, ...,xn].
For an arbitrary point P ∈ Hd we define the map g by

g(P) = (∏
Q∈G

YP+Q : ∏
Q∈G

XP+Q : ∏
Q∈G

ZP+Q) (1)

The following lemma is very important for the obtaining of an efficient `-isogeny.

Lemma 2 The map g is defined by

g(x,y) = (y ∏
(a,b)∈G∗

aby2− x
ax2−b2y

,x ∏
(a,b)∈G∗

b−a2xy
ax2−b2y

) (2)

and satisfies also the following

g(x,y) = (y ∏
Q∈S

x2
Qy2− x

xQx2− x2
Qy
· ∏

P∈R−

x− xPyPy2

xy− xPyP
,x ∏

Q∈S

1− xQxy
x2− xQy

· ∏
P∈R−

y− xPyPx2

xy− xPyP
) (3)

Proof We first observe that from equation (1) to equation (2) is a direct application of the
group law. We now show the proof from equation (2) to equation (3).
Let P(xP,yP) ∈ R−. Then (xPx2− y2

Py)(yPx2− x2
Py) =

= xPyPx4− x3
Px2y− y3

Px2y+ x2
Py2

Py2

= xPyPx4− (x3
P + y3

P)x
2y+ x2

Py2
Py2

= xPyPx(−y3−1+dxy)− (−1+dxPyP)x2y+ x2
Py2

Py2

= −xPyPxy3− xPyPx+dxPyPx2y+ x2y−dxPyPx2y+ x2
Py2

Py2

= −xPyPxy3− xPyPx+ x2y+ x2
Py2

Py2

= x2y− xPyPx− xPyPxy3 + x2
Py2

Py2

= (x− xPyPy2)(xy− xPyP)

so that

(xPx2− y2
Py)(yPx2− x2

Py) = (x− xPyPy2)(xy− xPyP) (4)
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xPyPy2− x
xPx2− y2

Py
∗ xPyPy2− x

yPx2− x2
Py

=
(xPyPy2− x)2

(x− xPyPy2)(xy− xPyP)

=
x− xPyPy2

xy− xPyP

We also have that

(yP− x2
Pxy)(xP− y2

Pxy) = xPyP− y3
Pxy− x3

Pxy+ x2
Py2

Px2y2

= xPyP− (x3
P + y3

P)xy+ x2
Py2

Px2y2

= xPyP− (−1+dxPyP)xy+ x2
Py2

Px2y2

= xPyP + xy−dxPyPxy+ x2
Py2

Px2y2

and

(y− xPyPx2)(x− xPyPy2) = xy− xPyPx3− xPyPy3 + x2
Py2

Px2y2

= xy− (x3 + y3)xPyP + x2
Py2

Px2y2

= xy− (−1+dxy)xPyP + x2
Py2

Px2y2

= xy+ xPyP−dxPyPxy+ x2
Py2

Px2y2

= xPyP + xy−dxPyPxy+ x2
Py2

Px2y2

so that

(y− xPyPx2)(x− xPyPy2) = (yP− x2
Pxy)(xP− y2

Pxy) = . (5)

xy+ xPyP−dxPyPxy+ x2
Py2

Px2y2 Therefore
yP−x2

Pxy
xPx2−y2

Py
∗ xP−y2

Pxy
yPx2−x2

Py
=

=
(y− xPyPx2)(x− xPyPy2)

(x− xPyPy2)(xy− xPyP)

=
y− xPyPx2

xy− xPyP
.

So we can write equality (2) as

g(x,y) = (y ∏
Q∈S

x2
Qy2− x

xQx2− x2
Qy
· ∏

P∈R−

x− xPyPy2

xy− xPyP
,x ∏

Q∈S

1− xQxy
x2− xQy

· ∏
P∈R−

y− xPyPx2

xy− xPyP
)

which completes the proof.

Theorem 5 Let G be a subgroup of Hd of finite order ` non-divisible by 3 then the map

g(x,y) = (y ∏
Q∈S

x2
Qy2− x

xQx2− x2
Qy
· ∏

P∈R−

x− xPyPy2

xy− xPyP
,x ∏

Q∈S

1− xQxy
x2− xQy

· ∏
P∈R−

y− xPyPx2

xy− xPyP
) (6)

defined in Lemma 2 is an isogeny of kernel G from Hd to Hd′ with d′ = ∏Q∈S xQ ·∏P∈R− (xPyP) ·
(d(1+2r−2s)+6∑Q∈S xQ)−6Sr,r−1(xP1 yP1 , ...,xPr yPr ) ·∏Q∈S xQ

Proof .
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1. It is easy to see that g is invariant by translation on elements of G. Furthermore

g(1 :−1 : 0) = (∏
Q∈G

YQ : ∏
Q∈G

XQ : ∏
Q∈G

ZQ)

= ( ∏
Q∈G∗

YQ :− ∏
Q∈G∗

XQ : 0)

= (1 :−1 : 0)

Because ∏Q∈G∗YQ = ∏Q∈G∗ XQ since G is a subgroup and YQ = X−Q. So G ⊆ ker(g).
We now show that G = ker(g)
(a) For this we first compute the image of (−1,0) and (1 :−1 : 0)

g(−1,0) = (∏
P∈G

Y(−1,0)+P : ∏
P∈G

X(−1,0)+P : ∏
P∈G

Z(−1,0)+P)

= (0∗ ∏
P∈G∗

Y(−1,0)+P :− ∏
P∈G∗

X(−1,0)+P : ∏
P∈G∗

Z(−1,0)+P)

= (0∗ ∏
P∈G∗

ZP :− ∏
P∈G∗

YP : ∏
P∈G∗

XP)

= (0,− ∏
P∈G∗

YP/XP), ∏
P∈G∗

XP = ∏
P∈G∗

YP

= (0,−1)

g(1 :− j : 0) = (∏
P∈G

Y(1:− j:0)+P : ∏
P∈G

X(1:− j:0)+P : ∏
P∈G

Z(1:− j:0)+P)

= (∏
P∈G

j2YP : ∏
P∈G

jXP : ∏
P∈G

ZP)

= (− j2
∏

P∈G∗
j2YP : j ∏

P∈G∗
jXP : 0∗ ∏

P∈G∗
ZP)

= (− j2#G
∏

P∈G∗
YP : j#G

∏
P∈G∗

XP : 0)

= (− j2#G : j#G : 0)

= ±(1 :− j : 0) since #G is not divisible by 3

g(1 : − j : 0) = (1 : − j : 0) if #G = 2 mod 3 and g(1 : − j : 0) = −(1 : − j : 0) if
#G = 1 mod 3. So (−1,0) and (1 :− j : 0) /∈ ker(g) (ker(g) does not contain a point
at infinity).

(b) Let P0(x0,y0) such that g(P0) = (1 :−1 : 0) Since the image of P0 is at infinity then
P0 is a zero of denominator of a component of g.

– If (x0,y0) is an zero of xy− xPyP then (x0,y0) = ±(xP,yP), ±( jxP, j2yP) or
±( j2xP, jyP) (from Bezout’s theorem xy−xPyP has six intersection points with
Hd ). g is an isogeny and (1 : − j : 0) /∈ ker(g) so (x0,y0) = ±(xP,yP) since
( jxP, j2yP) = (xP,yP)+(1 :− j : 0) and ( j2xP, jyP) = (xP,yP)+(1 :− j2 : 0).

– If (x0,y0) is an zero of x2−xQy then (x0,y0)= (xQ,xQ),±( jxQ, j2xQ), (1,1/xQ),
( j, j2/xQ) or ( j2, j/xQ)(from Bezout’s theorem x2− xQy has six intersection
points with Hd ).g is an isogeny and (0,−1), (1 :− j : 0) /∈ ker(g) so (x0,y0) =
(xQ,xQ) since ( jxQ, j2xQ)= (xQ,yQ)+(1 :− j : 0) (1,1/xQ)= (xQ,yQ)+(−1,0)
, ( j2, j/xQ) = (xQ,yQ) + (−1,0) + (1 : − j2 : 0) and ( j, j2/xQ) = (xQ,yQ) +
(−1,0)+(1 :− j : 0)
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2. We now show that H(x,y) = g3
x + g3

y + 1− d′gxgy has a pole of order two at neutral
point (1 :−1 : 0) The uniformizer of the curve the neutral point is t = Z

3 j2X+3 jY+dZ . The

function Z has three zero (1 : −1 : 0),(1 : − j : 0) and (1 : − j2 : 0). Also 3 j2X +
3 jY + dZ has three zero (1 : − j : 0) and two affine points. So t has exactly two zero
(1 : −1 : 0) and (1 : − j2 : 0). We have show that g(1 : −1 : 0) = (1 : −1 : 0) and g(1 :
− j2 : 0) = ±(1 : − j2 : 0) up to composition by the automorphism (X : Y : Z) 7→ (Y :
X : Z) we can suppose that g(1 : − j2 : 0) = (1 : − j2 : 0). In this case (1 : −1 : 0) and
(1 : − j2 : 0) are preserved by the coordinates map. Furthermore (1 : −1 : 0) and (1 :
− j2 : 0) are the only zero of t = Z

3 j2X+3 jY+dZ . That is the same to co-domain curve Hd′

for which t ′ = Z
3 j2X+3 jY+d′Z has only two zeros (1 : −1 : 0) and (1 : − j2 : 0). We now

prove that the two points are nonsingular. The equation of the curve H(X : Y : Z) =
Y 3

Z3 ∏Q∈S
(x2

QY 2−XZ)3

(xQX2−x2
QY Z)3 ·∏P∈R−

(XZ−xPyPY 2)3

(XY−xPyPZ2)3 +

X3

Z3 ∏Q∈S
(Z2−xQXY )3

(X2−xQY Z)3 ·∏P∈R−
(Y Z−xPyPX2)3

(XY−xPyPZ2)3 +1

−d′ XY
Z2 ∏Q∈S

(x2
QY 2−XZ)(Z2−xQXY )

xQ(X2−xQY Z)2 ·∏P∈R−
(XZ−xPyPY 2)(Y Z−xPyPX2)

(XY−xPyPZ2)2

shows, after reduction to the same denominator, the numerator
N =Y 3

∏Q∈S

(
(x2

QY 2−XZ)3/x3
Q

)
·∏P∈R− (XZ−xPyPY 2)3+X3

∏Q∈S(Z
2−xQXY )3 ·∏P∈R−(Y Z−

xPyPX2)3 +Z3
∏Q∈S(X

2− xQY Z)3 ·∏P∈R−(XY − xPyPZ2)3−d′XY Z ∏Q∈S(
(Z2− xQXY )(X2− xQY Z)(x2

QY 2−XZ)/xQ

)
·

∏P∈R−

(
(XZ− xPyPY 2)(Y Z− xPyPX2)(XY − xPyPZ2)

)
and the denominator

D = Z3
∏Q∈S(X

2− xQY Z)3 ·∏P∈R−(XY − xPyPZ2)3 We will show that (1 :−1 : 0) and
(1 :− j2 : 0) are the simple zero of N and the zero of order 3 of D (so the poles of order
2 of H(X : Y : Z)) . To show that the points (1 :−1 : 0) and (1 :− j2 : 0) are zero of order
3 of D we will use affine coordinates in the plane ((y,z)) in which (1 : −1 : 0) and (1 :
− j2 : 0) become (−1,0) and (− j2,0) and D = z3

∏Q∈S(1−xQyz)3
∏P∈R−(y−xPyPz2)3

To bring back the point (1 : −1 : 0) (resp (1 : − j2 : 0)) to the origin (0,0), we use the
invertible affine coordinate transformation (y′,z′) = (y−1,z) (resp (y′,z′) = (y− j2,z))
D = z′3 ∏Q∈S(1− xQz′− xQy′z′)3 ·∏P∈R−(y

′+1− xPyPz2)3(
resp. D = z′3 ∏Q∈S(1− xQ j2z′− xQy′z′)3 ·∏P∈R− (y

′+ j2− xPyPz′2)3
)

. We see that the smallest

homogeneous part of D has degree 3. So (−1,0) and (− j2,0) are zero of order 3 of D. It
easy to see that (1 :−1 : 0) and (1 :− j2 : 0) are the zero of N. For show that (1 :−1 : 0)
and (1 :− j2 : 0) are simple zero we show that ∂N

∂Y (1 :−1 : 0) 6= 0 and ∂N
∂Y (1 :− j2 : 0) 6= 0.

∂N
∂Y = 3Y 2

∏Q∈S

(
(x2

QY 2−XZ)3/x3
Q

)
·∏P∈R− (XZ− xPyPY 2)3 +Y 3

∏P∈R−

(XZ−xPyPY 2)3 ·∑Q0

(
6x2

Q0
Y (x2

Q0
Y 2−XZ)2/x3

Q0
∏Q 6=Q0

(x2
QY 2−XZ)3/x3

Q

)
+Y 3

∏Q∈S

(
(x2

QY 2−XZ)3/x3
Q

)
·

∑P0∈R−

(
−6xP0 yP0Y (XZ− xP0 yP0Y 2)2

∏P 6=P0
(XZ− xPyPY 2)3

)
+X3

∏Q∈S(Z
2− xQXY )3 ·

∑P0∈R−

(
3Z(Y Z− xP0 yP0 X2)2

∏P6=P0
(Y Z− xPyPX2)3

)
+X3

∏P∈R− (Y Z−xPyPX2)3 ·∑Q0∈S

(
−3xQ0 X(Z2− xQ0 XY )2 ·∏Q 6=Q0

(Z2− xQXY )3
)
+

(Z3
∏Q∈S(X

2− xQY Z)3 ·∏P∈R− (XY − xPyPZ2)3)′Y −
d′XY Z ∏Q∈S

(
(Z2− xQXY )(X2− xQY Z)(x2

QY 2−XZ)/xQ

)
·

∏P∈R−

(
(XZ− xPyPY 2)(Y Z− xPyPX2)(XY − xPyPZ2)

)
)′Y

Therefore,
∂N
∂Y (1 :−1 : 0) = 3∏Q∈S x3

Q ·∏P∈R− (−x3
Py3

P)−

∏P∈R− (−x3
Py3

P) ·∑Q0

(
−6x3

Q0
∏Q 6=Q0

x3
Q

)
−
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∏Q∈S x3
Q ·∑P0

(
6x3

P0
y3

P0
∏P 6=P0

(−x3
Py3

P)
)
+0

+∏P∈R− (−x3
Py3

P) ·∑Q0

(
−3x3

Q0
∏Q 6=Q0

x3
Q

)
∂N
∂Y (1 :−1 : 0)= 3∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P)+6∏P∈R−(−x3
Py3

P)·∑Q0

(
∏Q x3

Q

)
+6∏Q∈S x3

Q ·

∑P0

(
∏P(−x3

Py3
P)
)
+0−3∏P∈R−(−x3

Py3
P) ·∑Q0

(
∏Q x3

Q

)
.

then
∂N
∂Y (1 :−1 : 0) = (3+6s+6r−3s)∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P)
∂N
∂Y (1 :−1 : 0) = (3+3s+6r)∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P) and
∂N
∂Y (1 :− j2 : 0) = 3 j ∏Q∈S x3

Q ·∏P∈R− (−x3
Py3

P)−

∏P∈R− (−x3
Py3

P) ·∑Q0

(
−6 jx3

Q0
∏Q 6=Q0

x3
Q

)
−

∏Q∈S x3
Q ·∑P0

(
6 jx3

P0
y3

P0
∏P6=P0

(−x3
Py3

P)
)
+0

+∏P∈R− (−x3
Py3

P) ·∑Q0

(
−3 jx3

Q0
∏Q6=Q0

x3
Q

)
∂N
∂Y (1 : − j2 : 0) = 3 j ∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P) + 6 j ∏P∈R−(−x3
Py3

P) ·∑Q0

(
∏Q x3

Q

)
+

6 j ∏Q∈S x3
Q ·∑P0

(
∏P(−x3

Py3
P)
)
+0−3 j ∏P∈R−(−x3

Py3
P) ·∑Q0

(
∏Q x3

Q

)
.

Then
∂N
∂Y (1 :− j2 : 0) = (3 j+6s j+6r j−3s j)∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P) and
∂N
∂Y (1 :− j2 : 0) = (3+3s+6r) j ∏Q∈S x3

Q ·∏P∈R−(−x3
Py3

P). So (1 :−1 : 0) and (1 :− j2 :
0) are the poles of other 2 of H(X : Y : Z).

3. To develop g3
x +g3

y +1−d′gxgy around of neutral point, we start to develop the function
x and y To express xy in term of t = 1

3 j2x+3 jy+d we will use the identity a3 + b3 =

(a+b)3−3ab(a+b) . We have

−1+dxy = x3 + y3

= ( j2x)3 +( jy)3

= ( j2x+ jy)3−3xy( j2x+ jy)

= (
−dt +1

3t
)3−3xy(

−dt +1
3t

)

as j2x+ jy = −dt+1
3t since t = 1

3 j2x+3 jy+d . Therefore

xy = (−dt+1
3t )3+1

d+−dt+1
t

= (d3−27)t3−3d2t2+3dt−1
−27t2 =

1
27
t2 +

− 1
9 d
t + 1

9 d2 +
(
− 1

27 d3 +1
)

t.

Now x= X
Z = X

3 j2X+3 jY+dZ ∗
3 j2X+3 jY+dZ

Z and y= Y
Z = Y

3 j2X+3 jY+dZ ∗
3 j2X+3 jY+dZ

Z . Hence

x and y have a simple pole at neutral point and the values of X
3 j2X+3 jY+dZ and Y

3 j2X+3 jY+dZ

at (1 : −1 : 0) are respectively 2 j/9 + 1/9 and −2 j/9− 1/9 . Let x = 2 j/9+1/9
t +

a0 + O(t) and y = − 2 j/9+1/9
t + b0 + O(t). We now want to compute a0 and b0 .

A sage script available in [21, developInf.ipynb (first cell)] enables to compute x ∗
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− jx− d j2

3 + j2
3t

)
,y∗
(
− j2y− d j

3 + j
3t

)
and develop x3 and y3 to get

xy = x∗
(
− jx− d j2

3
+

j2

3t

)
=

(
2 j/9+1/9

t
+a0 +O(t)

)
∗

(
− 2

9 j− 1
9

t
+

(
1
3

j+
1
3

)
d− ja0 +O(t)

)

=
1

27
t2 +

( 1
27 j− 1

27

)
d +

(
− 1

9 j+ 1
9

)
a0

t
+O(1)

so that a0 =
−d/9−( 1

27 j− 1
27 )d

(− 1
9 j+ 1

9 )
=
(
− 1

3 j− 1
3

)
d. Similarly,

xy = y∗
(
− j2y− d j

3
+

j
3t

)
=

(
−2 j/9+1/9

t
+b0 +O(t)

)
∗

(
2
9 j+ 1

9
t
− 1

3
jd +( j+1)b0 +O(t)

)

=
1
27
t2 +

(
− 1

27 j− 2
27

)
d +

( 1
9 j+ 2

9

)
b0

t
+O(1)

so that b0 =
−d/9−(− 1

27 j− 2
27 )d

( 1
9 j+ 2

9 )
= 1

3 jd

4. Development of g3
x +g3

y +1−d′gxgy around of neutral point and value of d′ We have

x =
2 j/9+1/9

t
+

(
−1

3
j− 1

3

)
d +O(t) and y =−2 j/9+1/9

t
+

1
3

jd +O(t)

so that

x3 =
− 2

243 j− 1
243

t3 +

( 1
27 j+ 1

27

)
d

t2 +O(t−1) and y3 =
2

243 j+ 1
243

t3 +
− 1

27 jd
t2 +O(t−1)

– Let Q ∈ S A sage script available in [21, developInf.ipynb (second cell)] enables to

develop xQy2−x
xQx2−x2

Qy
,
(

xQy2−x
xQx2−x2

Qy

)3

, 1−xQxy
x2−xQy ,

(
1−xQxy
x2−xQy

)3
,and 1−xQxy

x2−xQy ·
xQy2−x

xQx2−x2
Qy

around neu-

tral point (1 :−1 : 0)).
xQy2−x

xQx2−x2
Qy

= xQ +

(
( 4

19683 j+ 2
19683 )dx2

Q+(− 2
6561 j− 1

6561 )x3
Q−

2
6561 j− 1

6561
− 1

19683 xQ

)
t +O(t2)

xQy2−x
xQx2−x2

Qy
= xQ +

(
( 1

19683 j+ 1
39366 )dx2

Q−
1

6561 j− 1
13122

− 1
19683 xQ

)
t +O(t2) since ,x3

Q = (−1+dx2
Q)/2

we use the fact that 2x3
Q +1 = dx2

Q⇒ 1/xQ =−2x2
Q +dxQ

xQy2−x
xQx2−x2

Qy
=

= xQ +
((
− j− 1

2

)
d2x3

Q +(2 j+1)dx4
Q +

(
3 j+ 3

2

)
dxQ +(−6 j−3)x2

Q

)
t +O(t2)

= xQ +(2 j+1)
(

dxQ−3x2
Q

)
t +O(t2) since x3

Q =
−1+dx2

Q
2 Therefore

(
xQy2− x

xQx2− x2
Qy

)3 = x3
Q +(6 j+3)

(
dx3

Q−3x4
Q
)

t +O(t2)
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1−xQxy
x2−xQy = xQ− (2 j+1)

(
dxQ−3x2

Q

)
t +O(t2)

so (
1−xQxy
x2−xQy )

3 = x3
Q− (6 j+3)

(
dx3

Q−3x4
Q

)
t +O(t2) and

1− xQxy
x2− xQy

∗ xQy2− x
xQx2− x2

Qy
= x2

Q +O(t2)

we will use the following equality

∏
i∈I

(
ai +bit +O(t2)

)
= ∏

i∈I
ai + ∑

i0∈I

(
bi0 ∏

i6=i0

ai

)
t +O(t2)

Now we have ∏Q∈S

(
xQy2−x

xQx2−x2
Qy

)3

= ∏
Q∈S

x3
Q +(6 j+3) ∑

Q0∈S

(
(dx3

Q0
−3x4

Q0
) ∏

Q6=Q0

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q +(6 j+3) ∑

Q0∈S

(
dx3

Q0 ∏
Q 6=Q0

x3
Q−3x4

Q0 ∏
Q6=Q0

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q +(6 j+3) ∑

Q0∈S

(
d ∏

Q
x3

Q−3xQ0 ∏
Q

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q +(6 j+3)∏

Q
x3

Q · ∑
Q∈S

(d−3xQ)t +O(t2)

∏Q∈S

(
1−xQxy
x2−xQy

)3

= ∏
Q∈S

x3
Q− (6 j+3) ∑

Q0∈S

(
(dx3

Q0
−3x4

Q0
) ∏

Q6=Q0

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q− (6 j+3) ∑

Q0∈S

(
dx3

Q0 ∏
Q 6=Q0

x3
Q−3x4

Q0 ∏
Q6=Q0

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q− (6 j+3) ∑

Q0∈S

(
d ∏

Q
x3

Q−3xQ0 ∏
Q

x3
Q

)
t +O(t2)

= ∏
Q∈S

x3
Q− (6 j+3)∏

Q
x3

Q · ∑
Q∈S

(d−3xQ)t +O(t2)

∏
Q∈S

(
xQy2− x

xQx2− x2
Qy
∗ 1− xQxy

x2− xQy
) = ∏

Q∈S
x2

Q +O(t2)

– Let P ∈ R
−xP∗yP∗y2+x

xy−xPyP
(a sage script available in [21, developInf.ipynb (third cell)] enables to

compute the development of −xP∗yP∗y2+x
xy−xPyP

,
(
−xP∗yP∗y2+x

xy−xPyP

)3
,

−xP∗yP∗x2+y
xy−xPyP

,
(
−xP∗yP∗x2+y

xy−xPyP

)3
,and −xP∗yP∗y2+x

xy−xPyP
· −xP∗yP∗x2+y

xy−xPyP
around neutral point (1 :
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−1 : 0) ). We have
−xP∗yP∗y2+x

xy−xPyP
= xPyP− (2 j+1)(dxPyP−3) t +O(t2)

so that (−xP∗yP∗y2+x
xy−xPyP

)3 = x3
Py3

P− (6 j+3)
(
dx3

Py3
P−3x2

Py2
P
)

t +O(t2) Also

−xP ∗ yP ∗ x2 + y
xy− xPyP

= xPyP +(2 j+1)(dxPyP−3) t +O(t2)

so that

(
−xP ∗ yP ∗ x2 + y

xy− xPyP
)3 = x3

Py3
P +(6 j+3)

(
dx3

Py3
P−3x2

Py2
P
)

t +O(t2)

and
−xP ∗ yP ∗ x2 + y

xy− xPyP
∗ −xP ∗ yP ∗ y2 + x

xy− xPyP
= x2

Py2
P +O(t2)

∏P∈R−(
−xP∗yP∗y2+x

xy−xPyP
)3 =

= ∏P∈R− (x
3
Py3

P)− (6 j+3)∑P0∈R−

(
(dx3

P0
y3

P0
−3x2

P0
y2

P0
)∏P6=P0

(x3
Py3

P)
)

t +O(t2)

= ∏P∈R− (x
3
Py3

P)−
(6 j+3)∑P0∈R−

(
dx3

P0
y3

P0
∏P6=P0

(x3
Py3

P)−3x2
P0

y2
P0 ∏P6=P0

(x3
Py3

P)
)

t +O(t2)

= ∏P∈R− (x
3
Py3

P)−
(6 j+3)∑P0∈R−

(
d ∏P∈R− (x

3
Py3

P)−3∏P∈R− (x
2
Py2

P) · ∏P6=P0
(xPyP)

)
t +O(t2)

= ∏P∈R− (x
3
Py3

P)−
(6 j+3)

(
rd ∏P∈R− x3

Py3
P−3∏P∈R− (x

2
Py2

P) · ∑P∈R−

(
∏P6=P0

(xPyP)
))

t +O(t2)

= ∏P∈R− (x
3
Py3

P)−
(6 j+3)

(
rd ∏P∈R− (x

3
Py3

P)−3∏P∈R− (x
2
Py2

P) ·Sr,r−1(xP1 yP1 , ...,xPr yPr )
)

t +O(t2)

∏P∈R−(
−xP∗yP∗x2+y

xy−xPyP
)3 =

= ∏P∈R− (x
3
Py3

P)+

(6 j+3)∑P0∈R−

(
(dx3

P0
y3

P0
−3x2

P0
y2

P0
)∏P6=P0

(x3
Py3

P)
)

t +O(t2)

= ∏P∈R− (x
3
Py3

P)+

(6 j+3)
(

rd ∏P∈R− (x
3
Py3

P)−3∏P∈R− (x
2
Py2

P) ·Sr,r−1(xPyP, ...,xPyP)
)

t +O(t2)

∏P∈R−(
−xP∗yP∗x2+y

xy−xPyP
∗ −xP∗yP∗y2+x

xy−xPyP
) = ∏P∈R−(x

2
Py2

P)+O(t2)

A sage script available in [21, developInf.ipynb (fourth cell)] enables to develop x3 ∗
(a+bt +O(t2))∗ (e+ f t +O(t2)), y3 ∗ (a+bt +O(t2))∗ (e+ f t +O(t2)) and xy∗ (a+
bt +O(t2))∗ (e+ f t +O(t2)). We use the result here for compute g3

x ,g3
y and gxgy).

g3
x = y3

∏Q∈S(
xQy2−x

xQx2−x2
Qy
)3 ·∏P∈R− (

−xP∗yP∗y2+x
xy−xPyP

)3 =
(2 j/243+1/243)∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P)

t3 +

− jd
27 ∏Q∈S x3

Q·∏P∈R− (x
3
Py3

P)+
1
27

(
rd ∏P∈R− (x

3
Py3

P)−3∏P∈R− (x
2
Py2

P)·Sr−1(xP1 yP1 ,...,xPr yPr )
)
·∏Q∈S x3

Q

t2

−
1
27 ∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P)·∑Q∈S(d−3xQ)

t2 +O(t−1).

Also
g3

y = x3
∏Q∈S(

1−xQxy
x2−xQy )

3 ·∏P∈R− (
−xP∗yP∗x2+y

xy−xPyP
)3 =

−(2 j/243+1/243)∏i=1 x3
Q ·∏P∈R− (x

3
Py3

P)

t3 +

( j+1)d
27 ∏Q∈S x3

Q·∏P∈R− (x
3
Py3

P)+
1
27

(
rd ∏P∈R− x3

Py3
P−3∏P∈R− (x

2
Py2

P)·Sr,r−1(xP1 yP1 ,..,xPr yPr )
)

∏Q∈S x3
Q

t2

−
1
27 ∏Q∈S x3

Q ·∏k=1(x
3
Py3

P)·∑Q∈S(d−3xQ)

t2 +O(t−1). Finally

gxgy = xy∏Q∈S(
1−xQxy
x2−xQy ∗

xQy2−x
xQx2−x2

Qy
)∏P∈R− (

−xP∗yP∗x2+y
xy−xPyP

∗ −xP∗yP∗y2+x
xy−xPyP

) =
1

27 ∏i=1 x2
Q ·∏k=1(x

2
Py2

P)

t2 +O(t−1).
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Therefore g3
x +g3

y +1−d′gxgy =

=
d
27 ∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P)

t2

+
2
27

(
rd ∏P∈R− (x

3
Py3

P)−3∏P∈R− (x
2
Py2

P)·Sr−1(xP1 yP1 ,...,xPr yPr )
)

∏Q∈S x3
Q

t2 −
2
27 ∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P)·∑Q∈S(d−3xQ)

t2

−
d′
27 ∏Q∈S x2

Q ·∏P∈R− (x
2
Py2

P)

t2 +O(t−1)

If we choose d′ such that, d
27 ∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P)+

2
27

(
rd ∏P∈R− x3

Py3
P−3∏P∈R− (x

2
Py2

P) ·Sr,r−1(xP1 yP1 , ...,xPr yPr )
)
·∏Q∈S x3

Q−
2
27 ∏Q∈S x3

Q ·∏P∈R− (x
3
Py3

P) ·

∑Q∈S(d−3xQ)− d′
27 ∏Q∈S x2

Q ·∏P∈R− (x
2
Py2

P) = 0

then g3
x +g3

y +1−d′gxgy = 0 since g3
x +g3

y +1−d′gxgy is a pole of order 2 at (1 :−1 : 0)
and (1 :− j2 : 0).
d′ = d ∏Q∈S xQ ·∏P∈R− (xPyP)+2

(
rd ∏P∈R− (xPyP)−3Sr,r−1(xP1 yP1 , ...,xPr yPr )

)
·∏Q∈S xQ

−2∏Q∈S xQ ·∏P∈R− (xPyP) ·∑Q∈S(d−3xQ)

d′ = d ∏Q∈S xQ ·∏P∈R− (xPyP)+2rd ∏Q∈S xQ ·∏P∈R− (xPyP)

−6∏Q∈S xQ ·Sr,r−1(xP1 yP1 , ...,xPr yPr )

−2∏Q∈S xQ ·∏P∈R− (xPyP) ·∑Q∈S(d−3xQ)

d′ = ∏Q∈S xQ ·∏P∈R− (xPyP)
(
d +2rd−2∑Q∈S(d−3xQ)

)
−6∏Q∈S xQ ·Sr,r−1(xP1 yP1 , ...,xPr yPr )

. Therefore d′=∏Q∈S xQ ·∏P∈R− (xPyP)
(
d(1+2r−2s)+6∑Q∈S xQ

)
−6Sr,r−1(xP1 yP1 , ...,xPr yPr )·∏Q∈S xQ.

The following Theorems 6 and 7 extend the previous result to isogenies over twisted and
generalized Hessian curves.

Theorem 6 Let G = {(1 : −1 : 0)} ∪ {(γ j,γ j)}s
j=1 ∪ {±(αi,βi)}r

i=1 be a subgroup of the
generalized Hessian curve Hc,d of finite order ` non-divisible by 3. Then

g(x,y) = (y
s

∏
j=1

γ2
j y2− cx

γ jx2− γ2
j y
·

r

∏
i=1

−αiβiy2 + cx
xy−αiβi

,x
s

∏
j=1

−γ jxy+ c
x2− γ jy

·
r

∏
i=1

−αiβix2 + cy
xy−αiβi

) (7)

is an isogeny of kernel G from Hc,d to Hc′,d′ with c′ = cn and d′ = ∏
s
j=1 γ j ·∏r

i=1(αiβi) ·(
d(1+2r−2s)+6∑

s
j=1 γ j

)
−6cSr,r−1(α1β1, ...,αrβr) ·∏s

j=1 γ j

Proof Using the isomorphism f : Hc,d −→ Hd/ 3√c, f (x,y) = ( x
3√c
, y

3√c
) (given in Subsection

2.2.1 between generalized Hessian curve and Hessian curve ) the image of the subgroup
G = {(1 : −1 : 0)}∪ {(γ j,γ j)}s

j=1 ∪{±(αi,βi)}r
i=1 is the subgroup G′ = {(1 : −1 : 0)}∪

{( γ j
3√c
,

γ j
3√c
)}s

j=1 ∪{±(
αi
3√c
, βi

3√c
)}r

i=1. We apply Theorem 5 to have an isogeny g : Hd/ 3√c −→

Hd1 , g(x,y) = (y∏
s
j=1

γ2
j y2− 3√c2x

γ j
3√cx2−γ2

j y
·∏r

i=1
−αiβiy2+ 3√c2x

3√c2xy−αiβi
,x∏

s
j=1
−γ jxy+ 3√c

3√cx2−γ jy
·∏r

i=1
−αiβix2+ 3√c2y

3√c2xy−αiβi
)

with
d1 = ∏

s
j=1

γ j
3√c
·∏r

i=1(
αiβi
3√c2 ) ·

(
d
3√c
(1+2r−2s)+6∑

s
j=1

γ j
3√c

)
−

6Sr,r−1(
α1β1
3√c2 , ...,

αrβr
3√c2 ) ·∏s

j=1
γ j
3√c

which can be simplified from

d1 =
1

3√cs ∏
s
j=1 γ j · 1

3√c2r ∏
r
i=1(αiβi) ·

(
d
3√c

(1+2r−2s)+6 1
3√c ∑

s
j=1 γ j

)
−

6 1
3√c2r−2 Sr,r−1(α1β1, ...,αrβr) · 1

3√cs ∏
s
j=1 γ j to

d1 =
1

3√cn

(
∏

s
j=1 γ j ·∏r

i=1(αiβi) ·
(

d(1+2r−2s)+6∑
s
j=1 γ j

)
−6cSr,r−1(α1β1, ...,αrβr) ·∏s

j=1 γ j

)
.
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We then apply the inverse transformation f−1 : Hd1 −→Hcn,d′ (given in Subsection 2.2.1
between generalized Hessian curve and Hessian curve ) , f−1(x,y) = ( 3

√
cn ·x, 3

√
cn ·y) where

d′=∏
s
j=1 γ j ·∏r

i=1(αiβi)·
(

d(1+2r−2s)+6∑
s
j=1 γ j

)
−6cSr,r−1(α1β1, ...,αrβr)·∏s

j=1 γ j.

g◦ f (x,y)= ( y
3√c ∏

s
j=1

γ2
j y2−cx

3√c(γ jx2−γ2
j y)
·∏r

i=1
−αiβiy2+cx
3√c2

(xy−αiβi)
, x

3√c ∏
s
j=1

−γ jxy+c
3√c(x2−γ jy)

·∏r
i=1

−αiβix2+cy
3√c2

(xy−αiβi)
)

we get

f−1 ◦g◦ f (x,y) = (y∏
s
j=1

γ2
j y2−cx

γ jx2−γ2
j y
·∏r

i=1
−αiβiy2+cx

xy−αiβi
,x∏

s
j=1
−γ jxy+c
x2−γ jy

·∏r
i=1
−αiβix2+cy

xy−αiβi
)

Theorem 7 Let G = {(0 : −1 : 1)} ∪ {(γ j,1)}s
j=1 ∪ {±(αi,βi)}r

i=1 be a subgroup of the
twisted Hessian curve Ha,d of finite order ` non-divisible by 3. Then

g(x,y) = (
x
y

s

∏
j=1

−xy+ γ j

aγ2
j x2− y2 ·

r

∏
i=1

α2
i y−βix2

−βiy2 +aα2
i x

,
1
y

s

∏
j=1

γ jax2− y
aγ2

j x2− y2 ·
r

∏
i=1

aα2
i xy−βi

−βiy2 +aα2
i x

) (8)

is an isogeny of kernel G from Ha,d to Ha′,d′ with a′ = an and d′ = ∏
s
j=1

1
γ j
·∏r

i=1(
βi
α2

i
) ·(

d(1+2r−2s)+6∑
s
j=1

1
γ j

)
−6aSr,r−1(

β1
α2

1
, ..., βr

α2
r
) ·∏s

j=1
1
γ j

Proof Using the isomorphism f ′ : Ha,d −→ Ha,d , f (x,y) = ( 1
x ,

y
x ) of Lemma 1 the image

of the subgroup G = {(0 : −1 : 1)} ∪ {(γ j,1)}s
j=1 ∪ {±(αi,βi)}r

i=1 is the subgroup G′ =

{(1 : −1 : 0)} ∪ {( 1
γ j
, 1

γ j
)}s

j=1 ∪ {±(
1
αi
, βi

αi
)}r

i=1. We apply Theorem 6 to have an isogeny
g′ : Ha,d −→ Han,d′ defined by

g′(x,y) = (y∏
s
j=1
−y2+aγ2

j
γ jx2−y ·∏

r
i=1

aα2
i x−βy2

α2
i xy−βi

,x∏
s
j=1

aγ j−xy
γ jx2−y ·∏

r
i=1

aα2
i y−βx2

α2
i xy−βi

) with

d1 = ∏
s
j=1

1
γ j
·∏r

i=1(
βi
α2

i
) ·
(

d(1+2r−2s)+6∑
s
j=1

1
γ j

)
−6aSr,r−1(

β1
α2

1
, ..., βr

α2
r
) ·∏s

j=1
1
γ j

.

We then apply the inverse transformation given by Lemma 1 f ′−1 : Hd1 −→Han,d′ , f−1(x,y)=

( 1
x ,

y
x ). This leads to g◦ f (x,y)= ( y

x ∏
s
j

aγ2
j x2−y2

−xy+γ j
·∏r

i=1
−βiy2+aα2

i x
α2

i y−βix2 , 1
x ∏

s
j=1

γ jax2−y
−xy+γ j

·∏r
i=1

aα2
i xy−βi

α2
i y−βix2 )

so that
f ′−1 ◦g′ ◦ f ′(x,y) = ( x

y ∏
s
j
−xy+γ j

aγ2
j x2−y2 ·∏r

i=1
α2

i y−βix2

−βiy2+aα2
i x
, 1

y ∏
s
j=1

γ jax2−y
aγ2

j x2−y2 ·∏r
i=1

aα2
i xy−βi

−βiy2+aα2
i x
)

5 Computational Cost of the Isogenies over Hessian Curves

In this section we examine the computational cost of the Hessian isogenies on input points
and compare it to known results for Edward, Huff and Jacobi quartic isogenies [24] and [31].

5.1 Cost of Evaluation of Hessian Isogeny in Affine Coordinates

Let G an finite subgroup of Hd . We will use the notation of Theorem 5 where g(x,y) =

(y∏Q∈S
x2

Qy2−x

xQx2−x2
Qy
·∏P∈R−

x−xPyPy2

xy−xPyP
,x∏Q∈S

1−xQxy
x2−xQy ·∏P∈R−

y−xPyPx2

xy−xPyP
) Denote M, S and C the

cost of a multiplication, squaring and multiplication by a constant in K respectively.

1. We first compute x2, y2 and xy at the cost of M+2S.
2. For each P ∈ R−, we compute y− xPyPx2 and x− xPyPy2. This requires 2rC. Similarly

for each Q ∈ S we compute 1− xQxy, x2− xQy and 1
xQi

(x2
Qi

y2− x) costing 4sC.
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3. The computation of ∏P∈R−(y− xPyPx2), ∏P∈R−(xy− xPyP) and ∏P∈R−(x− xPyPy2)

costs 3(r− 1)M. Similarly the computation of ∏Q∈S(x
2
Qy2 − x), ∏Q∈S(x

2 − xQy) and
∏Q∈S(1− xQi xy) costs 3(s−1)M.

4. We compute ∏P∈R−(xy− xPyP)∗∏Q∈S(x
2− xQy) and the inverse

1
∏P∈R− (xy−xPyP)∗∏Q∈S(x

2−xQy) in M+ I.

5. Finally the computation of
y∏Q∈S

(
1

xQ
(x2

Qy2− x)
)
∗∏P∈R−(x− xPyPy2) 1

∏P∈R− (xy−xPyP)∗∏Q∈S(x
2−xQy)

and x∏Q∈S(1− xQxy)∗∏P∈R−(y− xPyPx2) 1
∏P∈R− (xy−xPyP)∗∏Q∈S(x

2−xQy) costs 6M.

The total total cost is then (3s+ 3r + 2)M +(4s+ 2r)C+ 2S+ I. In the particular case of
2-isogeny the cost is 5M+2S+4C+ I. In the case of subgroups of order not divisible by 2
and 3 the cost is (3r+2)M+2rC+2S+ I.

5.2 Cost of Computing the Isogeny for Subgroup of Order 3 in Affine Coordinates

– First, second and third case of Theorem 2. In these cases
g(x,y) = (m x+x2y+y2

xy ,m y+y2x+x2

xy ) we first compute x2,y2 and xy at a cost of 2S +M.
Next we compute xy2 and x2y in 2M. The computation of 1

xy costs 1I. The computation
of (x+ x2y+ y2)(m 1

xy ) and (y+ y2x+ x2)(m 1
xy ) requires C + 2M. For the second and

third case of Theorem 2 we add 4C for the computation of jx, jy, j2x2y and j2y2x in the
second case (resp jx, jy, j2x2 and j2y2 in the third case). The total cost is 5M+2S+C+ I
for the first case and 5M+2S+5C+ I for the second and third case.

– Fourth case of Theorem 2.
We have g(x,y) = (m− jx3+1−d(−1/3 j+1/3)xy

xy ,m− jy3+1−d(−1/3 j+1/3)xy
xy ).

From the computation of x3,y3 one deduces dxy = x3 + y3 + 1 and xy = 1
d (x

3 + y3 + 1)
at the cost of 2S + 2M +C. The computation of − jy3, − jx3 and (−1/3 j + 1/3)dxy
requires 3C. The computation of 1

xy , (− jy3+1−d(−1/3 j+1/3)xy)(m 1
xy ) and (− jy3+

1−d(−1/3 j+1/3)xy)(m 1
xy ) requires C+2M. The total cost is 4M+2S+4C+ I.

5.3 Cost of Computing the Isogeny in Projective Coordinates

g(X : Y : Z) = (Y ∏Q∈S

(
1

xQ
(x2

QY 2−ZX)
)
·∏P∈R− (XZ− xPyPY 2) :

X ∏Q∈S(Z
2− xQXY ) ·∏P∈R− (Y Z− xPyPX2) : Z ∏P∈R− (XY − xPyPZ2) ·∏Q∈S(X

2− xQY Z))

1. We first compute X2,Y 2,Z2,XZ,Y Z and XY at a cost of 3M+3S.
2. For each P ∈ R−, the computation of Y Z− xPyPX2, XZ− xPyPY 2 and XY − xPyPZ2 re-

quires 3rC. Also for each Q∈ S the computation of Z2−xQXY ,X2−xQY Z and 1
xQ
(x2

QY 2−
XZ) costs 4sC.

3. The computation of ∏P∈R−(Y Z − xPyPX2), ∏P∈R−(XY − xPyPZ2) and ∏P∈R−(XZ −
xPyPY 2) costs 3(r− 1)M. Also, computing ∏Q∈S(x

2
QY 2−XZ), ∏Q∈S(X

2− xQY Z) and
∏Q∈S(Z

2− xQXY ) requires 3(s−1)M.

4. Finally the computation of Y ∏Q∈S

(
1

xQ
(x2

Qi
Y 2−ZX)

)
·∏P∈R−(XZ−xPyPY 2), X ∏Q∈S(Z

2−
xQi XY ) ·∏P∈R−(Y − xPyPX2) and Z ∏P∈R−(XY − xPyPZ2) ·∏Q∈S(X

2− xQY Z) requires
6M.
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Table 1 Theoretic cost for computing isogenies of odd degree `= 2s+1 over elliptic curves

Curves Cost in projective Cost in affine

Edward [24] (3s+3)M+4S+3sC (3s+1)M+2S+3sC+ I
Huff [24] (4s+3)M+3S+4sC (4s−2)M+2S+2sC+2I
Jacobi quartic [31] (4s+2)M+3S+(7s+4)C (4s+2)M+3S+(7s+4)C+2I
Twisted Hessian [7] (5s+3)M+4S+8sC (5s+2)M+(s+2)S+7sC+ I
Twisted Hessian[27] (5s+5)M+3S+(9s)C (5s+2)M+3S+9sC+ I
Hessian (This Work ) (3s+3)M+3S+3sC (3s+2)M+2S+2sC+ I

The total cost is then (3s+3r+3)M+(4s+3r)C+3S. In the particular case of a 2-isogeny
the cost is 6M+3S+4C. In the case of subgroups of order not divisible by 2 and 3 the cost
is (3r+3)M+3rC+3S

5.4 Cost of Computing the Isogeny for Subgroup of Order 3 in Projective Coordinates

– First, second and third cases of Theorem 2. In these cases
g(x,y) =

(
m(XZ2 +X2Y +Y 2Z) : m(Y Z2 +Y 2X +X2Z) : XY Z

)
. The computation of

X2,Y 2,Z2 and XY Z costs 3S + 2M. The computation of XY 2,X2Y ,XZ2,Y 2Z,Y Z2 and
X2Z requires 6M. Finally computing m(XZ2 +X2Y +Y 2Z) and m(Y Z2 +Y 2X +X2Z)
requires2C. For the second and third case of Theorem 2 we add 4C for computing
jXZ2, jY Z2, j2X2Y and j2Y 2X in the second case (resp jXZ2, jY Z2, j2X2Z and j2Y 2Z
in the third case). The total cost is 8M+3S+2C for the first case and 8M+3S+6C for
the second and third case.

– Fourth case of Theorem 2. The isogeny is
g(x,y) = (m(− jX3 +Z3−d(−1/3 j+1/3)XY Z) : m(− jY 3 +Z3−
d(−1/3 j+1/3)XY Z) : XY Z). One computes X3,Y 3, Z3 and deduces dXY Z =X3+Y 3+
Z3 and XY Z = 1

d (X
3 +Y 3 +Z3)at a cost of 3S+ 3M +C. The computation of − jX3 ,

− jY 3 and (− j/3+1/3)dXY Z requires 3C. Finally the computation of m(− jX3 +Z3−
d(−1/3 j + 1/3)XY Z) and m(− jY 3 + Z3− d(−1/3 j + 1/3)XY Z) is done in 2C. The
total cost is 3M+3S+6C

In the Table 1 we compare the cost of the Hessian isogeny obtained in this work with the cost
of Edward, Huff and Jacobi quartic isogenies in the case of subgroup of order not divisible
by 2 and 3. We can draw the conclusion that isogenies over Hessian curves are slightly
efficient than the existing ones. In particular this work provides a fastest (3M + 3S+ 6C)
degree-3 isogeny with respect to Edward (6M+4S+3C), Huff (7M+3S+4C) and Jacobi
(6M+3S+11C) isogenies.

6 Conclusion

In this paper we gave an analogue of Vélu’s formulas on Hessian curves and the analysis of
the cost of the computation of this map shows that Hessian isogenies are slightly faster than
Edward isogenies, Jacobi and Huff isogenies. As isogenies have been used to improve the
efficiency of many algorithms, it will be interesting to also implement these protocols with
Hessian isogenies and to compare the efficiency.
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