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Abstract Vélu’s formulas for computing isogenies over Weierstrass model of elliptic curves
has been extended to other models of elliptic curves such as the Huff model, the Edwards
model and the Jacobi model of elliptic curves. This work continues this line of research by
providing efficient formulas for computing isogenies over elliptic curves of Hessian form.
We provide explicit formulas for computing isogenies of degree 3 and isogenies of degree
¢ not divisible by 3. The theoretical cost of computing these maps in this case is slightly
faster than the case with other curves. We also extend the formulas to obtain isogenies over
twisted and generalized Hessian forms of elliptic curves. The formulas in this work have
been verified with the Sage software and are faster than previous results on the same curve.
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1 Introduction

Isogenies are morphisms of finite nucleus groups between two elliptic curves. Given an
elliptic curve E over a field K and a finite subgroup G of E(K) the Vélu formulas [30]
explicitly determine an elliptic curve E’ and an isogeny from E to E’ with kernel G. Isoge-
nies are widely used in the study of elliptic curves [28]. They are also very used in elliptic
curve cryptography in particular to accelerate the scalar multiplication over elliptic curves
as shown in [13], [14], [8] and [23]. Isogenies are also used in the SEA algorithm to com-
pute the cardinality of an elliptic curve [1], [12] and [26]. Also, mathematical primitives
in the construction of cryptographic one-way functions such as hashes and pseudo-random
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number generators using isogenies have been proposed in [5] and [16]. More interestingly
is the construction of a quantum-resistant public crypto-systems based on super-singular el-
liptic curves isogenies (SIDH) [10]. The research works previously cited are based mostly
on the classical Weierstrass model of an elliptic curve. Several other models exist in the
literature such as the Hessian model, the Edward model, the Jacobi model, the Huff model.
These curves are almost all birationally equivalent to the Weierstrass model but depending
on the properties of each curve such as arithmetic of points, a careful choice of the model
may be necessary. For example, an elliptic curve with complete addition formulas and/or
unified addition formulas ensures protection against exceptional procedure attacks [17] and
side-channel attacks respectively on protocols based on the curves used. Also, addition for-
mulas that can be parallelized may be preferable in term of efficiency of the computations.
The Hessian model of elliptic curves [29] has been proven to have unified addition formulas
[18] which can be computed in a parallel way [29]. Also this model presents a nice geo-
metric interpretation of the group law that allows to obtain competitive costs in pairing’s
computation with respect to well known models of curves such as the Weierstrass and the
Edward model [15], [11]. Also, some standard curves from IEEE, SECG can be transformed
to Hessian curves as pointed out by Smart [29]. Analogues of Vélu’s formulas for Edward,
Huff and Jacobi models of elliptic curves are given in [24] and [31]. Expressing isogenies
on other models of elliptic curves (Edward, Huff, Jacobi, Hessian ... .etc) can improve the
efficiency of the considered algorithms. The computation of Isogenies over Edward elliptic
curve has been improved in several works such as [20], [19] and in [2] to improve the ef-
ficiency of SIDH. Orhon et al. [25] provide a faster inversion-free point addition formulas
using 2-isogenies on Huff curve. Meyer et al. [22] improved the efficiency of the commuta-
tive SIDH using Edward isogenies. Improved Isogenies over Edward curves are also used to
ensure resistance against timing attack and fault injection attack on the commutative SIDH
[4]. Isogenies over Montgomery curves have been used to propose a variant of the CGL hash
[5] that is faster than the original algorithm and preimage and collision resistant. The above
discussion on the possible efficiency and alternate use of isogenies over different models of
elliptic curves justify this work aiming to provide competitive formulas for isogenies over
Hessian elliptic curves.

To our knowledge, only formulas for degree-2 isogenies exist over this curve [6]. At the time
we are submitting this work, we are aware of the latest preprint [7] just uploaded online and
computing also isogenies over Hessian curves. But the formulas for isogenies of odd de-
gree £ = 2r+ 1 are extremely costly ((5r+ 3)M + 4S + 8rC), which is even slower than
Edward, Huff and Jacobi isogenies, contrary to the efficient formulas obtained in this work
costing ((3r+3)M + 38+ 3rC) where M, S and C denote the cost of a field multiplication,
squaring and multiplication by a constant. Also this work provides a fastest (3M + 35 + 6C)
degree-3 isogeny with respect to Edward (6M + 48 + 3C), Huff (7M + 35S +4C) and Ja-
cobi (6M +3S+ 11C) isogenies. Furthermore we provide explicit formulas verified with the
Sage script available in [21] for the Hessian curves, the generalized and the twisted Hessian
curves both for degree 3 isogenies and odd degree ¢ isogenies.

The remainder of this document is be organized as follows: in Section 2 we will recall the
Vélu formulas [30] as well as the definition and arithmetic of Hessian curve. In Section 3
we derive explicit formulas for isogenies of degree 3 over the Hessian Curves. The result
is extended to the twisted and generalized Hessian curves. In Section 4 we treat the more
general case of isogenies of degrees not divisible by 3. The Section 5 will be devoted to a
comparison of the computational cost in term of basic fields operations of isogenies over
Edward, Huff, Jacobi quartic and Hessian models of elliptic curves. The work is concluded
in Section 6.
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2 Background on Isogenies and Hessian Elliptic Curves

This section briefly recalls the VElu formulas for computing isogenies over elliptic curves.
The arithmetic over Hessian model and maps between twisted and generalized Hessian mod-
els of elliptic curves are described as well.

In what follows, K denotes a finite field with characteristic different from 2 and 3.

2.1 Review of Vélu’s Formulas

Let E : y> = x*> + ax+ b be an elliptic curve defined over K . Let £ be an odd prime and G an
subgroup of order ¢. The map ¢ defined by

O(P)=(xp+ Y. (xpro—xp)yp+ Y, (pro—yp))
0eG— (e} 0eG— ()

is invariant under translation by elements of G, and the kernel of ¢ is G. Using the group
law on the curve, we also see that ¢ can be written in terms of rational functions. Indeed
let G* = G — {oo}. Partitionning G into two sets G* and G~ such that G* = GT UG, and
P € G iff —P € G~ and for each point P € GT, we define the following quantities

gh =3x3+a,gp = —2yp,vp = 285, up = (gp)*,v = Lpeg+ vp and w = ¥ p_ci (up +
xpvp), then the ¢-isogeny ¢ : E — E’ is given by

o(x,y) = ()H— Z (L L)J_ Z( 2yup +VPY_YP—8);’£’;)>

pege X—xp  (x—xp)?7 B N (x—xp)? (x—xp)?

The equation for the image curve is E’ : y> = x> 4+ (A — 5v)x + (B —Tw).

2.2 The Hessian Model of Elliptic Curve
2.2.1 The Hessian and the Generalized Hessian Elliptic Curve

Definition 1 [18] A Hessian curve over K is a cubic equation H, : X 34y34+73 =dxyz
in the projective space P?>(K) with d € K and d* # 27. The affine equation is given by
Hy:x3+y +1=dxy.

The generalized Hessian curve which cover more isomorphism classes of elliptic curves
than Hessian curves is defined in [9].

Definition 2 [9] Let ¢,d be elements of K such that ¢ # 0 and d° # 27¢. The generalized
Hessian curve H, 4 over K is defined by the equation

H.y:X>+Y?+cZ° =dXYZ.

Clearly, a Hessian curve Hy is a generalized Hessian curve H. 4 with ¢ = 1. Moreover, a
generalized Hessian curve H, 4 over K is isomorphic over K to the Hessian curve H, St
B4+37+1=(d//c)5§ via the map f : (x;y) — (%) defined by ¥ = x//c and § = y/</c
with %3 = c. The inverse is £~ ! (x,y) = (cx, ¥/cy). The common j-invariant is j(H,4) =

3630\
i(Hy ) = & (")
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Remark 1 .

1. H, 4 has exactly three points at infinity (1: —1:0),(1:—j:0) and (1: —j*: 0) with
j2+ j+1=0. In characteristic 3 there is only one point at infinity (1 : —1 : 0).

2. By putting x = y we show that the points whose ordinate is equal to the abscissa satisfy
283 +e—d? =2y  +c—dy* =0.

3. By putting x = 0 (resp y = 0) on H, 4, we obtain the points (0: —/c: 1) (resp (—+/c:
0:1) )with %3 = c. In the particular case of Hessian curve H) 4, if car(k) # 3 we
have the points (0: —1:1),(0: —j:1) and (0:—j>:1) (resp (—1:0:1),(—j:0:
1) and (—j*:0:1))with j>+ j+ 1= 0. In characteristic 3 there is only one point
(0:—=1:1) (resp (—1:0:1))

2.2.2 Addition Formulas on Hessian Elliptic Curves

Unified addition formulas on generalized Hessian elliptic curve are given in [9]. Given two
points (X; : Y1 :Z;) and (X2 : Y2 : Z») on the curve, their sum is the point (X3 : ¥3 : Z3) given
by

(X3:Y3:Z3) = (chZoZ} — X\ Y1 X3 : XooY? — X0 2123 : Xo 2o X? — Y1 Z,Y3)

Remark 2 .

1. (1:—1:0) is the neutral element and inverse of (X : Y : Z) is (Y : X : Z).

2. the points of order 2 are the points whose ordinate is equal to the abscissa.

3. X:Y:Z2)4+(—=c:0:1)= (\%Y:%ZZ:X) (we suppose X #0), (X:Y:Z)+(0:
—c: l):(Q/EZZ: JcX 1Y) (wesuppose Y Z0)and (X :Y:Z)4+(1:—j:0) = (jX:
Y :2)

4. For each /c € k such that %3 =c¢, {(1:-1:0),(=/c:0:1),(0: —=Jc: 1} isa
sub-group of order 3.

5. If car(k) # 3, The three points at infinity form a sub-group of order 3 {(1: —1:0),(1:
—j:0),(1:—42:0)}.

2.2.3 Birational Transformation and Twisted Hessian Curves

We note that the elliptic curve E over K has a point of order 3 if and only if it has a Weier-
strass model E,, 4, : y2z +ayxyz+ a3yz2 =x3[3].

Theorem 1 [9] Let E be an elliptic curve over K. If the group E(K) has a point of order
3 then E is isomorphic over K(j) ( with 2+ j+1=0) to a generalized Hessian curve
. More precisely E : y*z+ ayxyz + azyz> = x° is isomorphic over K(j) to the generalized
Hessian curve H. 4 : x° +y3 + ¢ = dxy where d = 3ay and ¢ = a? — 27a3 via the map:
G aX:Y:Z)=(jaX+ (- DY +@2j+DasZ: —(j+ DarX — (j+2)Y — (2j+ azZ : X)

from E to H. 4 and inverse transformation is given by

O (X:Y:2)=(3a3Z: (—a3)X + (—a3)Y —ara3Z: (—j)X + (j+ )Y —a12)

The sage script available in [21, isom.ipynb] can be used to verify that @ 4o (p;; =Idy.

c.d
and (p;d1 0 Q. 4 = Idg. We note that @4 is not a group isomorphism because ¢, 4(0:1:0) =
(1:—j%:0). But using a translation one obtains @;(X : ¥ : Z) + (1 : —j : 0) = (j2a1 X +
(=2j— DY+ (—j—2)asZ: ja;X + (2j+1)Y + (j— 1)asZ : X) which is an isomorphism
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of group because @, 4(0:1:0)+(1:—;:0)=(1:—1:0) and its inverse is (p;;((X 1Y
)+ (1:=j2:0) = BazZ: ((j+ 1)a3)X + (—ja3)Y —ajazZ: —X —Y — a1 Z)
we can see that a uniformiser at Illeutral point (1: —1:0)ist= G +1)); a3 +33jy v

32x+3jy+d

for the future we will take t =

Definition 3 [3] A projective twisted Hessian curve over K is a curve of the form J7, ; :
aX?+Y3 +273 = dXYZ in P>(K) with specified point (0: —1: 1), where a and d are elements
of K with a(27a —d?) # 0.

We give here the addition formulas from [3] called rotated addition. The inverse of a point
(X1:Y1:Z))is —(X;:Y1:Z1) = (X) : Z; : Y1) and the sum of two points (X; : Y} : Z;) and
(X5 : Y5 : Zy) of F, 4 is the point (X} : Y] : Z}) defined by

X; = 3X1\Z) — YEXoVo, Y] = YV Z) — aXiX2Z, and Z = aX3XiY) — ZiY2Z,. Points of
twisted Hessian curve correspondingto X =0 (respY =0orZ=0)are (0: —1:1),(0: —j:
1)and (0: —j%:1) (resp (1:0: —Y/a) or (1: —/a:0)) if car(K) #3.{(0: —1:1),(0:
—j:1),(0:—2: 1)} and {(0: —1:1),(1:0: —a),(1: —</a:0)} are the subgroups of
order 3. The points of order 2 has coordinates (7, 1) where ay® 4+2 —dy = 0.

It is easy to establish the following Lemma 1 that gives an isomorphism between the
twisted Hessian curve (provided of addition law of subsection 2.2.3) and generalized Hes-
sian curve (provided of addition law of subsection 2.2.2).

Lemma 1 The map f' defined by f'(x,y) = (%, 2) is an isomorphism from the twisted Hes-

sian curve H; 4 to the generalized Hessian curve Hy 4. Its inverse is f~!(x,y) = (%, 2)

3 Formulas for Isogenies of Degree 3 on Hessian Curve

In this section, we consider a Hessian curve H; over K and we derive formulas for isogenies
with kernel a subgroup of H,(K) of order 3. Furthermore we consider also a subgroup G of
H,(K) of order an odd integer ¢ not divisible by 3 and we find an elliptic curve H; and an
isogeny from H, to H); with kernel G.

Theorem 2 Let H; be an Hessian curve over K and G a subgroup of H;(K) of order 3. We
define a curve Hy and give an isogeny g : Hy — Hy of kernel G, for each possibility of G.

(a) fG={(1:-1:0),(—1,0),(0,—1)} then the affine map

g: Hi — Hy

25042 2.0.,2
(ny) — (mx+xx;+) 7my+y);+x )

projectively defined by
(X:Y:Z)— (m(XZ* + XY +2Y?) : m(Z°Y +Y*X +ZX?) : XYZ)

is an isogeny of kernel G. The coefficient of the curve Hy is given by d' = m(d + 6)

31
where m” = oy~
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(b)

(c)

(d)

ifG={(1:~1:0),(~},0),(0,~j)} then
the affine map

g: Hy — Hy
e 2320402 222
X+ x7y+y! + X+x
(,y) > (mASESRE PR

projectively defined by
(XY :Z) — (m(jXZ* + 2X2Y +2Y2) : m(jZ*Y + j*Y*X + ZX?) : XY Z)

is an isogeny of kernel G. The coefficients of the curve Hy is given by d’ = m(j>d + 6)
where m> =

d2+312d+9
ifG= {(1 -1 0)7 (_j2>0)7 (Oa _jz)} then
the affine map
g: Hy — Hy
. ) . 2 2.2
(x,y) (m’”xz)f;’ 2ty ;;Jrj 2y
projectively defined by

(XY :Z) — (m(jXZ*+ XY + j2ZY?) : m(jZ*Y +Y2X + j*ZX?) : XY Z)

is an isogeny ofkernel G. The coefficients of the curve Hy is given by d' = m(d + 6]2)
where m3 = m

ifG={(1:-1:0),(1:—j:0),(1:—;2:0)} then the affine map
g: Hd — Hd’
(x,y) (m—jx3+l—d(;yl/3j+l/3)xy7m—jy3+1—d(;y]/3j+1/3)xy)

projectively definedby (X :Y : Z) — (m(—jX3+ 23 —d(—1/3j+1/3)XYZ) :m(—jY> +
73 —d(—1/3j+1/3)XYZ) : XYZ) is an isogeny of kernel G. The coefficients of the

curve Hd/ is given by d' = dm(j+2) where m® = —3 21+217

Proof . The expressions of these maps are easily inspired from the composition of the iso-
morphism between Weierstrass and Hessian curves and the Weierstrass isogenies.

— Proof of the case (a) where G = {(1: —1:0),(—1,0),(0,—1)} and g(X : Y : Z) =

(m(XZ? +X2Y +ZY?) : m(Z?Y +Y?X +ZX?) : XYZ). We start to show that for all
(x,y) € Hy, g(x,y) € Hy. After reducing the power of x greater than 3 in the numer-
ator of g3 + gf +1—d'g.gy by using the equation of H; and using the fact that d’ =

(d—|—6) gx+gy+l—dgxg) becomes ((—d3—3d>— 9d)m3+d)yx+((d2+x’;’d+9) m3—1)y3+(d?+3d+9)m* — 1
which is zero since m3 = m The sage script available in [21, 3-isogenies.ipynb
(first cell)] can be used to check the computation of numerator and denominator of
g+g+1—dggy Alsog(l:—1:0)=g(—=1:0:1)=g(0:—1:1)=(1:—1:0)s0g
is anisogeny and G C ker(g) . g(1: —j:0)=(1:—j:0)and g(1: —j2:0)=(1:—;2:0)
so(1:—j:0)and (1:—;2:0) ¢ ker(g). ker(g) does not contain a point at infinity. Let
(x,y) € Hy so that g(x,y) = (1: —1:0) using the projective form of g we have xy = 0 so,
(x,y) = F(=1,0),F(~,0) or F(—;>,0) but g((—,0)) = g((~1,0) + (1 : —j: 0)) =
(1:—j:0) and g((—j2,0)) = g((—1,0)+ (1 : —j*:0)) = (1 : —j*: 0) (since g is an
isogeny) so (x,y) = F(—1,0) and G = ker(g).
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— Proof of the case (b) where G = {(1: —1:0),(—;,0),(0,—;)} and
(X :Y :Z) = m(jXZ* + 2X*Y +ZY?) : m(jZ*Y + jY’X + ZX?) : XYZ)

We start to show that for all (x,y) € Hy, g(x,y) € Hy. After reducing the power of x
greater than 3 in the numerator of gﬁ + gi + 1 —d’'g,gy by using the equation of H, and
using the fact that &’ = m(j%d +6), g +g3 +1—d'g,g, becomes

((=jd*+(3j+3)d>=9d)m*+d ) yx-+((jd?+(=3j—3)d+9)m> — 1)y>+ (jd? +(—3,j—3)d+9)m> — |
3

The sage script available in [21, 3-isogenies.ipynb

X
which is zero since m> = m.
(second cell)] can be used to check the computation of numerator and denominator of
gi+g+1—dg.g Alsog(l:—1:0)=g(—j:0:1)=g(0:—j:1)=(1:-1:0)s0
g is an isogeny and G C ker(g) .
g(l1:—j:0)=(1:—j:0)andg(1: —;2:0)=(1:—j%>:0)s0(1:—j:0)and (1:—;2:0)
¢ ker(g). ker(g) does not contain a point at infinity.
Let (x,y) € Hy so that g(x,y) = (1: —1:0) using the projective form of g we have
%y =050, (x,y) = F(=1,0),%(-,0) or F(=7%,0) but g((~1,0)) = g((~j,0) + (1 :
—Jj7:0)) = (1:=j=:0)and g((—j~,0)) = g((=/,0)+ (1: =j: 0)) = (1 : —j: 0) (since
g is an isogeny) so (x,y) = F(—/,0) and G = ker(g).
— Proof of the case (c) where G = {(1: —1:0),(—j*,0),(0,—j*)} and

g(X 1Y :Z) = (m(jXZ* + X°Y + j2ZY?) : m(jZ*Y + Y?X + j*ZX?) : XY Z)

We start to show that for all (x,y) € Hy, g(x,y) € Hy. After reducing the power of x
greater than 3 in the numerator of g3 + gS + 1 —d'gygy by using the equation of H, and

using the fact thatd’ = m(d +6), g3 -l—g; +1—d'g.gy becomes
(((=*)d®=3jd*—9dym>+d)yx+(((j7)d*>+3jd+9)m> —1)y> +((/* ) d>+3 jd+9)m> —
3

1 . . .
which is zero since

m’ = m The sage script available in [21, 3-isogenies.ipynb (third cell)] can be

used to check the computation of numerator and denominator of 8;3( + g; +1—d'g.g,.
We also have that g(1: —1:0) =g(—;2:0:1)=g(0: —j>:1)=(1: —1:0) so gis an
isogeny and G C ker(g) . g(1: —j:0)=(1:—j:0)and g(1: —j*>:0)=(1:—,;2:0)
so(1:—j:0)and (1:—;2:0) ¢ ker(g). ker(g) does not contain a point at infinity. Let
(x,y) € Hy so that g(x,y) = (1: —1:0) using the projective form of g we have xy = 0 so,
(X,y) = :F(7170)7:F(7.]70) or :F(ijzao) but g((7170)) = g((7]270) + (1 : 7] : 0)) =
(1:—j:0)and g((—/,0)) = g((—j*,0)+(1: —j2:0)) = (1: —j*:0) (since g is an
isogeny) so (x,y) = F(—,2,0) and G = ker(g).

— Proof of the case (d) where G = {(1: —1:0),(1: —;%>:0),(1: —j:0)}and g(X : Y : Z) =
(m(—jX3+23—d(—1/3j+1/3)XYZ) :m(—jY3+ 2> —d(—1/3j+1/3)XYZ): XYZ)
We start to show that for all (x,y) € Hy, g(x,y) € Hy . After reducing the power of x
greater than 3 in the numerator of g?c + gi +1—d'g,gy by using the equation of H, and
using the fact that &' = dm(j +2), g +g§ +1—d'g.gy becomes
(=378 )d* +(6+3)dm +d )yt (5 7+ 5 ) +(=6j=3))m* ~ 1)y +((§ j+ § )d>+(~6]-3))m’ -

3
m3 = —3%. The sage script available in
[21, 3-isogenies.ipynb (fourth cell)] can be used to check the computation of numera-
tor and denominator of g —}—g; +1—d'g.gy. We also have that g(1: —1:0) = g(1:
—j2:0)=g(1:—j:0)=(1:—1:0) so g is an isogeny and G C ker(g) . g(—1:0:
D=(m(j+1):m:0)=(1:—j:0)and g(0: —1:1)=(1:—;2:0). Let (x,y) € Hy
so that g(x,y) = (1: —1:0) using the projective form of g we have xy = 0 so, (x,y) =

1 . . .
which is zero since
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F(=1,0),7(—4,0) or F(—;*,0) but g((—j*,0)) =g((—1,0)+ (1: —j2:0)) = (1: —;:
0) and g((—/,0)) = g((—1,0)+(1: —;:0)) = (1: —j:0) (since g is an isogeny) so
ker(g) does not have the point in affine coordinate G = ker(g).

3.0.1 Generalization of Formulas to Generalized Hessian curve

Theorem 3 Let H. 4 be the generalized Hessian curve over the field K. For each of the
following subgroup G of H, 4(K) order 3 we give an isogeny g’ : H. 4 — Hy g of kernel G:

(@) ifG=1{(~1:1:0),(0,—Jc),(—/c:0)} then

gli Hc,d — Hc’,d’
200 32 3720 2y /a2 372
Xyt Vey*+ YeTx Yt e+ YTy
() > (L IEx e fect ey

is an isogeny of kernel G. The coefficients of the curve H 4 are given by d' = d +6+)/c
and ¢’ = d*c+3d Y +9¢
(b) ifG={(0:—=1:1),(0: —j:1),(0: —j*>:1)} then

g/: HC,d — H/d/

(x,y) — (( 2j— I)X+/¢;’C;f)0+( J+1)c (=2j-1)* +(J‘i}\[))‘}+ /+1)0)

is an isogeny of kernel G. The coefficients of the curve Hy g are given by d' =3d and
d=d*—2Ic
Proof 1. Proof of part (a). Using the isomorphism f: Heq — Hy 3z, flx,y) = (3%/5’ \%ﬁ)
(given in Subsection 2.2.1 between the generalized Hessian curve and the Hessian curve)
the image of the subgroup G = {(1: —1:0),(0,—+/c),(—+/c,0)} is the subgroup G’ =
{(1:-1:0),(-1,0),(0,—1)}. We apply Theorem 2 (first case) to have an isogeny

81 Hy e — Hay. g(x.y) = (m 2207 vy wiey gy = m(4489%) and

xy NG
3 c _ Je d+63/cy _ d+63/c Using the

=—°“——.Sod| =
2 : 1 3
& /e+3d e +9¢ Y yersaydroc VE a2 Yersa Y +oc

inverse transformation f~!: H —H (given in Subsection

d+6YC @2 Ye+3d YT +9c,d+6 Ve

3
Va2 Yersa Ve 1o

2.2.1 between generalized Hessian curve and Hessian curve) we have
i xy) = {/d2\~3f+3d\3fz+9c - X, f/d2€f+3d\3/52+9c-y) so that

f ogof(x y) = (% Iyt ‘[yy+‘ﬁ L ’H"ﬁx + e ). The sage script available in [21, Ex-
tension_3isog.ipynb (first cell) ] can be used for verification.
2. Proof of part (b). Using the isomorphism f : H. ; —> Hy e flxy) =

(éiﬁ’ %) (given
in Subsection 2.2.1 between the generalized Hessian curve and the Hessian curve) the
image of the subgroup G = {(1: —1:0),(1: —;:0),(1:—j*:0)} (in the curve Hy o
) is the subgroup G’ = {(1: —1:0),(1: —j:0),(1: —j*:0)}. We apply Theorem 2
(fourth case) to have an isogeny g : H, 1ve Hy, defined by

g(x,y) _ (m7jx3+17d(;y1/3j+1/3)xy m*jy3+17d(;y1/3j+1/3>’0) with d; = m(j+2) £ and
3 2j+1 _ YeR/-3(2j+1) e .
m- —3Cd3 27e Somfi m ( ]+1)7m anddl—(j—|—2)(—
Ve d

By using the inverse transformation f~!': H s —

1
)3 Ya3-21c Ve \/d* YB3 e
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H3_p7.34 (given in Subsection 2.2.1 between the generalized Hessian curve and the
Hessian curve) we have f~!(x,y) = (V/d® — 27c-x,v/d®> — 27c-y) so that
Flogo f(x,y) = ((721’71))63+(jti jﬁ)xyﬂ—jﬂ)c’ (*2«f71),v3+(jci ‘éy/Z>xy+(—j+1>c). The sage script avail-

able in [21, Extension_3isog.ipynb (second cell) ] can be used to check calculation of

flogo f(x,y)

3.0.2 Generalization of Formulas to Twisted Hessian curve

Theorem 4 Let I, 4 be a twisted Hessian curve over K. For the followings subgroups G
of order 3 we give an isogeny g : H; g — Hy g of kernel G:

(@) fG={(0:—-1:1),(1:0:—¥a),(1:—/a:0)} then

g: g — %/7 d
2
()C y) ( xy % x2y+y2+ %x )
’ Q/Exy2 + %zxz +y ’ %/Exyz + \3/52,(2 +y

is an isogeny of kernel G. The coefficients of the curve Hy 4 are given by d =d+6ya
and d' = d*¥a+3dya" +9a.
(b) G={(0:—1:1),(0: —j:1),(0: —j*:1)} then

g: Hoa — Ay @
3 3 ; 3
xy 3ax’ =3y’ +(j—1)d y/axy
(x,y) — (3ax3+(j—1)dé/¢7xy—3j’ 3ax3+(j—1)d3/axy—3j)

is an isogeny of kernel G. The coefficients of the curve Hy 4 are given by d=d*—27a
and d' = 3d.

Proof .

1. Proof of part (a). Using the isomorphism f” : 54, g — Ha 4, f'(x,y) = (%, ~) of Lemma
1, the image of the subgroup G={(0: —1:1),(1:0: —/a),(1: —¥/a:0)} is the sub-
group G' = {(1:—-1:0),(—+/a,0),(0,—/a)}. We apply Theorem 3 (first case) to have
an isogeny

/.
g :Hyy— Hd2 Yard Y +9ad+6Ya defined by

_ (DYl Yax Yt Yald+ Yo'y
8 (x,y ) - ( xy ? xy )

verse transformation

. The application of Lemma 1 gives the in-

/1—1 .
fmH, Vard V@ +9adr6ya Hp Yatd Ya* +9a,d+6 Va defined by

1—1 (1l =11 g _ xy Va Py + Yax :
£ ) = (5 ) 50 that oo ) = (s A28 The age sript

available in [21, Extension_3isog.ipynb (third cell) ] can be used for the verification.

2. Proof of part (b).
Using the isomorphism f* : 5%, 4 — Hyq, f(x,y) = (%, 2) of Lemma 1 the image of
the subgroup G = {(0: —1:1),(0: —j:1),(0: —j*:1)} is the subgroup G' = {(1: —1:
0),(1:—;:0),(1:—;2:0)}. We apply Theorem 3 (second case) to have an isogeny
g Hyg — Hp_yq, 3,4 defined by

¢ (x,y) = ((—2j—1)x3+(jci;3/5)xy+(—j+l)a’ (—2j—1)y3+(j¢i§/¢7)xy+(—j+l)a) . The application of

Lemma 1 gives the inverse transformation
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PV Hys yg430 — Hp 7434 defined by 71 (x,y) = (1,2)

x’x
2 V) _ xy 3ax3 =3 jy3+(j—1)d Jaxy
so that f og Of (xyy) - (3ax3+(j71)d\3/5xy73j’ 3ax3+(j—1)d§/5xy73j

available in [21, Extension_3isog.ipynb (fourth cell) ] can be used for the verification.

). The sage script

4 Formulas for Isogenies of Degree not Divisible by 3 over Hessian Elliptic Curves

In this section, we are given an Hessian elliptic curve H,; over K and G a subgroup of H; of
finite order ¢ non-divisible by 3. We then construct an elliptic curve H); defined over K and

an explicit isogeny given in term of rational functions from H; to Hy with kernel G. This
formula is easily extended to twisted Hessian curves and generalized Hessian curve.

We throw out the neutral point (1: —1:0) from G and denote G* =G —{(1: —1:0)}.

Let S be all the 2-torsion points of G* and R be the rest of the points in G*. We split R into

two equal size sets R_ and R, so that a point P is in Ry if and only if —P is in R_. We
will take r = #R_ and s = #S so that £ =#G = 2r+ s+ 1. we denote S, ,—1 (x1,%2,...,%;) =
Yi<i<iy..<iy_<nXiyXiy - Xi,_, the (n—1)-th elementary symmetric polynomial of k[x1,x2, ..., X].
For an arbitrary point P € H; we define the map g by

gP)= ([T Yrio: [T Xpro: [1Zr+0) (D

QeG QeG 0eG

The following lemma is very important for the obtaining of an efficient /-isogeny.

Lemma 2 The map g is defined by

aby* —x b—a’xy
g(xay):(y X H ﬁ) 2)
(@bjec P BV (e @ b7y
and satisfies also the following
X2y? —x _ 2 1 — oy o,
2y =0T =% | 2L e S G (3)

Qcs XX —szy Pek. XY TXPYP T Ocs X2 —XQY peg Xy —Xpyp

Proof We first observe that from equation (1) to equation (2) is a direct application of the
group law. We now show the proof from equation (2) to equation (3).

Let P(xp,yp) € R_. Then (xpx* —y3y)(ypx* —x3y) =

4 32 32 | 222
= XpypX' —XpX"y—YpX"y+Xpypy

= xpypx* — (xp +yp )y + X333

= xpypx(—y’ — L +dxy) — (=1 +dxpyp)Cy +xpypy”
= —xpypxy’ —xpypx +dxpypx’y +x°y — dxpypx’y + xpypy’

= —xpypxy’ —xpypx +x7y +Xpy5y’

= X%y — xpypx — xpypxy’ -+ xpypy*

= (x—xpypy*)(xy —xpyp)

so that

(xpx® — ypy) (ypx* — xpy) = (x — xpypy®) (xy — xpyp) @)
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xpypy> —x xpypy’ —x _ (xpypy* —x)?
xpx2—ypy ypx*—xpy  (x—xpypy*)(xy —xpyp)
X XPYP)’2
Xy —Xpyp
We also have that
2 2 3 3 2.2.22
(Yp = Xpxy)(XP — YpXY) = XpYP — YpXY — XpXY +XpYpXy
3,3 2,222
= xpyp — (Xp +Yp)Xy +xpypxy
= xpyp — (=1 + dxpyp)xy + x2yia2y?
2.2.2 2

= xpyp +Xy — dxpypxy + Xpypx“y

and
(y —xpypx®) (x — xpypy*) = Xy — Xpypx® — Xpypy’ +xpypx’y*
= xy— (' +y)xpyp + xpyp’y
= xy— (=1 +dxy)xpyp +xpypxy”
= Xxy+xpyp — dxpypxy + xpypa’y’
= xpyp +xy — dxpypxy + xpypx°y?
so that
(y —xpypx®) (x — xpypy*) = (yp — xpxy) (Xp — ypxy) = . ©)
xy + xpyp — dxpypxy +x5ysx>y* Therefore
YPXPY | Xp—ypXY
xpxl=ypy " ypX2—xpy

(v — xpypx?) (x — xpypy?)
(x —xpypy?)(xy — xpyp)

y—xpypx*

Xy —Xpyp '

So we can write equality (2) as

Xy —x x—xpypy* 1 —xpxy y—xpypx’
gxy) =011 2_ 2 [] a1 5 : )
Qes XQX" = XgY pep_ XY TAPYP  ocs AT T XQY  pep. XY T XPYP

which completes the proof.

Theorem 5 Let G be a subgroup of Hy of finite order ¢ non-divisible by 3 then the map

szyz —-X x— xpypy? 1 —xpxy y — xpypx?
g(xvy): (yH 2 2. H ,XH 2 : ) ©)
QESXQX™ = XY per. XY TXPYP  cgXT —XQY pep. XV —XPYP

defined in Lemma 2 is an isogeny of kernel G from Hy to Hy with d' =[1pcsx0 -Tlper_(xpyp)-
(d(1+2r—2s5)+ 6ZQ€SXQ) =685 —1(XP VP55 XP VP, ) ¢ HQESXQ

Proof .
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1. Itis easy to see that g is invariant by translation on elements of G. Furthermore

g(l:=1:0) = ([T Ye: [1Xe: [] %0

0eG 0eG QeG
:(H YQ:— HXQZO)

QeG* QeG*
=(1:-1:0)

Because []peg Yo = [1pegr Xo since G is a subgroup and Yp = X_¢. So G C ker(g).
We now show that G = ker(g)
(a) For this we first compute the image of (—1,0) and (1: —1:0)

= ([TYer04r: [T Xc10+p: [1Z-10)4)

PeG PeG PeG

=0 [T Yero4r: = IT Xcro+r: T1 Zi-100+p)

PeG* PeG* PeG*

:(O*HZPI—HYPI HXP)

PeG* PeG* PeG*

=(0,— [] Ye/xp), J]Xe=T]]?Y

PeG* PeG PeG*

= (Oafl)
g(l t=J 0) = (H Y(lzfj:O)JrP: HX<117j10)+P: HZ(IZ*jZO)JrP)

PeG PeG PeG

= ([T7ve: TTxe: [12)

PeG PeG PeG

= (=72 1 /*ve:j [1 jXp:0x [] 2z»)
PeG* PeG* PeG*
= (=T v T] Xp:0)
PeG* PeG*
_ (_jZ#G . j#G . O)
==2(1:—j:0) since #G is not divisible by 3

g(l:—j:0)=(1:—j:0)if #G=2mod3 and g(1 : —j:0) = —(1: —;: 0) if
#G =1mod 3. So (—1,0) and (1: —j: 0) ¢ ker(g) (ker(g) does not contain a point
at infinity).
(b) Let Py(xo,y0) such that g(Py) = (1: —1:0) Since the image of By is at infinity then
Py is a zero of denominator of a component of g.
- If (xo,y0) is an zero of xy —xpyp then (xo,y0) = +(xp,yp), £(jxp, jyp) or
+(j2xp, jyp) (from Bezout’s theorem xy — xpyp has six intersection points with
Hy ). g is an isogeny and (1 : —j : 0) & ker(g) so (xo,y0) = £(xp,yp) since
(jxp, j*yp) = (xp,yp) + (1: =j: 0) and (jxp, jyp) = (xp,yp) + (1: —j>: 0).
— If (x0,Y0) is an zero of x* —xgy then (xo,y0) = (xg,%0), =(jxg, /*x0), (1,1/x0),
(j, /*/x) or (j2,j/xg)(from Bezout’s theorem x> — xpy has six intersection
points with Hy; ).g is an isogeny and (0,—1), (1: —j : 0) ¢ ker(g) so (xo,y0) =
(vo.x0) since (jxg. j2x0) = (xg,y0)+(1:=7:0) (1,1/x0) = (xg.¥0) +(~1,0)
. (7%,7/%0) = (x0,y0) + (—=1,0) + (1 : —j*: 0) and (j, /*/x0) = (x0,y0) +
(-1,0)+(1:—j:0)
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2. We now show that H(x,y) = gﬁ + g; +1—d’'gygy has a pole of order two at neutral
point (1 : —1:0) The uniformizer of the curve the neutral point is t = m The

function Z has three zero (1: —1:0),(1: —j:0) and (1:—j%:0). Also 32X +
3jY +dZ has three zero (1 : —j : 0) and two affine points. So ¢ has exactly two zero
(1:—1:0) and (1: —j*:0). We have show that g(1: —1:0)= (1: —1:0) and g(1 :
—j%:0) =%(1: —;%:0) up to composition by the automorphism (X : Y : Z) +— (Y :
X : Z) we can suppose that g(1: —j>:0) = (1: —;:0). In this case (1: —1:0) and
(1:—j2:0) are preserved by the coordinates map. Furthermore (1: —1: 0) and (1

—j%:0) are the only zero of t = m That is the same to co-domain curve H

for which ¢’ has only two zeros (1: —1:0) and (1: —;2: 0). We now

3]2X+3/Y+d/Z
prove that the two pomts are nonsingular. The equation of the curve H(X : Y : Z) =
2
H Y -xz)} 11 (XZ—xpypY?)?
€S xQXZ—x2 Yz)* PER— (XY —xpypZ?)3
*xQXY (YZ—xpypX?)?
HQGS (XZ—xoYZ)? per- (XY —xpypZ?)3 +1
) (xp¥>—XZ)(Z’ ~x0XY) lpep XZmmme?J0Zpypx?)
065 xp(X2—xoYZ)? PeR (XY —xpypZ?)?
shows after reduction to the same denominator, the numerator

N=YTlges (632 = X2/} ) Tlper. (XZ=xpyp¥ ) + XTI ges(22 —xoXY)* Tlper_(YZ
xpypX?)? + 2 Tges(X* = xoY Z)* -Tlpeg_ (XY —xpypZ?)’ —d'XY Z]pes

((22 — xoXY)(X2 —xoVZ)(x3¥? — X2) /xQ) :

Mper. ((XZ—xpypY?)(YZ —xpypX?)(XY — xpypZ*)) and the denominator

D =Z3 ] pes(X* —xgYZ)* -Tlpeg (XY —xpypZ?)* We will show that (1 : —1:0) and
(1:—4?:0) are the simple zero of N and the zero of order 3 of D (so the poles of order

20f H(X :Y : Z)) . To show that the points (1: —1:0) and (1 : — ;> : 0) are zero of order
3 of D we will use affine coordinates in the plane ((y,z)) in which (1: —1:0) and (1
—j?:0) become (—1,0) and (—;?,0) and D = 2 [Iges(1 —x0y2)* Tlper_(v—xpyrz’)’
To bring back the point (1: —1:0) (resp (1 : — ;% : 0)) to the origin (0,0), we use the
invertible affine coordinate transformation (y',z') = (y — 1,z) (resp (y',Z) = (y — j*,2))
D = lges(1 —xgd —x0Y')* Tlper (v +1—xpype’)’

(resp. D =7"Tlpes(1—x0j* —x0Y'7)* Tlper (Y + 2 *Xpypzlz)?’). We see that the smallest

homogeneous part of D has degree 3. So (—1,0) and (—j%,0) are zero of order 3 of D. It
easy to see that (1: =1:0)and (1:—;2:0) are the zero of N. For show that (1: —1:0)
and (1: —j*:0) are simple zero we show that (1 —1:0)#0 and ( —j2:0)#0.
W =3V [Ipes ((xgy2 XZ) /XQ> [per_ (XZ— xPyPY2) +Y Iper.

(XZ—xpyrY?)* Xo, <6xéOY(x2QOY2 ~ X2/, o0, WY ~X2)? /x3Q) +Y3Tpes ((xéYz —xzp} /x3Q) :

Yrer_ <76x1’()yPoY(XZ7xP0yP0Y2)2HP7£PU Xz *XPYPY2)3> +X° HQeS(ZZ —xpXY)*-

Sner. (3202 xnyn X Tlp g, (VZ = xpypX?)? ) 4 X Tpen_(YZ—xpypX?)* - Lgycs (~310,X (22 — 30, XY P T, (72 —x0X¥)*) +
(ZTges(X* —x0YZ)? Tlper_ (XY —xpypZ?)*)y —

d'XYZ]pes ((z2 —xoXY)(X* —xgYZ)(xpY?* — xz)/xQ) .

per (XZ—xpypY?)(YZ —xpypX*)(XY —xpypZ?)))y
Therefore,

g%/(] i—1:0)= 3HQ€SX22 'HPGR,(_XE’YE’) -
[Iper (_X?D)’%’) ‘Lo, (_6X3Qo o0, X3Q) -
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Toes<y - La, (65,3 Tpn, (~3353)) +0
+11per_ (_X%Y?J) Yo, (_3x3Qo o0, xé)
W(1:—1:0)= 3Tgesp - Tlper_ (—xpyp) +6ITper_ (—xpy) Lo, (HQ%) +6I1pes ¥y
Yp (Mp(—xpy3)) +0—3TTper_(—xpyp) Yo, (HQX3Q) .

then

W (1:=1:0) = (3+65+6r —35)[Tpes ¥y [lper (—333)

g—l}’(l :—1:0)=(34+3s+6r) HQ6Sx3Q~HP€R7(fx,33yf,) and

3*1)\//(1 i—j210) = 3jHQeSx3Q Tper_(—xpyp) —

Trer_ (—593)-Eo, (~6/%, Tgr0, %) -

Toes <y Xa, (675333, Moz, (—xh33)) +0

+1Tper- (*X%’Y;) : ZQO (*34/3\72;0 HQ#QO x3Q>

F(: =21 0) = 3jTlpesxy  Trer (—pvp) +6jTIper (—xp33) - Lo, (o0 ) +
oy U —Jj7: J1ges¥g - Llper_(—XpYp JUper (TXpYp) - Loy \LloXp

6/ Tges - Er, (Tlp(—333)) +0—3/Tlper_(—33}) - L, (Mo -

Then

(1 —j2:0) = (3j+65j+6rj—3sj) [Ipes Xy [lper_(—xpyp) and

g—])\,](l :—j?:0) = (3435+6r) jTIpesxy [lper (—xpyp). So (1: —1:0) and (1: —j2:
0) are the poles of other 2of H(X : Y : Z).

. Todevelop g3 + g; + 1 —d’gxgy around of neutral point, we start to develop the function

x and y To express xy in term of 1 = we will use the identity @’ +b° =

(a+b)? —3ab(a+b) . We have

__
3/2x+3jy+d

—l+dxy =x4)*

2 N3 (i\3
= (jx)"+ (jy)
2 . \3 2 .
= (Jx+jy)” =3xy(j7x+jy)
_ (—dt+1)3_3xy(—dz+1)
3t 3t
D —ditl _ 1
as  jox+ jy= =5 sincetr = SPapTd Therefore
(=434 d?—27)13 —3d*> 4 3di—1 L _la
xy = d-?—l"““ = ! ) —77 = F+ 24+ (—5d+ 1)t
t
_X _ X 32X+3jY+dZ Y _ Y 32X +3jY+dZ
Nowx=7 = sy 5wiaz Z andy=7 = sy vz Z - Hence

Y
sex Tz M sy sveaz

at (1:—1:0) are respectively 2j/9+1/9 and —2j/9 —1/9 . Let x = 2j/9t7+1/9 +
ap+O(t) and y = —2’/%7“/9 + by + O(t). We now want to compute ag and by .
A sage script available in [21, developlnf.ipynb (first cell)] enables to compute x *

x and y have a simple pole at neutral point and the values of
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2 2 . .
(—jx— % + %),y* (—jzy— % + é) and develop x> and y? to get

. 21
_ (MHWOQ)) x <9]t9+ <;/+ 3)d Ja0+0(’))

b dj ]
Xy =y <712y7?+§)

. 2:41
_ <72’/9ti“/9+bo+0(t)>* (‘”j" ;jd+<j+1)bo+0(t)>

_ﬁ (- 271 )d+(91+ )b
et t

+o(1)

—d/9—(-%j—%)d 1.
— (rp
4. Development of gﬁ + g; + 1 —d'g.gy around of neutral point and value of d’ We have

so that by =

2j/9+1/9 1, 1 2j/9+1/9 1.
ZM-F —=j—=|d+0(t) and —uﬁ-*]d—i-O(t)
t 37 3 t 3
so that
B 721273Zj;ﬁl3+ (%j;%)d+0(f') and Y = 243J[:r 73 + 271d+0( -

- LetQeSA sage script available in [21, developInf.ipynb (second cell)] enables to
3
2ox \ l-xpxy [1— 3 1- 2
develop ~&—— | J&— ) 0¥ ,( ot ) ,and 522 . YT L around neu-
Xpx ny XQXZ—XpY X7=XQy’ \ X°—XQy XT=XQY  XpX=—Xpy
tral point (1: —1:0)).
xpy*—x =xp+ <(1‘;é7mf+ﬁ)‘b‘2g+( 361/~ 361 )% é 961/~ 361 >t+0(t2)

3
"Q"‘L“Q} o0
xgy?—x (o83 7+ 39%65 ) X0~ 5361/~ 13122 2 . 3 2
—— =X+ ! : = t+0(t%) since ,xp=(—1+dxp)/2
T~y ~ 196830 0

we use the fact that 2x3Q +1= deQ = 1/xg = —2sz +dxg

ny27x -

xszfngy

=g+ ((—i—3)d*ey+ (2j+)dxy+ (3)+3) drg+( 6j73)xé>t+0(t2)
—1+d

=xo+(2j+1) (dXQ73xQ)t+O(t2) since x3Q: J;)CQ Therefore

xy* —x 3

3 . 3 4 2
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1— .
2~ xo - (2j+1) (de - 3x2Q) 1+0(2)

so (e 3 (6]+3)(def3xQ)t+O(t2)and

x2—xgy

l—xQxy ny2
X2 —xgy xsz—x y

= x2Q +0(1%)

we will use the following equality

[T (a4 bt + 0(2) na,+):<bionai>t+o<r2>

il iel ipel i#ig

3
2
Xpy*—x
Now we have [Tpcs < rgz = y>

=[]x%+6i+3) Y ((dx3Qo—3x‘éO) 1T x3Q>t+0(t2)

[ Qp€ES 040

= Hx22+(6j+3) Y (dxzo I1 x?Qf3x?~,0 11 x3Q>H»0(t2)
Qes Qo€S 0#09 0700

= [Txo+6j+3) Y (dnxz)—3XQOHx3Q>t+0(t2)
Q¢S QoES 0

= [T+ 6i+3) HxQ Y (d—3xp)t 4+ 0(%)
Q€S Q€S

1—xpxy 3
Mges ( *XQY)

=[Ix5-6j+3) ) ((dx3Qo3x;§0) I x3Q>z+o(z2)
0#0Q9

Q€S QveS
=[Ix-6i+3) Y (dxgo IT %36, I1 x3Q>t+0(12)
Qcs Qoes 0#Q0 0#Q0
=[1x5-(6j+3) ), (d]'[xz)—wcgo Hx3Q>I+0(t2)
Q€S QoS Q Q
= HxQ (6j+3) HxQ Z (d —3xg)t +0(?)
Q€S Q€S

2
X, 1 —xpx
Qz * = Qy)_Hx +0(t )
0cs XoX —x2 oy X=Xy 0cs

— LetPeR
%(a sage script available in [21, developlnf.ipynb (third cell)] enables to
o2 2 3
compute the development of —£22ES, (ﬁ)fy*f igl)ﬂ) ,

2 2 3 2
—Xpxypxx“+y [ —xpkyp*x“+ —XPXYPRYTHX
PryP .,( PryP y) and ZAERED

—XP*)P*X +y
round neutral poin
Xy—Xpyp XY —Xpyp around neutral point

XY—XpyP Xy—Xpyp ( L:
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—1: 0) ). We have
e s (24 1) (dxpyp —3)1 4+ O(t2)

Xy—Xpyp
so that (%LWP =xpyp — (6j+3) (dxpy} — 3xpy3) 1+ O(t?) Also

—Xxpyp

_ 2
TIREIPETEY v+ (24 1) (dipyp — 3) 1+ O(12)

Xy —XpYyp
so that
2
—Xp*xYp*X“+Yy 3
(=) =xpyp + (6 +3) (dxpyp — 3xpyp) 1 + O(t%)
Xy —Xpyp
and X )
—Xpxyp*xXx-+ —Xpxyp*xy +Xx
P*Yyp y* pPXypx*xy :X%:y%a‘FO(fz)
Xy — Xpyp Xy — Xpyp
—xprypay?
[lpeg (FEREEEE)S —

Xy—xpyp

=per_(xpyp) — (6 +3) Yper_ ((dx%oyio - 3’%)‘%@) [Ip.p, (x?,y?,)) 1+0(1*)
=Iper (x;y;) -

(6j+3)Lpcr_ (dxioyib [p 2, (B3) = 333, Tpsp, (x;iy%)) 1+0(1%)
=Tlper_ (xf;yf’,) -

(6j+3)Lpyer_ (d Mper_ (5vp) =3Tper_ (333) - Tpip, (XP)‘P)) 1+0(%)
=TIlper_ (x;y?p) -

(6j+3) (rdTlper 2 —3Tper (H33): Tper (Tlpn, (xevp)) )1+ 0(2)
=TIlper_ (xf)y?,) -

(6j+3) (rdHPeR, ()C%y;) —31lper_ (x%y%) “Spr—1(xp Py, "'7xPryPr)) t+ O(IZ)

— ) 2+
[Iper_ (%)3 =
=lper_ (pyp) +
(6543 Epyer ((d3, 33, =353, 3% ) T, (53 ) 1+ 02)
=lper_ (pyp) +
(6+3) (rdTlpcn () —~3TTpcr (333)-Suro1 (3. xpyr) ) 1 O()
[V SR
[per ( Xg,*il;;)yrpﬂ * x)g,*ii;;:x) = [lper_(xpyp) +O(1?)
A sage script available in [21, developlnf.ipynb (fourth cell)] enables to develop x> *
(a+bt+0(t?)) x (e+ ft+0(t2)), ¥ * (a+ bt + O(t?)) * (e + ft + O(t?)) and xy * (a +
bt + O(t*)) * (e + ft +O(t?)). We use the result here for compute gﬁ,gi and g.gy).
(2j/24341/243) M pes 3 Tlper_ (Bp) n

3_.3 XQV - —Xp*y *szrx 3 _
&=V HQES(WT) Tper_( fy,ﬁ,,vp ) = 3

2
1 3 3.3
27 Hpes ¥ Tlper_ (3pYp) Loes(d—3%0) ~1
- = +0(t7).
Also 5 55
1-xpxy\3 —xpRYPRXE Y\ —(2j/243+1/243) [N, X Tlper_ (xpyp) n
gvfx HQeS(XZ,XQy) HP€R ( Xy—Xpyp ) - 3
1)d
l*zfngeng Tlper_ (xP)P)+T(rdnpngxp;p 31Tper_ (XPYP)-Srr— 1(XP1)P1---M,)’Pr))l'lges«%
2

21 Tpes ) Tt 0333) Eges(d—3x0)
2

+0(t™"). Finally

1 2 2.2
I—xgxy " '\’Qyzf'\’ )H (—Xp*y;u*xzﬂ' % —xp*yp*y2+x) _ ﬁnizl"Q‘szl(XP)P) +0071)
Zoxgy " xpx2—afy’ L IPER xXy—Xxpyp xXy—Xpyp 12 :

8x8y = xyﬂges(
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Therefore g3 +g; +1—d'ggy=
_ bl HQes"Z)'HPeR, (xpyp)
=Tt
% ("dnng (P33)=3T0per_ (XPYD)-Sr—1 (b  ¥py -r X, Yy )) Mges XZ,
2 N
727 HQES"SQ'HPCR, (X;’Y?’)‘):Qes (d=3xg)
P

_ %ngsng‘terPeR, (*'1%«"%) +O(t’1)

If we choose d’ such that, £ [Tyesxh Tlper (¥373) +

% (rdHPERf x;,yi, —3[per_ (x%y%,) “Srr—1(xp Y, ---7XP,)/P,)> 'HQEsXBQ - % HQeSx:é Tlper_ (x;,y?,) :
Yoes(d —3x0) — § Tpes g - Tper (¥pyp) =0

then g’ —Q—g; +1—d'g.gy=0since g2 +g> +1—d'g.g, isapole of order 2 at (1: —1:0)
and (1: —j%:0).

d = anest per_(xpyp) +2 (rd [lper (xpyp) —3Srr—1(xp yp;, ~-vxPy)’P,-)> ‘HQESXQ
—2[lpesxo - Iper_ (xpyp) '):Qes(d —3xp)

d' =d[lgesxo Tlper_ (xpyp) +2rdTlpes o - Tper_ (xpyr)

—6[lpes X0 - Srr—1(xpyp; s --,XP.VP,)

—2[ges*o Tper_ (xpyp) - Loes(d —3xg)

d' =Tlpesxo - Tlper_(xpyp) (d+2rd —2Y e s(d —3x0)) — 6T1pes X0 - Srr—1 (Xp YP, -, XP,YE,)

. Therefore d' = HQESXQ 'HPGR, (xPyP) (d(l +2r— 25) + 6ZQ€SXQ) - 6Sr.rfl (xP] YpP 5 -~7XP,yP,) 'HQESXQ'

The following Theorems 6 and 7 extend the previous result to isogenies over twisted and
generalized Hessian curves.

Theorem 6 Let G = {(1: —1:0)}U{(7;,%;)}j=; U{E(a, i)}y be a subgroup of the
generalized Hessian curve H,. 4 of finite order { non -divisible by 3. Then

g(xy) = YH y — lll_aiﬁiy2+cx xfl _ny+c'ﬁ_aiﬁixz+cy) (7
Sy i wewf T P ey i -

is an isogeny of kernel G from H.q4 to Hy g with ¢’ = c" and d' =TT, v; - T1i=i (i) -

(d(l +2r—28)+ 61, y,) —6¢S,—1 (1, 0 y) T 1)

Proof Using the isomorphism f : Hey — Hy; 3/ Floy) = (5= e é/) (given in Subsection
2.2.1 between generalized Hessian curve and Hessian curve ) the image of the subgroup
G={(1:-1:0}U{(y,7) = U{=(0s,Bi) }/_; is the subgroup G’ = {(1: —1:0)}U
{( 3} b o U{E(S o B )}i—1- We apply Theorem 5 to have an isogeny g : H, 3z —

Ve V
_ ?’zy —/c ’x o —aBy? +\ﬁx —VJX)'*'\/ — 0B’ +\ﬁ Y
Hy, g(x,y) = O0ITj= 17\5,62 py M= e x[Tj= Tli= N
with
dr =Ty 32T (?ﬁ)-(%(mr 2)+ 65 1L ) -
68— 1(0:%3', ..,‘;;gz’)- y lfwhlch can be simplified from

di = e Tl 1y g T () (§20+2r =29 46480 ) -
6ﬁsr,rfl(alﬁlw“ﬁarﬁr) : %*' H.i:| Y to
dy =

o (TT5 77 TU (@) - (1420 = 29) 4+ 655 %) — 6681 (@1 By s 0Br) - TE ;) -
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We then apply the inverse transformation f~! Hy, — Hen g (given in Subsection 2.2.1
between generalized Hessian curve and Hessian curve ) , £~ ! (x,y) = (v/c" - x, v/c" - y) where
d' =TT v iz (i) - (d(l +2r—2s)+ 6%, Vj) —6¢Sy—1(aiPi, ... 0 Br) Ty V-
y }’ZVZ*CX — o Biy*+c —Yjxy+c — o Bix3+c
s TI7 iPiy"TCX o x J TT iPiX~ TCY
gof(x,y)= (\/ J=13¢( ijzfi’fy) i=1 Y (v—aify)’ Ve J e —yy) M=t %2@%%_6’_))
we get

1 —ox —a; iy +ex —yjxy+c —a;fix®+cy
[ ogof(x,y) = (yHJ 1},X =1 x)' ‘Ohﬁt ) Hj 1 xzj o i1 X;'—La[ﬁ[ )

Theorem 7 Let G = {(0: —1: 1)} U{(y;, 1)}, U{*(0s, )}, be a subgroup of the
twisted Hessian curve ¢, q4 of finite order { non-divisible by 3. Then

Xy —o+Y £~ oty ﬁz y,-axz—y A 110‘ Xy — ﬁz
E 8
gxy) = (= Ha}/xzfyz II:I By’ +aaxynay]2xzfy 1} ﬁy“raax ®)

is an isogeny of kernel G from ;4 to Hy g with d =d" and d' = J 1V ,Ll(%)'
(d(1+2r—2s)+6zj 1y)—6aSnr71(%7---,%) i 1%

Proof Using the isomorphism [y — Hog, f(x,y) = (x, ¥) of Lemma 1 the image
of the subgroup G = {( : 1)U {(yj, )51 U{=E(04, Bi) }i—; is the subgroup G’ =

{(1:=1:0)}U {()} )}s e {i(a, » @ )}i—1- We apply Theorem 6 to have an isogeny
g tHyq — Hpn g deﬁned by

—y +a72 .
¢(xy) = 0Ty Ty 5P T 2 T ) with

Vjx2—y
&y =TTy 4 T (B - (41 20— 20) 63 ly) 6aS1(2 s £5) TE .
‘We then apply the inverse transformation given by Lemma 1 f/~! ‘Hy, —x%ﬁn d's ey =
(1.2). This leads to go f(x.) = (1T} s ffﬁgffgjf",;nf L, Sl
so that ,
oo f/(ny) = G e T Sl Vy T )

5 Computational Cost of the Isogenies over Hessian Curves

In this section we examine the computational cost of the Hessian isogenies on input points
and compare it to known results for Edward, Huff and Jacobi quartic isogenies [24] and [31].

5.1 Cost of Evaluation of Hessian Isogeny in Affine Coordinates

Let G an ﬁnite subgroup of Hy. We will use the notation of Theorem 5 where g(x,y) =
1 _
(y HQeS HPER, XXyXP ) HQgS oty HPGR x}xiyl;x ) Denote M, S and C the

xpx2—xhy XpyP xZﬁrQ»
costof a multrphcatron squaring and multiplication by a constant in K respectively.

1. We first compute x2, y> and xy at the cost of M +28.
2. For each P € R_, we compute y — xpypx and x — xpypy This requires 2rC. Similarly
for each Q € S we compute 1 — xpxy, x* —xgy and - ( xp.Y 2 — x) costing 4sC.
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3. The computation of [Tpcg (v — xpypx?), [Iper (xy — xpyp) and [Ipegr (x — xpypy?)
costs 3(r — 1)M. Similarly the computation of HQEs(xéy2 —Xx), HQGS(XZ —xgy) and
[Tpes(1 —xg,xy) costs 3(s — 1)M.

4. We compute [Jpcr (xy —xpyp) * I'[Q,Es(x2 —xgy) and the inverse

! inM+1.

HPER, (xy*-’fP}'P)*HQgs(Xz *XQY)
5. Finally the computation of

yoes (% (xgy* — X)) *[per_(x—xpypy?) L

HP€R7 (X,V*XP)’P>*HQES (xz *xQY)

1
and Tlges(1 300 M 3020 sy i <o M

The total total cost is then (3s+ 37+ 2)M + (4s + 2r)C + 2S5 + I. In the particular case of
2-isogeny the cost is SM + 25+ 4C + 1. In the case of subgroups of order not divisible by 2
and 3 the cost is (3r+2)M +2rC +2S+1.

5.2 Cost of Computing the Isogeny for Subgroup of Order 3 in Affine Coordinates

— First, second and third case of Theorem 2. In these cases

2.2 2.2
g(x,y) = (mx”x;” ,m? ﬂx’ycﬂ ) we first compute x2,y* and xy at a cost of 25+ M.

Next we compute xy? and x?y in 2M. The computation of Xiy costs 1/. The computation
of (x+x%y+y?) (m%) and (y +y*x 4 x?) (mé) requires C + 2M. For the second and

third case of Theorem 2 we add 4C for the computation of jx, jy,j2x*y and j%y*x in the
second case (resp jix, jy,j2x* and j*y? in the third case). The total cost is SM +2S+C+1
for the first case and SM + 2S5 + 5C + I for the second and third case.

— Fourth case of Theorem 2.

We have g(x,y) = (m —J'X3+1—d(;yl/3j+1/3)xy7m —jy3+l—d(;yl/3j+l/3)xy).

From the computation of x>,y* one deduces dxy = x> +y>+ 1 and xy = %(x3 +y +1)
at the cost of 25+ 2M + C. The computation of —jy*, —jx* and (—1/3j+ 1/3)dxy
requires 3C. The computation of Xiy, (=i +1—d(—=1/3j+ 1/3)xy)(mxiy) and (—jy* +

1—-d(-1/3j+ 1/3)xy)(mxly) requires C + 2M. The total cost is 4M +2S +4C +1.

5.3 Cost of Computing the Isogeny in Projective Coordinates

8(X 1Y :2) = (VTlges (5 (Y% = 2X)) Tlpen_ (XZ—xpyp¥?)
XTpes(Z2 —xoXY) -Tlper (YZ—xpypX?) : ZT1peg (XY —xpypZ?) - Tlpes(X* —xpYZ))
1. We first compute X2,Y2,72 XZ,YZ and XY at a cost of 3M + 3S.

2. For each P € R_, the computation of YZ —xPprz, XZ —xppr2 and XY —xpyp22 re-
quires 3rC. Also for each Q € S the computation of Z2 —xp XY ,X? —xoY Z and )% ()CZQYZ -

XZ) costs 4sC.

3. The computation of [[peg (YZ — xpypX?), [Iper_ (XY — xpypZ?) and [Ipeg (XZ —
xpypY?) costs 3(r — 1)M. Also, computing I_[Qes(szY2 —-X7), HQes(X2 —xoYZ) and
I_[Qes(Z2 —xoXY) requires 3(s — 1)M.

4. Finally the computation of ¥ []e (i (szin - ZX)) Tlper (XZ—xpypY?), X HQes(Z2 —

x0,XY) [lper (Y —xpypX?) and Z[1pcg (XY —xpypZ?) - Tlpes(X* — xgY Z) requires
6M.
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Table 1 Theoretic cost for computing isogenies of odd degree ¢ = 25+ 1 over elliptic curves

Curves Cost in projective Cost in affine
Edward [24] 3s+3)M +4S5+3sC 3s+1)M+2S+3sC+1
Huff [24] 4s+3)M +35+4sC 4s —2)M +2S +2sC+21

Jacobi quartic [31] 4s+2

,\AA,\A,\
o=

(
(45—-2)

M+3S+(Ts+4)C  (4s+2)M +3S5+ (Ts+4)C+21
(5s+2)M+(s+2)S+7sC+1
(55+2)
(3s+2)

Twisted Hessian [7] S5s+3)M +4S+8sC
Twisted Hessian[27] 55+5)M+3S+ (9s)C Ss+2)M+3S+9sC+1
Hessian (This Work ) 3s+3)M + 35+ 3sC 35 +2)M+2S+2sC+1

The total cost is then (35 + 3r+3)M + (4s+ 3r)C + 3S. In the particular case of a 2-isogeny
the cost is 6M + 35 +4C. In the case of subgroups of order not divisible by 2 and 3 the cost
is (3r+3)M +3rC+3S

5.4 Cost of Computing the Isogeny for Subgroup of Order 3 in Projective Coordinates

— First, second and third cases of Theorem 2. In these cases
g(x,y) = (m(XZ2+X*Y +Y?Z) :m(YZ*+Y?X +X?Z) : XYZ) . The computation of
X2,Y2,7? and XYZ costs 3S +2M. The computation of XY2.X?Y,XZ%Y?>Z,YZ* and
X?Z requires 6M. Finally computing m(XZ? + X?Y +Y2Z) and m(YZ? + Y*X + X>Z)
requires2C. For the second and third case of Theorem 2 we add 4C for computing
jXZ2.jYZ2,j*X?Y and j2Y2X in the second case (resp jXZ2,jYZ2,j>X?Z and j°Y*Z
in the third case). The total cost is 8M + 35+ 2C for the first case and 8M + 35 + 6C for
the second and third case.

— Fourth case of Theorem 2. The isogeny is
g(x,y) = (m(—jX3+ 2% —d(—1/3j+1/3)XYZ) : m(—jY> + 73 —
d(—1/3j+1/3)XYZ):XYZ). One computes X*,Y?, Z* and deduces dXYZ = X3 +Y3 +
Z3 and XYZ = %(X3 +Y3 4+ 7%)at a cost of 3§+ 3M +C. The computation of —jX3 ,
—jY3 and (—j/3 +1/3)dXYZ requires 3C. Finally the computation of m(— jX3 + 273 —
d(—1/3j+1/3)XYZ) and m(—jY3+2Z3 —d(—1/3j+1/3)XYZ) is done in 2C. The
total cost is 3M + 35+ 6C

In the Table 1 we compare the cost of the Hessian isogeny obtained in this work with the cost
of Edward, Huff and Jacobi quartic isogenies in the case of subgroup of order not divisible
by 2 and 3. We can draw the conclusion that isogenies over Hessian curves are slightly
efficient than the existing ones. In particular this work provides a fastest (3M + 35 + 6C)
degree-3 isogeny with respect to Edward (6M + 4S8 + 3C), Huff (7M +3S +4C) and Jacobi
(6M +3S+ 11C) isogenies.

6 Conclusion

In this paper we gave an analogue of Vélu’s formulas on Hessian curves and the analysis of
the cost of the computation of this map shows that Hessian isogenies are slightly faster than
Edward isogenies, Jacobi and Huff isogenies. As isogenies have been used to improve the
efficiency of many algorithms, it will be interesting to also implement these protocols with
Hessian isogenies and to compare the efficiency.
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