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Abstract. One of three tasks in a secure genome analysis competi-
tion called IDASH 2018 was to develop a solution for privacy-preserving
GWAS computation based on homomorphic encryption. The scenario is
that a data holder encrypts a number of individual records, each of which
consists of several phenotype and genotype data, and provide the en-
crypted data to an untrusted server. Then, the server performs a GWAS
algorithm based on homomorphic encryption without the decryption key
and outputs the result in encrypted state so that there is no information
leakage on the sensitive data to the server.

In this paper, we develop a privacy-preserving semi-parallel GWAS al-
gorithm by applying an approximate homomorphic encryption scheme
HEAAN. Fisher scoring and semi-parallel GWAS algorithms are mod-
ified to be efficiently computed over homomorphically encrypted data
with several optimization methodologies; substitute matrix inversion by
an adjoint matrix, avoid computing a superfluous matrix of super-large
size, and transform the algorithm into an approximate version.

Our modified semi-parallel GWAS algorithm based on homomorphic en-
cryption which achieves 128-bit security takes 30–40 minutes for 245
samples containing 10, 000–15, 000 SNPs. Compared to the true p-value
from the original semi-parallel GWAS algorithm, the F1 score of our
p-value result is over 0.99.

1 Introduction

After the successful completion of the Human Genome Project in the early 21st
century, high throughput technology on genetic variations has been rapidly devel-
oped and widely studied. In particular, through the development of microarray
chip with rather small computational cost, it became possible to determine the
genotype of millions of single nucleotide polymorphism (SNP), a variation in a
single nucleotide that occurs at a specific position in the genome, for each indi-
vidual. With those statistical data of genotypes, many researches are proposed
that investigate associations between SNPs and phenotypes like major human
disease, and especially Genome-wide association study (GWAS) aims to find top
significant SNPs relevant to a certain phenotype.



1.1 Motivation

Since genome analysis uses genomic data that are very sensitive and irreplacable,
privacy on genomic data has come up to be one of the most important issues
in genome analysis including GWAS. The usual privacy-preserving methodology
in data analysis is anonymization, perturbation, randomization, and conden-
sation [20]; however, those methods leverage the quality of data with privacy
resulting in an inaccurate analysis to some extent. The dilemma regarding the
balance between personal privacy and analytical efficiency has been resolved by
applying many cryptographic primitives, while homomorphic encryption (HE)
is noticed as one of the ultimate cryptographic solutions for privacy-preserving
data analysis. Conceptually, HE is an encryption scheme which allows compu-
tations over encrypted data without decryption. HE not only fundamentally
prevents the leakage of input data during the analysis phase, but also provides
an accurate result of analysis since it preserves the original data intactly. How-
ever, HE causes a significant blowup of computational cost for analysis, and
optimization and modification of algorithm for efficient computation in HE is
the main problem of applying HE in data analysis.

Since 2014, there has been an annual biomedical privacy competition hosted
by Integrating Data for Analysis, Anonymization and SHaring (IDASH), a na-
tional center for biomedical computing in the United States. One of three tasks in
IDASH 2018 [2] was to develop a solution for privacy-preserving GWAS compu-
tation based on HE, and we participated in this competition with our delicately
constructed algorithms.

1.2 Summary of Results

In this study, we propose approximate HE algorithms for privacy-preserving
GWAS computation. To be precise, we transform well-known Fisher scoring
and semi-parallel GWAS algorithm into HE-friendly algorithms so that we can
efficiently evaluate them in encrypted state. Note that the HE-friendly modified
Fisher Scoring algorithm can be generally used for logistic regression, not only
for GWAS.

The main challenges in transforming the semi-parallel GWAS algorithm (Al-
gorithm 1) to an HE algorithm are complex matrix operations such as multipli-
cation and inversion. Since matrix inversion in HE is complicated and costly, we
substitute it by computation of the adjoint matrices and determinant. With this
approach, the original Fisher scoring algorithm can be successfully modified to
compute encrypted data efficiently. For the efficient computation of semi-parallel
GWAS computation based on HE, moreover, we reduced the number of matrix
multiplications as many as possible, and modified the original algorithm into an
approximate version which requires much less computational cost. The details
of our optimization methodologies are well described in Section 3.

We exploited an approximate HE scheme HEAAN [9,8] with a publicly avail-
able library [15] for the implementation of our modified semi-parallel GWAS
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algorithm based on HE. The HE algorithm takes about 40 minutes for 245 sam-
ples each containing a binary phenotype, 3 covariates, and 14,841 SNPs on Linux
with a 2.10GHz processor.

1.3 Related Works

Recently Cho, Wu and Berger [12] proposed a secure GWAS computation method
in Nature Biotechnology, where the privacy of genomic data was preserved by
a cryptographic tool called multiparty computation rather than HE. To the
best of our knowledge, there have been no results on privacy-preserving GWAS
computation based on HE before the IDASH 2018 competition. In perspective
of HE-based genome analysis, the solutions [17,6,13,5] submitted to task 3 of
IDASH 2017 [1] dealt with training the logistic regression model of genomic data
based on HE.

2 Backgrounds

2.1 An Approximate Homomorphic Encryption Scheme HEAAN

For privacy-preserving GWAS computation, we applied an HE scheme called
HEAAN proposed by Cheon et al. [9,8], which supports approximate computa-
tion of real numbers in encrypted state. Efficiency of HEAAN in the real world
has been proved by showing its application in various fields including machine
learning [17,18,10] and cyber physical system [7]. The winning solution of IDASH
competition in 2017 also applied HEAAN as an HE scheme for privacy-preserving
logistic regression on genomic data.

In detail, let ct be a HEAAN ciphertext of a message polynomial m. Then,
the decryption process with a secret key sk is done as

Decsk(ct) = m + e ≈ m

where e is a small error attached to the message polynomial m. For formal
definitions, let L be a level parameter, and q` := 2` for 1 ≤ ` ≤ L. Let
R := Z[X]/(XN + 1) for a power-of-two N and Rq be a modulo-q quotient
ring of R, i.e., Rq := R/qR. The distribution χkey := HW(h) over Rq outputs
a polynomial of {−1, 0, 1}-coefficient having h number of non-zero coefficients,
and χenc and χerr denote the discrete Gaussian distribution with some prefixed
standard deviation. Finally, [·]q denotes a component-wise modulo q operation
on each element of Rq. Note that those parameters N , L and h satisfying a cer-
tain security level can be determined by Albrecht’s security estimator [4,3]. The
scheme description of HEAAN is as following:

• KeyGen(params).
- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a ← U(RqL) and e ← χerr. Set the public key as pk ← (b, a) ∈
R2
qL where b← [−a · s+ e]qL .
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- Sample a′ ← U(Rq2L) and e′ ← χerr. Set the evaluation key as evk ←
(b′, a′) ∈ R2

q2L
where b′ ← [−a′s+ e′ + qL · s2]q2L .

• Encpk(m). For a message m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output

the ciphertext ct = [v · pk + (m + e0, e1)]qL .
• Decsk(ct). For a ciphertext ct = (c0, c1) ∈ R2

q`
, output a message m′ =

[c0 + c1 · s]q` .
• C.Add(ct, ct′). For ct, ct′ ∈ R2

q`
, output ctadd ← [ct + ct′]q` .

• C.Sub(ct, ct′). For ct, ct′ ∈ R2
q`

, output ctsub ← [ct− ct′]q` .

• C.Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′0, c
′
1) ∈ R2

q`
, let (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Output ctmult ← [(d0, d1) + bq−1L · d2 · evke]q` .

Let ct1 and ct2 be ciphertexts of message polynomials m1 and m2. Then, the
homomorphic evaluation algorithms C.Add and C.Mult satisfy

Decsk(C.Add(ct1, ct2)) ≈ m1 + m2,

Decsk(C.Multevk(ct1, ct2)) ≈ m1 ·m2,

i.e., addition and multiplication can be internally done even in encrypted state.
For more details of the scheme including the correctness and security analysis,
we refer the readers to [9].

Since each message m ∈ R is a Z-coefficient polynomial, not a real number,
there should be a conversion between polynomials and real numbers to encrypt
real numbers. In this regard, we use a (field) isomorphism τ from R[X]/(XN +1)
to CN/2 called canonical embedding. A plaintext vector m = (m0, ...,mN/2−1)
is first transformed into τ−1(m) ∈ R[X]/(XN + 1), and then rounded off to an
integer-coefficient polynomial. However, the naive rounding-off bτ−1(m)e can
derive quite large relative error on the plaintext. To control the error, we round
it off after scaling up by p bits for some integer p, i.e., b2p · τ−1(m)e, so that the
relative error is reduced. Clearly, a decoding algorithm for m would be 2−p ·τ(m):

• Ecd(m; p). For m = (m0, ...,mN/2−1) in CN/2 and a precision bit p > 0,

output a polynomial m← b2p · τ−1(m)e ∈ R where the rounding b·e is done
coefficient-wisely.

• Dcd(m; p). For m ∈ R, output a plaintext vector m′ = 2−p · τ(m) ∈ CN/2.

To sum up, to encrypt a plaintext vector of real (complex) numbers m, we first
encode m into m← Ecd(m; p) with a certain precision bit p, and then generate
a ciphertext ct← Encpk(m) with the public key pk.

Now consider ct1 and ct2 be ciphertexts of m1 and m2 in CN/2. Since our
encoding method scales each plaintext vector up by 2p, the plaintext vector
of a ciphertext ct′ ← C.Multevk(ct1, ct2) is (approximately) 2p ·m1 �m2, not
m1 �m2, which will result in exponential growth of plaintexts. To deal with
this problem, we adjust the scaling factor by the following procedure so-called
rescaling:

• RS`→`′(ct). For a ciphertext ct ∈ R2
q`

, output ct′ ← [b(q`′/q`) · cte]q`′ .
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After the rescaling procedure ctmult ← RS(ct′), the plaintext vector of the output
ctmult is (approximately) m1�m2, and the ciphertext modulus qL is reduced by
2p. As a result, the level parameter L should be carefully chosen according to the
multiplicative depth of a target computation. In order to present our algorithm
in a simple form, we will not describe these rescaling procedures for the rest
of the paper, but we remark that in the actual use of HEAAN, there should be
delicate consideration on scaling of message.

To deal with a plaintext vector of the form m ∈ Ck having length K ≤ N/2
for some power-of-two divisor K of N/2, HEAAN encrypts m into a ciphertext of
an N/2-dimensional vector (m|| · · · ||m) ∈ CN/2. This implies that a ciphertext
of m ∈ CK can be understood as a ciphertext of (m|| · · · ||m) ∈ CK′

for powers-
of-two K and K ′ satisfying K ≤ K ′ ≤ N/2 .

Finally, the HEAAN scheme provides the rotation operation on plaintext
slots, i.e., it enables us to securely obtain an encryption of the shifted plaintext
vector (mr, . . . ,mN/2−1,m0, . . . ,mr−1) from an encryption of (m0, . . . ,mN/2−1).
It is necessary to generate an additional public information rk, called the rotation
key. We denote the rotation operation as follows.

• Rotrk(ct; r). For the rotation key rk, output a ciphertext ct′ encrypting the
(left) rotated plaintext vector of ct by r(> 0) positions as above example. If
r < 0, it denotes the right rotation by (−r) positions.

We omit a subscript of each algorithm of HEAAN for convenience if it is obvious.

2.2 Matrix packing method and Rotate function

In this subsection, we describe an encoding method to encrypt a matrix structure
in a ciphertext which was also introduced in [17]. Consider an n×m matrix Z

Z =

 z0,0 · · · z0,m−1
...

. . .
...

zn−1,0 · · · zn−1,m−1

 .
We first pad zeros to set the number of rows and columns to be powers-of-two,
say n and m, and assume that log n+logm ≤ log(N/2). Then we pack the whole
matrix in a single ciphertext ctZ in a column-by-column manner. As described
above, the algorithm Rot(ctZ ; r) can shift the encrypted vector by r positions.
In particular, we can perform row and column rotations of an encrypted matrix
with this operation. When r = n · j, and the result will be the (left) column
rotation of the encrypted matrix Z by j columns.

For the row rotation of an encrypted matrix, we use so-called masking ap-
proach. Consider n×m matrices Mi and Mi, where the first n−i rows of Mi (resp.
Mi) are filled with 1 (resp. 0) and the last i rows of Mi (resp. Mi) are filled with 0
(resp. 1). Let mski and mski be the ciphertext of Mi and Mi, respectively. For row
rotation of an encrypted matrix Z by i rows, we first compute ct1 ← Rot(ctZ , i)
and ct2 ← Rot(ctZ , i− n). Then, we mask them as ct1 ← C.Mult(ct1,mski) and
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ct2 ← C.Mult(ct2,mski). As a result, the output of C.Add(ct1, ct2) is a ciphertext
of upper row rotation of Z by i rows.

Those row and column rotations of an encrypted matrix are denoted as fol-
lows:

• C.ColumnRot(ctZ , j). For a ciphertext ctZ of a matrix Z and an integer j,
output a ciphertext ct of left column rotation of Z by j columns.

• C.RowRot(ctZ , i). For a ciphertext ctZ of a matrix Z and an integer j, output
a ciphertext ct of upper row rotation of Z by i rows.

2.3 Semi-parallel GWAS Algorithm

A naive application of GWAS analysis can be done by running a logistic regres-
sion for each SNP, which resulting in high computational cost since the number
of SNPs can be usually hundred thousands or more. To overcome this problem,
Sikorska et al. [23] proposed a semi-parallel GWAS algorithm which reduces the
required computation time from 6 hours to 10-15 minutes using projections.

Let n be the number of samples each of which consists of m (binary) SNP
data and k′ covariate data. Then the whole SNP data and covariate data can be
organized as an n×m matrix S and an n× k′ matrix X0, respectively. For k :=
k′+ 1, we define a matrix X as the concatenation of a vector whose components
are 1 and X0, denoted by X = (1||X0). Let y be a target binary phenotype vector
of length n. With these inputs, the semi-parallel GWAS algorithm outputs the

m-dimensional vector
−−→
pval which indicates the p-value of each SNP with respect

to the target phenotype. The detail of the algorithm is described in Algorithm 1.

Algorithm 1 The Original Semi-Parallel GWAS

Input: SNP matrix S ∈ {0, 1}n×m, covariate matrix X ∈ Qn×k, phenotype vector
y ∈ Qn, and # iteration iter.

Output: p-value vector
−−→
pval = (pval1, · · · , pvalm) ∈ Qm.

1: (β,p,W ) ← FisherScoring(X,y; iter)
. FisherScoring(·) is described in Algorithm 2

2: v ← log(p/(1− p)) + (y − p)/diag(W )
3: S∗ ← S −X(XTWX)−1XTWS
4: v∗ ← v −X(XTWX)−1XTWz
5: c← S∗TWv∗ ∈ Qm
6: d← diag(S∗TWS∗) ∈ Qm
7: for i = 1 to m do
8: ai ← −|ci/

√
di|

9: pvali = 2 ·
∫ ai
−∞ ρ(x)dx . ρ(x) := 1√

2π
exp

(
− 1

2
x2
)

10: end for
11: return

−−→
pval

The semi-parallel GWAS algorithm involves logistic regression on (X,y) in
the first step, and Fisher Scoring [19] described in Algorithm 2 is one of the most
highly efficient algorithm for logistic regression.
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Algorithm 2 FisherScoring

Input: Covariate matrix X ∈ Qn×k, phenotype vector y ∈ Qn, and # iteration iter.
Output: Coefficient vector β ∈ Qk, fitted vector p ∈ Qn, weight matrix W ∈ Qn×n
1: β(0) = 0 ∈ Qk, p(0) =

−→
0.5 ∈ Qn, W (0) = 0.25 · In

2: for t = 0 to iter− 1 do
3: v(t) ← log(p(t)/(1− p(t))) + (y − p(t))/diag(W (t))
4: β(t+1) ← (XTW (t)X)−1XTW (t)v(t)

5: p(t+1) ← σ(Xβ(t+1))
6: W (t+1) ← diagonal matrix of p(t+1) � (1− p(t+1))
7: end for
8: return (β(iter),p(iter),W (iter))

In both algorithms, σ(x) := 1/(1 + exp(−x)) is called sigmoid function. For
both algorithms, if the input of functions such as logarithm (log), division (/)
and sigmoid (σ) is a vector, then it means to apply the function component-
wisely resulting in the output vector of the same length. The notation T in
the superscript denotes the matrix transpose. The operation � denotes the
Hadamard (component-wise) multiplication of two vectors, and the notation
diag(·) with an input of a square matrix means the diagonal vector of the input.

3 Our Optimization Methodology

The aim of this study is to construct an HE algorithm for privacy-preserving
semi-parallel GWAS computation. Since non-polynomial operations such as ma-
trix inverse or real number inversion is a challenging stuff in HE, we need to
modify the original semi-parallel GWAS algorithm into HE-friendly form for
efficiency. Moreover, the super-large data size of GWAS requires too much com-
putational cost in encrypted state, and this issue also should be resolved. In this
regard, we introduce our optimization methodology to the algorithm.

3.1 Modification of Fisher Scoring

The main obstacle of Fisher Scoring (Algorithm 2) is a matrix inversion for U =
XTWX ∈ Qk×k.Our main idea to overcome this is the fact U−1 = 1

det(U) ·adj(U).

To be precise, observe that

v(t) = log

(
p(t)

1− p(t)

)
+

y − p(t)

diag(W (t))
= Xβ(t) +

y − p(t)

diag(W (t))
,

from which we obtain an iterative updating equation on β(t) as follows:

β(t+1) = U−1XTW (t)

(
Xβ(t) +

y − p(t)

diag(W (t))

)
= β(t) + U−1XT (y − p(t))

= β(t) +
1

det(U)
· adj(U)XT (y − p(t)).
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Here one needs to compute the inverse of det(U), but this non-polynomial op-
eration is rather expensive in HE. The key observation on this equation is that
the second term U−1XT (y−p(t)) essentially converges to 0 as t→∞ since β(t)

converges to some point. From this, we may expect that the convergence would
be still valid even when we neglect the term det(U)−1 and substitute it by some
appropriate constant. Namely, we can modify the equation as

β(t+1) = β(t) + α · adj(U)XT (y − p(t)).

for some constant α > 0. In practice, this approximate version of the Fisher
scoring algorithm works quite well with slightly slower convergence rate.

3.2 Computation of diag(S∗TWS∗) without computing S∗

The main observation of this subsection is that computation of n × m matrix
S∗ in Algorithm 1 is superfluous for obtaining p-values. Indeed, we directly
compute det(U) · diag(S∗TWS∗) , which can be obtained without computing
(matrix) inversion and super-large matrix S∗. To be precise, using the fact that
S∗ = S −XU−1V for V := XTWS, we get

S∗TWS∗ = (S −XU−1V )TW (S −XU−1V )

= STWS − V TU−1V.

Based on this observation, we compute det(U) · diag(S∗TWS∗) by following:

1. Compute U = XTWX and V = XTWS.
2. Compute adj(U) and det(U).
3. Compute det(U) · diag(STWS)− diag(V T adj(U)V ).

3.3 Approximate Computation of S∗TWv∗

We also take the main observation of the previous subsection so that we do not
compute S∗. From the definition of S∗ and v∗, it holds that S∗TWv∗ = STWv∗.
Then we have the following equations:

STWv∗ = STW (I −XU−1XTW )v

= STW (I −XU−1XTW )
y − p

diag(W )

= ST (y − p)− STWXU−1XT (y − p)

' ST (y − p)

where the last approximation is valid since the term XT (y − p) is sufficiently
close to the zero vector, which is resulted from the Fisher Scoring. Therefore, we
compute det(U)·ST (y−p) which is a reliable approximation of det(U)·S∗TWv∗,
in much less computational costs.
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3.4 Our Modified semi-parallel GWAS Algorithm

To sum up all our algorithmic optimization techniques described in above, we
have Algorithm 3 and 4, which are modified Fisher Scoring and semi-parallel
GWAS algorithms, respectively.

Algorithm 3 ModifiedFisherScoring

Input: Covariate matrix X ∈ Qn×k, phenotype vector y ∈ Qn, # iteration iter, and
constant α > 0.

Output: Coefficient vector β ∈ Qk, fitted vector p ∈ Qn, weight matrix W ∈ Qn×n
1: β(0) = 0 ∈ Qk, p(0) = 0.5 ∈ Qn, W (0) = 0.25 · In
2: for t = 0 to iter− 1 do
3: U (t) ← XTW (t)X
4: β(t+1) ← β(t) + α · adj(U (t))XT (y − p(t))
5: p(t+1) ← σ(Xβ(t+1))
6: W (t+1) ← diagonal matrix of p(t+1) � (1− p(t+1))
7: end for
8: return β(iter),p(iter),W (iter)

In Algorithm 3, the constant α takes a similar role to the learning rate in
gradient descent algorithm [22], which can be adjusted if necessary.

Algorithm 4 Modified Semi-Parallel GWAS

Input: SNP matrix S ∈ {0, 1}n×m, covariate matrix X ∈ Qn×k, phenotype vector
y ∈ Qn, # iteration iter, and constant α > 0.

Output: p-value vector
−−→
pval = (pval1, · · · , pvalm) ∈ Qm.

1: β,p,W ← ModifiedFisherScoring(X,y; iter, α)
2: U ← XTWX, and compute adj(U), det(U)
3: V ← XTWS
4: c← ST (y − p)
5: d← det(U) · diag(STWS)− diag(V T adj(U)V )
6: for i = 1 to m do
7: zi ← det(U) · c2i /di
8: pvali = 2 ·

∫ −√zi
−∞ ρ(x)dx . Done in unencrypted state

9: end for
10: return

−−→
pval

We remark that step 8 of Algorithm 4, a conversion procedure from the
squared z-score zi to the p-value pvali, is done in unencrypted state. Namely, we
decrypt the ciphertext of zi for 1 ≤ i ≤ m after step 7 so that zi’s are publicized.
We stress that the squared z-score has exactly the same information as the p-
value, so publishing squared z-scores does not leak any additional information
more than publishing p-values.
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4 Homomorphic Evaluation of the Modified semi-parallel
GWAS algorithm

Upon HE-friendly algorithms discussed in the previous section, there still re-
main computational issues regarding more fundamental operations. Recall that
HEAAN basically supports component-wise addition and multiplication along
with data slot rotations. However, we encrypt the data matrix by column-by-
column manner, and our algorithms include complex operations such as matrix
multiplication, evaluation of the adjoint matrix, a sigmoid function, and so on.
In this regard, we specify how we can deal with such operations efficiently, reduc-
ing the number of multiplications or the total depth of multiplications required
which are the main bottleneck of HE.

Note that this section consists of rather technical contents related to HE,
since it includes HE algorithms of all building blocks for Algorithm 3 and Al-
gorithm 4. One can simply embrace the fact that every operation required in
Algorithm 3 and Algorithm 4 can be efficiently done based on HE, if not really
interested in the details.

Hereafter, [a]k with an integer a denotes a residue number in [0, k−1] modulo
k. An n-dimensional vector a = (a1, · · · , an) is simply denoted by (ai)1≤i≤n, and
an n ×m matrix A having (i, j)-entry ai,j is denoted by [ai,j ]1≤i≤n,1≤j≤m. For
both cases, if the size is obvious from context, we simply write a vector by (ai),
and a matrix by [ai,j ]. Every vector and matrix in this section is assumed to
be of size power-of-two, which is in line with our packing method introduced in
Section 2.2.

4.1 Adjoint matrix and Determinant

In step 4 of Algorithm 3 and step 2 of Algorithm 4, we need to compute the
adjoint matrix and the determinant of the matrix U = [ui,j ]i,j := XTWX.
Basically, we exploit the following facts for (i, j)-minor Mi,j ∈ Q of U from basic
linear algebra:

adj(U) =
[
(−1)i+j ·Mi,j

]
∈ Qk×k,

det(U) =

k−1∑
i=0

ui,0 · (−1)i ·Mi,0.

Given an encryption of U, denoted by CU , we generate (k − 1)2 ciphertexts
Ci,j for 1 ≤ i, j ≤ k − 1 from CU , whose plaintext is an i-row (upper) rotation
and j-column (left) rotation of U . We first consider the 0-th plaintext slot, i.e.,
the (0, 0)-position of the plaintext matrix, of the ciphertexts. Since every ua,b
for 1 ≤ a, b ≤ k − 1 is a (0, 0)-entry of plaintext matrix for one and only one
ciphertext Ca,b, we can compute a ciphertext whose (0, 0)-entry of the plaintext
matrix is M0,0 from Ca,b’s, by homomorphically evaluating the polynomial f
which outputs M0,0 with input ua,b’s.
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Now observe that Ma,b and Ma′,b′ have a formula of the same form where
the subscript indices of ui,j are shifted by (a′ − a, b′ − b) modulo k. Thanks to
this index-shifting property, the homomorphic evaluation of the polynomial f
with input Ca,b’s essentially outputs a ciphertext of which the plaintext matrix
is [Mi,j ].

After computing the ciphertext of [Mi,j ] as above, we can obtain the cipher-
text Cadj of adj(U) by multiplying a ciphertext Csgn of

[
(−1)i+j

]
. Finally, the

ciphertext Cdet of determinant det(U) is easily obtained from the homomorphic
multiplication of CU and Cadj, followed by log k rotations and summations.

In case of k = 4, for example, the polynomial f is defined as f([ui,j ]1≤i,j≤3) =
u1,1u2,2u3,3−u1,1u2,3u3,2−u2,1u1,2u3,3+u2,1u1,3u3,2+u3,1u1,2u2,3−u3,1u1,3u2,2.
Then, the homomorphic evaluation to obtain Cadj is done as Algorithm 5.

Algorithm 5 C.Adj(CU ;Csgn) for k = 4

Input: Ciphertexts CU of U and Csgn of
[
(−1)i+j

]
0≤i,j≤3

Output: Ciphertext Cadj of adj(U)
1: for i = 1 to 3 do
2: Ci,0 ← C.RowRot(CU , i)
3: for j = 1 to 3 do
4: Ci,j ← C.ColumnRot(Ci,0, j)
5: end for
6: end for
7: C1 ← C.Mult(C.Mult(C1,1, C2,2), C3,3)
8: C2 ← C.Mult(C.Mult(C1,1, C2,3), C3,2)
9: C3 ← C.Mult(C.Mult(C2,1, C1,2), C3,3)

10: C4 ← C.Mult(C.Mult(C2,1, C1,3), C3,2)
11: C5 ← C.Mult(C.Mult(C3,1, C1,2), C2,3)
12: C6 ← C.Mult(C.Mult(C3,1, C1,3), C2,2)
13: for i = 2 to 6 do
14: if i is even then
15: C1 ← C.Sub(C1, Ci)
16: else
17: C1 ← C.Add(C1, Ci)
18: end if
19: Cadj ← C.Mult(C1, Csgn)
20: end for
21: return Cadj

4.2 Matrix Multiplications

Let A = [ai,j ] be an n× k matrix with n ≥ k and B = [bi,j ] be an n×m matrix.
We use an Algorithm 6 computing a ciphertext CATB of ATB from ciphertexts
CA and CB of A and B, which is inspired from the hybrid method by Juvekar
et al. [16].

11



As the first step, we compute k ciphertexts of

diagt(A) = (ai,[i−t]k)0≤i≤n−1

for 0 ≤ t ≤ k − 1. For this, we use ciphertexts dmskt of n × k masking matrix,
of which the (i, j)-entry is δ[i+t]k,j . Here δi,j denotes the Kronecker Delta. By
summing column rotations of A � dmskt, we get ciphertexts of n × m matri-
ces Expdiagt(A) having m identical columns diagt(A). Then, we compute the
following matrix M :

M =

k−1∑
t=0

ρt(Expdiagt(A)�B)

=
k−1∑
t=0

ρt(
[
ai,[i−t]k · bi,j

]
)

=

k−1∑
t=0

[
a[i+t]n,[i]k · b[i+t]n,j

]
∈ Qn×m,

where ρt is an (upward) t-rotation of matrix by row. Thus, by properly summing

rows of M, we obtain ATB =
∑n−1
t=0 [at,i · bt,j ] ∈ Qk×m. The detail of this

algorithm is described in Algorithm 6.

Algorithm 6 C.MatMul(CA, CB)

Input: Ciphertexts CA of A ∈ Qn×k and CB of B ∈ Qn×m with n ≥ k, and masking
ciphertexts {dmskt}t

Output: A ciphertext of ATB.
1: CM ← 0
2: for t = 0 to k − 1 do
3: Ct ← C.Mult(dmskt, CA)
4: for i = 0 to log k − 1 do
5: Ct ← C.Add(Ct, C.ColumnRot(Ct, 2

i))
6: end for
7: CM ← C.Add(CM , C.RowRot(C.Mult(Ct, CB), t))
8: end for
9: for i = 0 to log(n/k)− 1 do

10: CM ← C.Add(CM , C.RowRot(CM , 2
i · k))

11: end for
12: return CM

Indeed, our GWAS algorithm contains several matrix multiplications of the
form ATDB for the diagonal matrix D. For this, we first compute B′ = DB by
Expdiag0(D) � B, and then obtain ATDB by computing ATB′ with the above
method. Note that this requires only one additional Hadamard multiplication.

12



4.3 Matrix-vector multiplications

By understanding a vector by an one column matrix, we can perform all matrix-
vector multiplications in our algorithms, except Xβ that appears in step 5 of
Algorithm 3.

In fact, we can also compute Xβ by changing Algorithm 6 a little bit. Recall
that X = [xi,j ] is an n · k matrix and β = (βi) is a k-length vector, and it holds
that n ≥ k. We now again compute k ciphertexts of diagt(X), and then compute

k−1∑
t=0

diagt(X)� ρ−t((β|| · · · ||β))

=
k−1∑
t=0

(xi,[i−t]k)� (β[i−t]k)

=

k−1∑
t=0

(xi,[i−t]k · β[i−t]k) = Xβ,

whose algorithm is described by Algorithm 7.

Algorithm 7 C.MatVecMul(CX , Cβ)

Input: Ciphertexts CX of X ∈ Qn×k and Cβ of β ∈ Qk and masking ciphertexts
{dmskt}t

Output: A ciphertext of Xβ.
1: CM ← 0
2: for t = 0 to k − 1 do
3: Ct ← C.Mult(dmskt, CX
4: for i = 0 to log k − 1 do
5: Ct ← C.Add(Ct, C.ColumnRot(Ct, 2

i))
6: end for
7: CM ← C.Add(CM , C.Mult(Ct, C.RowRot(Cβ,−t)))
8: end for
9: return CM

We remark that there is another simple method for matrix-vector multipli-
cation that we use for c = ST (y − p). For simplicity, let x = (xi) := y − p.
Then by rotating and summing all rows of S � [x|| · · · ||x] = [si,j · xi], we obtain
a matrix having the same size with S and consisting of identical rows c = STx.
This requires only one Hadamard multiplication and log n rotations. However,
strictly speaking, this resulting ciphertext is not a ciphertext of STx, since it
encrypts a matrix having c row-wisely, not column-wisely. Thus we can only use
this simple method only for STx, where this row-wise packing does not matter
after then. The detail of this algorithm is described in Algorithm 8.

13



Algorithm 8 C.MatVecMul2(CS , Cx)

Input: Ciphertexts CS of a matrix S ∈ Qn×m and Cx of a vector x ∈ Qn
Output: A ciphertext of a matrix having identical rows STx.
1: CM ← C.Mult(CS , Cx)
2: for i = 0 to logn− 1 do
3: CM ← C.Add(CM , C.RowRot(CM , 2

i))
4: end for
5: return CM

4.4 Fast diag(ATBA) computations

To obtain diag(ATBA), one can perform matrix multiplication followed by diag-
onal extraction, but it is obviously not optimal since this computes unnecessary
entries of ATBC other than diagonal entries. Thus we use another method that
only compute the diagonal entries.

Let A = [ai,j ] be an n×m matrix. As an incremental step, we first consider
diag(ATDC) where D = [di,j ] is an n × n diagonal matrix and C = [ci,j ] is an

n×m matrix. Then it holds that diag(ATDC)j =
∑n−1
i=0 di,i ·ai,j ·ci,j . Now, from

an encryption of D, we compute an encryption of n × m matrix Expdiag0(D)
and then by rotating and summing

A� Expdiag0(D)� C = [di,i · ai,j · ci,j ]i,j

through all rows, we obtain a matrix consisting of identical rows diag(ATDC).
One can easily check that Algorithm 8 with input CA and C.Mult(Cdiag(D), CC))
exactly performs this computation, and then we omit the explicit algorithm.
Note that this can be directly applied for diag(STWS) computation of step 5 of
Algorithm 4.

Toward our goal diag(ATBA) with a full matrix B, we exploit the above
diagonal-case method after decomposing B into diagonal matrices. Let Bt be a
diagonal matrix with the diagonal diagt(B) for 0 ≤ t ≤ n− 1, then it holds that

diag(ATBA) =

n−1∑
t=0

diag(AT ·Bt · ρt(A)).

Therefore, after obtaining encryptions of Expdiagt(B) and ρt(A) from encryp-
tions of B and A, we can directly apply the diagonal-case method on each
diag(AT ·Bt ·ρt(A)) computation for 1 ≤ t ≤ n and finally obtain the encryption
of diag(ATBA).

Here we again remark that, since these methods use Algorithm 8, they also
ruin the column-wise packing as we already pointed out. Hence after applying
these methods, it would be hard to perform another matrix operation. Indeed,
one can check that the diagonal extractions are required for step 5 of Algorithm
4, which is the last part of algorithm that uses matrix structure.
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4.5 Approximate Computation of Sigmoid

Since the sigmoid function σ(x) = 1/(1+exp(−x)) is not a polynomial, we exploit
an approximate polynomial of the function to evaluate based on HE. Following
the methodology of [17,18], we used least square approximation method over the
interval [−8, 8]. The approximate polynomials g(x) of degree 7 is computed as

0.5 + 1.735 · x
8
− 4.194 ·

(x
8

)3
+ 5.434 ·

(x
8

)5
− 2.507 ·

(x
8

)7
.

The maximal error between σ(x) and g(x) is approximately 0.032.

4.6 Inverse of Real Numbers

In step 7 of Algorithm 4, we need to compute the inverse of di for 1 ≤ i ≤ m. To
compute the inverse of real numbers, we exploit the Goldschmidt’s division algo-
rithm [14], which outputs an approximate value of the inverse through iterative
polynomial evaluations. Refer to [21] for more details of the algorithm.

5 Results

In this section, we present the experimental results of our modified semi-parallel
GWAS algorithm based on HEAAN with a publicly available library [15]. All
experiments were implemented in C++ 11 standard, and performed on Linux
with Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8
threads) turned on.

5.1 Dataset Description

We used a dataset of 245 samples where each sample contains a binary pheno-
type, 3 covariates (height, weight, age), and 25,484 SNP data provided by IDASH
2018 competition. The dataset is divided into two sets named by iDash Test and
iDash Eval each composed of 245 samples containing common phenotype and
3 covariates but different number of SNPs; 10,643 and 14,841 SNPs, respec-
tively. We used iDash Test to set optimal parameters, and iDash Eval was used
to evaluate our algorithm in the competition. Note that the first column of
the covariate matrix X ∈ Qn×k is a vector of which all the components are
1. Therefore, the parameters are (n,m, k) = (245, 10643, 4) for iDash Test and
(n,m, k) = (245, 14841, 4) for iDash Eval.

5.2 Experimental Setting and Parameter Selection

We propose two HEAAN parameter sets achieving 128-bit or higher security for
two experiments denoted by Exp I and Exp II in Table 1. The security levels of
HEAAN parameter sets were estimated with Albrecht’s security estimator [4,3]
of which inputs are the ring dimension N , the modulus Q, the Hamming weight
h of a secret polynomial, and the error distribution χerr. Note that since the
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Table 1: Parameters for HEAAN, and Running time of KeyGen, Enc and Dec

Exp
HE parameters Time (sec)

logN L p h KeyGen Enc Dec

I 17 1300 50 56 157 68 0.28

II 17 1700 50 78 197 90 0.15

modulus of the evaluation key evk is 22L, the security of HEAAN is estimated
with input (N,Q = 22L, h, χerr).

Exp I is a streamlined version operating Algorithm 4 only until step 5; that is,
it does not perform the last division process. Exp II includes the division process
(step 7 of Algorithm 4), so it naturally requires larger L than Exp I.

We first set the scaling parameter p to be sufficiently large so that errors
derived from HEAAN do not effect on significant bits of plaintexts. The level
parameter L is chosen by considering the fact that p levels are consumed for each
homomorphic multiplication. See Section 2.1 for specific definitions of HEAAN
parameters. Besides thoese HEAAN parameters, one also needs to select an
appropriate constant α > 0 in Algorithm 3. After experimenting on several
values, we set α = 8. Note that the choice of α merely depends on the size of X,
but not on S.

5.3 Experimental Results and Evaluation

We demonstrated our modified semi-parallel GWAS algorithm in encrypted
state, and evaluated the accuracy of our algorithm comparing it to that of the
original algorithm which is performed in unencrypted state. The comparison
result of p-value is described as a (log-scale) graph in Figure 1.

We plotted each SNPs according to the p-values computed by original algo-
rithm and ours denoted by True and Enc, respectively. The diagonal line repre-
sents the line y = x, and closer distribution of points to this line implies higher
accuracy. The Figure 1-(a) shows that the accuracy of our algorithm increases
with the number of iterations for Fisher scoring, where the data set iDash Test
is used. The Figure 1-(b) shows that the accuracy of Exp II, which includes a di-
vision procedure, is comparable to that of Exp I without the division, where the
data set iDash Eval is used. Comparing Exp I and Exp II, there exists a trade-off
between computational time and information leakage. The output of Exp I is the
vector of squared statistics (zi)1≤i≤m which has exactly same information with
the p-value vector pval, but it takes 20 minutes longer than Exp I. On the other
hand, since Exp I outputs the numerator det(U) · c2i and the denominator di (in
Algorithm 4) separately, it leaks some information more than p-values. However,
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(a) Exp I for iter = 1, 2, 4 on iDash Test (b) Exp I/II for iter = 4 on iDash Eval

Fig. 1: Comparison of p-values on IDASH datasets

it still seems to be very hard to extract any important information of input data
from the numerator and denominator.

For more concrete evaluation, we classified each SNP as positive or negative
depending on whether the corresponding p-value is larger or smaller than the
given threshold (e.g. 10−2, 10−5, or 10−12). Then, the accuracy of our algorithm
compared to the original algorithm can be checked by a well-known statistical
measure called F1 score. The F1 score of our algorithm is calculated by regarding
the positive SNPs classified by the original GWAS algorithm to be the correct
positive samples. For the formal definition of F1 score, we refer readers to [11].

The performance of our algorithm including the computation time and the
F1 score on each parameter set is described in Table 2, where iter denotes the
number of iterations in Fisher Scoring, Comp. time denotes the running time of
our algorithm in encrypted state, and TH denotes the threshold of p-values for
classification.

As we have seen in Figure 1, more iterations of Fisher scoring provides higher
accuracy measured by higher F1 score. Note that 4 iterations suffice to provide
high F1 score even in a very small threshold such as 10−12. Also, Exp II calculat-
ing approximate inverse in encrypted state provides almost similar F1 score to
Exp I without such approximation. It implies that the error of inverse approxi-
mation does not seriously impact the whole approximation. Furthermore, Exp II
shows even higher F1 score than Exp I due to the cancellation of errors from our
algorithmic approximation and that from the inverse approximation.

For about 15, 000 SNP data, our algorithm works in less than 40 minutes
when we exclude step 7 of Algorithm 4 in encrypted state, or in about 60 minutes
otherwise. We emphasize that each iteration of Fisher scoring takes about 3
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Table 2: Experimental Results for each parameter set.

Data
Params

Comp. time
F1 Score

Exp iter TH: 10−2 TH: 10−5 TH: 10−12

iDash Test

I 1 13 min* 0.960 0.969 0.243

I 2 27 min 0.985 0.985 0.955

I 4 32 min 1.000 0.999 0.997

II 4 52 min 1.000 0.999 0.998

iDash Eval
I

4
38 min 0.998 0.995 0.992

II 62 min 0.998 0.996 0.994

*: We used more streamlined parameter; logN = 16, L = 950, p = 50, h = 91.

minutes while the Goldschmidt’s division algorithm takes less than 30 seconds.
Exp II takes much longer time than Exp I due to the larger level parameter L.

6 Discussion

Scalability. Our algorithm is executed and evaluated with about hundreds of
samples each containing ten thousand SNPs, and 3 covariates which can be seen
as a small-size data in usual GWAS analysis. We emphasize that our algorithm
is highly scalable in the number of samples or SNPs, since we circumvent the
naive execution of large-sized matrix operations through the proper algorithmic
modification. To test the scalability of our algorithm in practice, we randomly
generated 500 samples each of which consist of 3 covariates and 30, 000 SNPs.1

The experiment Exp 1 on this random dataset encrypted with properly chosen
hyperparameters iter = 4 and α = 2−7 still showed quite accurate p-value result
compared to the result obtained by running Algorithm 2 in unencrypted state
within 2 hours.

Fisher Scoring. Our HE-friendly modified Fisher scoring (Algorithm 3) works
quite well in practice, but there still remains to obtain some theoretical results
on the convergence of the algorithm with respect to the new parameter α. Fur-
thermore, we should consider an error in every operation derived from HEAAN
when homomorphically evaluate the algorithm. As a result, research on the con-
vergence of the erroneous version of our modified Fisher scoring algorithm should

1 Each column of the covariate matrix was uniform randomly generated in the interval
[150, 200], [40, 100] and [20, 80] considering height, weight and age, respectively. Each
element of the SNP matrix was uniform randomly chosen as a binary matrix.
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be very interesting topic as a further work. In addition, we note that our mod-
ified Fisher scoring algorithm can be generally used for logistic regression, not
restricted to GWAS algorithm.

7 Conclusions

Interest on privacy-preserving genome data analysis based on HE has grown up
very rapidly since the annual IDASH competition was launched, and GWAS is
one of the most important technologies in this area which was also selected as
one of three tasks in IDASH 2018 competition. Our HE-friendly modified semi-
parallel GWAS algorithm was successfully implemented based on an approximate
HE scheme HEAAN, and we could obtain the p-value result in about 30–40
minutes for 10, 000–15, 000 SNP data with sufficiently high accuracy compared
to the result obtained in unencrypted state.
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