
Schnorr-based implicit certification: improving
the security and efficiency of V2X

communications
Paulo S. L. M. Barreto1, Marcos A. Simplicio Jr.2, Jefferson E. Ricardini2,3

and Harsh Kupwade Patil3

1 University of Washington Tacoma, USA,
pbarreto@uw.edu,

2 Escola Politécnica, Universidade de São Paulo, Brazil,
{mjunior,joliveira}@larc.usp.br

3 LG Electronics, USA,
harsh.patil@lge.com

Abstract. In the implicit certification model, the process of verifying the validity
of the signer’s public key is combined with the verification of the signature itself.
When compared to traditional, explicit certificates, the main advantage of the implicit
approach lies in the shorter public key validation data. This property is partic-
ularly important in resource-constrained scenarios where public key validation is
performed very often, which is common in vehicular communications (V2X) that
employ pseudonym certificates. In this article, we propose a Schnorr-based implicit
certification procedure that is more efficient than the state of the art. We then
integrate the proposed solution with a popular V2X-oriented pseudonym certificate
provisioning approach, the (unified) butterfly key expansion, showing the correspond-
ing performance gains. As an additional contribution, we show that butterfly keys
are vulnerable to existential forgery attacks under certain conditions, and also discuss
how this issue can be fixed in an effective and efficient manner.
Keywords: Vehicular communications (V2X) · implicit certificates · butterfly key
expansion · security

1 Introduction
Public key authentication is the cornerstone for any security system that relies on pub-
lic/private key pairs for digital signature, key exchange and/or asymmetric encryption.
Traditionally, this is accomplished by means of explicit certificates, digital documents that
enclose the subject’s public key and are signed by a trusted Certificate Authority (CA).
This is the case of the worldwide Internet, which relies basically on X.509 certificates for
verifying the authenticity of web domains [1].

Despite the widespread adoption of explicit certificates, there are some alternative
models in the literature that target specific scenarios (see [2] for some examples). Among
them, implicit certificates [3, 4] are of especial interest because, when compared to
explicit certificates, they reduce the amount of information required for authenticating
public keys. This better efficiency makes implicit certificates quite appealing in resource-
constrained scenarios, such as the Internet of Things (IoT) [5, 6]. In particular, this is
the certification model suggested in one of the main security architectures for protecting
vehicular communications, the Security Credential Management System (SCMS) [7, 8].

mailto:pbarreto@uw.edu
mailto:{mjunior, joliveira}@larc.usp.br
mailto:harsh.patil@lge.com


2

Our main contribution in this article is the proposal of a novel implicit certification
protocol that, compared with previous works, provides a more efficient public key verifica-
tion process. The proposal shares some similarities with the Elliptic Curve Qu-Vanstone
(ECQV) scheme [4], which is arguably the main implicit certification scheme in the liter-
ature. However, it adopts a more implementation-friendly Elliptic Curve (EC) Schnorr
[9] variant for public key signature, enabling extra optimization opportunities. Besides
describing our proposal in detail and analyzing its security, we also evaluate its benefits in
the context of vehicular communications (also known as "vehicle-to-everything" or V2X).
More precisely, we show that the integration of the proposed implicit certification model
with SCMS’s (unified) butterfly key expansion procedure [7, 8] leads to interesting efficiency
gains on the vehicles’ side. In addition, we demonstrate that butterfly keys are vulnerable
to existential forgery attacks under certain conditions, and describe a simple and efficient
fix for this issue.

The rest of this document is organized as follows. Section 2 summarizes the notation
employed along this work. Section 3 briefly describes the goals and characteristics of
regular implicit certificates. Section 4 introduces the proposed Schnorr-based implicit
certification scheme and discusses its security and performance. Section 5 shows how the
proposed scheme can be integrated with SCMS and the corresponding performance gains;
it also discusses existential forgery attacks against SCMS and how to avert them. Finally,
Section 6 presents our conclusions.

2 Basic notations and definitions
Along this document, we write G to denote the generator of an elliptic curve group G of
prime order q. All operations in this group are made (modq); hence, for conciseness, we
omit this modular reduction when describing existing and the hereby proposed protocols.

We write v $← Zq to denote that v is randomly sampled from Zq, the finite field of
integers modulo q.

We denote by a ?= b the procedure in which one verifies whether or not a and b have
identical values.

For convenience of the reader, Table 1 lists the main symbols employed in the crypto-
graphic protocols hereby described.

3 Implicit certification
The basic goal of digital certification is to bind public keys to their legitimate owners. In
the traditional, explicit certification model, this is accomplished via a two-phase process.
First, the user picks its private key u and then computes the corresponding public key
U← u·G, independently of any other entity. Then, a trusted Certification Authority (CA)
generates a digital certificate containing, at least, some system-defined metadata meta, the
public key U, and the CA’s signature on this data sig. A valid signature sig on certificate
(meta,U, sig) usually implies that the owner of the certificate knows the private key u
corresponding to U. Nonetheless, this knowledge can only be confirmed when U is actually
used (e.g., by running a challenge-response protocol involving that key pair).

Conversely, in the implicit certification model the key pair (u,U) is computed in
collaboration with the CA. What is provisioned by the CA in this case is not a certificate,
but a public key reconstruction credential V bound to that user. By using V together
with the CA’s public key U and the metadata meta, any entity can obtain the user’s
corresponding public key U. Even though the reconstructed U is not explicitly signed by
the CA, its authenticity and its bond to a user can still be proved. This is done by U’s



3

Table 1: General notation and symbols

Symbol Meaning
r A random integer
sig A digital signature
cert A digital certificate
meta A digital certificate’s metadata
U,U Public signature keys (stylized U : reserved for PCA)
u, U Private keys associated to U and U (respectively)
X,x Public and private caterpillar keys
X̂, x̂ Public and private cocoon keys
V Public key reconstruction credential (implicit model)
β Number of cocoon keys in a batch of certificates
f A pseudorandom function (PRF)
H(str) Hash of bitstring str
Enc(K, str) Encryption of bitstring str with key K

Table 2: ECQV implicit certificate provisioning protocol

usr → CA → usr

x
$← Zq

X ← x·G X

r
$← Zq

V ← X + r·G
cert← {V, meta}
h← H(cert)
sig ← h·r + U

V, sig

h← H(cert)
u← h·x+ sig

U← u·G
U ?= h · V + U

rightful owner simply by proving the knowledge of the private counterpart u, during key
usage.

To give a concrete example, we can consider what is probably the main implicit
certification solution in the literature, the Elliptic Curve Qu-Vanstone (ECQV) protocol [4].
ECQV’s key provisioning procedure is shown in Table 2. First, the user computes a random
EC private/public key pair (x,X = x·G), and then sends the public key X to the CA.
The CA, in turn, picks a random integer r and computes a key reconstruction credential
V ← X + r·G. The CA then sets the user’s implicit certificate to cert← {V, meta} and
signs the result, obtaining sig ← h·r+ U for h← H(cert). Both cert and sig are then sent
back to the requesting user. Finally, the user computes its own private key as u← h·x+sig,
and the corresponding public key as U← u·G.

In possession of cert, any user can reconstruct the public key U by computing h ←
H(cert) and then using the equation U ← h·V + U . This equation is valid because
U = u·G = (h·x + sig)·G = (h·x + h·r + U)·G = h·(x·G + r·G) + U·G = h·V + U . As
discussed in [3], this procedure prevents forgery of a valid key reconstruction credential V
by attackers that do not know the CA’s private key U used to sign cert. The scheme is
also escrowless, i.e., the CA does not learn the user’s final private key u.

Commonly, the metadata enclosed in cert includes some user-identifiable information
[3, 4], similarly to the "subject" field in ordinary X.509 certificates [1]. Nevertheless, by
omitting such identity information, one can obtain anonymous (or, rather, pseudonym)
implicit certificates. In that case, the bearer of the certificate, after proving knowledge of
the corresponding private key, is considered authorized in the system despite not being



4

Table 3: Schnorr-based implicit certificate provisioning protocol

usr → CA → usr

x
$← Zq

X ← x·G X

r
$← Zq

V ← X + r·G
cert← {V, meta}
h← H(cert,U)
sig ← r + h·U

V, sig

h← H(cert,U)
u← x+ sig

U← u·G
U ?= V + h · U

identified.

4 More efficient implicit certificates
The main performance shortcoming of the ECQV protocol shown in Section 3 lies in its
credential verification equation, U ?= h · V + U . Specifically, the processing cost of this
equation is dominated by the EC-point multiplication h·V , where the V point is expected
to be different for each user. Therefore, this operation is not amenable to optimization
methods typical of fixed-point EC multiplications (see [10, Sec. 3.3.2] for a few examples).
In other words, for a generic choice of the underlying elliptic curve, it cannot be accelerated
by pre-computing and storing data that depend only on the point V .

To address this issue, we propose a slightly different implicit certification protocol
that takes full advantage of fixed-point multiplications. The proposal is shown in Table
3, in which we highlight (in gray background) the differences toward ECQV. The main
distinction is that we employ the elliptic curve version of the Schnorr signature algorithm
[9] when computing sig = r + h·U. The private key reconstruction operation then becomes
u← x+sig, whereas the public key reconstruction algorithm is given by U = V +h ·U . The
correctness of these equations can be verified by observing that U = u·G = (x+ sig)·G =
(x+ r + h·U)·G = (x·G+ r·G) + h·(U·G) = V + h·U .

Another, smaller difference is that the proposal includes the intended verification public
key in the hash computation, by making h = H(cert,U). This approach is recommended
for preventing certificate misbinding attacks [11, 12], in which the wrong CA public key is
associated with the implicit credential. In particular, this prevents the following attack
against the system’s consistency. Suppose that adversary A acts as an intermediary in
the communication between the CA and the user usr requesting an implicit certificate.
Suppose also that usr in principle does not know the CA’s public key U , which is expected
to be provided together with the pair (V, sig) in the CA’s response. In this scenario,
if h = H(cert), the attacker could replace the CA’s legitimate response (V, sig,U) with
(V, sig′,U ′), where sig′ = sig + h·z and U ′ = U + z·G for an arbitrary z. The user
would be able to reconstruct its implicit keys and verify the correctness of the provided
credential, since we would then have U = u·G = (x+ sig′)·G = (x+ r + h·U + h·z)·G =
(x·G+ r·G) + h·(U·G) + z·G) = V + h·(U + z·G) = V + h·U ′.

Hence, the attacker is able to convince usr to use the wrong CA public key even without
knowing the corresponding private key U′ (or, equivalently, the legitimate U = U′− z). Such
inconsistency issue may not be critical in some contexts, in particular when users know
the CA’s public key beforehand. Nevertheless, ensuring the consistency of the scheme
by design is at least advisable. After all, this avoids subtle attacks that might be build
against systems following the proposed implicit certification model. In addition, and as
shown in Section 5.2, using this approach when signing data (not only certificates) is of
particular importance to avoid forgery attacks in the context of vehicular communications.

An efficient and secure approach to address this matter consists in including the signer’s
public key as part of the hash computation, as done in the ISO-9798-3 standard [13, 14],



5

Indeed, as long as h = H(cert,U) 6= H(cert,U ′), any attempt to replace U with U ′ in the
CA’s response would invalidate the CA’s signature over h. The resulting processing cost is
also expected to be very low, since it corresponds simply to a small increase in the amount
of data fed to the underlying hash function.

4.1 Performance considerations
By adopting a Schnorr-based signature, the implicit certificate’s hash h is multiplied by
the CA’s long-term private key U, instead of the ephemeral private key r. As a result, the
public key reconstruction algorithm U ?= V + h · U requires one EC multiplication by what
is commonly a fixed point: the CA’s public key U . This operation can, thus, take full
advantage of optimizations such as pre-computation or dedicated code.

For instance, suppose that h is 256 bits long and written in hex, namely h = h63 ·1663 +
h62 · 1662 + ...+ h1 · 16 + h0 with 0 6 hp < 16 for all 0 6 p < 64. Then, by precomputing
and storing a single, fixed 64× 16 table T [p][d] := (d · 16p) · U , the h · U operation could
be implemented via table lookups as follows:

h·U= (h63·1663 + h62·1662 + ...+ h1·16 + h0)·U

= (h63·1663)·U + (h62·1662)·U + ...+ (h1·16)·U + h0·U

= T [63][h63] + T [62][h62] + ...+ T [1][h1] + T [0][h0]

Ignoring the (usually small) cost for the table look-ups themselves, the total, fixed
cost of this approach would be only 63 point additions. In comparison, a regular double-
and-add method would take 255 point doublings, plus an average of 128 additions (or
roughly 85 additions if a Non-Adjacent Form (NAF) representation is adopted). Thus, this
table-based technique is expected to be about 3 to 4 times faster at the cost of storing a
fixed 32 KiB table, considering a classical 128-bit security level with 256-bit elliptic curve
finite fields. Other techniques, such as the fixed-base comb method [10], can offer further
storage-processing trade-offs. For example, using the fixed comb method with w = 8 as
implemented in RELIC cryptography library v0.4.1 [15], we were able to run fixed-point
multiplications ≈ 8 times faster than random-point multiplications on an Intel i5 4570
processor. It is also worth noting that a side-channel resistant implementation [16] is not
necessary for this operation, since all values involved (h and U) are public.

Besides this performance gain, the proposed approach also slightly improves the
efficiency of two other processes. The first is the private key reconstruction by the user:
since this key is computed simply as u← x+ sig, instead of u← h·x+ sig as in ECQV,
it saves one modular multiplication. The second is the CA’s signing procedure itself,
computed as sig ← r + h·U rather than as sig ← h·r + U: even though both equations
involve the same number of operations, our proposal can benefit from precomputation
techniques similar to those applicable to public key reconstruction algorithm. After all,
the modular multiplication is such that one of its factors (namely, the private key U) is
one and the same for all users. In this case, however, the optimization approach must be
side-channel resistant, because the fixed factor is private.

4.2 Security Analysis
Assuming the hardness of the elliptic curve discrete logarithm problem (ECDLP) [17],
the security properties of the proposed scheme should be similar to those provided by
ECQV. This claim can be proven under the general security model for implicit certificates
described in [3]. This model, illustrated in Figure 1, can be formulated according to the
following Definition 1.



6

usri Adversary CAj'
Xi, j

Xi’, j’

Vi’, metai’, sigi’

V, meta, u

Figure 1: Security model for implicit certificates. Adapted from [3].

Definition 1. (Implicit certificate adversaries [3]) Assume a scenario with nusr legitimate
users, denoted usri for 1 6 i 6 nusr, and with nCA CAs, denoted CAj for 1 6 j 6 nCA.
Let (Xi, j) denote usri’s implicit certificate request for CAj , and let (Vi, metai, sigi) be
the response sent by that CA. Also, let Ui and ui denote, respectively, the public and the
private keys reconstructed by usri from CAj ’s response, using that CA’s public key Uj .
There are no restrictions on the number of certificate requests that can be sent by usri to
CAj .

A (τ, ε)-adversary A of an implicit certificate scheme is a probabilistic Turing machine
that runs in time at most τ and interacts with legitimate users and CAs by performing
each of the following operations, any number of times.

(I) receive a request (Xi, j) from usri, intended for CAj ; and

(II) send a request (X ′i′ , j′) to CAj′ , receiving (V ′i′ , meta′i′ , sig
′
i′) as that CA’s response.

With probability at least ε, A outputs a triple (V, meta,u) such that u is the private
key corresponding to the public key U reconstructed from V , meta and some Uz — in our
case, this means that u·G = V +H(V, meta,Uz) · Uz, — and either

(I) [Forgery attack against CAz]: (V, meta) was never part of a response by CAz; or

(II) [Key compromise against usri]: (V, meta) was included in a response of CAz to
some request (Xi, j) originally made by usri.

A (τ, ε)-adversary A is considered successful if ε is non-negligible for a polynomial time
τ .

In summary, this model covers a scenario in which the attacker A acts as intermediate
for the requests from users and responses from CAs. Hence, A can: simply relay the
request to the correct CA; modify the point Xi in the request; modify the user identifier
i in the request, thus affecting the value of meta in the certificate; and/or forward the
request to a different CA.

Theorem shows the security of the proposed Schnorr-based protocol in this security
model.

Theorem 1. In the random oracle model and assuming the intractability of the ECDLP
problem in G, there is no adversary A that is successful against the hereby proposed
Schnorr-based implicit certification scheme in the sense of Definition 1.

Proof. The proof is a simple adaptation of [3, Theorem 2] to the proposed Schnorr-style
signature scheme, which is known to be secure in the random oracle model assuming the
intractability of the ECDLP [18]. Since this adaptation is quite straightforward, we leave
the details to the Appendix.

5 Application to Vehicular Communications
Vehicle-to-everything (V2X) communications refers to the set of technologies that allow
vehicles to exchange messages among themselves and with other entities (e.g., roadside



7

units or pedestrians) [19]. Its wide scale deployment is motivated by several factors,
including improving transportation safety and efficiency. For example, if vehicles exchange
Basic Safety Messages (BSM) [20], informing their relative speed, acceleration and distance
to each other, accidents can be avoided with or without the drivers’ direct intervention.
In addition, V2X technologies enable applications in which vehicles and drivers can
be informed about adverse road conditions, such as nearby accidents, congestion, busy
intersections, slippery conditions, or potholes. Such capabilities create a much more
dynamic and information-rich environment than what could be achieved with traditional
traffic signs.

An important challenge in V2X environments, though, is to build a Vehicular Public
Key Infrastructure (VPKI) able to ensure that authorized vehicles cannot be tracked,
either by eavesdroppers or by the system itself [21]. One common approach for this issue
is to provision vehicles with multiple, short-lived pseudonym certificates [22]. Vehicles
can then avoid tracking by frequently changing the certificates employed to sign their
messages while they move. The reasoning is that messages from the same and from
different vehicles should not be distinguishable from each other, since none of them carry
any identity information. Hence, messages broadcast from different locations and using
distinct certificates cannot be easily linked to any given user. On the other hand, the total
number of certificates valid simultaneously should be limited (e.g., to a number between
20 and 40 [7]) to avoid misbehavior. One example is a Sybil attack [23], in which one
vehicle pretends to be multiple entities. This may allow the culprit, for example, to get
preferential treatment from congestion-aware traffic lights [24].

Among the existing VPKI solutions, the Security Credential Management System
(SCMS) [7] is of especial interest. Developed in cooperation with the United States
Department of Transportation, SCMS’s certificate issuance approach combines privacy and
scalability in the so-called butterfly key expansion process. Essentially, this process enables
several pseudonym certificates to be provisioned with a single request from a vehicle, in
such a manner that those certificate cannot be linked to the requester. The resulting
architecture is quite bandwidth- and processing-efficient even when issuing thousands
of certificates to a vehicle. This is particularly true if the unified butterfly key (UBK)
optimization [8] is employed, since it reduces the amount of data exchanged and also the
number of operations performed during the issuance process.

In this section, we show that SCMS can benefit from the hereby proposed implicit
certification approach. Specifically, we present a novel existential forgery attack that can
be mounted against butterfly keys under certain conditions; the attack builds upon the
certificate misbinding issue described in Section 4, and can be addressed similarly. In
addition, we evaluate the performance gains resulting from integrating Schnorr-based
implicit certificates with the UBK provisioning scheme.

5.1 The unified butterfly key (UBK) expansion process
The certificate provisioning process in SCMS involves mainly three entities:

• Vehicle: the entity that requests pseudonym certificates from a registration authority
(RA). For better efficiency, each request leads to the provisioning of a batch containing
β certificates.

• Registration Authority (RA): acts as a proxy between vehicles and the Pseudonym
Certificate Authority (PCA). Each request from an authorized vehicle generates
β individual pseudonym certificate requests sent to the RA, each one containing
a different public key. To improve the vehicles’ privacy, requests associated with
different vehicles are shuffled together by the RA. This prevents the PCA from
identifying which requests belong to the same batch, assuming there is no PCA-RA
collusion.



8

• Pseudonym Certificate Authority (PCA): responsible for issuing pseudonym certifi-
cates upon request by the RA. The public key effectively placed into the certificate
is a randomized version of the key received from the RA, and the response is also
encrypted so only the vehicle can retrieve its contents. This prevents the RA from
identifying the owner of a certificate when it is used on the field, once again assuming
the PCA does not collude with the PCA.

Table 4 details the interaction among these entities during the UBK certificate pro-
visioning process. All communications are made via a secure channel, using standard
protocols such as Transport Layer Security (TLS). The top rows in this table shows the
explicit and implicit models described in [8]. The bottom row shows the hereby proposed
implicit approach, highlighting the main differences from regular implicit certificates in
gray background.

In all cases, the vehicle starts by picking a random caterpillar private key x and
computing the corresponding caterpillar public key X = x·G. The vehicle then sends X,
together with a pseudorandom instance f , to the RA.

In response to the vehicle’s request, the RA expands the caterpillar public key X into
β cocoon public keys X̂i = X + f(i)·G. Since f is shared only among the vehicle and the
RA, the resulting cocoon keys are unlinkable to the original X from the perspective of
any entity other than the vehicle and the RA. The RA then sends each individual X̂i to
the PCA, while shuffling together requests associated to different batches to ensure their
unlinkability.

The PCA, in turn, randomizes X̂i by adding ri·G to it, for a randomly picked ri. For
explicit certificates, the resulting elliptic curve point is used directly as the vehicle’s butterfly
public key Ui; it is then placed into a certificate together with any required metadata
(e.g., a validity period), and signed. For implicit certificates, the randomized point is used
as the butterfly reconstruction credential Vi; it is also combined with some metadata,
and then signed according to the procedure described in Sections 3 and 4 (depending on
the implicit model adopted). In all cases, the resulting certificate is encrypted with the
originally provided X̂i, and sent back to the RA. The RA, unable to decrypt the PCA’s
response pkg, simply forwards it back to the requesting vehicle, in batch.

Finally, the vehicle computes the key x̂i = x+ f(i) for decrypting pkg. It then verifies
that the retrieved certificate is indeed valid. This is done either by checking its signature
(for explicit certificates) or by performing the corresponding key verification process (for
implicit certificates). As long as such verification is successful, the keys obtained can be
used for signing messages sent to other vehicles.

Table 4 summarizes the previous versions of the explicit and implicit protocols, and
describes the proposed variant adopting Schnorr-style signatures. From the security point
of view the implicit schemes appear to be equivalent. However, the Schnorr variant has
efficiency advantages, as discussed in the following subsections.

5.2 The risk of certificate misbinding: building (and fixing) related-key
existential forgery attacks

The security of the original butterfly key expansion is discussed in [7, 25, 26], whereas
additional security aspects related to the UBK optimization are detailed in [8]. However,
none of these works tackle issues arising from one inherent property of butterfly keys: the
correlation among different keys from the same batch. More precisely, any pair of private
keys (ui,uj) created from the same caterpillar key x end up sharing some well-defined
relationship ρi,j = ui−uj . Indeed, for explicit certificates we have ui = x+f(i)+ri and uj =
x+f(j)+rj , meaning that ρi,j = f(i)+ri−f(j)−rj . For the hereby proposed Schnorr-based
implicit certificates, the relationship is quite similar, given by ρi,j = f(i)+sigi−f(j)−sigj .



9

Table 4: The unified butterfly key (UBK) certificate provisioning process: the top rows
show the explicit and implicit certification models from [8]; the bottom row shows the
hereby proposed Schnorr-based implicit variant (the gray background highlights the main
differences from regular implicit certificates).

Vehicle → RA → PCA -RA Vehicle

(explicit)

x
$← Zq

X ← x·G
X, f

X̂i ← X+f(i)·G
(0 6 i < β) X̂i

ri
$← Zq

Ui ← X̂i + ri·G
sigi ← Sign(U, {Ui, meta})
certi ← {Ui, meta, sigi}

pkg ← Enc(X̂i, {certi, ri})

pkg

x̂i ← x + f(i)
{certi, ri} ← Dec(x̂i, pkg)

Verif(U, certi)
ui ← x̂i + ri

ui·G
?= Ui

(implicit)

ri
$← Zq

Vi ← X̂i + ri·G
certi ← {Vi, meta}
hi ← H(certi)
sigi ← hi · ri + U

pkg ← Enc(X̂i, {certi, sigi})

x̂i ← x + f(i)
{certi, sigi} ← Dec(x̂i, pkg)

hi ← H(certi)
ui ← hi · x̂i + sigi

Ui = ui·G
?= hi · Vi + U

(implicit)
Schnorr

ri
$← Zq

Vi ← X̂i + ri·G
certi ← (Vi, meta)
hi ← H(certi,U)
sigi ← ri + hi · U

pkg ← Enc(X̂i, {certi, sigi})

x̂i ← x + f(i)
{certi, sigi} ← Dec(x̂i, pkg)

hi ← H(certi,U)
ui ← x̂i + sigi

Ui = ui·G
?= Vi + hi · U

In contrast, for regular implicit certificates, this relationship is more complex: since
ui = hi·(x+ f(i)) + sigi, we can write ρi,j = hi·(x+ f(i)) + sigi − hj ·(x+ f(j))− sigj .

In principle, such relationships are unknown by any entity except the owner of the keys.
The reason is that f(i) is a secret shared between vehicle and RA, whereas ri and sigi
(respectively, for explicit and implicit certificates) are known only by vehicle and PCA.
Hence, even though hi = H(certi) is public, the randomness added by PCA and RA is
enough to protect the correlation between any pair of keys, in all certification models.

However, it is possible to exploit such relationship among butterfly keys in one particular
condition: (1) the PCA colludes with the RA, so together they learn the correlation between
those keys; (2) a Schnorr-style signature algorithm is employed; and (3) the signatures
are prone to certificate misbinding attacks analogous to the one described in Section
4. Condition 1 applies for both the explicit and the proposed Schnorr-based implicit
certification models, in which ρi,j does not depend on the value of x (known only by the
vehicle). Hence, whenever Conditions 2 and 3 are met the system becomes vulnerable to
what we call a “related-key existential forgery” attack, defined as follows:

Definition 2. (Related-key Existential Forgery) Suppose that two private keys ui and
uj share some mathematical relationship that is known by the adversary, although the
actual value of those keys are unknown. Given one or more valid signatures generated
with ui, the adversary is able to forge the signature of one message, not necessarily of
his/her choice, as if such forgery was generated with uj .

To understand the attack, it is useful to recall the process by means of which Schnorr
digital signatures are generated using private key u and verified with U. First, pick a
secret random number α and compute the elliptic curve point P = α·G. To sign message
m, compute the hash h = H(P,m), and then make sig(h) = α+ h·u. The output of the
signature process is the pair (h, sig(h)). The verification process then consists in recovering
the elliptic curve point P = sig(h)·G− h·U and checking for the equality H(P,m) ?= h.

For the butterfly key ui, the signature (h, sig(h)i) is such that h = H(P,m) and
sig(h)i = α + h·ui. It turns out that, given this signature, the colluding RA and PCA
can easily compute the signature for (h, sig(h)j), i.e., the signature for message m as



10

Table 5: Processing costs (in cycles) for the UBK approach when issuing when β certificates
with the explicit, regular implicit and proposed implicit approaches.

Vehicle → RA → PCA -RA Vehicle
UBK explicit

254× 103 β ·(250× 103)
β ·(2.86× 106) β ·(2.73× 106)

UBK implicit (orig-
inal)

- - β ·(2.47× 106) - β ·(4.19× 106)

UBK implicit (pro-
posed)

β ·(2.47× 106) β ·(2.45× 106)

Proposed/explicit 1 1 1 0.91
Proposed/original 0.58

if it was produced with uj . For this, they have to first recover P = sig(h)i·G − h·Ui

and then simply compute sig(h)j = sig(h)i − h·ρi,j . This is a valid signature because
sig(h)j = α+ h·uj = (α+ h·ui)− h·ui + h·uj = sig(h)i − h·ρi,j . Both signatures refer to
the same vehicle, also identifiable due to the collusion, so this attack allows RA and PCA
to frame a target for sending m using different identities. In this case vehicles could, for
example, be wrongly accused of performing Sybil-like attacks [23]. Consequently, the risks
of an RA-PCA collusion would go beyond the system’s privacy (i.e., the ability to track
vehicles), but also affect its security.

Fortunately, since this issue is basically an extension of a certificate misbinding attack,
it can be fixed using the same technique: by including the signer’s public key in the
hashing computation. Indeed, with this approach the signature generated with ui would
be (hi, sig(h)i), where hi = H(P,m,Ui) and sig(h)i = α + hi·ui. To employ the same
trick as before, the attacker would then have to compute sig(h)j = sig(h)i − hi·ui +
hj ·uj = sig(h)i − hi·ρi,j + (hj − hi)·uj , which should be unfeasible without knowing uj
(or, equivalently, ui).

At this point, it is worth noting that such attack does not invalidate SCMS’s security
claims, for at least three reasons. The first is that SCMS’s security claims assume
that PCA and RA do not collude, nor engage in active attacks. In addition, SCMS
recommends using ECDSA [27] as underlying signature algorithm, for which we were
unable to reproduce the hereby presented attack. Finally, the latest version of SCMS
already suggests the countermeasure hereby proposed, of including the signer’s certificate
in the hash computation, although this recommendation was motivated by what was
considered a "not particularly significant attack" [26, Section V.D]. All in all, and to ensure
that SCMS remains secure against forgery even if vehicles use a Schnorr-based scheme
for signing messages, it is sensible to mandate that all signature made with butterfly keys
include this countermeasure.

5.3 Experimental results
To evaluate the performance gains provided by the proposed Schnorr-based implicit
certification approach, we use an experimental setup similar to the one described in the
UBK paper [8]. Namely, we employ the RELIC cryptography library version 0.4.1 [15]
on an Intel i5 4570 processor for implementing the explicit, regular implicit and proposed
implicit UBK protocol. We then measure the number of cycles on all entities involved
in the certificate provisioning process. We do so mainly for completeness, though, since
the only non-negligible performance gains of the proposed approach is on the vehicles’
side, when they verifies their own or their peer’s public key reconstruction credentials.
The underlying algorithms adopted are those recommended by SCMS’s proof-of-concept
implementation [25]: ECDSA [27] for signature generation/verification and ECIES [28] for
asymmetric encryption/decryption, both configured with a 128-bit security level.

In all implementations, we assume that the PCA’s public key U can be considered a



11

fixed point and, thus, can be optimized as discussed in Section 4.1. We argue that this is
a reasonable assumption in real-world V2X deployments because, even if different PCAs
are employed for better privacy [8], the total number of PCAs is expected to remain small
in practice. Therefore, the vehicles’ memory capabilities are likely to support the resulting
(few) pre-computation tables required by such optimization.

The results obtained for the average of 1000 executions of each operation, which leads
to a standard deviation below 1%, are depicted in Table 5. As shown in this table, the
processing cost of the proposed scheme is reasonably lower at the vehicle. namely, the
costs of the proposed implicit approach is 91% and 58% of the cost taken, respectively, by
UBK in the explicit and in the original implicit model.

Finally, it is interesting to notice that the adoption of implicit certificates in SCMS
seems to have been motivated for the two reasons highlighted in [29, page 17]: (1) it
potentially leads to smaller certificates and, hence, to lower bandwidth usage in V2X
communications; and (2) during operation, the process of verifying a message’s signature can
be combined with public key verification for better computational efficiency. Nevertheless,
when compared to explicit certificates, the original implicit model leads to a more costly
batch verification procedure: as shown in Table 5, the processing costs at the vehicle’s
side with the original implicit certificates is roughly 1.53× the one obtained in the explicit
model. This potential source of criticism is overcame by the proposed Schnorr-based
scheme, though, since in this case the implicit approach is actually less costly than the
explicit counterpart. Therefore, our proposal allows SCMS to fully benefit from the implicit
certification model’s bandwidth savings.

6 Conclusion
The main benefit of the implicit certification model is that it leads to smaller certificate
material than traditional approaches. In many cases, however, this comes at the cost of
increased processing when verifying the validity of implicitly certified public keys.

In this article, we present an implicit certification scheme that tackles the main
bottleneck of implicit certification schemes such as [4]: the costly scalar multiplication by
elliptic curve (EC) points involved in the public key verification process. Specifically, by
using a Schnorr-based signature approach for certifying keys, it replaces random-point EC
multiplications by fixed point operations. As a result, the proposed approach supports
optimized implementations that, at least in principle, cannot be applied to traditional
implicit certificates.

We also evaluate the actual gains of the proposed implicit certification approach in
the context of vehicular communications. Namely, we benchmark an implementation of
SCMS [7] with the UBK optimization [8] considering the explicit, original implicit and
proposed implicit certification models. Our benchmark results show that our proposal
leads to better performance than the other alternatives, while preserving the bandwidth
savings typical of implicit certificates.

As an additional contribution, we present a novel existential forgery attack that can
be mounted against butterfly keys under certain conditions. The attack exploits the
underlying properties of butterfly keys, namely, the correlation between pairs of keys issued
to the same vehicle in a given batch. Therefore, this vulnerability applies not only to the
original SCMS described in [7], but it is also inherited by the UBK optimization given in
[8]. We also show a simple fix for this issue, which was already suggested in [26], although
for different reasons.

Acknowledgment. This work was supported by LG Electronics, via the Foundation for
the Technological Development of the Engineering Sciences (FDTE). It was also funded
in part by the Brazilian CAPES (Finance Code 001), CNPq (grants 301198/2017-9 and
132485/2017-6) and FAPESP (grant 13/25977-7).



12

References
[1] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “RFC 5280:

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) profile,” https://tools.ietf.org/html/rfc5280#section-4.2.1.3, May 2008.

[2] J. K. Liu, M. H. Au, and W. Susilo, “Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model: Extended
abstract,” in Proc. of the 2nd ACM Symposium on Information, Computer and
Communications Security (ASIACCS’07). New York, NY, USA: ACM, 2007, pp.
273–283.

[3] D. Brown, R. Gallant, and S. Vanstone, “Provably secure implicit certificate schemes,”
in Proc. of the 5th International Conference on Financial Cryptography (FC’01).
Berlin, Heidelberg: Springer-Verlag, 2002, pp. 156–165.

[4] Certicom, “SEC 4: Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV),”
Certicom Research, Tech. Rep., 2013, www.secg.org/sec4-1.0.pdf.

[5] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi, “Key management
protocol with implicit certificates for IoT systems,” in Proc. of the 2015 Workshop
on IoT Challenges in Mobile and Industrial Systems (IoT-Sys’15). New York, NY,
USA: ACM, 2015, pp. 37–42.

[6] M. Simplicio, M. Silva, R. Alves, and T. Shibata, “Lightweight and escrow-less
authenticated key agreement for the Internet of Things,” Computer Communications,
vol. 98, pp. 43–51, 2017.

[7] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential manage-
ment system for V2V communications,” in IEEE Vehicular Networking Conference
(VNC’13), 2013, pp. 1–8.

[8] M. Simplicio, E. Cominetti, H. K. Patil, J. Ricardini, and M. Silva, “The unified
butterfly effect: Efficient security credential management system for vehicular com-
munications,” in IEEE Vehicular Networking Conference (VNC’18), 2018, see also:
eprint.iacr.org/2018/089.pdf.

[9] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology,
vol. 4, no. 3, pp. 161–174, 1991.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[11] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and authenticated
key exchanges,” Designs, Codes and Cryptography, vol. 2, no. 2, pp. 107–125, 1992.

[12] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols,” in Advances in Cryptology - CRYPTO
2003. Berlin, Heidelberg: Springer, 2003, pp. 400–425.

[13] ISO, ISO/IEC 9798-3 – IT Security techniques – Entity authentication – Part
3: Mechanisms using digital signature techniques, International Organization for
Standardization, 1993. [Online]. Available: https://www.iso.org/standard/67115.html

[14] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for
building secure channels,” in Advances in Cryptology — EUROCRYPT 2001. Berlin,
Heidelberg: Springer, 2001, pp. 453–474.

https://tools.ietf.org/html/rfc5280#section-4.2.1.3
www.secg.org/sec4-1.0.pdf
eprint.iacr.org/2018/089.pdf
https://www.iso.org/standard/67115.html


13

[15] D. Aranha and C. Gouvêa, “RELIC is an Efficient LIbrary for Cryptography,” https:
//github.com/relic-toolkit/relic, 2018.

[16] B. Möller, “Securing elliptic curve point multiplication against side-channel attacks,”
in Information Security (ISC’01). Berlin, Heidelberg: Springer, 2001, pp. 324–334.

[17] K. E. Lauter and K. E. Stange, “The elliptic curve discrete logarithm problem and
equivalent hard problems for elliptic divisibility sequences,” in Selected Areas in
Cryptography (SAC’08). Springer, 2008, pp. 309–327.

[18] Y. Seurin, “On the exact security of Schnorr-type signatures in the random ora-
cle model,” in Proc. of the 31st Annual International Conference on Theory and
Applications of Cryptographic Techniques (EUROCRYPT’12). Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 554–571.

[19] ETSI, “Intelligent transport systems (ITS), vehicular communications, basic set of
applications – part 2: Specification of cooperative awareness basic service,” https://www.
etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf, Eu-
ropean Telecommunications Standards Institute, Tech. Rep., Sep 2014.

[20] S. Banani and S. Gordon, “Selecting basic safety messages to verify in vanets using
zone priority,” The 20th Asia-Pacific Conference on Communication (APCC2014),
pp. 423–428, 2014.

[21] M. Khodaei and P. Papadimitratos, “The key to intelligent transportation: Identity
and credential management in vehicular communication systems,” IEEE Veh. Technol.
Mag., vol. 10, no. 4, pp. 63–69, Dec 2015.

[22] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in vehicular networks:
A survey,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 228–255, 2015.

[23] J. Douceur, “The Sybil attack,” in Proc. of 1st International Workshop on Peer-to-Peer
Systems (IPTPS). Springer, January 2002.

[24] A. K. Sharma, S. K. Saroj, S. K. Chauhan, and S. K. Saini, “Sybil attack prevention
and detection in vehicular ad hoc network,” in International Conference on Computing,
Communication and Automation (ICCCA’16), 2016, pp. 594–599.

[25] CAMP, “Security credential management system proof–of–concept implementation –
EE requirements and specifications supporting SCMS software release 1.1,” Vehicle
Safety Communications Consortium, Tech. Rep., may 2016.

[26] B. Brecht, D. Therriault, A. Weimerskirch, W. Whyte, V. Kumar, T. Hehn, and
R. Goudy, “A security credential management system for V2X communications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 12, pp. 3850–3871,
Dec 2018.

[27] NIST, FIPS 186-4: Digital Signature Standard (DSS), National Institute of Standards
and Technology, July 2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf

[28] IEEE, IEEE Standard Specifications for Public-Key Cryptography – Amendment 1:
Additional Techniques, IEEE Computer Society, 2004.

[29] Certicom, “Sec 4 v1.0: Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV),”
Certicom Research, Tech. Rep., 2013, http://www.secg.org/sec4-1.0.pdf.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.secg.org/sec4-1.0.pdf


14

A Appendix
In this appendix, we provide the proof for Theorem 1, showing the security of the proposed
Schnorr-based implicit certification scheme. The proof is largely based on the security
model proposed on [3], which is graphically illustrated in Figure 1. We note that this is
also the security model commonly used by regular implicit certificates [4].

We hereby assume the following process for generating Schnorr digital signatures
under private key u and verifying them with the corresponding public key U = u·G. The
signer starts by picking a secret random number α and computing the elliptic curve point
P = α·G. To sign message m, the signer computes the hash h = H(P,m,U), and then
makes sig(h) = α+ h·u. The output of the signature process is the pair (h, sig), which
can be verified by computing P = sig·G− h·U and then checking whether H(P,m,U) ?= h
holds true. However, this signature form is not the only possibility. A security-equivalent
and interchangeable form is the pair (P, sig), whereby signature verification consists in
computing h← H(P,m,U) and then checking whether sig ·G ?= P + h ·U holds true. For
better compatibility with [3, Theorem 2], we adopt this second signature form along the
discussion.

Theorem 1. In the random oracle model and assuming the intractability of the ECDLP
problem in G of prime order q, there is no adversary A that is successful against the hereby
proposed Schnorr-based implicit certification scheme in the sense of Definition 1.

Proof. We build a proof by contradiction, which is a simple adaptation of [3, Theorem 2]
to the proposed Schnorr-style signature scheme. The proof relies on the intractability of
the ECDLP [17]. Indirectly, it also relies on the fact that Schnorr signatures are secure
against forgery in the random oracle model, also assuming the ECDLP hardness [18].

First, assume that the proposed Schnorr-based implicit certification scheme is not
secure although the employed hash function H can be considered a random oracle. Then,
there exists a successful (τ, ε)-adversary A as per Definition 1. More precisely, we can build
a polynomial-time algorithm S that, using A as subroutine, is able to solve the ECDLP in
G with non-negligible probability.

The input to algorithm S is a ECDLP challenge C ∈ G, C 6= O, where O is the point
at infinity. The expected output of S is an integer c ∈ [1, q − 1] satisfying the discrete
logarithm equation, C = c·G. We build S in two stages. The first stage, denoted S1, takes
as input (C,m,H1) where m is a random message and H1 is a random oracle independent
of H. The desired output of S1 is either: (i) an integer c ∈ [1, q − 1] satisfying C = c·G; or
(ii) an ordered pair (V, u) such that u·G = V +H1(V,m,C)·C, which means that (V, u) is
a valid Schnorr signature of message m under the public key C. If case (i) occurs, then S
simply outputs c and terminates. If case (ii) occurs, then S1’s ability to create a Schnorr
signature forgery can be converted into the ability to solve the ECDLP for extracting c
[18]. Whichever the case, success at this stage means that S outputs c and terminates.

To accomplish the task of finding c, S1 can use A as a subroutine. Algorithm A expects
the existence of one or more CAs, each with a public key for which A is not given the
private key. It also assumes there are one or more users usri making one or more requests
containing a public key Xi = xi·G for which A is not given the corresponding discrete
logarithm xi. Algorithm S1 randomly picks one CA public keys or one user request to be
the challenge point C, which is used as the input for S. Other requested curve points and
CA public keys can be chosen by S1 at will, simply by selecting a random secret integer z
and computing z·G. Let t be the total number of CA public keys and user requests at
the attacker’s disposal. In what follows, we show that A can be successfully used by S to
obtain c or a Schnorr signature forgery under public key C with a probability of ε/t.

We start by noticing that, if S1 selects a CA whose public key is C, A can request
a certificate from that CA and receive a legitimate response. Therefore, S1 must be



15

able emulate this behavior, providing a response that seems legitimate at least from A’s
perspective; otherwise A is not guaranteed success and, thus, it may not be useful for
S1 when trying to find the correct c. However, S1 has no knowledge of the private key c
associated with C. Nevertheless, S1 can accomplish this by leveraging the fact that the
hash function H is a random oracle. In other words, S1 can simulate the CA, answering
A’s certificate requests with valid responses, by careful pre-selecting the random values
output by H. Specifically, algorithm S1 simulates the CA as follows: given a user request
containing the public key X, which is expected to be paired with certificate metadata metai,
S1 generates two random integers sigi, hi ∈ [0, q−1] and computes Vi = Xi+sigi·G−hi·C.
Then, S1 sets H(Vi, metai, C) = hi and returns the triple (Vi, metai, sigi) as the response
to A’s request. This response appears legitimate from A’s perspective, since the public
key computed as Ui = (xi + sigi)·G successfully passes the following authenticity check:

Ui
?= Vi + hi·C
?= Xi + sigi·G− hi·C + hi·C
?= Xi + sigi·G
?= (xi + sigi)·G . always true, by definition of Ui

Furthermore, the hash function simulates a random oracle from A’s perspective, since
the value hi is chosen at random by S1.

The adversary A is, as usual, allowed to query H directly for any input not previously
used in S1’s responses. For example, suppose that the hash function is queried with input
(VA, metaA, C), which has not been previously queried or computed by S1 as above. Then,
S1 outputs H1(VA,m,C) where m is the message whose signature S1 wishes to forge. In
this scenario, the distribution of simulated hash values picked by S is indistinguishable to
A from the distribution of hash values generated by an actual random oracle.

Now, suppose that algorithm A is successful, i.e., that A is able provide a response
(V, meta,u) such that u·G = V + h·Ck for some k, where h = H(V, meta, Ck) and either:

(I) (V, meta) is a certificate created by CAk in response to a request from usri; or

(II) (V, meta) is a certificate that has not been issued by CAk.

Suppose that case (I) is true. Then, there is a probability of at least 1/t that Xi

enclosed in a request from usri was the challenge point C given as input to algorithm S1.
Since the private key u belonging to usri and discovered by A is valid, it must satisfy
u = x + sig. However, in this case we have c = x, and S1 can obtain sig from CAk’s
original response. Hence, S1 is able to compute c = (u− sig).

Suppose now that case (II) is true. Then, there is a probability of at least 1/t that
CAk’s public key Ck was the challenge point C given as input to S1. It is safe to
assume that the triple (V, meta, C) was used as input in a query to H, because otherwise
the verification equation u·G ?= V + H(V, meta, C)·C holds true only with negligible
probability, contradicting the assumption that ε is non-negligible. Therefore, we have
H(V, meta, C) = H1(V,m,C) by definition of the simulation. Consequently, (V,u) is a
valid Schnorr signature for message m.

One potential (but minor) issue with this simulation is that, while S1 executes with
A, the pair (V, meta) may appear first in a direct query to H, and later as a certificate
constructed during the simulation of a CA. Since S1 picks the values sigi and hi at random
while simulating the CA, though, the elliptic curve point Vi is expected to be uniformly
distributed. Hence, the occurrence of V = Vi should only happen with negligible probability.
In addition, if that happens, S1 can simply start over. Finally, we can conclude that, if
A runs in polynomial time and succeeds with non-negligible probability, then so will S1.
From the above discussion and assuming the security of Schnorr signatures against forgery,



16

if A runs in polynomial time and succeeds with non-negligible probability, then so will S.
However, by hypothesis, it was assumed that no such S for solving discrete logarithms in
G exists. Therefore, by contradiction, no adversary A should exist in the random oracle
model unless discrete logarithms in G can be efficiently solved.


	Introduction
	Basic notations and definitions
	Implicit certification
	More efficient implicit certificates
	Performance considerations
	Security Analysis

	Application to Vehicular Communications
	The unified butterfly key (UBK) expansion process
	The risk of certificate misbinding: building (and fixing) related-key existential forgery attacks
	Experimental results

	Conclusion
	Appendix

