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Abstract. Secure multiparty computation (MPC) allows a set of mutually distrustful parties to com-
pute a public function on their private inputs without revealing anything beyond the output of the
computation. In recent years, a large effort has undergone into designing and implementing MPC pro-
tocols that can be used in practice. This paper focuses on the specific case of three-party computation
with an honest majority, which is among the most popular models for real-world applications of MPC.
Somewhat surprisingly, despite its significant popularity, there are currently no practical solutions for
evaluating arithmetic circuits over real-world CPU word sizes, like 32- and 64-bit words, that are secure
against active adversaries that may arbitrarily deviate from the protocol description. Existing solutions
are either only passively secure or require the computations to be performed over prime fields, which
do not match real-world system architectures. This is unfortunate, since it requires application devel-
opers to redesign their applications for the models of computation that are provided by existing MPC
frameworks, rather than the MPC frameworks matching the needs of the developers.
In this paper we present the first fully-fledged implementation of an MPC framework that can evaluate
arithmetic circuits with arbitrary word sizes. Our framework is based on a new protocol, which improves
the communication overhead of the best known previous solutions by a factor of two. We provide
extensive benchmarks of our framework in a LAN and in different WAN settings, showing that the
online overhead for achieving active security is less than two, when compared to the best solutions for
the same setting with passive security. Concretely, for the case of 32- and 64-bit words, we show that
our framework can evaluate 106 multiplication gates per second.

“Brain, what do you want to do tonight?”,
“The same thing we do every night, Pinky -
try to take over the world!”

Pinky and the Brain

1 Introduction

Secure Multiparty Computation (MPC) is an umbrella term for a broad range of cryptographic techniques
and protocols that enable a set of parties P1, . . . ,Pn to compute some function f of their private inputs
x1, . . . , xn without revealing anything beyond the output f(x1, . . . , xn) of the computation. Most importantly,
an actively misbehaving participant of the computation should not be able to bias the outcome of the
computation (except by choosing their input) or learn anything about the inputs of the honest parties
(except for what is leaked by the output itself). MPC has started out as a purely theoretical research
field in the 90ies, but has recently developed into a science on the brink of practical deployment. This is
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witnessed by the constantly increasing number of real-world use cases, MPC framework implementations,
and startups (see [ABL+18] for a survey).

The landscape of MPC protocols is broad and diverse, and protocols differ greatly depending on many
parameters such as the number of involved parties, the corruption threshold, the adversarial model, and the
network setting.

In this paper we focus on one of the most popular models for MPC, namely three-party computation
with an honest majority. This model has been used in different real-world applications of MPC [BCD+09,
BTW12, BJSV15, BKK+16, AKTZ17], often in the so-called client-server scenario where a possibly large
number of clients secret share their inputs to three computation servers who can then perform the desired
computation securely on their behalf [JNO14] and return the result to the clients. A major advantage of
the honest majority setting is that one can obtain protocols with unconditional security, i.e. protocols whose
security does not depend on any unproven computational assumptions and whose security holds regardless of
the computing power of the adversary. Moreover, protocols with information-theoretic security are very often
more efficient than their computationally secure counterparts, since the latter class of protocols necessarily
relies on expensive “public key” operations like exponentiations, while the former class of protocols typically
only uses light-weight arithmetic operations.

Existing implementations of three-party computation protocols with information-theoretic security fall
into two broad categories: VIFF [DGKN09] and its successors [Sch18] only support arithmetic computations
over prime order fields. Sharemind’s protocol suite [BLW08, BNTW12] can be used to evaluate arithmetic
circuits with arbitrary word sizes, but is only secure against passive adversaries that follow the protocol
faithfully. In practice this means that one has to either settle for rather weak security guarantees or one
has to develop applications specifically tailored to rather unnatural word sizes instead of using the common
32- and 64-bit word sizes that dominate real-world system architectures. In particular, this means that a
developer has to match the needs of the MPC framework it wants to use rather than the MPC framework
matching the needs of the developer.

The main barrier to constructing actively secure protocols for evaluating arithmetic circuits with arbitrary
word sizes lies in the fact that known approaches to achieving active security, like information checking
techniques [RB89], require prime order fields. Up until recently it has been an open question to design
protocols for arithmetic circuits with active security for arbitrary word sizes. In a recent work Damg̊ard
et al. [DOS18] addressed this question by presenting a protocol compiler that transforms passively secure
protocols into actively secure ones that can tolerate up to O (

√
n) corruptions and only have a constant

overhead in storage and computational work.

Our Contributions. In this paper we present a novel compiler that is more efficient than the one of Damg̊ard
et al. [DOS18]. The main idea behind Damg̊ard et al.’s compiler is to let the real parties “emulate” virtual
parties that execute the desired computation on behalf of the real parties. The crucial point behind their
compiler is that the virtual parties can execute4 a passively secure protocol in a way that prevents any real
party from actively misbehaving. Every time that a virtual party Pi is supposed to send a message to another
virtual party Pj in the passively secure protocol, every real party that is emulating Pi computes the same
message redundantly and sends it to every real party which is emulating Pj . Each real party emulating Pj
therefore receives a set of messages and aborts in case the received messages are not all equal. Intuitively
this approach ensures active security as long as there is at least one honest party in the emulating set of
every virtual party, since any malicious party either follows the protocol (in which case we effectively only
have passive corruptions) or sends a message that disagrees with the message that is sent by at least one
honest party (in which case the honest receiving party and consequently all other parties abort the protocol).
This approach heavily relies on the fact that all protocol messages are sent redundantly, thus incurring a
multiplicative blow-up in the bandwidth overhead of the protocol.

From a conceptual point of view, our main contribution is a new method that significantly reduces
the number of redundant messages that need to be sent during a protocol execution. The idea behind our

4 Note that virtual parties do not physically exist. Whenever we say that “virtual parties execute a protocol”, we
really mean that the real parties simulate the virtual parties that execute the protocol.
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approach is to elect one real party in each virtual party to be the “brain”, which sends all messages on behalf
of its virtual party to all real parties in the receiving virtual party. The other real parties, the “pinkies”,
still receive messages from the brains and thus can locally follow the protocol execution. At the end of the
protocol, right before the output of the computation is released, we then let all parties perform a single
check that guarantees that all messages which were sent by the brains during the protocol are consistent
with the messages all the pinkies would have sent. This check can be performed very efficiently by only
checking consistency of the hashes of the protocol transcripts. It is clear that if any of the brains cheated
during the protocol execution, then it must have sent a message that is inconsistent with the view of at least
one pinky, thus the protocol would abort during the checking phase. On the downside our new compiler now
imposes a stronger security requirement on the protocol it starts with. Note that honest brains continue the
protocol execution up to the checking phase even if a malicious brain misbehaves, which means that we need
a protocol that does not leak any private information even if cheating during the computation phase occurs.
Thankfully, most passively secure secret sharing based protocols provide exactly the security guarantees that
we need. More concretely, these protocols follow a compute-then-open structure, where the output of the
computation is only revealed in the last round and any cheating during the preceding computation rounds
can only affect the correctness of the output, but not the privacy of the inputs. Thus, by performing the
consistency check described above at the end of the computation phase and before the output phase, we can
ensure that no information is leaked. The security property sketched above has previously appeared in the
literature under the name of weak privacy [GIP+14].

We formally present our new compiler and prove its security in Section 3. For the specific three-party
case, our compiler produces a protocol, which is roughly twice as efficient as the protocol produced by the
compiler of Damg̊ard et al., since in the three party case each virtual party is emulated by one pinky and
one brain.

In Section 4, we present the concrete instantiation of our compiler that we implemented in our MPC
framework. In Section 6, we provide extensive performance benchmarks of our framework, both in the LAN
as well as different WAN settings. Our framework constitutes the first implementation of an three-party
computation protocol for arithmetic circuits modulo 232 and 264 with active security. Our framework is built
on top of the Sharemind MPC platform and we also provide benchmarks comparing their passively secure
protocol suite to our actively secure one. Like many previous works, our protocols is split into a preprocessing
phase, during which we generate some form of correlated randomness, and an online phase, during which the
preprocessed correlated randomness is used to perform the actual computation. Our preprocessing protocol is
described in Section 5 and in Section 6 we highlight some of the practical optimizations like batch processing
techniques and discrete Fourier transform that helped improving the performance of our preprocessing.

Other Related Work. The SPDZ family of protocols [BDOZ11, DPSZ12, DKL+13] efficiently implements
MPC with active security in the dishonest majority setting. These protocols are split into a slower, com-
putationally secure offline phase in which correlated randomness in the form of so-called Beaver’s triples is
generated and a faster, information-theoretic online phase in which these triples are consumed to compute
the desired functionality. Active security in the online phase is achieved using information theoretic message
authentication codes (MACs), which until recently limited the SPDZ approach to computation over fields.
In a recent work of Damg̊ard et al. [CDE+18], this limitation has been lifted, allowing to perform computa-
tion modulo 2k (by defining the MACs modulo 2k+s where s is the security parameter, thus introducing an
overhead proportional to the security parameter). It is currently not known how to extend their approach to
the honest-majority case. An implementation (and optimizations) of [CDE+18] was presented in [DEF+19].

Other recent works have considered active security in the three-party setting: For Boolean circuits,
[FLNW17] uses correlated random number generation to achieve efficient preprocessing and replication to
achieve active security. For finite fields, [CGH+18] achieves active security by running two copies of the
computation, respectively with real and random inputs, and uses the latter to verity correctness (their
approach can also be used for more than three parties).
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2 Preliminaries

We write v ← X to denote the sampling of a uniformly random value v from set X . Throughout the paper
λ denotes the security parameter. The check returns 1 if the values are equal and 0 if not. Given n parties
P1, . . . ,Pn, we write Pi+1 to denote the party after Pi and we implicitly assume a wrap around of the party’s
index. That is Pn+1 = P1 and P0 = Pn.

2.1 Security Definitions

We define security using the UC framework of Canetti [Can01]. Protocols proven secure in this framework
retain security even when composed arbitrarily and executed concurrently. Concretely, we will use a flavour
of the classical UC framework, which was proposed in [CDN15]. We will provide a short summary of the
security framework here and refer the reader to [CDN15] for more details.

Security is defined by comparing a real and an ideal interaction. In the ideal interaction, we have a trusted
party, called the ideal functionality F , that receives inputs from all parties, computes some desired function
on those inputs, and returns the result to the parties. In the real interaction, the parties do not have access
to F , but rather interact with each other according to some protocol description Π. The protocol Π may
itself make use of some other auxiliary ideal functionality G. In both interactions, the environment Z chooses
the inputs of all parties and acts as an adversary that may corrupt some subset of the parties passively or
actively. We say that Π securely realizes F if an adversary in the real world can not do “more harm” than
an adversary in the ideal world. Concretely, we require the existence of a simulator S, called ideal world
adversary, that simulates Z’s view of a real interaction. S simulates the views of the corrupted players, the
interaction with auxiliary functionality G, and it may itself interact with F . At the end of a protocol execution
Z outputs a single bit. Let IDEALλ[Z, S,F ] and REALλ[Z, Π,G] be the random variables that represent Z’s
output bit in the ideal and real execution, respectively. We say that Π securely realizes functionality F , if
Z cannot distinguish whether it was part of a real interaction or whether it was communicating with the
simulator S.

Definition 1. Π securely implements functionality F with respect to a class of environments Env in the
G-hybrid model, if there exists a simulator S such that for all Z ∈ Env we have

|Pr[REALλ[Z, Π,G] = 1]− Pr[IDEALλ[Z, S,F ] = 1]| ≤ negl(λ)

Using this definition we can now capture different security notions by different classes of environments.

Passive security. The environment Z can corrupt up to t parties. Z gets full read-only access to the corrupted
parties internal tapes. All parties follow the protocol honestly. The simulator S is allowed to ask the ideal
functionality F for the inputs of the corrupted parties.

Active security. The environment Z is allowed to corrupt up to t parties. Z gets full control of the corrupted
parties. Once the ideal functionality F received inputs from all parties, it computes the output and sends
it to Z. The environment sends back a bit to F indicating whether the parties should obtain the output or
⊥. A slightly weaker notion known as active security with individual abort allows the adversary to specify
which honest parties abort and which do not.

Active Security with “Weak Privacy”. We use the definition of active security with weak privacy [GIP+14,
Definition 5.11] (essentially the property was defined also under the name “active privacy” in [PL15]), which
captures the security properties offered by many existing protocols [BGW88, Bea92] that follow the compute-
then-open paradigm. These protocols are split into a computation and opening phase. The computation phase
consists of multiple rounds of interaction, whereas the opening phase requires a single round of communica-
tion. Intuitively, weak privacy says that an active adversary cannot learn anything until the opening phase,
and this is captured saying that there exists a simulator that can simulate the truncated view of the protocol
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up to the opening phase without having access to the inputs or outputs of any honest parties. Finally, these
protocols are “linear”, meaning that the output of the parties in the protocol is a linear function of the
messages sent in the opening phase.

Throughout the paper, we assume a synchronous communication network, a rushing adversary, and secure
point-to-point channels.

2.2 Auxiliary Ideal Functionalities

We will make use of the following basic auxiliary ideal functionalities in this paper: The broadcast with
individual abort functionality Fbcast (Figure 1) allows a sender S to send a value v to a set of parties P. The
functionality guarantees that either a party aborts or it agrees on a consistent value with the other parties.
Such a functionality is weaker than detectable broadcast [FGMv02], which requires that either all players
agree on the same value or that all players unanimously abort. The functionality can easily be instantiated
by letting the sender S send v to all parties in P. Every party in P echoes the received value to all other
parties in P. Parties that receive consistent values output that value, parties that receive inconsistent values
abort.

Functionality Fbcast

The functionality runs with sender S, who has input v, parties P1, . . . , Pn, and adversary A.

1. S sends (v,P) to Fbcast, where v ∈ {0, 1}∗ and P ⊂ {P1 . . .Pn}.
2. If either S or a party from P is corrupt, then A receives v and can decide which parties from P abort

and which receive the output by sending a |P| long bit-vector b to the ideal functionality. For Pi ∈ P:

(a) If bi = 1, then Fbcast sends v to Pi.
(b) If bi = 0, then Fbcast sends ⊥ to Pi.

Fig. 1: Broadcast functionality

The message checking functionality Fcheck (Figure 2) allows a receiver, who holds a vector of messages,
to check whether all other parties P1, . . . ,Pn hold the same vector of messages. The functionality can be
instantiated by letting each party Pi sends its input to R. However, in this case the communication overhead
would be Θ(n`) messages, where ` is the number of messages in a vector. Assuming the existence of collision-
resistant hash functions, one can obtain a more communication efficient solution by simply letting all parties
hash their message vectors into small digests before sending them to R. The communication overhead of
such a solution would be Θ(nλ) bits if we assume that the output length of the hash function is Θ(λ).

2.3 Additive Secret Sharing

We recall what additive secret sharing is and how to perform some basic operations on it. We will use this
type of secret sharing in our three-party protocol in Section 4 and the modulus m defines the word size over
which computations will be performed. For example, for arithmetic computations over 64-bit integers, one
can set m = 264. For the sake of concreteness, we restrict our attention to the three-party case.

Sharing a value: If party Pi wants to share a value a ∈ Zm, it picks uniformly random a1, a2 ← Zm, sets
a3 = a− a1 − a2 mod m, and sends aj to each Pj . We write [a]m to denote an additive secret sharing of a
modulo m.

Revealing a value: To open a value [a]m, every party Pi sends its value ai to Pi−1 and Pi+1.
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Functionality Fcheck

The functionality runs with receiver R, parties P1, . . . , Pn, and adversary A. Party Pi ∈ {P1, . . . ,Pn} has
input

(
m(1,i), . . . ,m(`,i)

)
and receiver R has input (m1, . . . ,m`).

1. All parties send their inputs to the ideal functionality.
2. A can decide whether to continue or to abort.

(a) If A continues, then Fcheck checks whether all message vectors are the identical. It outputs same
if this is the case, and different otherwise, to the receiver R (in the latter case, the functionality
outputs the inputs of all honest parties to A).

(b) If A aborts, then Fcheck sends ⊥ to all parties.

Fig. 2: Message checking functionality

Addition by a constant: To add constant c to [a]m, i.e., compute [b]m with b = c+ a mod m, we let P1

locally compute b1 = a1 + c mod m, while P2 and P3 just set their bi = ai.

Addition: Addition of two values [a]m and [b]m can be performed locally by each party. To compute [c]m,
where c = a + b mod m, every party Pi locally adds its shares, i.e., every party computes ci = ai + bi
mod m.

Multiplication using a multiplication triple: Given a secret shared multiplication triple ([x]m, [y]m, [z]m)
with z = x · y mod m and two secret shared values [a]m and [b]m, we compute [c]m with c = a · b mod m
as follows:

1. Open e = [x]m + [a]m
2. Open d = [y]m + [b]m
3. Every party Pi computes [c]m = [z]m + e · [b]m + d · [a]m − ed

2.4 Additive Replicated Secret Sharing

We will use additive replicated secret sharing in our preprocessing protocol in Section 5. Since our prepro-
cessing protocol focuses on the three-party case, we will also restrict our attention to this case here.

Sharing a value: If party Pi wants to share a value a ∈ Zm, it picks a1, a2 ← Zm, sets a3 = a − a1 − a2
mod m, and sends aj−1 and aj+1 to each Pj . Parties Pi−1 and Pi+1 send each other the value ai they received,
verify that their values are consistent, and abort if not. We write JaKm to denote an additive replicated secret
sharing of a modulo m.

Revealing a shared value: To reveal a secret shared value JaKm, each party Pi sends ai−1 to Pi−1 and
ai+1 to Pi+1. Each Pj receives aj from Pj−1 and Pj+1, checks consistency of the received values, and outputs
a = a1 + a2 + a3 mod m if the check passed.

Addition by a constant: To add a public constant c to a secret shared value JaKm, i.e., to compute JbKm,
where b = c+ a mod m, we set b1 = a1 + c, b2 = a2, and b3 = a3.

Addition: The addition of two values JaKm and JbKm can be performed locally by each party. To compute
JcKm, where c = a+ b mod m every party Pi locally adds their shares, i.e., it computes ci−1 = ai−1 + bi−1
mod m and ci+1 = ai+1 + bi+1 mod m.

Multiplication by a constant: To multiply JaKm by constant c, i.e., to obtain JbKm with b = c ·a mod m,
every party Pi computes bi−1 = c · ai−1 mod m and bi+1 = c · ai+1 mod m.

Optimistic multiplication: Given JaKm and JbKm, we can compute JcKm optimistically, where c = a · b
mod m as follows:
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1. Each Pi picks si ← Zp and computes ui = ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si
2. Send ui to Pi+1 and si to party Pi−1;
3. Pi receives ui−1 as well as si+1 and defines its shares of JcKm as ci−1 = ui − si+1 and ci+1 = ui−1 − si

2.5 Additive Replicated Secret Sharing over the Integers

Finally, we recall the replicated secret sharing over integers used by Damg̊ard et al. [DOS18]. The authors
observed that one can secret share a value a ∈ Zm over the integers using shares with bit-length logm+ λ.
The λ extra bits ensure that the statistical distance between the distributions of shares for any two values
in Zm is negligible in λ.

Sharing a value: To share a value a ∈ Zm, Pi picks a1, a2 ← {0, . . . , 2dlogme+λ−1} and sets a3 = a−a1−a2.
The shares are distributed among the parties as above. We write JaKZ to denote an additive replicated secret
sharing of a over the integers.

Optimistic multiplication: Optimistic multiplication of JaKZ and JbKZ is similar to optimistic multiplication
modulo p. Let B be a bound on the share amplitude. To optimistically compute JcKZ with c = a · b we do
the following:

1. Each Pi picks si ← {0, . . . , 22dlogBe+λ+2 − 1} and computes ui = ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si.
2. Send ui to Pi+1 and si to party Pi−1.
3. Pi receives ui−1 as well as si+1 and checks that |ui−1| ≤ 22dlogBe+λ+3 and |si+1| ≤ 22dlogBe+λ+2.
4. Pi defines its shares of JcKp as ci−1 = ui − si+1 and ci+1 = ui−1 − si.

All other operations, are analogous to their counterparts modulo m. For a more detailed exposition refer
to [DOS18].

3 Extension of the Compiler by Damg̊ard et al.

The compiler COMPold by Damg̊ard et al. [DOS18] takes an n-party passively
(
t2 + t

)
-secure protocol Π

and transforms it into a protocol COMPold (Π) that is secure with abort against t active corruptions5. For
example, for t = 1, the compiler can transform a passively two-secure three-party protocol into a protocol
that is secure against one active corruption. The high-level idea of the compiler is to let virtual parties
execute the passively secure protocol on behalf of the real parties. Each virtual party Pi is simulated by t+1
real parties Pi, . . . ,Pi+t in a way that prevents an active adversary, who controls at most t real parties, from
actively corrupting any of the virtual parties. In the following we will write Pj ∈ Pi to denote that real party
Pj is simulating virtual party Pi.

The workflow of their compiler can be split into two phases. In the first phase, for each virtual party Pi, all
real parties Pj ∈ Pi agree on a common input and randomness that will be used by Pi during the execution
of the passively secure protocol Π. Having the same input and the same randomness, every Pj ∈ Pi will be
able to redundantly compute the exact same messages that Pi is supposed to send during the execution of
Π. In the second phase, the virtual parties run Π to compute the desired functionality from the inputs and
randomness that the virtual parties have agreed upon. Whenever Pi is supposed to send a message to Pj
according to Π, every real party simulating Pi will send a separate message to every real party simulating
Pj . Each real party verifies that it receives the same message from all sending real parties and aborts if this
is not the case.

Intuitively, the resulting protocol is secure against t active corruptions, since an adversary cannot misbe-
have on behalf of a virtual party it is simulating, and at the same time be consistent with at least one other
honest real party that simulates the same virtual party.

From an efficiency point of view, every message from one Pi to some other Pj is sent redundantly from
t + 1 to t + 1 real parties. That is, if the passively secure protocol Π sends ` messages during a protocol
execution, then COMPold (Π) will send roughly O

(
` · t2

)
many messages.

5 The authors also show how to achieve active security with guaranteed output delivery, but here we only focus on
the case of security with abort.
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3.1 A New Compiler for Protocols with Weak Privacy

We present a new compiler COMPnew, which makes slightly stronger assumptions about the starting protocol
Π, but compiles it into an actively secure protocol in a more communication efficient manner. COMPnew takes
as input a

(
t2 + t

)
-weakly private protocol Π and outputs a compiled protocol COMPnew (Π) that is secure

against t active corruptions. If Π sends ` messages in total, then our compiled protocol will only send
O
(
` · t+ t2

)
messages.

P1

P2 P3

P2

P3

store m
P1

send m

P3

P1 P2

m

m

Fig. 3: An illustration of our simulation strategy for the case of three parties with one active corruption. Dashed
circles represent virtual parties. Solid circles inside the dashed circles represent the real parties that simulate the
given virtual party. The brains of each virtual party are highlighted in gray. The figure illustrates the process of
virtual party P2 sending a message to virtual party P3. The black arrows indicate that P1, the brain of P2, sends
one message to P2 and one to P1, which is omitted in reality, since it is sending a message to itself. P3 stores this

message in its transcript.

Our new compiler follows the approach of COMPold. However, instead of verifying the validity of every
single message between virtual parties as soon as it is sent, we will let the real parties simulate the virtual
parties in a more optimistic and communication efficient fashion, where the correctness of all communicated
messages is only verified once at the end of the computation phase, right before the opening phase of Π.
Pushing the whole verification to the end of the computation phase allows us to reduce the total number or
redundant messages that are sent. This new simulation strategy crucially relies on the weak active privacy
of Π, since we are now allowing the adversary to misbehave up to the opening phase without aborting the
protocol execution.

The first phase of COMPnew, where all parties agree on their inputs and random tapes, is identical to
that of COMPold and is thus equally efficient. In the second phase, our new simulation approach works by
selecting one arbitrary real party Pi in each virtual party Pj to be the brain Bj := Pi of that virtual party.
The brains will act on behalf of their corresponding virtual parties in an optimistic fashion and execute the
computation phase of Π up to the opening phase. All other real parties, the pinkies, will receive the messages
that their corresponding virtual parties should receive, which enables them to follow the protocol locally.
However, the pinkies will not send any messages during the computation phase. They will only become
actively involved in the opening phase to ensure that all brains behaved honestly during the computation
phase. Once correctness is ensured, all parties will jointly perform the opening phase of Π. During the
computation phase of Π, whenever virtual party Pi is supposed to send a message to virtual party Pj , we
let Bi send one message to each real party in Pj . The receiving real parties do not perform any checks at
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COMPnew (Πf ′)

Inputs: Each party Pi has input xi.

1. Input sharing:
(a) Each Pi secret shares its input xi = x1i + · · ·+ xin.
(b) For 1 ≤ j ≤ n, each Pi sends

(
xji ,Pj

)
to the broadcast functionality Fbcast.

(c) Each Pi receives zj :=
(
xj1, . . . , x

j
n

)
for each Pj ∈ Vi from the broadcast functionality and aborts

if any of the shares equals ⊥.
2. Randomness: Each brain Bi chooses a uniformly random string ri and sends (ri,Pi) to Fbcast. The

receiving real parties abort if they receive ⊥.
3. Computation phase: All virtual parties jointly execute the computation phase of Πf ′ , where each

Pi uses input zj and random tape ri, as follows:
– Whenever Pi is supposed to send message m to Pj , the brain Bi sends m to all real players in Pj .
– Whenever Pj receives message m, all pinkies store the message and only Bj continues the protocol

according to Πf ′ . The pinkies locally follow the protocol and compute the message that they
would send.

4. Check: At the end of the computation phase, all parties, brains and pinkies, jointly check that the
current transcript is correct. For each pair (Pi,Pj), for each party Pk ∈ Pj , we invoke Fcheck, where
Pk acts as the receiver and Pi act as the remaining parties. The input of Pk is the list of messages it
received from Pi and the input of all parties from Pi is the list of messages that they would have sent.
If any invocation outputs different, then the protocol execution is aborted.

5. Opening phase:
(a) For each pair (Pi,Pj), all real parties in Pi send the last message of Πf ′ to all real parties in Pj .
(b) Every real party in Pj checks that all received messages are equal. If they are it obtains the output

of the computation and otherwise it aborts.

Fig. 4: Formal description of our compiler.

this moment and just store the message. Bj will optimistically continue the protocol execution on behalf of
Pj according to Π and the received message. This simulation strategy is illustrated in Figure 3.

At the end of the computation phase, all real parties jointly make sure that for each pair (Pi,Pj), the
sending virtual party Pi always behaved honestly towards the receiving virtual party Pj . This is accomplished
by using a message checking protocol (that implements Fcheck). If any of these checks output different, then
the protocol execution is aborted.

In the opening phase, after passing the previous check, every virtual party is supposed to send its last
opening message to all other virtual parties. For each pair (Pi,Pj), all real parties in Pi send the last message
to all real parties in Pj . Every receiving party checks that all t + 1 received messages are consistent and
aborts if this is not the case.

In our formal description, let f (x1, . . . , xn) be the n-party functionality that we want to compute. For
the sake of simplicity and without loss of generality, we assume that all parties learn the output of the
computation. Let Pi be the virtual party that is simulated by real parties Pi, . . . ,Pi+t. Let Vi be the set
of virtual parties in whose simulation Pi participates. Let f ′ be a related n-party functionality that takes
as input

(
xi1, . . . , x

i
n

)
from every Pi and outputs f(

∑n
i=1 x

i
1, . . . ,

∑n
i=1 x

i
n). That is, every party inputs one

secret share of every original input. The functionality f ′ reconstructs the original inputs for f from the
secret shares and then evaluates f on those inputs. Let Πf ′ be a passively

(
t2 + t

)
-secure protocol with

robust privacy that securely implements Ff ′ . The formal description of our compiler is given in Figure 4.
Throughout our description we assume that honest parties consider message that they do not receive as
malicious and act accordingly.
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Theorem 1. Let n ≥ 3. Assume Πf ′ implements n-party functionality Ff ′ with
(
t2 + t

)
-weak privacy.

Then, COMPnew (Πf ′) implements functionality Ff with active security under individual abort against t
corruptions. If Πf ′ has a total bandwidth cost of ` messages, then COMPnew (Πf ′) has a total bandwidth cost
of O

(
` · t+ t2

)
messages.

Remark. Similar to Damg̊ard et al. [DOS18], we prove our result for the case of active security with individual
abort, where some honest parties may terminate, while some may not. As in their work, our result easily
extends to unanimous abort with one additional round of secure broadcast.

Proof. Our proof closely follows the proof of Damg̊ard et al. [DOS18] for the COMPold compiler. Let P∗ be
the set of corrupted real parties and let V∗ be the set of virtual parties that are simulated by at least one
corrupt real party. Let Sf ′ be the simulator of the (t2 + t)-weakly private protocol Πf ′ . We will use this
simulator to construct a simulator S for the overall actively secure protocol COMPnew(Πf ′). The simulator
S works as follows:

1. For each party Pi ∈ P∗ and j ∈ [n], the adversary Z sends (xji ,Pj) to the ideal functionality Fbcast, which
is emulated by the simulator S. For any invocation that involves a corrupted party, the environment
decides which outputs are ⊥ and which get delivered. For each Pj ∈ V∗ and each corrupt real party

in Pj , we send back (xj1, . . . , x
j
n), where xji is either the share that was sent by Z if Pi is corrupt or

otherwise a uniformly random share.
2. For each corrupted party Pi ∈ P∗, we reconstruct its input as xi =

∑n
j=1 x

j
i .

3. S sends the inputs of the corrupted parties to Ff and receives back the output of the computation
z = f(x1, . . . , xn).

4. For each Pi ∈ V∗ we consider two cases. If the brain Bi is corrupted, then it chooses a random tape ri
and sends it to Fbcast, which again is simulated by S. If Bi is honest, then the simulator picks a uniformly
random ri and sends it back to Z on behalf of Fbcast. Again, the environment can decide that some of
the outputs in this step will be ⊥, which will then be handled accordingly by our simulator.

5. At this point, we know the inputs and the random tapes of all virtual parties Pi ∈ V∗. We can therefore
compute the exact messages that we would expect from an honest party following the protocol. We
initialize the simulator Sf ′ with parties P1 . . .Pn and the set of corrupted players V∗.

6. When Sf ′ queries Ff ′ for the inputs of the corrupted parties, we provide it with (xi1, . . . , x
i
n) for each

Pi ∈ V∗.
7. We now describe how to simulate the computation phase of the protocol.

– S queries Sf ′ for the messages that the honest brains send to the corrupted virtual parties. For each
message m to some Pi ∈ V∗, we send m to each corrupted real party in Pi (unless the sender received
⊥ in one of step 1 or 4 of this simulator in which case it sends nothing).

– Z outputs the messages that the corrupt parties send to the honest ones. Since we know the input
and random tape of each corrupted party, we can see which messages are honestly generated and
which are not. Forward the message of the sending brain to Sf ′ as the message of Pi.

8. At the end of the computation phase, we simulate the check protocol as follows. For each pair (Pi,Pj),
for each real party R ∈ Pj , we have one invocation of the functionality Fcheck. The simulator S needs to
simulate the ideal functionality towards the corrupted parties in each invocation that involves a corrupted
party. Note that the inputs of all honest parties to each check are known from the previous part of the
simulation. We, at this point, also know whether any of the corrupted brains cheated or not and if so
which check invocation should fail. Furthermore, whenever a corrupted party sends a value to the check
functionality, we know whether it’s the correct one or not. Using the above observations it follows that
the simulator always knows how to simulate each invocation of Fcheck and when to return different, when
to return same, and when to abort the computation.

9. If all checks passed, meaning that the adversary did not misbehave at any point in time, then we continue
the simulation. The simulator S knows all the last messages of each corrupted party and it knows the
output of the functionality z. Since the opening phase is a linear reconstruction of the last messages,
the simulator picks a uniformly last message for each honest party under the condition that the linear
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combination of all last messages results in z. The simulator faithfully executes the last step of the protocol
compiler with the corrupted parties. For any simulated honest real party that receives incorrect messages
from Z, we will instruct Ff to make this party abort. For any honest real party that receives the correct
last round messages, we instruct Ff to deliver the output of the computation.

The simulation of the first protocol phase (steps 1-4) is perfect. The adversary sees uniformly random
shares, random tapes, or of the things it sent itself just like in a real protocol execution. The simulation of
Fbcast is identical to a real execution. The indistinguishability of the simulation in step 6 directly follows from
the security guarantees of Sf ′ . As in the real execution, we do not send anything from real honest parties
that may have aborted during the first phase. Otherwise, in both the real and the ideal world, the protocol
does not abort during the computation phase. During the computation phase the simulator has access to the
random tapes and inputs of the corrupted parties, thus always knows when and where cheating occurred.
This enables us to correctly determine when and where the protocol would abort and simulate the outcome
of the check phase in step 8 correctly.

4 Efficient Three-Party Computation

Using our new compiler, we construct the currently most efficient three-party protocol for evaluating arith-
metic circuits over arbitrary rings that is secure against one active corruption. Towards this goal, we apply
our compiler to the passively secure circuit evaluation approach of Beaver [Bea92]. The correlated random-
ness required by Beaver’s protocol is generated in a separate preprocessing phase, which is described in
Section 5.

4.1 Beaver’s Circuit Evaluation Approach

The circuit evaluation approach by Beaver [Bea92] enables, in our case, three parties to evaluate an arithmetic
circuit f over arbitrary rings Zm with security against two passive corruptions. The protocol is split into a
preprocessing and an online phase. During the preprocessing phase the parties jointly generate some function-
independent correlated randomness in the form of additively secret shared multiplication triples [ai]m, [bi]m,
[ci]m, where ci = ai · bi mod m. In the online phase these triples are then consumed to securely evaluate
some desired function f . Beaver’s online phase works in three steps. First, all parties additively secret share
their input among the other parties. Then, all parties jointly evaluate the circuit in a gate-by-gate fashion on
the secret shared values. Additions are performed locally, and multiplications require interaction as well as
correlated randomness as explained in Section 2.3. In the last step, the parties jointly reconstruct the secret
shared values of the output wires of the circuit. Note that the reconstruction phase is just a linear function
of the messages received during the opening phase.

Proposition 1. Let f be an arithmetic circuit with N multiplication gates. Given N preprocessed multi-
plication triples, the three-party protocol Beaverf , implements functionality Ff with 2-weak privacy and has
linear reconstruction.

4.2 Our Protocol

We focus on the popular setting with three parties and one active corruption and obtain our protocol by
applying Theorem 1 to Beaver’s circuit evaluation approach. Let f be the three-party functionality that
shall be computed, where each party Pi has an input xi ∈ Zm. As before, let f ′ be the related three-party
functionality that first recomputes the original inputs from the additive secret shares and then evaluates f . Let
N be the number of multiplication gates in f and assume for the moment that all real parties have already
shared this many replicated secret shares of multiplication triples JaiKm, JbiKm, JciKm in a preprocessing
phase6. Our concrete preprocessing protocol will be described in detail in Section 5. Since for 1 ≤ i ≤ 3,

6 The functionalities f and f ′ have equally many multiplication gates, since reconstructing the inputs from additive
secret shares does not require any multiplications.
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COMPnew (Beaverf ′)

Inputs:Each party Pi has input xi ∈ Zm and they all
share
preprocessed triples JajKm, JbjKm, JcjKm for
j ∈ {1, . . . , N}.

1. Input sharing:
(a) Each Pi picks x1i , x

2
i ← Zm and sets x3i = xi − x1i − x2i mod m.

(b) For 1 ≤ j ≤ 3, each Pi sends
(
xji ,Pj

)
to the broadcast functionality Fbcast.

(c) Each Pi receives zi−1 :=
(
xi−1
1 , xi−1

2 , xi−1
3

)
and zi+1 :=

(
xi+1
1 , xi+1

2 , xi+1
3

)
via the broadcast and

aborts if any of the shares equals ⊥.
2. Randomness: Each brain Bi chooses a uniformly random string ri and sends (ri,Pi) to Fbcast. The

receiving real parties abort if they receive ⊥.
3. Computation phase: All virtual parties now evaluate Beaverf ′ in a gate-by-gate fashion, where each

Pi uses input zi as follows:
– Multiplication gates are evaluated using correlated randomness.
– All other types of gates are executed locally.

4. Check: For each pair (Pi,Pj), we use Fcheck to verify the correctness of the messages sent from Pi to
Pj .

5. Opening phase:
(a) For each output wire w, for each pair (Pi,Pj), all real parties in Pi send their secret share of w to

all real parties in Pj .
(b) For all Pj , all Pk ∈ Pj check that all messages they received are equal. If not, abort.
(c) If all received shares are consistent, then reconstruct the output wire value w and terminate.

Fig. 5: Protocol for three-party arithmetic circuit evaluation over the ring Zm with active security with abort
against one active corruption.

virtual party Pi will be simulated by Pi−1 and Pi+1, it holds that real parties holding replicated shares is
equivalent to virtual parties holding additive secret shares. This way, one can think of those replicated shares
as parts of the real parties’ inputs that have already been shared correctly among the virtual parties during
preprocessing. We state the compiled protocol COMPnew (Beaverf ′) in Figure 5.

Concrete Efficiency. We explicitly state the communication complexity of the protocol: Addition gates
require no communication. Evaluating a multiplication gate requires sending 6 words of log(m) bit each. The
opening phase, including the checking protocol, requires sending 5 hash values (we choose 256 as the output
of the hash) as well as the output shares giving a total of 1280 + 4 log(m) bits.

5 Preprocessing

During the preprocessing phase we generate replicated secret sharings of multiplication triples c = a · b
mod m. Our preprocessing protocol combines the processing of Damg̊ard et al. [DOS18] with the batch
verification technique of Ben-Sasson et al. [BFO12]. The generation of multiplication triples is split in three
steps. First, using the techniques of Damg̊ard et al., we optimistically generate secret shared multiplication
triples over the integers. Next, we interpret them as triples in a field Zp, for some sufficiently large prime p,
and perform the batch verification protocol of Ben-Sasson et al. to ensure that all triples are correct. Lastly,
we reduce all integer shares modulo m to obtains shares of multiplication triples in our desired ring Zm7.

7 Valid multiplication triples over integers are valid multiplication triples modulo m.
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SingleVerify

Inputs:Shared triples JaKZ, JbKZ, JcKZ and
JxKp, JyKp, JzKp with prime p > c.

In the following we interpret the triple over the integers as a triple in the field Zp.

1. Every party Pi picks a random JriKp.
2. The parties compute JrKp =

∑3
i=1JriKp and open r.

3. Parties compute JeKp = rJxKp + JaKp.
4. Parties compute JdKp = JyKp + JbKp.
5. Open e, d and compute

JtKp = de− rdJxKp − eJyKp + rJzKp − JcKp
6. Open JtKp and output success if t = 0 and fail otherwise.

Fig. 6: Verification of multiplication triple (JaKZ, JbKZ, JcKZ). SingleVerify takes as input two potentially incorrect
multiplication triples and sacrifices one to check the other.

5.1 Optimistic Generation of Multiplication Triples

Optimistic generation of a multiplication triple over the integers is straightforward. First each party Pi uses
replicated secret sharing over the integers to share random values ai, bi ∈ Zm. All parties jointly compute
JaKZ =

∑3
i=1JaiKZ and JbKZ =

∑3
i=1JbiKZ and then use the optimistic multiplication of replicated secret

shares from Section 2.5 to compute JcKZ.

5.2 Verification of a Single Multiplication Triple

Given an optimistically generated triple JaKZ, JbKZ, JcKZ, the preprocessing of Damg̊ard et al. proceeds as
follows. First, the authors optimistically generate another multiplication triple in Zp, where p is a prime such
that p > c. Then they interpret the multiplication triple over the integers as a triple in Zp and employ the
standard technique of “sacrificing” one triple to check the other one [DO10]. Concretely, the authors sacrifice
the triple in Zp to check the triple over the integers. The check, SingleVerify, is described in detail in Figure 6.
The rationale behind this approach is that if the multiplicative relation holds in Zp, then it also holds over
the integers, since p is chosen so large that no wrap around modulo p happens during the multiplication.

5.3 Efficient Batch Verification

Now given N optimistically generated multiplication triples JaiKZ, JbiKZ, JciKZ over the integers, we would
like to efficiently check that, for all i ∈ {1, . . . N}, the multiplicative relationship ai · bi = ci holds. Checking
every multiplication triple separately, would require us to generate N additional multiplication triples in Zp
and perform N invocations of SingleVerify.

Instead, we use a clever idea of Ben-Sasson et al. [BFO12]. Using their technique for verifying the validity
of multiplication triples allows us to verify N triples with N additional optimistic multiplications and a
single invocation of SingleVerify. The main idea behind their approach is to encode all multiplication triples
(a1, b1, c1) , . . . , (aN , bN , cN ) as three polynomials (f, g, h), where the relation f · g = h will hold iff all
multiplication triples are correct. Instead of checking each multiplication triple separately, we will evaluate
the polynomials at a random point z and and verify that the polynomial relation f(z) · g(z) ≡ h(z) mod p
holds.

More concretely, let f and g be polynomials with coefficients in Zp of degree N -1 with f(i) = ai and
g(i) = bi. These polynomials are uniquely defined by the values a1, . . . , aN and b1, . . . , bN . Since, we expect
h to be f · g and thus of degree 2N − 2, we require 2N − 1 points to uniquely define it. For i ∈ {1, . . . N},
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we set h(i) = ci. For i ∈ {N + 1, . . . 2N − 1}, we set h(i) = f(i) · g(i), where the multiplication of f(i) and
g(i) is performed optimistically. If all multiplication triples and all optimistic multiplications are correct,
then f · g = h holds and an evaluation at a random point z will always fulfil f(z) · g(z) ≡ h(z) mod p. If,
however, some multiplication triple is not valid, then f · g 6= h and in this case the two polynomials f · g and
h can agree on at most 2N − 2 many points. This means that for a uniformly random point z ∈ Zp, we have
Pr[f(z) · g(z) = h(z) | f · g 6= h] ≤ 2N−2

|Zp| .

This trick crucially relies on the fact that we can interpolate and evaluate additively secret shared
polynomials. Say we are given shares of points JaiKp for i ∈ {1, . . . , N} of polynomial f and we would like to
evaluate f on point z. Define δNi (x) as

δNi (x) :=

N∏
j=1,j 6=i

x− j
i− j

=

{
1 x = i

0 x 6= i

Evaluating polynomial f at point z is then done by computing

Jf(z)Kp =

N∑
i=1

(
δNi (z) · JaiKp

)
We provide a formal description of the batch verification protocol in Figure 7. Its security directly follows

from the security of the preprocessing of Damg̊ard et al. and the batch verification protocol of Ben-Sasson
et al. Let ΠTriple be the protocol that first optimistically generates N multiplication triples over the integers,
then executes the batch verification, and finally reduces all shares modulo m. The concrete efficiency of this
protocol is discussed in Section 6.

6 Implementation and Evaluation

We implement our protocol with three parties and one active corruption on top of the Sharemind multi-party
computation platform [Bog13]. The main protocol suite for Sharemind is called shared3p [BNTW12] and
considers three party computation with one passive corruption. Their protocol is based on additive secret
sharing modulo 2k. In the following we refer to our protocol as shared3a.

Implementing the Protocol. In our implementation, randomness is generated using pseudorandom number
generators. This allows us to just send short seeds instead of full random tapes during the first phase of the
protocol.

Our implementation is in the client-server model for MPC, meaning that parties other than the computing
parties can share their inputs through a client application. Upon receiving the inputs, the compute parties
compare replicated shares within virtual parties as dictated by the ideal functionality Fbcast. If a party finds
a discrepancy, it stops sending and receiving network messages. In such a case, it is up to the remaining
honest party to notice and also stop its execution of the protocol.

To implement Fcheck, every real party Pi keeps track of five hashes of messages. For virtual party Pi+1,
where Pi is the brain, two hashes of messages are kept. Hash h1 is of messages received from Pi−1 and h2 is
of messages received from Pi. For the virtual party Pi−1, where Pi is the pinky, three hashes of messages are
kept. Hashes h3 and h4 consist of messages sent to and received from Pi respectively. Hash h5 is of messages
sent to Pi+1. Messages received from Pi+1 are not transcribed since the sending real party is Pi.

To verify that each party followed the protocol description honestly, a real party Pi has to perform the
following comparisons: compare h1 with Pi+2’s h4, h2 with Pi+1’s h3, h3 with Pi+2’s h2, h4 with Pi+1’s h1
and h5, h5 with Pi+2’s h4. Additionally Pi has to compare its hashes h1 and h5. If any of the pairs of hashes
are not equal, the party aborts and stops responding to network messages.

We implemented the preprocessing using the Lagrange interpolation idea directly as in Figure 7 and also
using fast Fourier transform as in Figure 8 as inspired by [NV18]. We assume that ω is a 2N’th primitive
root of unity and hence ω2 is an N’th root of unity in Zp. Hence, we consider only the cases where N is
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BatchVerify

Inputs:Parties P1, P2, and P3 share N preprocessed
triples
JaiKZ, JbiKZ, JciKZ for i ∈ {1, . . . , N} over the
integers.
Let JxKp, JyKp, JzKp be an uniformly random
triple from Zp.

In the following we interpret each triple over the integers as a triple in the field Zp, where p is a sufficiently
large prime.

1. For i ∈ {1, . . . , N}, define Jf(i)Kp := JaiKp and Jg(i)Kp := JbiKp.
2. For i ∈ {N + 1, . . . , 2N − 1}, compute

Jf(i)Kp :=

N∑
j=1

(
δNj (i) · JajKp

)
, and

Jg(i)Kp :=

N∑
j=1

(
δNj (i) · JbjKp

)
3. For i ∈ {1, . . . , N}, define Jh(i)Kp := JciKp.
4. For i ∈ {N + 1, . . . , 2N − 1}, compute Jh(i)Kp = Jf(i)Kp · Jg(i)Kp optimistically.
5. Every party Pi picks a random JziKp.
6. The parties compute JzKp =

∑3
i=1JziKp and open z.

7. Compute:

JαKp = Jf(z)Kp :=

2N−1∑
j=1

(
δNj (z) · Jf(j)Kp

)
, and

JβKp = Jg(z)Kp :=

2N−1∑
j=1

(
δNj (z) · Jg(j)Kp

)
, and

JγKp = Jh(z)Kp :=

2N−1∑
j=1

(
δNj (z) · Jh(j)Kp

)
8. Check SingleVerify (JαKp, JβKp, JγKp, JxKp, JyKp, JzKp).

Fig. 7: Batch verification of multiplication triples.

a power of two. Compared to the BatchVerify our FFTBatchVerify changes the local computations and the
locations of the polynomials where the input triples are encoded.

We implemented the protocols for 32 and 64-bit unsigned and signed integers. Note that unsigned k-bit
integers directly give us signed k−1-bit integers in two’s complement notation where the most significant bit
defines the sign. Moreover, addition and multiplication protocols remain exactly the same as for unsigned
integers. Hence, we only consider benchmarks of the unsigned integers.

For the triple generation and verification we need to choose a statistical security parameter λ. Following
the standard in the field, we mainly use λ = 40 (meaning that the protocol is secure except with probability
2−40, regardless on the computing power of the adversary). To study the effect of the security parameter on
the efficiency of the protocol, we also perform some benchmarks with λ = 80.

According to the bounds given in [DOS18], when λ = 40 we use a 214-bit prime, while for λ = 80 we use
a 294-bit prime. We use The GNU Multiple Precision Arithmetic Library (GMP) for field arithmetic in the
preprocessing phase. In addition, we use SHA256 hash to verify the transcripts.
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FFTBatchVerify

Inputs:Parties P1, P2, and P3 share N preprocessed
triples
JaiKZ, JbiKZ, JciKZ for i ∈ {1, . . . , N} over the
integers.
Let JxKp, JyKp, JzKp be an uniformly random
triple from Zp.

In the following we interpret each triple over the integers as a triple in the field Zp, where p is a sufficiently
large prime.

1. For i ∈ {1, . . . , N}, define Jf(ω2(i−1))Kp := JaiKp and Jg(ω2(i−1))Kp := JbiKp.
2. Locally interpolate f(x) and g(x) (on N ’th roots of unity) to get the coefficients JfiKp and JgiKp for

i ∈ {1, . . . , N}.
For i ∈ {0, . . . , 2N − 1}, compute Jf(ωi)Kp and Jg(ωi)Kp using FFT on 2N ’th roots of unity

3. For i ∈ {1, . . . , N}, define Jh(ω2(i−1))Kp := JciKp.
4. For i ∈ {1, . . . , N}, compute Jh(ω2i)Kp = Jf(ω2i)Kp · Jg(ω2i)Kp optimistically.

Locally interpolate h(x) using FFT on 2N ’th roots of unity to get the coefficients JhiKp for
i ∈ {0, . . . , 2N − 1}.

5. Every party Pi picks a random JziKp.
6. The parties compute JzKp =

∑3
i=1JziKp and open z.

7. Compute locally using Horner’s rule and the coefficients of the polynomials

JαKp = Jf(z)Kp, and

JβKp = Jg(z)Kp, and

JγKp = Jh(z)Kp

8. Check SingleVerify (JαKp, JβKp, JγKp, JxKp, JyKp, JzKp).

Fig. 8: Batch verification using FFT

6.1 Benchmarks of the implementation

The benchmarks were performed in three settings: a local area network (LAN) and two wide area networks
(WANs). The LAN setting consists of a cluster of three machines, where each machine has a dedicated 1
Gbit/s network link, 48 GiB of RAM and two Intel Xeon X5670 2.93 GHz 6 core / 12 thread processors.
In total each machine has 24 parallel threads with Intel HyperThreading. The network latency between two
cluster nodes in the LAN is 0.18 ms. The two WANs consist of three Amazon Web Services EC2 c5.9xlarge
instances. Each instance has 36 virtual CPUs, 72 Gib of RAM and a 10 Gbit/s network connection. In WAN
1 we chose instances, which span across different continents and concretely our instances are in Frankfurt,
Northern California, and Tokyo. The largest network latency we observed is 236 ms. In WAN 2 we chose
instances on the same continent, namely in Frankfurt, London, and Paris (as can be observed in Figure 9a
and 9d, experiments performed in this setting are particularly noisy, probably due to AWS shared hardware).
The largest observed latency is 12 ms.

The Sharemind protocol as well as our protocol, operate on vectors in a SIMD fashion. For example,
multiplication of two vectors means pairwise multiplication of the elements in the same coordinates. Hence we
measure the efficiency for various lengths of the input vector to show that we benefit from such parallelization
because sending separate messages for each operation includes more network overhead. The benchmarking
results we present here are averages over 10 runs and exact times can be found in Appendix A.

Comparison with Sharemind’s Passively Secure Protocol. We compare the benchmarks of shared3a to those
of the development version of Sharmind’s passively secure protocol shared3p. Fig. 9a summarizes our mul-
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(a) Online Multiplications, 64-bit:
shared3a vs. shared3p.

(b) Opening Phase, 64-bit values:
shared3a vs. shared3p.

(c) Online Multiplication, LAN, 32-
vs. 64-bit.

(d) Preprocessing Multiplications via
FFT,

64-bit values: batch sizes and
network.

(e) Preprocessing Multiplications via
FFT,

64-bit values, LAN: 40- vs. 80-bit
security.

Fig. 9: Experimental Results

tiplication benchmarks for 64-bit integers. On average the online phase of multiplication of 64-bit values is
1.94 times slower on shared3a than on shared3p which is expected as our protocol sends twice as many
messages of the same length as required by the passive protocol. Compared to LAN, the multiplication in
WAN setting is significantly less efficient for smaller input sizes that are more affected by latency but we can
still achieve more than 32000 multiplications per second using parallelization. Fig. 9c shows the efficiency of
the online multiplication as a function of the word size (32- vs. 64-bit).

The opening phase with 64-bit values is 1.79 times slower on shared3a than on shared3p as can be seen
in Fig. 9b. In the passively secure protocol the shares of the output are simply sent between the parties.
The benchmark of our protocol contains the check of the transcript as well as checking the received shares
of the output. The comparison shows that these additional checks incur a very minor overhead in practice.
Similarly to multiplication we can see that smaller input sizes are affected by latency and it is more efficient
to use the SIMD style parallelization.

Fig. 9d and Fig. 9e summarize the efficiency of our preprocessing phase for 64-bit triples where local
computation uses fast Fourier transform. The batch size denotes how many triples are verified together at
once. Fig. 9e shows how the efficiency of the protocol is affected by the statistical security parameter λ in the
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same network condition, while Fig. 9d shows the dependency on the network condition (for a fixed security
parameter λ = 40). The local computation time of our preprocessing protocol dominates our total timings
for large batch sizes. In the LAN setting, we get the most efficient results for a batch size of 29, whereas the
best batch sizes are slightly higher in WAN settings. The shared3p protocol does not require a preprocessing
phase, but there are many other protocols that do (see below). Combining online and offline phase shows us
that shared3a is approximately 15 times slower than shared3p.

Comparison with Other Related Work. For the sake of completeness, we provide a rough comparison of our
implementation with other existing MPC implementations. We note, however, that here we are comparing
“apples to oranges”, since the protocols differ in the security they provide, the model of computation, and the
number of parties they support. The aim of this comparison is to provide a rough idea of how our protocol
compares to protocols in related settings.

The two-party SPDZ-based protocol of Keller et al. [KSS13] performs up to 6 · 105 multiplications in a
128-bit prime field per second in a LAN setting. Our three-party protocol implementation can perform more
than 106 multiplications per second in a 64-bit ring. Both shared3a and SPDZ use the same multiplication
protocol with preprocessed triples, but the number of parties and the structure of the shares varies resulting
in different network messages.

Three party honest majority actively secure multiplication with 61-bit Mersenne field is implemented
in [CGH+18] where they measure that a circuit with 106 multiplication gates and depth 20 can be evaluated
in 0.3 seconds in a single AWS region (presumably 10 Gbit/s networks). Previous work [LN17] achieved the
same computation with 0.5 seconds using a preprocessing approach. The depth of the circuit indicates that
not all multiplications are calculated in parallel making it difficult to compare to our benchmarks. However,
knowing that we achieve the same number of multiplications per second using a slower network it seems
likely that our implementation can outperfom this result if it manages to take full advantage of the network
capacity.

We also compare the efficiency of our preprocessing phase with those of other actively secure MPC
protocols. MASCOT [KOS16] does preprocessing with OT and achieves about 2 · 103 triples per second
for honest minority case for three parties with 1 Gbit/s network and 128-bit field. Overdrive [KPR18] does
preprocessing with additively homomorphic encryption and proofs of knowledge. For two parties and 1 Gbit/s
network, they achieve 2.3 ·103 to 5.9 ·104 triples per second depending on the choice of the security parameter
and field size. For example, their best results are 3 · 104 for 64-bit security and 1 500 for 128-bit security and
128-bit field. They also showcase that the throughput decreases as the number of parties increases but there
are no concrete results for three parties. Our implementation compares favourably with these.

The batchwise multiplication verification is optimized in [NV18]. The authors estimate that their com-
putation optimizations achieves up to 107 two-party verifications per second using multithreading for 64-bit
primes and up to 5 · 106 with 128-bit prime. Their estimations are based on their implementation of the
computations and estimates for the communication but they do not benchmark the protocol with commu-
nication. From a conceptual point of view, [NV18] uses similar verification ideas as we do, hence their work
indicates that our implementation might also benefit from more optimized field arithmetic. However, we still
need to use larger fields to accommodate the integer secret sharing meaning we need more communication
to achieve triples modulo 2k of the same length as their modulo prime triples.

Communication Overhead of Preprocessing. For a prime modulus p of length log p the verification in
BatchVerify requires 2N log p + 20 log p bits of communication where 4 log p come from the opening of the
random value z and 16 log p from the publishing in the SingleVerify. The triple generation with optimistic
multiplication takes 10 log p per triple as four messages are needed to generate the random values and two
to do optimistic multiplication. We need N + 1 triples for verification. The extra triple is generated in the
field Zp and takes 14 log p bits. Hence, this gives us about 12 log p + 34

N log p bit per triple which is around
8kbit of communication per triple for each party in our implementation for 64-bit triples. In comparison,
SPDZ2k [CDE+18] has a bit over 300kbit of communication to achieve 64-bit triples with 64-bit statistical
security. Overdrive [KPR18] reports other SPDZ protocol variants as requiring 9kbit to 350kbit for 64-bit
secrets.
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A Additional Benchmarking results

Table 1 gives the exact results of the preprocessing times as triples per second. We can see that the straight-
forward implementation using Lagrange interpolation is the local computation is significantly less efficient
than using discrete fast Fourier transform.

Table 2 gives the timings for the online part of the multiplication and Table 3 gives the times for the
combination of the opening and transcript verification.

The empty cells in the table mean that we did not perform these benchmarks due to time constraints.

Table 1: Comparison of speed of precomputation (triples per second) with different batch sizes using Lagrange
Interpolation or discrete fast Fourier transform (DFFT).

Batch
size

Lagrange
Interpolation LAN
(λ = 80)

DFFT LAN
(λ = 80)

DFFT LAN
(λ = 40)

DFFT WAN 1
(λ = 40)

DFFT WAN 2
(λ = 40)

2 8045.08 7198.18 8051.13 0.00 1031.65

4 11897.01 12789.59 14353.64 127.41 1983.95

8 15752.94 20924.63 23610.90 248.86 4042.92

16 10500.36 37033.91 37207.81 503.82 8354.06

32 6539.40 67674.38 74045.28 1011.99 16440.33

64 3441.64 86613.59 99719.68 2014.44 30762.40

128 105130.54 127036.99 3875.03 46255.42

256 113845.80 153671.78 7030.88 71233.92

512 105670.66 156570.82 11349.28 107473.97

1024 97314.77 144744.72 14400.28 74233.13

2048 81824.27 116864.30 17912.72 91542.65

4096 70643.64 93288.24 16698.98 132432.94

8192 54255.89 62879.91 14243.32 81674.45
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Table 2: Comparison of speed multiplication (in microseconds) with different input sizes.

Input
size

shared3p LAN
64-bit

shared3a LAN
32-bit

shared3a LAN
64-bit

shared3a WAN 1
64-bit

shared3a WAN 2
64-bit

21 523 498 598 247544 410134

22 467 332 532 247358 25891

23 456 294 479 247442 17322

24 413 371 520 247460 23960

25 402 344 463 247237 84316

26 449 347 580 247149 18224

27 508 373 796 247177 16996

28 571 596 1057 247216 18518

29 651 922 1339 247424 17876

210 1119 1358 1692 247600 18743

211 1583 2252 2578 268193 18429

212 2217 2938 4034 265383 25397

213 3542 6212 7252 252819 28971

214 6014 8178 13189 519608 51636

215 11563 17825 26144 1027608 101967

216 22457 35464 62019 1732841 188045

217 61860 72716 118243 3670108 420561

218 119478 146689 236665 685853

219 260481 296340 481219 1529646

220 499197 615839 966447 3067342

Table 3: Comparison of speed declassify (in microseconds) with different input sizes.

Input size shared3p LAN 64-bit shared3a LAN 64-bit shared3a WAN 1 64-bit shared3a WAN 2 64-bit

21 417 504 355952 20560

22 416 307 355872 20312

23 264 298 355845 20336

24 375 322 355790 20574

25 306 337 355808 20255

26 235 412 355879 20328

27 359 517 355804 20419

28 609 768 355863 20769

29 747 1014 355931 21056

210 882 1211 376702 20784

211 1322 1845 361400 20875

212 1874 2591 366684 21071

213 3003 4218 353280 23624

214 5201 7305 479142 29743

215 9427 14289 743938 56271

216 18844 28873 1113496 105432

217 38044 56802 2056206 153704

218 71308 120031 350783

219 134282 247580 790954

220 259807 492332 1530294
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