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Abstract

In this paper, we introduce updatable anonymous credential systems (UACS) and use
them to construct a new privacy-preserving incentive system. In a UACS, a user holding a
credential certifying some attributes can interact with the corresponding issuer to update his
attributes. During this, the issuer knows which update function is run, but does not learn
the user’s previous attributes. Hence the update process preserves anonymity of the user.
One example for a class of update functions are additive updates of integer attributes, where
the issuer increments an unknown integer attribute value v by some known value k. This
kind of update is motivated by an application of UACS to incentive systems. Users in an
incentive system can anonymously accumulate points, e.g. in a shop at checkout, and spend
them later, e.g. for a discount.

In this paper, we (1) formally define UACS and their security, (2) give a generic construction
for UACS supporting arbitrary update functions, and (3) construct a practically efficient
incentive system using UACS.

Keywords: Anonymous Credentials, Updatable Anonymous Credentials, Privacy, Incentive
System, Incentive Collection, Customer Loyalty Program

1 Introduction

In this paper we introduce updatable anonymous credential systems and use them to construct a
privacy-preserving incentive system.

Updatable anonymous credential systems. Anonymous credential systems provide a
privacy-preserving way of authentication in contrast to the standard authentication through
identification via username and password. Authentication with identifying information allows
service providers to collect and exchange user-specific data to build a comprehensive user profile
without the user’s consent. Anonymous credentials mitigate such problems, provide anonymity
and support authentication policies [BCKL08, BBB+18, CL01, CL04, DMM+18]. A credential is
parameterized with a vector of attributes (e.g., birth date, affiliation, subscription end
etc.) and when authenticating, users can prove possession of a credential that fulfills a certain
access policy (e.g., “affiliation = university or subscription end > [today]”) without
revealing anything about the attributes except that they fulfill the access policy.

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research
Centre “On-The-Fly Computing“ under the project number 160364472 – SFB 901.
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In an anonymous credential system, the issuer of a credential always learns the plaintext
attributes of the credentials. For example, suppose that a user wants to extend a subscription for
which she has a credential as described above. To extend the subscription in a traditional anony-
mous credential system, she would reveal all her attribute values to the issuer, who would then
issue a new credential containing her old attributes and the newly updated subscription end
value. This means that there is no protection of privacy when updating attributes.

To solve this problem, we introduce updatable anonymous credential systems (UACS). An
UACS has, in addition to the usual protocols of anonymous credential systems, an update
protocol. This allows a user to interact with a credential issuer in order to update attributes in
a privacy-preserving manner. More specifically, the update protocol takes as input an update
function. The user contributes a hidden parameter α and her old credential with attributes
~A. By running the protocol with the issuer, the user obtains a new credential on attributes
~A∗ = ψ( ~A, α). The issuer only learns what update function ψ is applied, but does not learn ~A
or α. In the subscription update scenario, to add 30 days to the current subscription end,
the update function would be ψ((A, subscription end), α) = (A, subscription end + 30) (in this
particular case, the hidden parameter α is ignored by ψ, but we will later see update functions
that depend on α).

The update functionality can be realized using only building blocks already used by most
anonymous credential constructions: Zero-knowledge proofs, commitments, and blind signature
schemes with efficient “signing a committed value” protocols. The idea to implement the UACS
update protocol is as follows: A credential on attributes ~A is a digital signature on ~A. The
user prepares the update by computing ~A∗ = ψ( ~A, α) and committing to ~A∗. The user then
proves that she possesses a signature on her old attributes ~A and that she knows α such that
the commitment can be opened to ψ( ~A, α). Afterwards, issuer and user run the blind signature
protocol to jointly compute a signature on the committed ~A∗ (i.e. the updated attributes)
without revealing ~A∗ to the issuer.

Incentive systems. A concrete application for UACS are incentive systems. An incentive
system allows users to collect points (e.g., for every purchase they make), which they can redeem
for bonus items or discounts. Such systems aim at reinforcing customer loyalty and incentivize
certain behavior through points. In practice, such systems are centralized services, e.g. German
Payback [PAY19] and American Express Membership Rewards program [Ame19]. In order to
earn points for a purchase, the user reveals her customer ID (e.g., by showing a card). This
means that the user’s privacy is not protected as every purchase made can be linked to the user’s
identity by the incentive system provider.

To remedy this, cryptographic incentive systems [JR16, HHNR17] aim at allowing users to
earn and spend points anonymously. The general idea is that users store their own points in
authenticated form. We present a new construction of an incentive system based on UACS,
which improves upon prior work with respect to efficiency and features (as discussed later). As a
first sketch, let us assume that the user stores her point count v as an attribute in her credential.
When the user earns k additional points, the incentive system provider runs an update on the
user’s credential, adding k points to her current point count attribute v, i.e. ψ((v), α) = (v + k).
When the user wants to spend k points, they run an update ψ such that ψ((v), α) = v − k if
v ≥ k and ψ((v), α) =⊥ otherwise.

Of course, this first sketch does not prevent users from double-spending their points: the spend
update operation creates a new credential with lowered point count, but there is no mechanism
that forces the user to use the new credential. She can instead keep using the old one, which
certifies a higher point count. Hence we modify the first sketch with basic double-spending
protection: The attributes now include a random double-spend identifier dsid, i.e. attribute
vectors are of the form ~A = (dsid, v). To earn points, the update function still just increases the
point count (ψ((dsid, v), α) = (dsid, v + k)). When the user wants to spend points, she reveals
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her dsid to the provider and the provider checks that her specific dsid has never been revealed
to it (spent) before. If that check succeeds, the user chooses a random successor double-spend
identifier dsid∗ and sets her hidden update parameter α to dsid∗. User and provider then run
the update ψ((dsid, v), α = dsid∗) = (dsid∗, v − k), embedding a new dsid∗ into the successor
credential. If the user tries to spend her old credential (with the old dsid) again, the provider
will detect the duplicate dsid. Anonymity is still preserved because dsid∗ is hidden from the
provider until the credential is spent.

However, this approach requires all stores where points can be spent to be permanently
online in order to check whether a given dsid has already been spent. As this is a problem
in practice, offline double-spending protection is desirable. The idea is that stores that are
offline and have an incomplete list of spent dsids may incorrectly accept a spend transaction,
but they can later (when they are online again) uncover the identities of double spenders. This
allows the provider to recoup any losses due to offline double-spending by pursuing a legal
solution to roll back illegal transactions. To incorporate offline double-spending protection, we
now embed a user’s secret key usk and a random value dsrnd into credentials, i.e. attributes
are now ~A = (usk, dsid, dsrnd, v). The update function to earn points is unchanged. To
spend points, the provider now sends a random challenge γ to the user and the user reveals
c = usk · γ + dsrnd mod p (where usk, dsrnd are values from her credential attributes). The
user chooses new hidden random dsid∗, dsrnd∗ for its successor credential and then runs the
update for ψ((usk, dsid, dsrnd, v), α = (dsid∗, dsrnd∗)) = (usk, dsid∗, dsrnd∗, v − k). As long as
a credential is only spent once, usk is perfectly hidden in c. If the user tries to spend the same
credential a second time, revealing c′ = usk · γ′ + dsrnd for some different challenge γ′, the
provider can compute usk from c, c′, γ, γ′, identifying the double-spender.

This last description comes close to the scheme we present in this paper. However, one problem
remains: assume some user doubles-spends a credential (usk, dsid, dsrnd, v). For both spend trans-
action, she receives a remainder amount credential with attributes ~A∗ = (usk, dsid∗, dsrnd∗, v−k).
While both transactions will be detected as double spending and the user’s key is revealed, the
user can keep using both remainder amount credentials anonymously, allowing her to spend
2 · (v−k) > v points. To prevent this, we need a mechanism that allows us to recognize remainder
amount credentials that were derived from invalid (double-spending) transactions. This can be
achieved by forcing the user to reveal an encryption ctrace of dsid∗ under usk when spending
points. As soon as a user double-spends, the issuer can compute usk as above. With it, he can
decrypt all ctrace for that user, allowing him to find out what dsids have been derived from
invalid transactions of the double-spending user.

Related work on anonymous credential systems. There is a large body of work on
anonymous credential systems, extending the basic constructions [BCKL08, CL01, CL04, PS16]
with additional features such as revocation [CKS10, CL01], controlled linkability and advanced
policy classes [BBB+18], hidden policies [DMM+18], delegation [BB18, CDD17], and many
others. Our notion of privacy-preserving updates on credentials is a new feature. We show how to
efficiently extend the standard blind signature based construction with updates, which makes our
updates compatible with a large part of features presented in existing work (with the exception
of [DMM+18], which does not rely on blind signatures).

The scheme in [CKS10] allows issuers to non-interactively update credentials they have issued.
In contrast to our updatable credentials, their update cannot depend on hidden attributes and
the issuer learns all attributes issued or updated. Their update mechanism is mostly aimed
at providing an efficient means to update revocation information, which is controlled by the
issuer. Updatable credentials in the sense of our paper allow for the functionality in [CKS10] as
well (although in our system, updates are done interactively between user and issuer). However,
beyond that, our updates can depend on hidden attributes of the user and the issuer does not
learn the attributes resulting from the update.
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More technically similar to our updatable credential mechanism are stateful anonymous
credentials [CGH11]. A stateful credential contains a state. The user can have his credential
state updated to some successor state as prescribed by a public state machine model. For this,
the user does not have to disclose his current credential state. Such a state transition is a special
case of an update to a state attribute in an updatable credential. In this sense, our construction
of updatable credentials generalizes the work of [CGH11].

Related work on incentive systems. Existing e-cash systems are related to incentive systems
focused on point collection, but pursue different security goals [CHL05]. E-cash does not support
the accumulation of points within a single token. Instead, each token corresponds to a coin and
can be identified. To spend a coin, a user transfers it to another owner. In incentive systems, a
token accumulates a number of points into a single token (i.e. the token is like a bank account
rather than a coin).

A cryptographic scheme that considers the collection of points in a practical scenario is
described by Milutinovic et al. in [MDPD15]. Their scheme uCentive can be seen as a special
e-cash system where a so called uCent corresponds to a point. The user stores and spends
all uCents individually, which induces storage and communication cost linear in the number
of uCents. Similar to our system, uCentive builds upon anonymous credentials (but without
updates) and commitments, but to detect double-spending the issuer has to be online.

Jager and Rupp [JR16] introduce black-box accumulation (BBA) as a building-block for
incentive systems. They formalize the core functionality and security of such systems based on
the natural requirement that users collect and sum up values in a privacy-preserving way. In
detail, they present an generic construction of BBA from homomorphic commitments, digital
signatures, and non-interactive zero-knowledge proofs of knowledge (Goth-Sahai proofs [GS08]).
The BBA solution has three major shortcomings: the token creation and redemption processes
are linkable, users have to redeem all of their points at once, and stores must be permanently
online to detect double-spending.

Hartung et al. [HHNR17] present an improved framework of black-box accumulation (BBA+)
based on the framework introduced in [JR16]. In [HHNR17], BBA is extended with offline
double-spending prevention (on which we base our offline double-spending mechanism) and other
desirable features. Because of efficiency reasons, when spending points, the user needs to reveal
her point count. This is due to the use of Groth-Sahai proofs, which makes range proofs of the
form v ≥ k while hiding v very costly. In contrast, our incentive system can be instantiated in a
Schnorr proof setting, making range proofs much more viable [BBB+18, CCs08]. For this reason,
our incentive system can hide the user’s point count without taking too much of a performance
hit.

What prior work does not handle is the scenario in which the user spends some of her points
at an offline store and is issued a new token for the remainder point value. If the spend
operation is later detected double-spending, the remainder point token still remains valid in prior
constructions. Our construction solves this, allowing the issuer to trace all tokens derived from
illegal (double-spent) transactions. The price of this solution is forward and backward privacy as
defined in [HHNR17], which our scheme does not offer.

Our contribution and structure of this paper. We introduce UACS formally in Section 3
and define its security properties. In Section 4, we construct UACS generically from blind
signature schemes. We define formal requirements for incentive systems in Section 5, modeling
our double-spend prevention mechanism and defining security. In Section 6, we construct an
incentive system from a UACS. Finally, we practically evaluate our incentive system in Section 7.
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2 Preliminaries

Throughout the paper, we refer to a public-parameter generation ppt G that outputs public
parameters pp given unary security parameter 1λ. A function f : N → R is negligible if for
all c > 0 there is a x0 such that f(x) < 1/xc for all x > x0. We refer to a negligible function
as negl. We write outputA[A ↔ B] for interactive algorithms A,B to denote the output of A
after interacting with B. The support of a probabilistic algorithm A on input x is denoted by
[A(x)] = {y | Pr[A(x) = y] > 0}. The expression ZKAK[(w); (x,w) ∈ R] denotes a zero-knowledge
argument of knowledge protocol where the prover proves knowledge of w such that (x,w) is in
some NP relation R. The zero-knowledge argument of knowledge can be simulated perfectly
given a trapdoor [Dam00] and there exists an expected polynomial-time extractor that, given
black-box access to a successful prover, computes a witness w with probability 1 [Dam00].

For blind signatures, we require that the blind signing protocol is of the form “commit to the
message(s) to sign, then jointly compute the signature“. In our formulation, we externalize the
ZK proof about the commitment (cf. Definition 18).

Definition 1. A blind signature scheme for signing committed values ΠS consists of the following
(ppt) algorithms:

KeyGenS(pp, 1n)→ (pk, sk) generates a key pair (pk, sk) for signatures on vectors of n messages.
We assume n can be efficiently derived from pk.

CommitS(pp, pk, ~m, r)→ c given messages ~m ∈ Mn and randomness r, deterministically com-
putes a commitment c.

BlindSignS(pp, pk, sk, c)↔ BlindRcvS(pp, pk, ~m, r)→ σ is an interactive protocol with common
input pp, pk. The signer’s input is sk, c. The receiver’s input consists of the messages ~m and
commitment randomness r. The receiver outputs a signature σ or the error symbol ⊥.

VrfyS(pp, pk, ~m, σ)→ b deterministically checks signature σ and outputs 0 or 1.

A blind signature scheme is correct if for all λ, n ∈ N and all pp ∈ [G(1λ)], (pk, sk) ∈
[KeyGen(pp, 1n)], all ~m ∈Mn, and for every commitment randomness r,

Pr[BlindSign(pp, pk, sk,Commit(pp, pk, ~m, r))
↔ BlindRcv(pp, pk, ~m, r)→ σ :

Vrfy(pp, pk, ~m, σ) = 1] = 1

�

We require unforgeability and perfect message privacy, cf. Appendix A, Definition 18 and 19.
Definition 1 can be instantiated by Pointcheval Sanders signatures [PS16].

Definition 2. A public-key enc scheme ΠE consists of ppt algorithms (KeyGenE ,ComputePKE ,
EncryptE ,DecryptE) such that DecryptE and ComputePKE are deterministic and for all pp ∈
[G(1λ)], sk ∈ [KeyGenE(pp)] and all messages m, it holds that Pr[DecryptE(pp, sk,Encrypt(pp,
ComputePKE(pp, sk),m)) = m] = 1.

We require key-indistinguishable CPA security, cf. Appendix A, Definition 20. Definition 2
can be instantiated by ElGamal encryption.

Definition 3. A malleable commitment scheme ΠC+ consists of ppt algorithms (KeyGen,Commit,
Vrfy,Add) s.t. ∀pp ∈ [G(1λ)], pk ∈ [KeyGen(pp)], all m ∈Mpp, and all (c, o) ∈ [Commit(pp, pk,m)]

• Mpp is an (additive) group.
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• Vrfy and Add are deterministic.

• Vrfy(pp, pk, c, o,m) = 1.

• For c′ = Add(pp, pk, c, k), it holds that (c′, o) ∈ [Commit(pp, pk,m+ k)].

We require perfect binding and comp. hiding, cf. Appendix A, Definition 21 and 22. Definition 3
can be instantiated by ElGamal encryption.

3 Updatable Anonymous Credentials

In this section, we introduce updatable anonymous credentials. In UACS, there are three roles:
issuers, users, and verifiers. Issuers hold keys to issue and update credentials for users. Users can
prove possession of a credential to verifiers.

We generalize the credential issuing protocol: usually, the issue operation takes attributes ~A as
input, meaning that the issuer knows exactly what attributes he is issuing. In our generalization,
the issue operation takes an update function ψ as input. The user may choose private input
α. The credential is obtained on ~A = ψ(⊥, α) (one can think of issuing a new credential as an
“update” of an empty credential). We stress that this is a generalization and that issuers can
choose ψ to output a constant.

Usually a user’s secret key usk is embedded into the credential to bind the credential to
the user [CL04]. This is a possibility covered by our generalization (treat usk like any other
hidden attribute). For this reason, we omit user keys (and pseudonyms) from our definitions
and allow the application layer to implement them in any desired way (like our incentive system
(Construction 14) does).

Definition 4. An updatable anonymous credential system (UACS) ΠC consists of the following
ppt algorithms:

Setup(pp)→ cpp generates credential public parameters cpp. We assume an attribute universe
A to be encoded in cpp.

IssuerKeyGen(cpp, 1n)→ (pk, sk) generates a credential issuer key pair (pk, sk) for credentials
with n attributes. We assume that n can be derived from pk and that cpp, pk fix an update
function universe Ψ and a show predicate universe Φ.

Issue(cpp, pk, ψ, sk)↔ Receive(cpp, pk, ψ, α)→ cred is an interactive protocol with common in-
put cpp, pk and update function ψ ∈ Ψ, ψ : {⊥} × {0, 1}∗ → An ∪ {⊥}. The issuer gets its
secret key sk as private input and the receiver gets its secret update function input α ∈ {0, 1}∗
as private input. After the protocol, the receiver outputs a credential cred (on ψ(⊥, α)) or the
failure symbol ⊥.

b← Update(cpp, pk, ψ, sk)↔ UpdRcv(cpp, pk, ψ, α, cred)→ cred∗ is an inter. protocol with com-
mon input cpp, the credential issuer’s pk, and update function ψ ∈ Ψ, ψ : An × {0, 1}∗ →
An ∪ {⊥}. As private input, the issuer gets sk and the receiver gets α ∈ {0, 1}∗ and credential-
to-be-updated cred. The receiver outputs a new credential cred∗ or ⊥. The issuer outputs a
bit b.

ShowPrv(cpp, pk, φ, cred)↔ ShowVrfy(cpp, pk, φ)→ b is an inter. protocol with common input
cpp, the issuer’s pk, and a statement over attributes φ ∈ Φ, φ : An → {0, 1}. The prover gets
cred as input. The verifier outputs a bit b.

We define correctness by defining a correctness set S recursively as follows: Let λ, n ∈ N,
cpp ∈ [Setup(G(1λ))], (pk, sk) ∈ [IssuerKeyGen(cpp, 1n)],
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• Let ψ ∈ Ψ, α ∈ {0, 1}∗. If cred is possible output of Issue(cpp, pk, ψ, sk)↔ Receive(cpp, pk, ψ,
α), then (cpp, pk, ψ(⊥, α), cred) ∈ S.

• If (cpp, pk, ~A, cred) ∈ S and ψ ∈ Ψ, α ∈ {0, 1}∗ with ψ( ~A, α) 6=⊥, and cred∗ is possible out-
put of Update(cpp, pk, ψ, sk) ↔ UpdRcv(cpp, pk, ψ, α, cred) → cred∗, then (cpp, pk, ψ( ~A, α),
cred∗) ∈ S.

For all (cpp, pk, ~A, cred) ∈ S and φ ∈ Φ with φ( ~A) = 1, it holds that Pr[ShowPrv(cpp, pk, φ, cred)
↔ ShowVrfy(cpp, pk, φ) → b : b = 1] = 1, and for all ψ ∈ Ψ, α ∈ {0, 1}∗ with ψ( ~A, α) 6=⊥,
Pr[b← Update(cpp, pk, ψ, sk)↔ UpdRcv(cpp, pk, ψ, α, cred) : b = 1] = 1. �

The system is set up using cpp ← Setup(G(1λ)), run by a trusted party. The credential public
parameters cpp are then published. An issuer is set up by running IssuerKeyGen(). Issuers can
issue credentials by running Issue interacting with a user running Receive. To update a credential,
its issuer has Update interact with a user’s UpdRcv. To prove possession of a credential, a user
runs ShowPrv and any verifier runs ShowVrfy (no special key needed for the verifier).

Security consists of two properties: anonymity, which protects users’ privacy, and soundness,
which protects issuers and verifiers. For anonymity, we require that the user’s protocols can be
simulated without private inputs.

Definition 5. Let ΠC be an UACS and let CheckCred(cpp, pk, cred, ~A) = 1 iff cred 6=⊥ is possible
output of Receive or UpdRcv with ψ, α that results in ~A. Let Receive′ run cred ← Receive and
then send a bit indicating whether or not cred =⊥. Let UpdRcv′ run cred∗ ← UpdRcv and then
send a bit indicating whether or not cred∗ =⊥. Π has simulation anonymity if there exist ppt
simulators SSetup,SReceive,SShowPrv,SUpdRcv such that for all (unrestricted) adversaries A, all
λ ∈ N, pp ∈ [G(1λ)], and all (cpp, td) ∈ [SSetup(pp)],

• Pr[Setup(pp) = cpp] = Pr[SSetup(pp) = (cpp, ·)]

• outputA[SReceive(td, pk, ψ) ↔ A] ≈ outputA[Receive′(cpp, pk, ψ, α) ↔ A] for all pk, α ∈
{0, 1}∗, ψ ∈ Ψ.

• outputA[SUpdRcv(td, pk, ψ) ↔ A] ≈ outputA[UpdRcv′(cpp, pk, ψ, α, cred) ↔ A] for all pk,
ψ ∈ Ψ and cred, ~A s.t. CheckCred(cpp, pk, cred, ~A) = 1 and ψ( ~A, α) 6=⊥.

• outputA[SShowPrv(td, pk, φ)↔ A] ≈ outputA[ShowPrv(cpp, pk, φ, cred)↔ A] for all pk, φ ∈ Φ
and cred, ~A s.t. CheckCred(cpp, pk, cred, ~A) = 1 and φ( ~A) = 1 �

Informally, soundness should enforce that users cannot show credentials they have not been
issued. In UACS, the issuer does not know what attributes result from Issue and Update
operations, so the issuer/verifier cannot easily check whether or not security was broken. For this
reason, our soundness definition requires existence of an extractor E that outputs an explanation
list L. L lists hidden parameters describing, for example, what ( ~A, α) went into an update
operation. The adversary wins if L is not consistent, e.g., if the claimed ~A of an update operation
has not been the result of some earlier operation.

Definition 6. Let E ,A be algorithms. We define the experiment Expsound in Fig. 1. We say that
Π is sound if there exists an algorithm E , running in expected polynomial time, such that for all ppt
adversaries A, there exists a negligible function negl with Pr[Expsound(Π,A, E , λ) = 1] ≤ negl(λ)
for all λ. �
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Expsound(Π,A, E, λ):
cpp← Setup(G(1λ)), (1n, st)← A(cpp), for some n ∈ N
Setup up issuer: (pk, sk)← IssuerKeyGen(cpp, 1n)
halt← A(pk, st)oracles

where oracles gives access:
- To receive credentials, A specifies ψ ∈ Ψ. Run Issue(cpp, pk, ψ, sk) interacting

with A. Append the randomness used for Issue to rIssue.
- To update credentials, A specifies ψ ∈ Ψ. Run Update(cpp, pk, ψ, sk)→ b

interacting with A. Append the randomness used for Update to rUpdate.
- To show a credential, A specifies φ ∈ Φ. Run ShowVrfy(cpp, pk, φ)→ b

interacting with A. Append the randomness used for ShowVrfy to rShowVrfy.
Let rA be the randomness used by A.
Run EA(cpp, rA, rIssue, rUpdate, rShowVrfy) to receive an explanation list L:

Each entry on L corresponds to an issue, update, or show query made by A.
We set E0 = ∅. Ei represents the set of explained attribute vectors after the ith query.
We say that L is consistent if there are sets E1, E2, . . . such that for all i > 0:

- If the ith operation was an Issue operation with update function ψi, then the
ith entry on the list is some αi ∈ {0, 1}∗. Ei = Ei−1 ∪ {ψi(⊥, αi)} \ {⊥}.

- If the ith operation was an Update operation with update function ψi, then the
ith entry on the list is a tuple ( ~Ai, αi). If Update output 1, then ψi( ~Ai, αi) 6=⊥
and ~Ai ∈ Ei−1 and Ei = Ei−1 ∪ {ψi( ~Ai, αi)}. Otherwise, Ei = Ei−1.

- If the ith operation was a ShowVrfy operation with predicate φi, then the
ith entry on the list is an attribute vector ~Ai. If ShowVrfy output 1,
then φ( ~Ai) = 1 and ~Ai ∈ Ei−1. Ei = Ei−1.

Output 0 if E’s list is consistent
return 1

Figure 1: Soundness experiment for updatable anonymous credential systems

4 Generic Construction of UACS

We construct a UACS generically from blind signatures. The construction is simple: As usual
in credential systems, a credential is a signature on the credential’s attributes. To update a
credential with update function ψ, the user commits to the attributes ~A∗ = ψ( ~A, α) that it wants
to receive. He then proves within a zero-knowledge argument of knowledge that this commitment
is correctly formed and that he already possesses a credential (signature) on ~A. Then, the issuer
blindly signs the committed value ~A∗, resulting in a new credential.

Construction 7. Let ΠS be a blind signature (Definition 1). We construct UACS:

Setup(pp)→ cpp generates public parameters cpp consisting of pp and a zero-knowledge argument
common reference string. The attribute space A is the signature scheme’s message space MS .

IssuerKeyGen(cpp, 1n)→ (pk, sk) runs KeyGenS(pp, 1n+1)→ (pk, sk). The update function uni-
verse Ψ consists of all ψ : (Mn

S ∪ {⊥}) × {0, 1}∗ → Mn
S ∪ {⊥} that are supported by the

zero-knowledge arguments below.

Issue(cpp, pk, ψ, sk)↔ Receive(cpp, pk, ψ, α)→ cred for ψ ∈ Ψ works as follows:
• The receiver computes ~A = ψ(⊥, α) and commits to ~A by computing c = CommitS(pp, pk,
~A, r) for random r and sends c to the issuer.

• The receiver proves ZKAK[(α, r); c = CommitS(pp, pk, ψ(⊥, α), r)]
• If the proof accepts, issuer runs BlindSignS(pp, pk, sk, c) and receiver runs BlindRcvS(pp,

pk, ~A, r)→ σ.
• The receiver checks if VrfyS(pp, pk, ~A, σ) = 1. If so, it outputs cred = ( ~A, σ), otherwise it

outputs ⊥.

b← Update(cpp, pk, ψ, sk)↔ UpdRcv(cpp, pk, ψ, α, cred)→ cred∗ :
• The receiver parses cred = ( ~A, σ) and computes ~A∗ = ψ( ~A, α).
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• The receiver commits to ~A∗ by computing c = CommitS(pp, pk, ~A∗, r) for random r and
sends c to the issuer.
• The receiver proves ZKAK[( ~A, σ, α, r); c = CommitS(pp, pk, ψ( ~A, α), r) ∧

VrfyS(pp, pk, ~A, σ) = 1].
• If the proof rejects, the issuer outputs 0 and aborts.
• Otherwise, issuer runs BlindSignS(pp, pk, sk, c) while receiver runs BlindRcvS(pp, pk, ~A∗,
r)→ σ∗.
• The receiver checks if VrfyS(pp, pk, ~A∗, σ∗) = 1. If so, it outputs cred∗ = ( ~A∗, σ∗), otherwise

it outputs ⊥. The issuer outputs 1.

ShowPrv(cpp, pk, φ, cred)↔ ShowVrfy(cpp, pk, φ)→ b works as follows: the prover parses cred =
( ~A, σ). If φ( ~A) = 0, the prover aborts and the verifier outputs 0. Otherwise, the prover runs
the proof ZKAK[( ~A, σ); VrfyS(pp, pk, ~A, σ) = 1 ∧ φ( ~A) = 1]. If the proof succeeds, the verifier
outputs 1, otherwise 0.

Correctness of the construction follows directly from the correctness of the underlying blind
signature scheme. Since there exist zero-knowledge arguments of knowledge for all of NP,
almost arbitrary update functions are supported by this construction. Because those generic
zero-knowledge arguments are not necessarily considered practically efficient, in practice one
would usually restrict the class of update functions. For example, a large class of statements is
supported by Sigma protocols (such as generalizations of Schnorr’s protocol), which are very
efficient (see, for example, [BBB+18]). The blind signature scheme by Pointcheval and Sanders
[PS16] is a good candidate to use in conjunction with Sigma protocols. If the update function
is sufficiently “simple” (i.e. the check ψ( ~A, α) != ~A∗ can be efficiently implemented as a Sigma
protocol), our construction is efficient.

Theorem 8. If the underlying blind signature scheme has perfect message privacy (Definition 19),
then Const. 7 has simulation anonymity (Definition 5).

Theorem 9. If the underlying blind signature scheme is unforgeable (Definition 18), then
Const. 7 is sound (Definition 6).

The proofs of the above theorems are straight-forward reductions to the corresponding blind
signature properties. They are presented in Appendix B.

5 Incentive Systems

In this section, we formally define incentive systems, their syntax, and their security. In an
incentive system, there are two roles: users and issuers. Users accumulate points issued by an
issuer in a privacy-preserving way. In the following we formalize our notion of incentive systems
for earning and spending points. Additionally, we define linking and tracing for double-spending
prevention.

Definition 10. An inc. system ΠInSy consists of the following ppt algorithms:

Setup(pp)→ ispp generates ispp. We assume a maximum point score vmax is encoded in ispp
(we assume this limit to be large enough never to be hit in practice).

KeyGen(ispp)→ (upk, usk) generates a user’s public key upk, and secret key usk.

IssuerKeyGen(ispp)→ (pk, sk) generates an issuer key pair (pk, sk).

Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid) The receiver outputs a token
token with 0 points and a double-spend id dsid, or ⊥.
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Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token)→ token∗ takes common input earn amount
k ∈ N. The earner outputs an updated token token∗ or ⊥.

(token∗, dsid∗)← Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(ispp, pk, k, dsid, sk) → (b, dstag)
takes common input spend amount k, and double-spend id dsid. The verifier outputs a bit b
and a double-spend tag dstag. The spender outputs an updated token token∗ for the remaining
amount.

Link(ispp, dstag, dstag′)→ (upk, dslink) given double-spend tags dstag, dstag′, deterministically
outputs the spending user’s upk and linking information dslink.

VrfyDs(ispp, dslink, upk)→ b given dslink and upk, outputs a bit b indicating whether dslink
proves that upk has double-spent.

Trace(ispp, dslink, dstag)→ dsid∗ given dslink and some spend-operation’s dstag, deterministi-
cally outputs the remainder token’s dsid∗.

For correctness, let λ ∈ N. Consider ` ≤ poly(λ) users with the following keys ((upk1, usk1), . . . ,
(upk`, usk`))← KeyGen(ispp), where ispp ∈ [Setup(G(1λ))]. Let (tokeni, dsidi) be the receiver’s
output of the execution of Issue(ispp, pk, upki, sk) ↔ Join(ispp, pk, upki, uski). Let vi = 0 and
T = ∅ initially. Consider some sequence of operations in the form

• Update tokeni with tokeni ← Earn(ispp, pk, k, usk, tokeni) ↔ Credit(ispp, pk, k, sk) for k ≤
vmax − vi and update vi ← vi + k.

• Run (token∗i , dsid∗i ) ← Spend(ispp, pk, k, dsidi, usk, tokeni) ↔ Deduct(ispp, pk, k, dsidi, sk) →
(b, dstag) for k ≤ vi. We say that the spending failed if b = 0 or dsid ∈ T . Afterwards, update
vi ← vi − k, T ← T ∪ {dsid}, (tokeni, dsidi)← (token∗i , dsid∗i ).

The scheme is correct if there exists a negligible function negl such that after any such sequence
of polynomial length, the probability that any spending operation within this sequence fails is
negligible (where the probability is over the random bits of KeyGen,Earn,Credit,Spend,Deduct).
�

Setup(G(·)) is run by a trusted party. IssuerKeyGen is run by the issuer. Each user first runs
KeyGen and then joins the issuer’s system using Join. Users can Earn and Spend points. The
issuer uses Link,Trace to deal with double-spending (as described below). VrfyDs is used by a
judge to verify that a user has double-spent.

In order to detect double-spending offline, the issuer maintains a database DB and (eventually,
in online phases) inserts observed transactions into that database. The database is a directed
bipartite graph with two types of nodes: token nodes and spend transaction nodes. Token
nodes are double-spend identifiers dsid. Token nodes whose owner the issuer has uncovered
are associated with values (upk, dslink). Spend transaction nodes ti are associated with k, dstag
observed during the operation by the issuer, and a validity flag. Spend operations ti have
in-degree 1 (corresponding to the dsid that was input to the operation) and out-degree at most
1 (corresponding to dsid∗ of the remainder token issued in the spend operation, if known to
the issuer). The idea is that the database keeps a record of all dsid known to it and marks
transactions invalid that (1) are not the first to spend a specific dsid, or (2) are derived from
some double-spending transaction’s remainder token (which should never have been issued as
the double-spend transaction should never have happened). We imagine that the provider
uses lawsuits or similar mechanisms to recoup any loss that may have resulted from invalid
transactions.

More concretely, we formalize tracing behavior with an algorithm DBsync that is called once
for each observed spend transaction (not necessarily in the order the transactions happen).
DBsync takes as input spend operation parameters k, dsid, dstag and operates on the graph DB
mentioned above as follows:
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DBsync(k, dsid, dstag,DB):

• Add a new spend operation node ti to DB and associate k, dstag with it.

• If dsid is not a node in DB, add the node dsid and an edge from dsid to ti.

• Otherwise, add the edge from dsid to ti, and:

– If dsid has no (upk, dslink) associated with it, then there exist two outgoing edges from dsid to transac-
tions ti, tj . In this case, compute (upk, dslink) = Link(ispp, dstag′i, dstag′j) using the two tags dstag′i, dstag′j
associated with ti and tj , respectively. Associate (upk, dslink) with dsid.

– Mark ti invalid (this triggers the steps below).

• Whenever some node ti with incoming edge from some dsid is marked invalid

– Use (upk, dslink) associated with dsid and dstag associated to ti to compute dsid∗ = Trace(ispp, dslink, dstag).
Add dsid∗ to the graph (if it does not already exist), associate (upk, dslink) with dsid∗, and add an edge from
ti to dsid∗. If there is an edge from dsid∗ to some tj , mark tj invalid (if it was not already marked). This
triggers this routine again.

An example database with one run of DBsync is shown in Figure 2. For invalid transaction ti,
user upk (according to the predecessor dsid of ti) is blamed.

To define security for incentive systems, we first define several stateful oracles, a selection of
which will be available to an adversary A in each of the subsequent security games. For these
definitions, we assume that ispp has been generated honestly. Some oracles are interactive, i.e.
they may send and receive messages during a call. We distinguish between the oracle’s (local)
output, which is generally given to the adversary, and the oracle’s sent and received messages. The
notation x 7→ Oracle(x)↔ A denotes that A chooses x, then oracle Oracle(x) is run interacting
with A. A is given the output of the oracle (if any). The notation (x, y) 7→ Oracle0(x) ↔
Oracle1(y) denotes that A chooses x, y, then Oracle0(x) ↔ Oracle1(y) are run, interacting
with one another. A is given the output of both oracles, but not the messages sent or received
by the oracles.

Honest users. To model honest users, we define the following oracles:
• Keygen() chooses a fresh user handle u, runs (upk, usk)← KeyGen(ispp), and stores (upku,

usku, vu, pku, tokenu, dsidu)← (upk, usk, 0,⊥,⊥,⊥). It outputs u, upk.

• Join(u, pk) given handle u runs (token, dsid) ← Join(ispp, pk, upku, usku). If token =⊥, the
oracle outputs ⊥. Otherwise, it stores pku ← pk, tokenu ← token, and dsidu ← dsid. This
oracle can only be called once for each u. It must be called before any calls to Earn(u, ·) and
Spend(u, ·).

• Earn(u, k) given handle u and k ∈ N with vu + k ≤ vmax , the oracle runs token∗ ←
Earn(ispp, pku, k, usku, tokenu). If token∗ =⊥, the oracle outputs ⊥. Otherwise, it updates
tokenu ← token∗ and vu ← vu + k.

• Spend(u, k) given handle u and k ∈ N with vu ≥ k, the oracle first sends dsidu to its commu-
nication partner and then runs (token∗, dsid∗) ← Spend(ispp, pku, k, dsidu, usku, tokenu). It

dsid0 t0

dsid1 t′1 dsid2 t′2 dsid5

t1

t2 dsid3 t3t3 dsid4

Figure 2: Example DB. Double-struck spend operations are invalid. All dashed lines are added when t2
is synchronized into DB. The user has double-spent dsid1 (and t′1 is marked invalid because of
this). When t2 is synchronized into DB, it is immediately marked invalid, dsid3 is revealed to
be its successor and as a consequence, t3 is marked invalid and its successor dsid4 is computed.
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Expanon-X
b (ΠInSy,A, λ) for

X ∈ {Earn, Spend}, b ∈ {0, 1}:
ispp← Setup(G(1λ))
(pk, st)← A(ispp)
(u0, u1, k, st)← Aoracle(st)
where oracle = (Keygen(),Join(·, pk),
Earn(·, ·),Spend(·, ·))
Output 0 if ⊥∈ {tokenu0 , tokenu1}
Challenge Phase:
If X = Earn and k ∈ N with
vu0 + k ≤ vmax and vu1 + k ≤ vmax
b̂← AEarn(ub,k)(st)

If X = Spend and k ∈ N with
vu0 ≥ k and vu1 ≥ k
b̂← ASpend(ub,k)(st)

Output 1 if b = b̂, otherwise output 0

Expframe-res(ΠInSy,A, λ):
ispp← Setup(G(1λ))
(pk, st)← A(ispp)
(u, dslink)← Aoracles(st)
where oracles = (Keygen(),Join(·, pk),
Earn(·, ·),Spend(·, ·))
Output 1 if
VrfyDs(ispp, dslink, upku) = 1
return 0

Figure 3: Experiments defining anonymity and framing resistance for InSy

updates tokenu ← token∗, dsidu ← dsid∗ and vu ← vu − k. If token∗ =⊥, the oracle outputs
⊥ and all further calls to any oracles concerning u are ignored.1

Honest Issuer. To model an honest issuer, we define the following oracles:
• IssuerKeyGen() runs (pk, sk)← IssuerKeyGen(ispp). It stores pk and sk for further use. It

initially sets the set of users U ← ∅ and sets the double-spend database DB to the empty
graph. Furthermore, initially vearned, vspent ← 0. Further calls to this oracle are ignored. This
oracle must be called before any of the other issuer-related oracles. The oracle outputs pk.

• Issue(upk) if upk ∈ U , the request is ignored. Otherwise, the oracle runs Issue(ispp, pk, upk, sk)
and adds upk to U .

• Credit(k) for k ∈ N, runs Credit(ispp, pk, k, sk) and sets vearned ← vearned + k.

• Deduct(k) for k ∈ N, waits to receive dsid. It then runs Deduct(ispp, pk, k, dsid, sk) →
(b, dstag). If b = 0, it outputs ⊥. Otherwise, it chooses a fresh spend handle s and stores
(dsids, dstags, ks)← (dsid, dstag, k). Then it outputs s and increments vspent ← vspent + k.

• DBsync(s) runs DB′ ← DBsync((dsids, dstags, ks),DB). It then updates DB ← DB′ and
recomputes vinvalid as the sum of values k associated with invalid transactions within DB′.

We now define security for incentive systems. Anonymity guarantees that honest users running
Spend and Earn are indistinguishable.

Definition 11 (Anonymity). We define the experiment Expanon-X in Fig. 3 for X ∈ {Earn,Spend}.
We say that incentive system ΠInSy is anonymous if for both X ∈ {Earn,Spend} and for all ppt
A it holds that |Pr[Expanon-X

0 (Π,A, λ) = 1]− Pr[Expanon-X
1 (Π,A, λ) = 1]| ≤ negl(λ) for all λ. �

An incentive system has framing resistance if honest users cannot be falsely accused of double
spending by a dishonest issuer.

Definition 12 (Framing resistance). We define experiment Expframe-res in Fig. 3. We say that
incentive system ΠInSy is framing resistant if for all ppt A, there exists a negligible function negl
s.t. Pr[Expframe-res(Π,A, λ) = 1] ≤ negl(λ) for all λ. �

Soundness should guarantee that users cannot spend more points than they have earned
(excluding spend operations detected as double-spending).

1Spending the same token twice would be considered double-spending, even if one of the Spend operations fails.
Hence after a failed Spend operation, the user must not attempt to use her old token.
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Expsound(ΠInSy,A, λ):
ispp← Setup(G(1λ))
Call pk ← IssuerKeyGen()
(halt)← AIssue(·),Credit(·),Deduct(·),DBsync(·)(ispp, pk)
If vspent − vinvalid > vearned and A has queried DBsync(s) for all
spending record handles s output by the Deduct oracle, return 1
If DB contains some (upk, dslink) associated with some dsid
such that VrfyDs(ispp, dslink, upk) 6= 1 or upk /∈ U , return 1
return 0

Figure 4: Soundness experiment for InSy

Definition 13 (Soundness). We define the experiment Expsound in Fig. 4. We say that in-
centive system ΠInSy is sound if for all ppt A, there exists a negligible function negl with
Pr[Expsound(Π,A, λ) = 1] ≤ negl(λ) for all λ. �

6 Construction of an Incentive System from UACS

We construct an incentive system as follows: Users hold UACS credentials with attributes
(usk, dsid, dsrnd, v) as explained in the introduction. We ensure that dsids are random by
choosing new dsids as follows: The user commits to a random dsidusr ← Zp with an additively
malleable commitment scheme, then the issuer chooses random dsid isr ← Zp and sends it to the
user. Then both change the commitment to dsid = dsidusr + dsid isr using additive malleability
and embed dsid in the credential. If the user or the issuer is honest, dsid is uniformly random,
which factors into anonymity or soundness, respectively. The rest of the construction follows its
description in the introduction.

Construction 14. Let ΠC be an UACS, ΠE be a public-key encryption scheme, and let ΠC+ be
an additively malleable commitment scheme. We define the incentive system ΠInSy as follows:

Setup(pp)→ ispp runs cpp ← SetupC(pp). pp fixes an attribute space A and message space ME
for the encryption scheme. We assume A = Zp for some super-poly p and set vmax = p− 1.
Setup chooses a commitment key pkC+ ← KeyGenC+(pp). It outputs ispp = (pp, cpp, pkC+).

KeyGen(ispp)→ (upk, usk) generates an encryption key pair uskE ← KeyGenE(pp) and upkE =
ComputePKE(pp, uskE). It outputs upk = upkE and usk = uskE .

IssuerKeyGen(ispp)→ (pk, sk) generates and outputs a credential issuer key pair (pk, sk) ←
IssuerKeyGenC(cpp, 1n) for n = 4.

Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid) the receiver picks dsidusr ← Zp
and computes (Cusr, open)← CommitC+(pp, pkC+ , dsidusr). The issuer replies with dsid isr ←
Zp. Both parties compute Cdsid = AddC+(pp, pkC+ , Cusr, dsid isr). Then the receiver sets
dsid = dsidusr + dsid isr, chooses dsrnd ← Zp, and sets α = (uskE , dsid, dsrnd, open). Then the
issuer runs IssueC(cpp, pk, ψ, sk) and the receiver runs ReceiveC(cpp, pk, ψ, α)→ cred. Here, the
update function is set to ψ(⊥, (usk, dsid, dsrnd, open)) = (usk, dsid, dsrnd, 0), if user public
key upk = ComputePKE(pp, usk) and it holds that VrfyC+(pp, pkC+ , Cdsid, dsid, open) = 1.
Otherwise, ψ(⊥, α) =⊥. If cred 6=⊥, the receiver outputs token = (dsid, dsrnd, v = 0, cred)
and dsid. Otherwise, the receiver outputs ⊥.

Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token)→ token∗ checks that v + k ≤ vmax for the
token = (dsid, dsrnd, v, cred). It then works as follows: The issuer runs UpdateC(cpp, pk, ψ, sk)
and the receiver UpdRcvC(cpp, pk, ψ, α, cred)→ cred∗ with α =⊥. Here, the update function
is set to ψ((uskE , dsid, dsrnd, v), ·) = (uskE , dsid, dsrnd, v + k). If cred∗ 6=⊥, the user outputs
token∗ = (dsid, dsrnd, v + k, cred∗).

13



(token∗, dsid∗)← Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(ispp, pk, k, dsid, sk) → (b, dstag)
for token = (dsid, dsrnd, v, cred) checks that v ≥ k. Then:
• The user chooses random dsid∗usr ← Zp and generates (Cusr

∗, open∗)← CommitC+(pp, pkC+ ,
dsid∗usr). He sends Cusr

∗ to the issuer.
• The issuer chooses a random challenge γ ← Zp and a random dsid∗isr ← Zp, and sends both

to the user.
• Issuer and user each compute Cdsid

∗ = AddC+(pp, pkC+ , Cusr
∗, dsid∗isr).

• The user prepares new values dsid∗ = dsid∗usr + dsid∗isr and dsrnd∗ ← Zp for his next token
and sets α = (dsid∗, dsrnd∗, open∗).
• The user computes c = uskE · γ + dsrnd.
• The user encrypts dsid∗ as ctrace ← EncryptE(pp, upkE , dsid∗).
• The user sends c, ctrace to the issuer.
• The issuer runs b← UpdateC(cpp, pk, ψ, sk) and the user runs cred∗ ← UpdRcvC(cpp, pk, ψ,
α, cred). Here, ψ((uskE , dsid, dsrnd, v), (dsid∗, dsrnd∗, open∗)) = (uskE , dsid∗, dsrnd∗, v−k)
– dsid is the same as in the Deduct input,
– v ≥ k,
– VrfyC+(pp, pkC+ , Cdsid

∗, dsid∗, open∗),
– c = uskE · γ + dsrnd, and
– DecryptE(pp, uskE , ctrace) = dsid∗.
Otherwise, ψ(. . . ) =⊥.
• If cred∗ 6=⊥, the user outputs (token∗ = (dsid∗, dsrnd∗, v − k, cred∗), dsid∗).
• The issuer outputs b and, if b = 1, dstag = (c, γ, ctrace).

Link(ispp, dstag, dstag′)→ (upk, dslink) given dstag = (c, γ, ctrace), dstag′ = (c′, γ′, ctrace′), out-
puts dslink = (c−c′)/(γ−γ′) (the intent is that dslink = usk) and upk = ComputePK(pp, dslink).

Trace(ispp, dslink, dstag)→ dsid∗ for dstag = (c, γ, ctrace) retrieves dsid∗ by decrypting ctrace
as follows DecryptE(pp, dslink, ctrace) = dsid∗.

VrfyDs(ispp, dslink, upk)→ b outputs 1 iff ComputePK(pp, dslink) = upk.

It is easy to check correctness given that dsids are chosen randomly from Zp.

Theorem 15. If ΠC has simulation anonymity (Definition 5), ΠE is key-ind. CPA secure
(Definition 20), ΠC+ is computational hiding, then the scheme ΠInSy (Construction 14) guarantees
anonymity (Definition 11).

Proof sketch. The adversary A is asked to distinguish if it talks to user u0 or u1 in the
challenge phase. Both users are determined by A. We will first handle the easy case of
Expanon-X

b (ΠInSy,A, λ) for X = Earn: everything that the adversary A sees perfectly hides the
user’s secret usk and dsid. For the case X = Spend and user ub, let i be the spend operation in
the challenge phase and i−1 the previous spend operation in the setup phase. During spend i−1,
the adversary A gets EncryptE(pp, upkb, dsidi) and can compute CommitC+(pp, pkC+ , dsidi) from
the commitment to dsidusr that he receives. In spend i, A gets (1) EncryptE(pp, upkb, dsidi+1), (2)
CommitC+(pp, pkC+ , dsidi+1), and (3) dsidi. For (2), observe that CommitC+(pp, pkC+ , dsidi+1)
has no influence on A’s advantage since it is independent of b. If we look at (1), we observe that
the encryption is generated under upkb. Therefore, in addition to CPA security, we need that
the keys of the users are indistinguishable. Considering (3), observe that the commitment to
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dsidi (in spend i− 1) is computationally hiding. Furthermore, to link EncryptE(pp, upkb, dsidi) or
CommitC+(pp, pkC+ , dsidi) from spend i−1 to dsidi revealed in spend i, A has to break (key-ind.)
CPA security of ΠE or comp. hiding of ΠC+ .

An extended formal proof is given in Appendix D.2.

Theorem 16. If ΠC is sound (Definition 6), ComputePKE(pp, ·) is injective, and ΠC+ is perfectly
binding (Definition 21), then ΠInSy (Construction 14) is sound (Definition 13).

Proof sketch. The proof is a reduction to soundness of the underlying updatable credential
system. Let A be an attacker against incentive system soundness. We construct B. B simulates
A’s view perfectly by replacing IssueC and UpdateC calls with calls to the corresponding UACS
oracles. Let error be the event that (1) B has output the same challenge δ in two different
Deduct runs, or (2) there were two commitments Cdsid, Cdsid

′ in two runs of Deduct or Issue
such that the commitments can be opened to two different messages. (1) happens with negligible
probability (δ ← Zp), so does (2) because dsid isr, dsid∗isr ← Zp and the commitment scheme ΠC+

is perfectly binding. It then remains to show that if error does not happen and there exists a
consistent explanation list L, then A cannot wins (implying that unless error, if A wins, then
B wins as there is no L that would make it lose). The proof of this is somewhat technical,
but essentially, we look at each user individually. For this user, there exists some “canonical”
sequence of spend and earn operations in L that does not involve any spend operations marked
as invalid (in the double-spending database DB). From the design of update functions and
consistency of L, it is clear that in such a sequence, the value accumulated by earn operations
cannot be smaller than the value spent through spend operations, i.e. the desired property
vearned ≥ vspent−vinvalid holds if we only consider these canonical operations. The rest of the proof
deals with ensuring that spend operations that are not part of the canonical sequence have all
been marked invalid in DB (such that removing all non-canonical operations from consideration
does not change vspent − vinvalid and only decreases vearned). Because of ¬error, challenges γ do
not repeat and any two attribute-vectors that share the same dsid have the same usk, dsrnd.
This implies that extracting usk from two transactions with the same dsid works without error
(given c = usk · γ + dsrnd and the definition of Link). Since any extracted usk is correct in this
sense, the tracing of dsid as in DBsync works as intended, i.e. all invalid transactions will be
marked as such in DB as required.

The full proof can be found in Appendix D.3.

Theorem 17. If ΠE is CPA-secure and ΠC has simulation anonymity, then ΠInSy (Construc-
tion 14) is framing resistant.

Framing resistance follows easily via reduction to ΠE ’s (key-ind.) CPA security: An adversary
who can frame an honest user needs to be able to compute the secret key usk for the user’s
upk = ComputePKE(pp, usk).

7 Instantiation and Performance of our Incentive System

We instantiated Construction 14 using the signature scheme by Pointcheval and Sanders [PS16]
for the UACS, and ElGamal as the public-key encryption scheme and malleable commitment.
Using the open-source Java library upb.crypto and the bilinear group (bn256) provided by
mcl2 we implemented this instantiation and ran it on a phone (typical user device) and a laptop
(approximate issuer device). In Table 1 we focus on the execution time (in ms) of the protocols,
excluding communication cost.

2upb.crypto: https://github.com/upbcuk. mcl: https://github.com/herumi/mcl
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Table 1: Avg. performance of our implementation over 100 runs in milliseconds. Emphasized:
typical execution platform for each algorithm.

Device Issue Join Credit Earn Deduct Spend

Google Pixel (Phone, Snapdragon 821) 56 76 122 110 353 390

Surface Book 2 (Laptop, i7-8650U) 10 13 17 18 64 69
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A Security Definitions for Building Blocks

Definition 18 (Unforgeability). Consider the following unforgeability game Expblind-uf(Π,A, λ)
for a blind signature scheme Π:

• The experiment runs pp ← G(1λ) and hands pp to A. A responds with 1n for some n ∈ N.
The experiment runs (pk, sk)← KeyGen(pp, 1n) and hands pk to A.

• A can query signatures by announcing c, ~m ∈Mn and r such that c = Commit(pp, pk, ~m, r).
The experiment runs BlindSign(pp, pk, sk, c) interacting with A and records ~m.

• Eventually, A outputs ~m∗ and σ∗. The experiment outputs 1 iff Vrfy(pp, pk, ~m∗, σ∗) = 1 and
~m∗ was not recorded in any query.

Π has blind unforgeability if for all ppt A there exists negl such that Pr[Expblind-uf(Π,A, λ) =
1] ≤ negl(λ) for all λ. �

Definition 19 (Perfect msg privacy). A blind signature scheme has perfect message privacy if

• “the commitment scheme is perfectly hiding” : For all ~m0, ~m1 ∈Mn, Commit(pp, pk, ~m0, r0) is
distributed the same as Commit(pp, pk, ~m1, r1) over the random choice of r0, r1.

• “BlindRcv does not reveal the message” : for any two messages ~m0, ~m1 ∈ Mn and all (unre-
stricted) A:

(outputA[A(C0)↔ BlindRcv(pp, pk, ~m0, r0)], χ0)
≈ (outputA[A(C1)↔ BlindRcv(pp, pk, ~m1, r1)], χ1)

where r0, r1 is chosen uniformly at random, Cj = Commit(pp, pk, ~mj , rj) and χj is an indicator
variable with χj = 1 if and only if Vrfy(pp, pk, ~mj , σj) = 1 for the local output σj of BlindRcv
in either case. �

While this definition may seem strong, it is satisfied, for example, by the Pointcheval Sanders
blind signature scheme [PS16], where Commit is a effectively a (perfectly hiding) Pedersen
commitment, Their BlindRcv (in our formulation without zero-knowledge proof) does not send
any messages (meaning the output of A is clearly independent of ~m), and the χj bit (validity of
the resulting signature) is also independent of the committed message.

Definition 20 (Key-indistinguishable CPA). Let ΠE be a public-key encryption scheme. Consider
the following experiment Expkey-ind

b (ΠE ,A, λ) for b ∈ {0, 1}.

• The experiment generates pp ← G(1λ) and two keys KeyGenE(pp)→ sk0, sk1, hands A the pp
and public keys (pk0, pk1) = (ComputePKE(pp, sk0), ComputePKE(pp, sk1)).

• A outputs two messages m0,m1 ∈Mpp.

• A gets EncryptE(pp, pkb,mb) from the experiment and outputs a bit b̂.

We say that ΠE is key-ind. CPA secure if for all ppt A, there exists a negligible function negl
s.t.

|Pr[Expkey-ind
0 (ΠE ,A, λ) = 1]− Pr[Expkey-ind

1 (ΠE ,A, λ) = 1]| ≤ negl(λ)

Definition 21 (Perfectly binding commitment). A (malleable) commitment scheme is perfectly
binding if for all pp ∈ [G(1λ)], pk ∈ [KeyGen(pp)] and all (c, o) ∈ [Commit(pp, pk,m)], there exists
no m′, o′ such that m′ 6= m and Vrfy(pp, pk, c, o′,m′) = 1.
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Definition 22 (Comp. hiding commitment). Let ΠC+ be a malleable commitment scheme.
Consider the following experiment Exphiding

b (ΠC+ ,A, λ).

• pp ← G(1λ), pk ← KeyGen(pp), (m0,m1, st)← A(pp, pk), m0,m1 ∈Mpp

• b̂← A(c, st) where c = Commit(pp, pk,mb)

We say that ΠC+ is comp. hiding if for all ppt A, there exists a negligible function negl s.t.

|Pr[Exphiding
0 (ΠC+ ,A, λ) = 1]− Pr[Exphiding

1 (ΠC+ ,A, λ) = 1]| ≤ negl(λ)

B Security Proof for Updatable Credentials

In this section, we sketch the security proofs for Construction 7.

Theorem 8: Anonymity. We define the simulators as follows:

• SSetup(pp) runs the trapdoor generator of the ZKAK and outputs cpp (which contains pp and
the ZKAK common reference string from the trapdoor generator), and the simulation trapdoor
td.

• SReceive(td, pk, ψ) and SUpdRcv(td, pk, ψ) work very similarly to one another: they both commit
to ~0 as c = CommitS(pp, pk,~0, r) with random r and send c to A. They then simulate the
ZKAK proof (in Receive or UpdRcv) using td. Finally, they runs BlindRcvS(pp, pk,~0, r)→ σ
and compute the bit b = VrfyS(pp, pk,~0, σ). They send b to A.

• SShowPrv(td, pk, φ) simulates the ZKAK.

Given that ΠS has perfect message privacy by assumption, the commitment c and the bit b
computed by the simulator have the same distribution as in Receive or UpdRcv. Simulation of
the zero-knowledge arguments produces the correct view for A by assumption.

Theorem 9: Soundness. We define the algorithm E that is supposed to extract an explanation
list L as follows:

• On input (cpp, rA, rIssue, rUpdate), the extractor EA first runs A with randomness rA and cpp
until A halts.

• For the ith query to Issue, Update, or ShowVrfy in this run, E does the following:
– if it is a query to Issue and the proof of knowledge within Issue is accepting, then E uses

the proof of knowledge extractor to obtain a witness (α, r). It stores αi := α on L. If the
proof of knowledge is not accepting, it stores some arbitrary αi ∈ {0, 1}∗ on L.

– if it is a query to Update and the proof of knowledge within Update is accepting, then E uses
the proof of knowledge extractor to obtain a witness ( ~A, σ, α, r). It stores ( ~Ai, αi) := ( ~A, α)
on L.

– if it is a query to ShowVrfy and the proof of knowledge within ShowVrfy is accepting, then
E uses the proof of knowledge extractor to obtain a witness ( ~A, σ). It stores ~Ai := ~A on L.

• E outputs L.

Since the argument of knowledge extractor runs in expected polynomial time, E runs in expected
polynomial time, too (probability over rA and E ’s random coins).

With this E , the soundness of our updatable credential construction can be reduced to
unforgeability of the underlying blind signature scheme S (Definition 18). Let E be as above.
Let A be an attacker against Expsound. We construct B against Expblind-uf :
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• B runs A with randomness rA

• B receives pp from the unforgeability experiment. B generates cpp from pp and hands cpp to
A. A responds with 1n for some n ∈ N. B hands 1n to its challenger, receiving pk. B hands
pk to A.

• WheneverA queries Issue with update function ψ, B checks the proof of knowledge. If it accepts,
B uses the proof of knowledge extractor to obtain a witness (α, r). B submits ~m := ψ(⊥, α),
r, and c := CommitS(pp, pk, ~m, r) to its challenger, who starts running BlindSignS(pp, pksk, c).
B relays the messages for BlindSignS between its challenger and A.

• Whenever A queries Update with update function ψ, B checks the proof of knowledge. If it
accepts, B uses the proof of knowledge extractor to obtain a witness ( ~A, σ, α, r). If B has
not queried its challenger for ~A before, it outputs ~m := ~A and σ as a forgery. Otherwise, B
submits ~m := ψ( ~A, α), r, and c := CommitS(pp, pk, ~m, r) to its challenger, who starts running
BlindSignS(pp, pksk, c). B relays the messages for BlindSignS between its challenger and A.

• Whenever A queries ShowVrfy with predicate φ, B checks the proof of knowledge. If it accepts,
B uses the proof of knowledge extractor to obtain a witness ( ~A, σ). If B has not queried its
challenger for ~A before, it outputs ~m := ~A and σ as a forgery.

• Eventually, A and halts. B runs EA(cpp, rA, rIssue, rUpdate) (using the same random coins for
E that B used for its extraction of proofs of knowledge, ensuring that the output of E will be
consistent with the values extracted by B before) to obtain L.

• Then B halts.

Analysis: Whenever B outputs a signature forgery, it is guaranteed that the signature is
valid (since they are valid witnesses in a proof of knowledge for a relation that requires signature
validity). If B outputs a forgery during an Update or ShowVrfy query, by construction it has
never asked for the message to be signed before.

It is easy to see that the simulation is perfect. If B does not halt before A halts, the output L
of E necessarily fulfills argument consistency: Suppose for contradiction that L is not consistent,
i.e. there is some index i such that L is inconsistent for that index. Let Ei be as prescribed in
the soundness experiment given L. Note that before the ith query, B has only queried its oracle
for signatures on messages ~A ∈ Ei−1.

• Assume i belongs to an Issue query. By definition i cannot have caused the inconsistency.

• Assume i belongs to an Update query with update function ψi. Then the entry on L is some
( ~Ai, αi). Because i caused the inconsistency, Update has output 1 (implying that B runs the
proof of knowledge extractor and obtained the witness ( ~A, σ, α, r)) and (1) ψi( ~Ai, αi) =⊥
or (2) ~Ai /∈ Ei−1. (1) can be ruled out since ψi( ~Ai, αi) 6=⊥ is guaranteed by the proof of
knowledge statement and hence by its extractor. If (2) happens, then B halts and claims
a forgery (as it has not queried ~Ai to its oracle before), contradicting that B does not halt
before A halts.

• Assume i belongs to a ShowVrfy query with predicate φi. This case is handled analogously to
Update.

So we know that if B does not halt before A halts, then E outputs a consistent L, implying
that Pr[Expblind-uf(ΠS ,B, λ)] ≥ Pr[Expsound(Π,A, E , λ) = 1]. So if for E as defined above, there
exists an adversary A with non-negligible success probability, then there exists B (as defined
above) with non-negligible success probability against the blind signature scheme. By assumption,
such a B does not exist, hence the updatable credential system is sound. (Note that B runs
in expected polynomial time. This can be converted to polynomial time by trading off success
probability using Markov’s inequality.)
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C Concrete Construction from Pointcheval Sanders Blind
Signatures

We present a concrete construction based on Pointcheval Sanders blind signatures [PS16] for
the UACS and ElGamal encryption for the public-key encryption scheme and the additively
malleable commitment. For this, we follow the generic construction of UACS (Construction 7)
and the incentive system (Construction 14) closely with one change: We sign dsid ∈ Zp, but
we encrypt Dsid = wdsid ∈ G1. Hence, when tracing double-spent transactions, one only learns
Dsid∗ = wdsid∗ instead of dsid∗. This is not a restriction since the output of Trace is only needed
to quickly find the corresponding transaction to dsid∗. So in practice, the issuer would store
Dsid instead of dsid for every transaction that he observes, and then use Dsid to quickly find
the transaction pointed at by Trace. Note that the security of the construction is not impacted
(the same security proofs still apply almost verbatim).

Construction 23 (Incentive system from Pointcheval Sanders signatures). Let (KeyGenPS,
CommitPS,BlindSignPS,BlindRcvPS,VrfyPS) denote the Pointcheval Sanders signature scheme
[PS16].

G(1λ)→ pp generates and outputs a type 3 bilinear group pp = (G1,G2,GT, p, e) of prime order
p.

Setup(pp)→ ispp and chooses a random w ← G1 as a shared base for ElGamal encryption ΠE
and g, h ← G1 for the malleable commitment ΠC+ (also ElGamal). Setup also generates a
Pedersen commitment key gDamg̊ard, hDamg̊ard ← G1 and a collision-resistant hash function H,
both for Damg̊ard’s technique [Dam00], enabling efficient simulation of ZKAK protocols. We
omit these values in the following. It outputs ispp = (pp, w, g, h). The maximum point score
is vmax = p− 1.

KeyGen(ispp)→ (upk, usk) generates an encryption key pair by choosing a random usk ← Zp
and computing upk = wusk . It outputs (upk, usk).

IssuerKeyGen(ispp)→ (pk, sk) generates keys (pkPS, skPS)← KeyGenPS(pp, 1n=4). We write the
keys as skPS = (x, y1, . . . , y4) and pkPS = (g, gy1 , . . . , gy4 , g̃, g̃x, g̃y1 , . . . , g̃y4). IssuerKeyGen
outputs pk = pkPS and sk = skPS.

Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid) works as follows:
• The user chooses random dsidusr ← Zp and computes the commitment Cusr = (gdsid

usr ·
hopen , gopen) for a random open ← Zp. It sends Cusr to the issuer.
• The issuer replies with a random dsid isr ← Zp. Both issuer and user compute Cdsid =

(gdsid
usr · hopen · gdsid

isr , gopen).
• The user sets dsid = dsidusr + dsid isr and chooses random dsrnd, r ← Zp, computes

Dsid = wdsid and sends c = (gy1)usk · (gy2)dsid · (gy3)dsrnd · gr to the issuer.
• The user proves ZKAK[(usk, dsid, dsrnd, r, open); c = (gy1)usk ·(gy2)dsid ·(gy3)dsrnd ·gr∧upk =
wusk ∧ Cdsid = (gdsid · hopen , gopen)].
• If the proof is accepted, the issuer sends σ′PS = (σ′0, σ′1) = (gr′ , (c · gx)r′) for a random
r′ ← Z∗p to the user.
• The user unblinds the signature as σPS = (σ′0, σ′1 · (σ′0)−r).

• The user checks VrfyPS(pp, pkPS, (usk, dsid, dsrnd, 0), σPS) != 1. If the checks succeed, it
outputs token = (dsid, dsrnd, v = 0, σPS) and Dsid, otherwise it outputs ⊥.

Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token)→ token∗ for token = (dsid, dsrnd, v, σPS =
(σ0, σ1)) works as follows:
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• The user computes randomized signatures (σ′0, σ′1) = (σr0, (σ1 · σr
′

0 )r) for r ← Z∗p, r′ ← Zp.
He sends σ′0, σ′1 to the issuer.
• The user proves

ZKAK[(usk, dsid, dsrnd, v, r′); VrfyPS(pp, pkPS, (usk, dsid, dsrnd, v), (σ′0, σ′1 · (σ′0)−r′)) = 1]

• If the proof accepts, the issuer sends (σ′′0 , σ′′1) = ((σ′0)r′′ , ((σ′1) · (σ′0)y4·k)r′′) for a random
r′′ ← Z∗p to the user.

• The user unblinds the signature as σ = (σ∗0, σ∗1) = (σ′′0 , σ′′1 · (σ′′0)−r′) and checks VrfyPS(pp,
pkPS, (usk, dsid, dsrnd, v + k), σ∗PS) != 1. If the check succeeds, it outputs token∗ =
(dsid, dsrnd, v + k, σ∗PS), otherwise it outputs ⊥.

(token∗,Dsid∗)← Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(ispp, pk, k, dsid, sk)→ (b, dstag)
where token = (dsid, dsrnd, v, cred) works as follows:
• The user chooses random dsid∗usr ← Zp and computes the commitment Cusr

∗ = (gdsid∗usr ·
hopen∗ , gopen∗) for a random open∗ ← Zp. It sends Cusr

∗ to the issuer.
• The issuer replies with a random dsid∗isr ← Zp and a random challenge γ ← Zp. Both issuer

and user compute Cdsid
∗ = (gdsid∗usr · hopen∗ · gdsid∗isr , gopen∗).

• The user prepares new values dsid∗ = dsid∗usr + dsid∗isr and dsrnd∗ ← Zp for his next token
and computes Dsid∗ = wdsid∗ and C = (gy1)usk · (gy2)dsid∗ · (gy3)dsrnd∗ · (gy4)v−k · grC for a
random rC ← Zp.
• The user computes c = usk · γ + dsrnd.
• The user encrypts Dsid∗ as ctrace = (wr, (wr)usk ·Dsid∗) for a random r ← Zp.
• The user randomizes his credential (σ′0, σ′1) = (σr′′0 , (σ1 · σr

′
0 )r′′) for r′′ ← Z∗p, r′ ← Zp

• The user sends C, c, ctrace, σ′0, σ′1 to the issuer and proves

ZKAK[(usk, dsrnd, v, dsid∗, dsrnd∗, r′, r, rC , open∗);
c = usk · γ + dsrnd

∧VrfyPS(pp, pkPS, (usk, dsid, dsrnd, v), (σ′0, σ′1 · (σ′0)−r′)) = 1
∧v ≥ k

∧ctrace = (wr, (wr)usk · wdsid∗)
∧C = (gy1)usk · (gy2)dsid∗ · (gy3)dsrnd∗ · (gy4)v−k · grC

∧Cdsid
∗ = (gdsid∗ · hopen∗ , gopen∗)]

If the proof fails, the issuer aborts and outputs (0,⊥).
• If the proof accepts, the issuer sends σ′′PS = (σ′′0 , σ′′1) = (gr′′′′ , (C · gx)r′′′′) for a random
r′′′′ ← Z∗p to the user and outputs (1, dstag = (c, γ, ctrace)).
• The user unblinds the signature as σ∗PS = (σ′′0 , σ′′1 · (σ′′0)−rC ).

• The user checks VrfyPS(pp, pkPS, (usk, dsid∗, dsrnd∗, v− k), σ∗PS) != 1. If the check succeeds,
it outputs token∗ = (dsid∗, dsrnd∗, v − k, σ∗PS) and Dsid∗, otherwise it outputs ⊥.

Link(ispp, dstag, dstag′)→ (upk, dslink) given dstag = (c, γ, ctrace) and dstag′ = (c′, γ′, ctrace′),
outputs dslink = (c− c′)/(γ − γ′) and upk = wdslink .

Trace(ispp, dslink, dstag)→ Dsid∗ for dstag = (c, γ, (ctrace0, ctrace1)) computes Dsid∗ = ctrace1·
ctrace−dslink

0 .

VrfyDs(ispp, dslink, upk)→ b outputs 1 iff wdslink = upk.
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D Security Proofs for the Incentive System

D.1 Correctness in the Presence of Adversarial Users

For completeness, we define correctness in the presence of adversarial users here, which rules out
that adversarial users can interfere with operations between honest users and an honest issuer.

Definition 24 (Correctness in the presence of adversarial users). Let Π be an incentive system.
Consider the following experiment Expadv-corr(Π,A, λ):

• The experiment sets up ispp ← Setup(G(1λ)) and calls the oracle pk ← IssuerKeyGen(). It
hands ispp and pk to A.

• A may query the following oracles
– upk 7→ Issue(upk)
– k 7→ Credit(k)↔ A
– k 7→ Deduct(k)↔ A
– s 7→ DBsync(s)
– Keygen()

– u 7→ Join(u, pk)↔ Issue(upku)

– (u, k) 7→ Earn(u, k)↔ Credit(k)

– (u, k) 7→ Spend(u, k) ↔
Deduct(k)

• Eventually, A halts.

• The experiment outputs 1 iff DB contains some dsidu of some honest user u (i.e. user u’s next
spend operation would be detected double-spending as dsidu is already in DB).

We say that Π has correctness in the presence of adversarial users if for all ppt A, there exists
a negligible function negl s.t. Pr[Expadv-corr(Π,A, λ) = 1] ≤ negl(λ) for all λ.

Note that correctness in the presence of adversarial users is not implied by correctness, soundness
and framing resistance. Correctness does not imply anything for the case in which there are
adversarial users. Framing resistance implies that u cannot be blamed for the double-spending (it
may still happen that the online double-spending prevention prevents u from spending his coins).
Soundness implies that after u spends his coin, someone can be blamed for it. This does not rule
out that a corrupted user is able to inject u’s dsid into DB while taking the blame. However,
this would essentially constitute a denial of service attack on u, which is why correctness in the
presence of adversarial users is a desirable property.

Theorem 25. If Zp is super-poly, then ΠInSy (Construction 14) is correct in the presence of
adversarial users (Definition 24).

Proof. Assume there are k dsid entries in DB and ` honest users u at the point where A halts.
For honest users, dsidu is uniformly random in Zp by construction. Furthermore, A’s view is
independent of the current (dsidu)u honest as none of the oracles output any information about
them. So the probability that some dsidu is one of the k dsid in DB is at most ` · k/|Zp|, which
is negligible as ` and k are polynomial and |Zp| is super-poly.

D.2 Incentive System Anonymity

In the following we proof Theorem 15. For the proof of the theorem we have to look at the
experiment Expanon-X (Fig. 3) instantiated for the incentive system ΠInSy. On a high level,
in ΠInSy the important information for anonymity are the user specific values. Ignoring the
commitments and ciphertexts, we could solely rely on the simulatability of the protocols to proof
the theorem. However, the commitment and encryption scheme only guarantees computationally
hiding and key-ind. CPA security.
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Lemma 26. If ΠC has simulation anonymity (Definition 5), then for all ppt algorithms A it
holds that |Pr[Expanon-Earn

0 (ΠInSy,A, λ) = 1]− Pr[Expanon-Earn
1 (ΠInSy,A, λ) = 1]| = 0.

Proof. We have to show that we can simulate the experiment and especially the challenge phase
independent of b. Since ΠC satisfies simulation anonymity (Definition 5), there are ppt algorithms
SSetup,SReceive,SShowPrv,SUpdRcv. Therefore, we can perfectly simulate the setup by running
SSetup. Next, observe that we can honestly execute the oracles as in the experiment, since we
know all inputs of the users. In the challenge phase the experiment executes Earn↔ A, where
Earn is an execution of UpdRcvC ↔ A. We can perfectly simulate Earn in the challenge phase
independent of b by running SUpdRcv ↔ A.

In the Spend case of experiment Expanon-Spend
b (ΠInSy,A, λ) we have to look at the Spend ↔

Deduct protocol of ΠInSy (Construction 14), since the setup and challenge phase of Expanon-Spend
b

executes Spend(ub, k)↔ A. In the challenge phase the adversary A is asked to guess which of
the users u0, u1 that he picked before executed the Spend protocol.

Let us first state where ΠC+ and ΠE are used. During Spend ↔ Deduct the issuer (in
Expanon-Spend

b the adversary) gets commitments (generated with ΠC+) from the users during the
combined generation of a fresh dsid∗ = dsid∗usr +dsid∗isr, where the user commits to a dsid∗usr ← Zp
and the issuer provides his dsid∗isr ∈ Zp.

Also during Spend ↔ Deduct, the user encrypts dsid∗ under his user public key upkE as
ctrace ← EncryptE(pp, upkE , dsid∗). Here the adversary could break anonymity by distinguishing
which user public key was used to encrypt or the breaks CPA security.

Remember that the adversary A in Expanon-Spend
b (ΠInSy,A, λ) can query the spend oracle

Spend(u, k) for user u and spend value k in the setup and challenge phase. In each of the oracle
executions he learns the dsid of the token that the user spends. This means that Spend executions
in the setup phase and the execution in the challenge phase are implicitly linked. In detail, A
chooses users u0, u1 in the challenge phase. Then in the challenge phase Spend, A learns the
dsid∗b to a commitment C∗b and encryption ctraceb he received during the last Spend execution in
the setup phase with either u0 or u1. If he could link the information, he would break anonymity.
Let us quickly deal with the easy case where A never triggered a spend operation during the
setup phase, then the dsid∗ that he gets during the challenge Spend is a fresh random value from
Zp w.h.p..

For the rest of the proof we will change the challenge phase. In detail, we change in the
challenge Spend execution which dsid∗b the adversary A gets (index i in the following) and how
the encryption ctrace that A receives is generated (index j in the following). Therefore, we define
experiments Hi,j where i, j ∈ {0, 1}.

Let H0,0 = Expanon-Spend
0 (ΠInSy,A, λ) and H1,1 = Expanon-Spend

1 (ΠInSy,A, λ). In H0,0 the
adversary gets in the challenge phase one execution of Spend with user u0 where A receives
dsid∗0 (j = 0). Therefore, the only important Spend execution of the setup phase is the last
execution with user u0 (i = 0) where A gets the commitment C∗0 = CommitC+(pp, pkC+ , dsid∗usr)
and encryption ctrace0 = EncryptE(pp, upkE,0, dsid∗0), where dsid∗0 = dsid∗usr + dsid∗isr. H1,1
is analogous. To show |[Pr[H0,0 = 1] − Pr[H1,1 = 1]]| ≤ negl we also define an intermediate
experiment H0,1 and prove that |Pr[H0,0 = 1]−Pr[H0,1 = 1]| ≤ negl and |Pr[H0,1 = 1]−Pr[H1,1 =
1]| ≤ negl. In H0,1 we output dsid∗0 in the challenge Spend execution, where dsid∗0 was determined
and used in the previous Spend execution (part of the setup phase) with user u0. The change
is that we no longer also output an encryption of dsid∗0 under upkE,0. Instead, we output
ctrace′ = EncryptE(pp, upkE,1, dsid∗1), where dsid∗1 was determined and used in the previous Spend
execution (part of the setup phase) with user u1. The public key upkE,1 is also the one of user u1.

Lemma 27. If ΠC has simulation anonymity and ΠE is key-ind. CPA secure, then for all ppt A,
|(Pr[H0,0(A) = 1]− Pr[H0,1(A) = 1])| = negl(λ) for all λ ∈ N.
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Proof. Assume that adversary A distinguishes H0,0, H0,1 with non-negligible probability. We
give a reduction B using A to key-indistinguishable CPA security (Definition 20) of ΠE . In the
reduction B we get from Expkey-ind

b (ΠE ,A, λ) (b ∈ {0, 1}) two public keys that B injects as two user
public keys upkE,0 and upkE,1 by guessing one pair of the users that A can choose in the challenge
phase of H0,b. Since ΠC guarantees simulation anonymity (Definition 5) and c = usk ·γ+ dsrnd is
perfectly hiding, the reduction B can simulate the setup of the incentive system and the oracles
Keygen,Join,Earn,Spend of H0,b for two users u0, u1 that we choose before. For all other
users B executes the oracles honestly as in the experiment. If A outputs two users that are
not our guess u0, u1, then B aborts. This happens with probability 1− 1

poly(λ)2 . Otherwise, in
the challenge phase with A, Spend is changed in B as described above. In detail, B gives the
Expkey-ind

b challenger dsid∗0 and dsid∗1 (both from the latest token of the users u0, u1 from the setup
phase) and outputs the answer of the challenger as the encryption for A. Eventually, A outputs his
guess b̂ which B outputs to the Expkey-ind

b challenger. Consequently, |Pr[Expkey-ind
0 (ΠE , B, λ) =

1]− Pr[Expkey-ind
1 (ΠE , B, λ) = 1]| = 1

poly(λ)2 · |(Pr[H0,0(A) = 1]− Pr[H0,1(A) = 1])|.

Next, we look at |Pr[H0,1 = 1]− Pr[H1,1 = 1]|. From H0,1 to H1,1 we change which dsid∗b the
adversary receives during the challenge Spend execution. Either dsid∗0 that is part of the latest
token of the user u0 or dsid∗1 from the latest token of user u1. As described above the adversary
receives commitments and encryptions for dsid∗b corresponding to the latest token of the users.
Remember, H1,1 = Expanon-Spend

1 (ΠInSy,A, λ).

Lemma 28. If ΠC guarantees simulation anonymity, ΠE is key-indistinguishable CPA secure,
ΠC+ is computational hiding, then for all ppt adversaries A it holds that |(Pr[H0,1(A) =
1]− Pr[H1,1(A) = 1])| = negl

Lemma 28 follows from the following lemmas. First, we define a helper experiment Gbu,v,x,y(D,λ)
for u, v, x, y ∈ {0, 1} that we will use in the following lemmas.

Gb
u,v,x,y(D, λ) :
• pp ← G(1λ)
• pkC+ ← KeyGenC+(pp)
• sk0, sk1 ← KeyGenE() and pk0, pk1 ← ComputePKE(pp)
• Hand D pp, pkC+ , pk0, and pk1

• Choose two messages m0,m1 ←Mpp

Phase 1:
• Hand D the commitment Cu where CommitC+(pp, pkC+ ,mu)→ (Cu,Open)
• Receive share ∈Mpp from D

• Hand D the encryption Sv ← EncryptE(pp, pkv,mv + share)
Phase 2:
• Hand D the commitment Cx where CommitC+(pp, pkC+ ,mx)→ (Cx,Open)
• Receive share′ ∈Mpp from D

• Hand D the encryption Sy ← EncryptE(pp, pky,my + share′)
Challenge:
• Hand D message mb

• Receive b̂ from D

• Output 1 iff b̂ = b

Lemma 29. If ΠC guarantees simulation anonymity, ΠE is key-indistinguishable CPA secure,
ΠC+ is computational hiding, then there is an ppt reduction D such that for all ppt adversaries
A it holds that |Pr[G0

0,0,1,1(D,λ) = 1] − Pr[G1
0,0,1,1(D,λ) = 1]| = 1

polyλ · |Pr[H0,1(A) = 1] −
Pr[H1,1(A) = 1]|.
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Proof. Assume that an adversary A distinguishes H0,1 and H1,1, then we can give an reduction
D that distinguishes G0

0,0,1,1(D,λ) and G1
0,0,1,1(D,λ).

In the following we define D against Gb0,0,1,1(D,λ) using A. To shorten the proof, in D the
guessing of two users u0, u1 to inject the public keys given by Gb0,0,1,1(D,λ) and the handling of the
oracle queries is analogous to B. The last Spend query by A for user u0 is answered with the help
of Phase 1 in Gb0,0,1,1(D,λ) and the rest of Spend simulated. From Phase 1 D uses the commitment
Cu instead of generating a commitment to a fresh dsidusr. In Spend, A hands D (acting as the
user) a dsid isr that D hands itself to Gb0,0,1,1(D,λ) (Phase 1) as share. The encryption that D gets
from Phase 1 is used as the encryption ctrace in Spend. For the last Spend query by A for user
u1 reduction D acts analogous with the difference that D uses Phase 2. Eventually A enters the
challenge phase and outputs two user handles. If the handles are not the one that D guessed, then
abort. Otherwise, D simulates a Spend withA where D is supposed to sendA the dsid of the latest
token of the challenged user. Hence, D sends the message mb that D received in the challenge
phase of Gb0,0,1,1(D,λ) instead. If A outputs b̂, D also outputs b̂ to Gb0,0,1,1(D,λ). Overall,
|Pr[G0

0,0,1,1(D,λ) = 1]−Pr[G1
0,0,1,1(D,λ) = 1]| = 1

polyλ · |Pr[H0,1(A) = 1]−Pr[H1,1(A) = 1]|.

It is left to show that for all ppt algorithms E it holds that |Pr[G0
0,0,1,1(E, λ) = 1] −

Pr[G1
0,0,1,1(E, λ) = 1]| ≤ negl. Remember, in Gbu,v,x,y(D,λ) the bits (u, v) determine Phase

1, (x, y) Phase 2, and b determines the output message mb at the end of the experiment. In detail,
the bits u and x determine the messages for the commitments; the bits v and y determine the
messages and public keys for the encryption. In Figure 5 we show an overview of the following
proof steps, where Phase 1 and Phase 2 points to the point where we introduce a change to the
previous game and “key-ind. CPA” respectively “comp. hiding” is the security guarantee that
we use in the reduction.

Lemma 30. It holds that G0
1,1,0,0 = G1

0,0,1,1.

Proof. This is the last step presented in Figure 5. The lemma follows from the following
observation. Since the experiment Gu,v,x,y chooses the challenge messages itself, the order of the
Phases can be switched without changing the game while also changing the challenge message
from m0 to m1. Changing order of the Phases is the same as replacing mu,mv,mx, and my by
m1−u, m1−v,m1−x, and m1−y.

Lemma 31. If ΠE is key-indistinguishable CPA secure, then for all ppt adversaries E it holds
that
|Pr[G0

0,0,1,1(E, λ) = 1]− Pr[G0
0,1,1,1(E, λ) = 1]| = negl(λ).

Proof. We show that if there is an adversary E s.t. |Pr[G0
0,0,1,1(E, λ) = 1]−Pr[G0

0,1,1,1(E, λ) = 1]|
is non-negligible, than we can give an reduction RPhase 1

ki-cpa that breaks key-ind. CPA (Definition 20,
Expkey-ind

b (ΠE , RPhase 1
ki-cpa , λ)) using E.

RPhase 1
ki-cpa gets from its experiment Expkey-ind

b public parameters pp and two encryption scheme
public keys pk0, pk1. RPhase 1

ki-cpa generates honestly a commitment public key pkC+ and hands E pkC+

and the received pp, pk0, pk1 as in G0
0,v,1,1. Next, RPhase 1

ki-cpa chooses two messages m0,m1 ←Mpp,
generates a commitment to m0 for Phase 1 as in G0

0,v,1,1. RPhase 1
ki-cpa sends the Phase 1 commitment

to E and gets share ∈ Mpp back. Next, RPhase 1
ki-cpa hands m∗0 = m0 + share and m∗1 = m1 + share

G0
0,0,1,1 G0

0,1,1,1 G0
0,1,1,0 G0

1,1,1,0 G0
1,1,0,0 G1

0,0,1,1Phase 1

key-ind. CPA

Phase 2

key-ind. CPA

Phase 1

comp. hiding

Phase 2

comp. hiding ≡

Figure 5: Sequence of games for anonymity proof
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to Expkey-ind
b and gets S ← EncryptE(pp, pkb,m∗b) back. Phase 2 is executed by RPhase 1

ki-cpa as in
the experiment G0

0,v,1,1 (commitment to m1 and encryption of m1 + share′). In the challenge
phase, RPhase 1

ki-cpa hands the message m0 to E and receives E’s guess b̂ that RPhase 1
ki-cpa also outputs

to Expkey-ind
b .

Observe that RPhase 1
ki-cpa perfectly simulates the view of E in G0

0,0,1,1 if RPhase 1
ki-cpa acts in the exper-

iment Expkey-ind
0 . The same holds for the view of E in G0

0,1,1,1 if RPhase 1
ki-cpa acts in the experiment

Expkey-ind
1 . Consequently, |Pr[Expkey-ind

0 (ΠE , RPhase 1
ki-cpa , λ) = 1]− Pr[Expkey-ind

1 (ΠE , RPhase 1
ki-cpa , λ) =

1]| = |Pr[G0
0,0,1,1(E , λ) = 1]− Pr[G0

0,1,1,1(E , λ) = 1]|.

Lemma 32. If ΠE is key-indistinguishable CPA secure, then for all ppt adversaries E it holds
that
|Pr[G0

0,1,1,1(E, λ) = 1]− Pr[G0
0,1,1,0(E, λ) = 1]| = negl(λ).

The reduction RPhase 2
ki-cpa to show the above lemma works analogous to RPhase 1

ki-cpa with the difference
that in RPhase 2

ki-cpa we use the encryption challenge of Expkey-ind
b (ΠE , RPhase 1

ki-cpa , λ) in Phase 2.

Lemma 33. If ΠC+ is computational hiding, then for all ppt adversaries F it holds that
|Pr[G0

0,1,1,0(F, λ) = 1]− Pr[G0
1,1,1,0(F, λ) = 1]| = negl.

Proof. In the following we show that if there is an adversary F such that |Pr[G0
0,1,1,0(F, λ) =

1]− Pr[G0
1,1,1,0(F, λ) = 1]| is non-negligible, than we can give an reduction RPhase 1

hiding that breaks
comp. hiding of the commitment scheme ΠC+ (Definition 22, Exphiding

b (ΠC+ , RPhase 1
hiding , λ)) using

F .
RPhase 1

hiding gets from its experiment Exphiding
b public parameters pp and a commitment scheme

public key pkC+ . RPhase 1
hiding generates honestly two encryption public keys pk0, pk1 as in G0

u,1,1,0.
hands F pk0, pk1 and the received pp, pk as in G0

u,1,1,0. Next, RPhase 1
hiding chooses two messages

m0,m1 ←Mpp, hands both to Exphiding
b , and gets Cb ← CommitC+(pp, pkC+ ,mb) back. RPhase 1

hiding
outputs Cb as the Phase 1 commitment to F . The rest of Phase 1 and Phase 2 are executes by
RPhase 1

hiding honestly as in the experiment G0
u,1,1,0. In the challenge phase, RPhase 1

hiding hands F the
message mb and receives F ’s guess b̂. RPhase 1

hiding also outputs b̂ to Exphiding
b . Observe that RPhase 1

hiding
perfectly simulates the view of F in Exphiding

b . Consequently, |Pr[Exphiding
0 (ΠC+ , RPhase 1

hiding , λ) =
1]− Pr[Exphiding

1 (ΠC+ , RPhase 1
hiding , λ) = 1]| = |Pr[G0

0,1,1,0(F, λ) = 1]− Pr[G0
1,1,1,0(F, λ) = 1]|.

Lemma 34. If ΠC+ is computational hiding, then for all ppt adversaries F it holds that
|Pr[G0

1,1,1,0(F, λ) = 1]− Pr[G0
1,1,0,0(F, λ) = 1]| = negl.

The reduction RPhase 2
hiding to show the above lemma works analogous to RPhase 1

hiding with the difference
that in RPhase 2

hiding we use the commitment challenge of Exphiding
b (ΠE , RPhase 2

hiding , λ) in Phase 2.
This concludes the proof of Lemma 28 and therefore of Theorem 15.

D.3 Incentive System Soundness

Theorem 16. Let A be an attacker against incentive system soundness of Construction 14. We
construct B against updatable credential soundness of ΠC .

• B receives cpp from its challenger. B replies with 14 to receive pk. It completes the setup by
choosing pkC+ ← KeyGenC+(pp). Then B simulates the query to IssuerKeyGen(): instead
of running IssuerKeyGen, B uses its challenger’s key pk as the query result. B outputs
ispp = (pp, cpp, pkC+) and pk to A.

• Oracle queries by A are simulated by B as prescribed by the protocol with one exception:
whenever the original protocol would run IssueC or UpdateC , B instead queries its challenger
for the corresponding operation and relays protocol messages between the challenger and A.
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• Eventually A halts. Then B halts as well.

Obviously, the view of A is the same whether it interacts with the incentive system soundness
challenger or with B.

Let error be the event that (1) B has output the same challenge δ in two different Deduct
runs, or (2) there were two commitments Cdsid, Cdsid

′ in two runs of Deduct or Issue such that
the commitments can be opened to two different messages. Note that C+ is perfectly binding by
assumption and so every commitment opens to at most one value (which B cannot necessarily
efficiently compute, but as an event, this is well-defined).

It holds that Pr[error] ≤ negl(λ) because (1) in each Deduct query, δ is chosen uniformly
random by B from the super-poly size set Zp, and (2) Cdsid is the result of an AddC+ operation
with a uniformly random value dsid isr ← Zp chosen by B, hence it opens (only) to a uniformly
random value.

Let Awinstrace be the event that DB contains some (upk, dslink) s.t. VrfyDs(ispp, dslink, upk) 6=
1 or upk /∈ U . Let Awinsoverspend be the event that vspent − vinvalid > vearned and DBsync(s)
has been queried for all spend handles s. Let Awins be the event that A wins the game,
Awinstrace ∨Awinsoverspend. Lemma 35 will show that if Awins∧¬error occurs, then there exists
no explanation list L that is consistent, implying Pr[Expsound(Π,B, E , λ) = 1 | Awins∧¬error] = 1.
Overall, let E be an algorithm, then

Pr[Expsound(ΠC ,B, E , λ) = 1]
≥Pr[Expsound(ΠC ,B, E , λ) = 1 | Awins ∧ ¬error] · Pr[Awins ∧ ¬error]
=1 · Pr[Awins ∧ ¬error] ≥ Pr[Awins]− Pr[error]
= Pr[Expsound(ΠInSy,A, λ) = 1]− Pr[error].

Consequently, because Pr[Expsound(ΠC ,B, E , λ) = 1] is negligible by assumption, it follows that
Pr[Expsound(ΠInSy,A, λ) = 1] must be negligible.

Lemma 35. If Awins ∧ ¬error, then no explanation list is consistent (cf. Theorem 16 and
Definition 6).

Proof. We prove the statement by showing that if ¬error and there exists a consistent explanation
list L, then ¬Awins. Let L be a consistent explanation list and let Ei be the corresponding sets
of explained attribute vectors (cf. Definition 6).

For ease of reasoning in all the following lemmas, we represent the explanation list as a
bipartite directed graph G (cf. Figure 6). The graph contains (1) one node ~A for every explained
attribute vector ~A ∈

⋃
iEi and (2) nodes for Issue,Credit,Deduct queries: If the ith query

is an Issue(upk) query, there is a node i. If the ith query is a Credit(k) query for which the
UpdateC operation outputs 1 for the issuer, there is a node i. If the ith query is an s← Deduct(k)
query for which the UpdateC operation outputs 1 for the issuer, there is a node i.

An Issue node i has an outgoing edge to the attribute vector ψi(⊥, αi), where ψi is the update
function used within the ith query and αi is as supplied by L. A Credit or Deduct node i
has an incoming edge from attribute vector ~Ai and an outgoing edge to ψi( ~Ai, αi), where ψi
is the update function used within this query and ~Ai, αi are as supplied by L. We call ~Ai the
predecessor and ψi( ~Ai, αi) the successor of a Credit Deduct node i.

We say that a Deduct node i is marked invalid if its corresponding transaction in the
double-spend database DB is marked invalid. Otherwise, the node is valid.

Lemma 36 shows that ¬Awinstrace and Lemma 37 shows that ¬Awinsoverspend. Hence ¬Awins.

For all of the following lemmas, we are in the setting of Lemma 35, i.e. we assume that ¬error
happens and L is consistent.
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Lemma 36. ¬Awinstrace holds (i.e. DB contains no (upk, dslink) with VrfyDs(ispp, dslink,
upk) 6= 1 or upk /∈ U)

Proof. First, note that any output (upk, dslink) of Link by definition fulfills the VrfyDs check. The
“upk ∈ U” part remains to be shown. Assume that at some point, (upk, dslink) was associated
with dsid in DB. Lemma 45 states there exists a node ~A = (usk, dsid, dsrnd, ·) in G with
usk = dslink.

Lemma 41 implies that ~A is reachable from some Issue node. Let upk ′ be the public key
added to U by the Issue oracle call. Let ~A′ = (usk ′, dsid ′, dsrnd ′, 0) be the successor to that
Issue node. Since ~A is reachable from ~A′, we have usk ′ = usk (no update function ever changes
the user secret). Because the Issue update function checks ComputePKE(pp, usk ′) != upk ′, and
upk = ComputePK(pp, dslink) = ComputePK(pp, usk) by definition of DBsync we have upk = upk ′.
So it holds that upk was added to U .

Lemma 37. ¬Awinsoverspend holds (i.e. vspent − vinvalid ≤ vearned).

Proof. Assume that DBsync(s) has been queried for all spend handles s. For any subgraph H
of G, we define vspent(H) =

∑
(i,Deduct)∈H ki, vearned(H) =

∑
(i,Credit)∈H ki, and vinvalid(H) =∑

(i,Credit)∈H;i invalid ki. Note that these are consistent with vspent, vearned, vinvalid in the incentive
system soundness game, i.e. vspent = vspent(G), vearned = vearned(G), and vinvalid = vinvalid(G).

Every weakly connected component of G contains a simple path starting at an Issue node
that contains all valid Deduct nodes within that component and no invalid Deduct nodes
(Lemma 38). We obtain the subgraph G′ of G as the (disjoint) union of these paths (one for each
weakly connected component). As we have removed all invalid Deduct nodes but preserved
all valid ones, we have vspent(G′) = vspent(G) − vinvalid(G). Because every weakly connected
component G′′ in G′ is a path starting at an Issue node, we have that vspent(G′′) ≤ vearned(G′′)
(Lemma 46). Because this holds for every weakly connected component G′′ of G′, we have
vspent(G′) ≤ vearned(G′). Also, obviously vearned(G′) ≤ vearned(G) by the subgraph property.

Overall, vspent(G)− vinvalid(G) = vspent(G′) ≤ vearned(G′) ≤ vearned(G)

Lemma 38. Every weakly connected component of G contains a simple path containing all
valid Deduct nodes within that component and no invalid Deduct nodes.

Proof. Let G′ be a weakly connected component in G. By Lemma 41, G′ contains a single Issue
node. Let j be the numerically largest index such that j ∈ G′ is a valid Deduct node (if no
such j exists, the lemma’s statement holds trivially). Because of Lemma 41, there exists a path

0 : Issue (usk0, dsid0, dsrnd0, 0) 1 : Credit (usk0, dsid0, dsrnd0, v1)

4 : Credit (usk0, dsid0, dsrnd0, v4)

2 : Deduct

(usk0, dsid2, dsrnd2, v2) (usk0, dsid3, dsrnd3, v3)

3 : Deduct
(invalid in DB)

Figure 6: Example explanation graph G as in Lemma 35 (but with only one user).
The bold graph elements form the “canonical” path (Lemma 38) containing all valid deduct
operations; all other nodes are removed in Lemma 37, ensuring vspent(G′) = vspent(G) −
vinvalid(G) and vearned(G′) ≤ vearned(G).
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P from the Issue node to j. We show that P contains all valid Deduct nodes and no invalid
nodes.

Assume for contradiction that P contains an invalid node. Then j would be invalid as well
(Lemma 42), as it is reachable from that invalid node. Hence P does not contain invalid nodes.

Assume for contradiction that some Deduct node j′ is valid but not on P . j′ is reachable
from the Issue node (Lemma 41) via some path P ′. P and P ′ start at the same node but j
is not on P ′ (because j′ < j by maximal choice of j and operation indices are monotonously
increasing on any path (Lemma 39). Because j′ is not on P and j is not on P ′, neither path is a
prefix of the other, so there exists a node that differs on the two paths. Let ~A be the last node
on P and P ′ before the first node that differs (note that this must be an attribute vector node as
the operation nodes have out-degree 1 by definition). Let i be the first Deduct node after ~A
on P and let i′ be the first Deduct node after ~A on P ′. Because i and i′ are the first Deduct
operation on each path (i.e. only Credit operations happen between ~A and i or i′), we have
that dsidi = dsidi′ (where dsid` is the dsid that was revealed during the `th query). From the
definition of DBsync, it is easy to see that i or i′ must have been marked invalid (at most one
transaction per dsid is valid). Since i is on P , it is valid. Hence i′ must be invalid. Because j′ is
reachable from i′ (via P ′), j′ must be invalid (Lemma 42)

Lemma 39. For any path in G, the indices of Issue and Deduct nodes on the path are strictly
monotonously increasing.

Proof. Let P be a path and let j and i be Deduct nodes on the path in that order (in the
following, j could also be an Issue node) so that there are no other Deduct nodes between
them on the path. Assume for contradiction that i ≤ j. Let ψi, ~Ai = (uski, dsidi, dsrndi, vi), αi
be the “input” values for query i (as defined by L). Because L is consistent, there is some Issue
or Deduct node i′ < i that creates attribute vectors with dsidi. However, there is a path from
j to i that involves only Credit and attribute vector nodes. This implies that the dsid in j’s
successor node is dsidi. This means that j 6= i′ are associated with the same dsid, contradicting
¬error (cf. Lemma 35).

Lemma 40. G is acyclic.

Proof. Assume there exists a cycle C. C cannot contain Issue nodes as they have in-degree
0. Because of Lemma 39, C cannot not contain any Deduct nodes. This means that the only
oracle nodes on the cycle are Credit nodes. In turn, this implies that all ~A = (usk, dsid, dsrnd, v)
nodes on the cycle share the same usk, dsid, dsrnd (as those are not changed by Credit). Credit
strictly increases v, but on a cycle we would have to see a Credit node that decreases v or leaves
it unchanged. Hence there are also no Credit on the cycle. Overall, there are only attribute
vector nodes on the cycle, but there are no edges between attribute vector nodes, contradicting
the existence of the cycle.

Lemma 41. Every weakly connected component of G contains exactly one Issue node. Fur-
thermore, every node in G is reachable from (exactly one) Issue node.

Proof. Let v be a node in G. Because G is acyclic (Lemma 40), the process of walking edges
backwards from v eventually stops. It cannot stop at an attribute vector node (since every
attribute vector node has in-degree at least 1 by consistency of L) and it cannot stop at a Credit
or Deduct node (as those have in-degree 1), hence it must stop at an Issue node. So v can be
reached from some Issue node.

Assume for contradiction that some weakly connected component contains two Issue nodes
v0, v1. By choice of our update functions, all attribute vector nodes ~A = (usk, dsid, dsrnd, v)
reachable from a Issue node have the same usk (because no update ever changes usk). Further-
more, there are no two Issue nodes with the same usk (since Issue(upk) can only be called once
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per upk and ComputePK is injective). As a consequence, every node is reachable from exactly
one Issue node.

If we partition the attribute vector nodes in the weakly connected component into those that
are reachable from v0 and those that are reachable from v1, there must be some path (of the
form ~A0 → i→ ~A1) from some ~A0 reachable from v0 to some ~A1 reachable from v1 or vice versa
(otherwise the graph cannot be weakly connected). However, then ~A1 (or ~A0) is reachable from
v0 and from v1, contradicting our previous result. This implies that every weakly connected
component contains at most one Issue node. Furthermore, every weakly connected component
contains at least one node, which is reachable from some Issue, meaning that it also contains at
least one Issue node.

Lemma 42. If DBsync(s) has been queried for all spend handles s, then every Deduct node
that is reachable from an invalid Deduct node is invalid.

Proof. Let i, j be Deduct nodes such that i is invalid and j is reachable from i with no further
Deduct nodes on the path P between i and j. If we can show that j is invalid, transitivity
implies the statement for all j′ reachable from i.

Because P does not contain (intermediate) Deduct nodes, all attribute vector nodes on P
have the same usk, dsid, dsrnd. dsid is input to j’s oracle query. Let dstagi = (c, γ, ctrace) be
the double-spend tag output by Deduct in query i. Because of the update function used in query
i, it holds that DecryptE(pp, usk, ctrace) = dsid.

We distinguish two cases: ti is marked invalid before tj was added to DB or vice versa. Assume
ti was marked invalid before tj was added to the graph. When ti was marked invalid, the successor
node dsid is added to DB (Lemma 43). When tj is added to the database afterwards, its input
dsid is already in the database, hence tj is immediately marked invalid. Assume that ti was
marked invalid after tj was added to DB. When tj is added, dsid and an edge (dsid, tj) is added
to DB. Afterwards, at some point ti is marked invalid. During this process, the edge (ti, dsid) is
added to DB (Lemma 43) and because (dsid, tj) is in the graph, tj is marked invalid.

Hence in both cases, tj is marked invalid at some point.

Lemma 43. Let ti be some transaction node in DB and let i be the corresponding Deduct
node in G with successor ~A∗ = (usk∗, dsid∗, dsrnd∗, ·). After ti is marked invalid, the successor
of ti in DB is dsid∗.

Proof. Since ti is marked invalid, ti’s predecessor dsid in DB is correctly associated with
some (upk, dslink) (Lemma 45). In particular, i’s predecessor ~A = (usk, dsid, dsrnd, v) in
G must have dslink = usk. Let ~A∗ = (usk∗, dsid∗, dsrnd∗, v∗) be i’s successor. Let dstag =
(c, γ, ctrace) be the dstag associated with i’s oracle query. Because of consistency of L, we
have DecryptE(pp, usk, ctrace) = dsid∗. When ti is marked invalid, DBsync computes dsid∗ =
Trace(pp, dslink, dstag) = DecryptE(pp, usk, ctrace) = dsid∗ and makes dsid∗ the successor to
ti.

Lemma 44. For any two attribute vectors ~A0 = (usk0, dsid0, dsrnd0, v0) and ~A1 = (usk1, dsid1,
dsrnd1, v1) in G, it holds that if dsid0 = dsid1, then usk0 = usk1 and dsrnd0 = dsrnd1.

Proof. Because of ¬error, there is a unique Issue or Deduct node i whose successor ~A∗ =
(usk∗, dsid∗, dsrnd∗, v0) contains dsid∗ = dsid0 = dsid1. Because i is unique in this regard,
both ~A0 and ~A1 are reachable from i on paths P0, P1 that contains only Credit and attribute
vector nodes. Since Credit does not change usk or dsrnd, we get that usk0 = usk1 = usk∗ and
dsrnd0 = dsrnd1 = dsrnd∗.

Lemma 45. We say that a node dsid in DB is “correctly associated” with (upk, dslink) if there
exists (usk ′, dsid ′, dsrnd ′, ·) in G with dsid ′ and dslink = usk ′ and for all (usk ′, dsid ′, dsrnd ′, ·) in
G with dsid ′, we have that dslink = usk ′. All nodes dsid in DB that have some value associated
with them are correctly associated.
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Proof. Let dsid be some node in DB that has been associated with some value (upk, dslink). We
prove the claim essentially via induction: We first show that if (upk, dslink) was computed when
adding a second transaction to dsid to DB, then it is correctly associated. We then show that if
dsid has been correctly associated with (upk, dslink), then copying the value to some dsid∗ in the
“when ti is marked invalid” trigger correctly associated (upk, dslink) to dsid∗. In each case, it
suffices to show that dslink = usk for some (usk, dsid, dsrnd, ·) in G, as Lemma 44 then implies
that this holds for all attribute vector nodes with dsid.

To show the first statement, let ti be a transaction node in DB with predecessor dsid and
assume tj with the same predecessor is added to DB by DBsync. Let dstagi, dstagj be their
dstags. Let i, j be the Deduct nodes in G corresponding to ti and tj , respectively3. Let
~Ai = (uski, dsidi, dsrndi, vi) and ~Aj = (uskj , dsidj , dsrndj , vj) be the predecessors of i and j
in G, respectively. It holds that dsidi = dsidj = dsid by consistency of L (since equality
with dsid is checked by the update function). Because dsidi = dsidj , we get uski = uskj
and dsrndi = dsrndj (Lemma 44). Because of consistency of L, necessarily dstagi = (ci =
uski · γi + dsrndi, γi, ctrace) and dstagj = (cj = uskj · γj + dsrndj , γj , ctrace) (as enforced by
the update function). Since uski = uskj and dsrndi = dsrndj and γi 6= γj (as implied by
¬error), we get dslink = (ci − cj)/(γi − γj) = uski. Hence dslink = uski for our attribute vector
(uski, dsidi, dsrndi, vi) in G.

To show the second statement, let ti be a transaction that is marked invalid. Let dsid be its pre-
decessor (which is by assumption correctly associated with (upk, dslink)). Let dstag = (c, γ, ctrace)
be the associated dstag for ti. Let dsid∗ = Trace(ispp, dslink, dstag) = DecryptE(pp, dslink, ctrace)
be ti’s successor. We show that dsid∗ is correctly associated with (upk∗, dslink∗). Let (usk, dsid,
dsrnd, ·) be the predecessor of i in G. By assumption it dsid is correctly associated, hence
usk = dslink. Let (usk ′, dsid ′, dsrnd ′, ·) be the successor of i in G. By consistency of L,
DecryptE(pp, usk = dslink, ctrace) = dsid ′ as guaranteed by the update function ψ. Hence
dsid ′ = dsid∗. Because usk = usk ′ = dslink, we have that (usk, dsid∗, dsrnd ′, ·) in G contains
dsid∗ and dslink = usk, implying that dsid∗ is correctly associated with (upk, dslink).

Lemma 46. On every path P in G starting at some Issue node, it holds that vspent(P ) ≤
vearned(P ).

Proof. Let (usk, dsid, dsrnd, v) be the successor (in G) of the last Deduct node on P . By design
of our update functions, it is easy to see that v ≤

∑
i∈P is Credit node ki−

∑
j∈P is Deduct node kj =

vearned(P )− vspent(P ). (the inequality is usually an equality, assuming that there is no Credit
operation where adding k to the current v exceeds vmax = p − 1. If the latter happens, the
integers will wrap around and result in the smaller v′ = v + k mod p) Also by design of the
update functions, it holds that v ≥ 0. Hence vearned(P )− vspent(P ) ≥ 0.

D.4 Incentive System Framing Resistance

Theorem 17. Let A be a ppt adversary against framing resistance of our incentive system.
Without loss of generality, we assume that A always outputs some actual user’s handle u in the
challenge phase. Let k be a (polynomial in λ) upper bound for the number of Keygen calls that
A may make. We construct B against CPA-security of ΠE .

• B gets pp, pk∗ from its challenger. It finishes the incentive system setup by simulating the
UACS setup cpp ← SSetup(pp) and computing pkC+ as usual. It hands ispp = (pp, cpp, pkC+)
to A.

• B randomly chooses an index j ≤ k. For the jth Keygen query, B responds with upk = pk∗
and some handle u∗.

3This is a slight abuse of notation as the index i of ti does not necessarily correspond to node i in G, which is
associated with the ith oracle query
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• Any queries involving u∗ are run honestly by B except that it uses the UACS simulators to
simulate the Receive and Update protocols without usk.

• Eventually, A enters the challenge phase and outputs some dslink and a user handle u.

• If u 6= u∗, B aborts.

• If upk∗ 6= ComputePKE(pp, dslink), B aborts.

• Otherwise, B uses dslink as the secret key to pk∗ to break its CPA challenge with probability
1.

The view of A in the framing resistance game is simulated perfectly and independently of j. We
have that Pr[B wins the CPA game] = Pr[Expframe-res(Π,A, λ) = 1] ·Pr[u = u∗]. By assumption,
ΠE is CPA-secure. Pr[u = u∗] is non-negligible, hence Pr[Expframe-res(Π,A, λ) = 1] must be
negligible.
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