
Re-thinking untraceability in the CryptoNote-style blockchain
— The Sun Tzu survival problem

Jiangshan Yu∗, Man Ho Allen Au†, and Paulo Esteves-Verissimo‡

∗Monash University, Australia
†Hong Kong Polytechnic University, China
‡University of Luxembourg, Luxembourg

Abstract—We develop new foundations on transaction untrace-
ability for CryptoNote-style blockchain systems. In particu-
lar, we observe new attacks; develop theoretical foundations
to model transaction untraceability; provide the least upper
bound of transaction untraceability guarantee; provide ways
to efficiently and automatically verify whether a given ledger
achieves optimal transaction untraceability; and provide a
general solution that achieves provably optimal transaction
untraceability.

Unlike previous cascade effect attacks (ESORICS’ 17 and
PETS’ 18) on CryptoNote-style transaction untraceability, we
consider not only a passive attacker but also an active adaptive
attacker. Our observed attacks allow both types of attacker
to trace blockchain transactions that cannot be traced by
using the existing attacks. We develop a series of new games,
which we call “The Sun-Tzu Survival Problem”, to model
CryptoNote-style blockchain transaction untraceability and
our identified attacks. In addition, we obtain seven novel
results, where three of them are negative and the rest are
positive. In particular, thanks to our abstract game, we are able
to build bipartite graphs to model transaction untraceability,
and provide reductions to formally relate the hardness of calcu-
lating untraceability to the hardness of calculating the number
of perfect matchings in all possible bipartite graphs. We prove
that calculating transaction untraceability is a #P−complete
problem, which is believed to be even more difficult to solve
than NP problems. In addition, we provide the first result on
the least upper bound of transaction untraceability. Moreover,
through our theoretical results, we are able to provide ways
to efficiently and automatically verify whether a given ledger
achieves optimal transaction untraceability. Furthermore, we
propose a simple strategy for CryptoNote-style blockchain
systems to achieve optimal untraceability. We take Monero as
a concrete example to demonstrate how to apply this strategy
to optimise the untraceability guarantee provided by Monero.

1. Introduction

Crypto-technique plays an important role in provid-
ing anonymity.

Due to the potential sensitivity of transactions on
blockchains, CryptoNote [17] was proposed to protect trans-

action untraceability in blockchain-based cryptocurrencies.
As of November 2018, 18 blockchain systems have adapted
the CryptoNote protocol [4], and 11 of them are cryptocur-
rencies with a large market capitalization. For example,
Monero, one of the most popular CryptoNote-style cryp-
tocurrencies with a market capitalization of USD 1.8B, is
ranked top 10 on the CoinMarketCap 1.

Unlike in Bitcoin where an observer of the blockchain
can learn the trace of every coin in the ledger, CryptoNote
hides the trace of coins. In particular, the input of a
CryptoNote transaction not only contains the to-be-spent
coin, but also contains several other coins of the ledger,
called mix-ins, as noise to confuse the observer (Figure 1).
This reduces the certainty of guessing the actual to-be-spent
coin of a transaction. We use “real input” to refer the to-
be-spent coin of a transaction, use “decoy input” to refer
a mix-in, and use “anonymity set” to refer the entire input
including both real input and decoy input. As illustrated in
Figure 1b, transaction TX1 has two inputs, namely a real
input ‘3’, and a decoy input ‘2’. They form the anonymity
set of TX1. An observer only knows that one of the two
inputs is real, but cannot learn which coin is the real input.

Given an anonymity set of size `, the traceable ring
signature used in CryptoNote [17] guarantees that no one
can make a correct guess on the real input with probability
greater than 1

` + ε, where ε is negligible. This idea has
been adopted by many other cryptocurrencies, of which
Monero [12] using one-time linkable ring signature rather
than traceable signature, is a leading example.

Crypto-technique alone is not enough. Recent iden-
tified attacks [6], [9] show that the use of cryptographic
techniques is not sufficient to protect transaction untrace-
ability in the CryptoNote-style blockchains. For example, in
Figure 1b, crypto-technique guarantees that the probability
of making a correct guess on the real input of transaction
TX1 is 1

2 when no extra information is available. However,
if auxiliary information allows the attacker to rule out the
decoy input, then the observer can confirm that the other
input is the real one. This is outside of the cryptographic
model of the above mentioned schemes.

1. https://coinmarketcap.com. Data fetched on 10.Nov.2018.

(a) Bitcoin

(b) CryptoNote

Figure 1: A view on coin trace in different cryptocurrencies.
Each circle is a coin, and a rectangle is a transaction. A
red (or black) arrow shows the real (resp. decoy) input
of a transaction. In Bitcoin, each transaction clearly states
its input, and does not provide any untraceability. With
CryptoNote, decoy inputs are added into a transaction to
hide the real input.

Auxiliary information can be obtained directly from the
blockchain. For example, in Monero, 65.9% of all real inputs
have zero mix-ins [6]. In other words, these real inputs were
spent in plain. As shown in the below example (Figure 2a),
zero mix-ins not only break the untraceability of zero mix-
in transactions, but also affect other transactions that have
included decoy inputs.

(a) An example of zero mix-in transaction.

(b) An example of inference attack.

Figure 2: Examples of auxiliary information that breaks
transaction untraceability.

Consider transaction TX1 in Figure 2a. This transaction
was created with real input ‘3’ and decoy input ‘2’. Ideally
an observer should not be able to learn that coin ‘3’ is
the real input. However, if later transaction TX2 has been
created by using ‘2’ as real input with zero mix-ins, i.e. no
decoy input is used, then any observer can conclude that ‘3’
is the real input of TX2 (since coin ‘2’ can be ruled out).
This breaks transaction untraceability.

Enforcing a minimum mix-in size does not work either.
Later versions of Monero enforce a minimum mix-in size to

avoid attacks based on zero mix-ins. Unfortunately, existing
work shows that coin age could reveal extra information —
the youngest coin is very likely to be the real input of an
anonymity set [6], [9]. This breaks the transaction untrace-
ability even when a minimum mix-in size is enforced.

Inference attack – decoy input selection is vital
to untraceability. Suggestions [6], [9] on how to reduce
the information leaked by coin age have been proposed,
however, we identify a new class of attacks that break the
transaction untraceability even if the coin age does not leak
anything. We call our newly identified attacks “inference
attacks”, which break transaction untraceability by only
observing how decoy inputs (i.e., mix-ins) are selected. We
demonstrate this attack by using the following example.

As shown in Figure 2b, TX1 is the same as before.
After the creation of TX1, two new transactions, namely
TX2 and TX3, are created. In particular, TX2 is created
by using coin ‘2’ as real input and coin ‘1’ as decoy input,
and TX3 is created by using coin ‘1’ as real input and coin
‘2’ as decoy input. Since each coin can only be spent once,
and the anonymity sets {1,2} of both TX2 and TX3 are
the same, we know that coin ‘2’ (as well as coin ‘1’) must
be the real input of either TX2 or TX3. Thus, an observer
can conclude that only ‘3’ can be the real input of TX1

2.
However, at the time when transaction TX1 was created, the
payer of TX1 has no clue about the involvement of coin ‘2’
and ‘3’ in later transactions.

This example shows that anonymity sets of some trans-
actions may leak information about other transactions, and
this is out of payers’ control. So, coordination and system-
wide rules on decoy input selection are necessary to provide
better and predictable transaction untraceability.

What is missing in existing security models? Existing
models try to capture the privacy requirement such that
no additional information beyond the publicly available
information shall be leaked. (For example, no information
should be leaked from the cryptographic protocol.) However,
they did not consider how the publicly available information
would affect the transaction untraceability. For example,
CryptoNote models [17], [14] require that given a trans-
action transcript from two possible payers, it is impos-
sible for an attacker to guess correctly the actual payer
with probability significantly over 50%. However, it did
not consider the inference from other transactions. Ledger
indistinguishability [1] requires that given the view of two
ledgers with publicly consistent information, it is impossible
for an attacker to match correctly a view with the ledger.
However, it did not consider the information leaked within
the same ledger based on the relations among anonymity
sets of different transactions.

How to analyse transaction untraceability? At this
point, we revisit the design goal of cryptocurrencies using
decoy inputs as the main tool to protect transaction untrace-
ability. In particular, we define two metrics, namely individ-

2. Since a coin can only be spent once, if coin ‘2’ is the real input of
TX1, then it cannot be used again for TX2 or TX3. So, TX2 and TX3

must share the same real input, i.e., coin ‘1’. This forms a contradiction.
Thus, only coin ‘3’ can be the real input of TX1.

2

ual untraceability and global untraceability, to evaluate the
transaction untraceability against inference attacks.

From a payer’s point of view, the optimal transaction
untraceability would be the case that the de-anonymization
of his transaction implies the compromise of all other de-
coy inputs in the anonymity set. We consider this kind
of transaction untraceability individual untraceability. We
define individual untraceability of a transaction as the metric
to measure the difficulty of de-anonymising this transaction.
The difficulty is defined as the maximum number of coins
an attacker needs to corrupt in order to identify the real
input with certainty. If the anonymity set of a transaction
is of size `, then the optimal individual untraceability is
` − 1. For example, for transaction TX1 in Figure 1b, the
size of its anonymity set is 2, and its optimal individual
untraceability is 1. We say that a ledger achieves optimal
individual untraceability if all transactions in the ledger
achieve optimal individual untraceability.

In contrast, global untraceability of a ledger measures
the difficulty of de-anonymising all transactions in the
ledger. Specifically, it is the number of coins required to
be corrupted to de-anonymise all transactions in the ledger.
For example, the global untraceability of Figure 2b is 1 —
to identify the real input of all transactions, one only needs
to know to which transaction the coin ‘1’ (or coin ‘2’) is
the real input.

For a user, the global untraceability as a property may
not be as interesting as the individual untraceability. How-
ever, the global untraceability is very useful as a helper
property to assist us to analyse the blockchain transaction
untraceability. In fact, we show in Section 5.2 that the
notion of global untraceability allows us to obtain solutions
achieving optimal individual untraceability, and prove that
if a system achieves optimal global untraceability against
a passive adversary, then it achieves optimal individual un-
traceability against active adaptive adversary. (An intuitively
reasonable but flawed straw man definition of the global
untraceability is discussed in Section 7, to assist readers
further to understand our modeling considerations.)

Transaction untraceability against an active adap-
tive attacker. Existing studies [6], [9] on the transaction
untraceability only consider a passive attacker who can only
observe the blockchain public information. However, in the
real world, an attacker can be an ‘insider’, i.e., an attacker
can own coins and can adaptively create transactions. So,
the attacker will be able to learn even more information
than learning merely through passive blockchain analysis.
This makes the attacker much more powerful and makes the
analysis even more difficult. We use the following example
to illustrate the analysis of transaction untraceability.

Given two ledgers (A and B as shown in Figure 3) that
provide optimal individual untraceability against a passive
observer, we show that they could behave very differently
when the adversary becomes an insider (e.g. a payer). At
the extreme case, knowing the real input of one transaction
could result in the de-anonymisation of all transactions in
ledger A but only one single transaction in ledger B.

Consider the example ledger A and B as presented in

(a) Ledger A

(b) Ledger B

Figure 3: Example ledgers to demonstrate inference attacks
from an active attacker.

Figure 3a and Figure 3b, respectively. Both A and B have 8
transactions, and each transaction has exactly one real input
and one decoy input. In A, for all i ∈ [1, 8] the anonymity
set of the transaction TXi is (i, i + 1 mod 8), where i is
the real input and i + 1 mod 8 is the decoy input. In B,
for all i ∈ [1, 8] the anonymity set of transaction TXi is
(i, i+ 1) when i is odd, otherwise it is (i− 1, i); where in
both cases the first element is the real input and the second
element is the decoy input. Note that this example is only
used to simplify the presentation. In practice, an attacker
cannot identify the real input by checking if it is the first
element of the anonymity set (for example, elements in the
set may be ordered randomly).

It is obvious that the individual untraceability (against
a passive observer) is 1 for all transactions in both system
A and B. If the attacker is an insider, then it is easy to
see that corrupting any coin in system A would allow the
attacker to de-anonymise all these 8 transactions; whereas
corrupting any coin in system B only allows the attacker
to de-anonymise one additional transaction. For example, in
system A if an attacker is certain that coin ‘1’ is the real
input of TX1, then the attacker can deduce that coin ‘8’ is
the real input of TX8, coin ‘7’ is the real input of TX7, and
all the way back until de-anonymising all transactions. In
contrast, in system B the attacker with the same knowledge
can only conclude that coin ‘2’ is the real input of TX2,
but has no clue about other transactions.

1.1. Our Contribution.

This work provides theoretical foundation on transaction
untraceability for CryptoNote-style blockchains. We have
four main contributions. First, we observe a new attack,
called inference attack, on variants of CryptoNote protocol.
In particular, we consider not only an observer but also an
insider to launch such attacks. This new attack demonstrates

3

the importance of decoy input selection, and is stronger than
the previous cascade attacks. Second, we propose a novel
model to formalize the inference attack and untraceability
properties, and we separate individual untraceability and
global untraceability. In particular, we design a series of
games, which we call “The Sun Tzu Survival Problem”,
to model the transaction untraceability and the inference
attacks. Third, we provide ways to efficiently and automati-
cally verify whether a given ledger achieves optimal untrace-
ability, both for each individual transaction and for the entire
ledger, in the light of inference attacks. The verification
of whether a given system achieves a certain property is
very challenging. For example, with crypto algorithms, it is
difficult to determine whether a given system achieves IND-
CCA2 security — one has to either formally prove that the
system achieves it, or to find an attack to demonstrate the
insecurity of the system. The former, i.e., manual proof, is
error prone and requires a lot of time, effort, and expertise.
Similarly, the latter is also very challenging as the search
space is too big. Our last main contribution is providing a
general solution that achieves provably optimal individual
untraceability and global untraceability, supported by The
Bregman’s Theorem [2] in graph theory.

More specifically, we obtain a sequence of seven posi-
tive and negative results regarding individual untraceability,
global untraceability and their relationship.

• Our first two results are negative. First, we show
that optimal individual untraceability cannot be
achieved without system-wide mix-in selection rules.
This has been explained in Figure 2. Second, we
show in Section 4 that it is very difficult to analyse
the individual untraceability of a given transaction
in a system.

• Our third result is also negative. We show in Theo-
rem 1 that for a given mix-in selection strategy, cal-
culating its global untraceability is extremely hard.
In particular, we show that this calculation is a #P -
complete problem, which is believed to be even more
difficult than solving NP problems [16].

• Our fourth result is positive. We, for the first time,
provide the least upper bound of global untraceabil-
ity (in Theorem 3 and Theorem 4). In particular,
we reduce finding optimal global untraceability to
computing the upper bound for the number of perfect
matchings in all possible bipartite graphs. We show
that under mild restriction, it is possible to obtain
optimal global untraceability.

• Our fifth result is also positive. We show in Lemma
2 that if a system achieves optimal global untrace-
ability against a passive observer, then this sys-
tem also achieves optimal individual untraceabil-
ity against even a strong active attacker that can
adaptively choose its target (as detailed in Section
4.2). In other words, optimal global untraceability
(with a passive attacker) implies optimal individual
untraceability (with an active adaptive attacker).

• Thanks to Theorem 2 and our fifth result, our sixth

result is positive — we provide ways to efficiently
and automatically verify whether a given ledger
achieves optimal global untraceability and optimal
individual untraceability.

• Our seventh result is also positive. According to
Theorem 2 and our fourth result, we propose a
mix-in selection strategy which achieves the optimal
global untraceability. Again, the same restriction
applies. Surprisingly, our strategy is very simple but
effective, however, no previous work has discovered
this solution before.

1.2. Experimental analysis and disclosure.

We have disclosed our research findings to the cor-
responding team of CryptoNote, Monero, Bytecoin, and
DigitalNote. Due to the space limitation, we published the
experimental analysis on our identified passive attacks in a
seperate paper [18]. In particular, we designed an efficient
algorithm to implement our inference attack, and applied it
(in combination with the existing attacks [6], [9]) on several
CryptoNote-style systems. As a result, we have successfully
identified the real input of 70.516% - 91.56% transactions of
these systems to date. Out of the identified transactions, for
example, our attack has uniquely identified the real inputs
of about 80,000 transactions in Bytecoin3, and 5,000 trans-
actions in Monero4. These transactions cannot be identified
through previous attacks.

2. Background

Bitcoin [11] has established itself as the most intrigu-
ing and successful decentralized cryptocurrency to date. A
Bitcoin transaction contains a list of inputs and outputs. An
input is a reference to an output from a previous transaction,
which can be seen as the address of a to-be-spent coin. An
output states how many coins to be transferred to which
account (i.e. public key). To prove the ownership of an input
coin, the user needs to issue a signature on the transaction,
by using the signing key associated to the public key of
the referenced output. BitCoin is able to provide transaction
unlinkability by requiring a fresh account (i.e. public key)
for each output.

Monero is a privacy-centric cryptocurrency launched
in 2014. It has established itself as an intriguing privacy-
focused decentralized cryptocurrency. As of July 2017,
Monero is one of the top 10 most traded cryptocurren-
cies [3]. The initial Monero daemon employs the origi-
nal CryptoNote protocol [17], which leverages traceable
signature to provide anonymity. In particular, it aims to
guarantee that it is impossible to link any two transactions
to the same user (unlinkability), or to trace any coin back
to another transaction (untraceability). However, the size of

3. The market cap of Bytecoin is about $238 Million USD, and is the
36th in the cryptocurrency coinmarketcap, as of 10th Nov 2018.

4. The market cap of Monero is about $1.8 Billion USD, and is the 10th
in the cryptocurrency coinmarketcap, as of 10th Nov 2018.

4

a cryptonote transaction is big and the decoy outputs (a.k.a.
mix-ins) have to have the same denomination as the to-be-
spent coin. These weaknesses lead to several practical issues
and security problems [7], [9], [6]. In 2015, Monero pro-
posed Ring Confidential Transactions (Ring-CT) based on
linkable ring signature to improve the CryptoNote protocol.
Ring-CT eliminates the need of matching the candidate mix-
ins’ denomination with the denomination of the to-be-spent
coins, and reduces the size of ring signatures to half.

3. Threat model

System setting. We assume a role called payer,
that spends coins and creates transactions; and another one
called payee, that receives coins from transactions. Users
can perform one or both of those roles. Transactions are
included in the blockchain by miners through the mining
process. The mining process, e.g. proof-of-work, is specific
to the design choice of different systems.

Adversary model. We consider two types of adver-
sary, namely passive adversary and active adaptive adver-
sary. A passive adversary has read access to the blockchain,
namely it can read all the transactions between payers and
payees contained in the blockchain, but it cannot create any
transaction. An active adaptive adversary can adaptively
create transactions, compromise a coin holder, and learn the
real payer of a chosen transaction.

Assumptions. In this work we only put our focus
on studying how the mixin selection strategy would affect
privacy guarantees, when the used crypto techniques are
secure. So, our model does not consider the timing-related
issue. For both type of adversaries, in our Sun Tzu model
we assume that the adversary does not have the notion of
time. In particular, the adversary does not have access to
the time related information, such as coin age. (Later in
Section 6 we will show how to address the timing-related
attacks in practice.) In addition, we consider the blockchain
as a snapshot of the globally agreed transaction state of the
system, and we define and evaluate its privacy properties.

4. The Sun Tzu Survival Problem

As demonstrated previously, crypto-techniques are nec-
essary but not sufficient to guarantee transaction untrace-
ability against inference attacks. To study the inference
attacks, we propose to use The Sun Tzu Survival Problem
to model and express transaction untraceability, when the
crypto-techniques can be assumed secure.

This section introduces the Sun Tzu Survival Problem
with two games. Both games have a focus on individual
untraceability. The first game considers a simple passive
adversary; whereas the second game considers an active
adaptive adversary who can compromise a coin holder, and
can learn the real payer of a chosen transaction. These two
games allow us to show the different concerns of individual
untraceability.

For the simplicity, we assume that public information
of coins will not reveal extra information (e.g., we assume

that the coin age will not leak useful information), each
transaction only contains one real input and one output,
and all anonymity sets are of the same size. Later, in the
next section, we will show the result (Theorem 4) when the
anonymity sets are of different sizes; and in Section 6 we
take the public information of coins and the possibility of
having multiple inputs and outputs into consideration.

4.1. Individual untraceability (Static model)

We imagine that Sun Tzu and his army comprising N
soldiers have been captured in a war. The enemy general
respects Sun Tzu as a wise man [15], and is willing to free
him but not his soldiers. However, Sun Tzu refuses to leave
without his men. At the end, Sun Tzu and the enemy general
both agree to play a game to decide whether or not to free
Sun Tzu’s soldiers, as follows.

(N, `)-Sun-Tzu Game-1 The general prepares N iden-
tical wooden tags, and each tag is engraved with a unique
number from 1 to N . The N tags are randomly distributed to
the N soldiers with the number covered. So, no one knows
which tag number is given to which soldier, apart from the
soldier itself. Soldiers are not allowed to communicate with
each other, at any time during the game.

A paper is given to the soldiers. Each soldier, say the
i−th soldier, needs to write down a set Si of ` distinct
numbers ranging from 1 to N on this paper, such that the set
contains the number he got on the tag along with other `−1
decoy numbers. All soldiers write down their sets according
to a strategy premade by Sun Tzu. In particular, Sun Tzu
needs to create a strategy, and distributes the strategy to
every soldier before s/he receives a wooden tag, and Sun
Tzu cannot make any communication with any soldier after
the strategy is distributed to the soldiers.

At the end, the paper is presented to the general. For each
soldier (say the i−th soldier), the general makes a unique
guess on which number in the set Si is engraved on the
soldier’s tag. After all guesses are made, the general verifies
its guesses against the distributed tags. If a guess is correct,
then the according solider will be executed. Otherwise, this
solider will be freed.

Insights: In the above game, the N wooden tags present
the available coins in the blockchain. Each written set is
considered an anonymity set, a real tag number is a real
input coin address, and decoy numbers are the added noises.
This game simulates a passive adversary that sees the
entire blockchain transactions, and tries to de-anonymise
transactions. The only available information to the adversary
is the list of transactions on the blockchain. It is clear
that each number can be a real input only once in our
game. This simulates the fact that a coin in a blockchain
payment system can only be spent once. In addition, in
this game, a soldier models a payer, and the Sun Tzu’s
distributed strategy models the system’s predefined mix-
in selection rule, such as selecting all decoy numbers at
random or do whatever your wish, that is hard coded in the
software client in practice. A payer spending different coins

5

is modelled by having multiple soldiers in the system. We
now show insights on how different strategies would affect
the individual transaction untraceability.

We define the guess difficulty as the maximum number of
guesses the general needs to try before it can make a correct
guess. We call the difficulty that the general makes a correct
guess on the chosen solider the individual untraceability.
Ideally, for any soldier, its individual untraceability is `−1,
i.e. it is executed only with probability no more than 1

` .
We use the following example to show why the strategy

matters to Sun Tzu, and how it can affect the individual
untraceability.

Example 1. Let N = 4 and ` = 2. Three strategies are
proposed to Sun Tzu, where the four soldiers write down
their sets S1, S2, S3, and S4 respectively as follows:
Strategy A: {1,2}, {2,3}, {2,3}, {1,4}
Strategy B: {1,2}, {3,4}, {1,3}, {2,4}
Strategy C: {1,2}, {1,2}, {3,4}, {3,4}

Let’s first consider Strategy A. Since each coin can only
be spent once, and both S2 and S3 use the same anonymity
set {2,3}, the general will be certain that “2” and “3” must
be the real tag of S2 and S3, but the general will not know
whether “2” is the real tag of S2 or of S3. So, both S2 and
S3 achieve optimal individual untraceability in this game,
as the difficulty of making a single correct guess on them is
1.

However, since “2”can only be used as a real tag once,
and it must be a real tag of either S2 or S3, the general
will conclude that the real tag of S1 must be “1”. Similarly,
“4” must be the real tag of S4 since “1” is the real tag of
S1. So, the difficulty of making correct guess on S1 and S4

is 0.
It is not difficult to see that the difficulty of making

a correct guess on any given set in Strategy B and in
Strategy C is 1, so all their sets achieve optimal individual
untraceability in this game, whereas Strategy A does not.
Thus, in this example, Sun Tzu should choose either Strategy
B or Strategy C.

4.2. Individual untraceability (Adaptive model)

Game-1 considers an adversary with no extra informa-
tion except the list of masked transactions recorded in the
public blockchain. In practice, however, an adversary may
have access to other private information. For example, the
adversary may be the payer or payee of a transaction, and
this gives extra knowledge to the adversary. We propose
Game-2 to simulate a strong adaptive adversary for indi-
vidual untraceability. In particular, the adversary is able to
compromise a coin holder, and to learn the real payer of a
chosen transaction.

(N, `)-Sun-Tzu Game-2 We consider a setting similar
to Game-1 with the following two changes.

First, some soldiers may be traitors, and a traitor will
secretly tell the general which number tag he has obtained.

Second, the general is allowed to practice before choos-
ing a target written set St to make his guess. More precisely,

the general is allowed to ask Sun Tzu to reveal the real
number of any written set. The general can practice as many
times as he wants. However, the chosen target St must have
not be revealed before and is not created by a traitor.

At the end, the general makes a guess as in Game-1. This
game simulates a strong adversary that not only sees the en-
tire blockchain transactions, but also with the following two
oracles empowered respectively by the two changes. The
first oracle is a corruption oracle that allows an adversary
to learn the corresponding secret of a public identity. In
practice, this can be any coin owner. The second oracle is
a de-anonymization oracle, which allows an adversary to
learn the real input of a target transaction. In practice, this
may be done through side channel information.

Insights: Let k1 be the number of traitors that is contained in
the target written set St, and k2 the number of soldiers that
is contained in St and has been revealed by Sun Tzu during
the general’s practice. Ideally, for any soldier, its individual
untraceability is `− k1 − k2 − 1.

We use the example below to show why the strategy
matters to Sun Tzu, and how it can affect the individual
untraceability.

Example 2. Considering the last two strategies in the
Example 1:
Strategy B: {1,2}, {3,4}, {1,3}, {2,4}
Strategy C: {1,2}, {1,2}, {3,4}, {3,4}

Although both strategies provide optimal individual un-
traceability in the Game-1, the guarantees provided by them
in the Game-2 are different.

With Strategy B, the reveal or corruption of any single
solider will identify the real input of all other sets, whereas
it only exposes the real input of another one set in Strategy
C. For example, if the general learns that the real tag of
S1 is “1” through the de-anonymization oracle, then with
Strategy B the general can derive the identity of all other
written sets: the real tag of S3 is “3”, of S2 is “4”, and
of S4 is “2”. Thus, the hardness for the general is now 0
for any of the rest written sets, rather than 0 for S2, and 1
for S3 and S4 as in the ideal case. In other words, for any
target St, the general can always win with certainty. With
Strategy C, the general can only derive the real tag of S2,
but has no clue about S3 and S4. So, it achieves the desired
hardness for optimal individual untraceability, i.e. 0,1,1 for
S2, S3, S4, respectively. In other words, the attacker has no
advantage on S3 and S4.

The analysis on individual untraceability can be very
difficult. Considering the following example, where the size
of anonymity set is 3, and the total number of soldiers is
15.

Example 3. Let N = 15 and ` = 3. Two strategies are
proposed to Sun Tzu, as presented in table 1.

It is easy to see that Strategy A does not offer optimal
individual untraceability even in the Game-1, as anyone can
observe that “1” must be the real input of S1 (due to the
fact that “2”, “3”, and “4” must be the inputs of S2, S3,

6

TABLE 1: Strategies of Example 3

Strategy A.
S1 S2 S3 S4 S5

{1,3,4} {2,3,4} {2,3,4} {2,3,4} {4,5,6}
S6 S7 S8 S9 S10

{4,5,6} {7,9,10} {8,9,10} {8,9,10} {8,9,10}
S11 S12 S13 S14 S15

{10,11,12} {10,11,12} {13,14,15} {1,7,15} {1,7,14}

Strategy B.
S1 S2 S3 S4 S5

{1,2,3} {1,4,5} {1,4,6} {1,4,7} {5,6,7}
S6 S7 S8 S9 S10

{2,8,9} {2,8,10} {2,8,11} {9,10,11} {10,11,13}
S11 S12 S13 S14 S15

{3,12,13} {3,12,14} {3,12,15} {13,14,15} {5,14,15}

and S4). Similarly, the general can also conclude that “7”
must be the input of S7, and “15”, “14” and “13” must be
the input of S14, S15, and S13, respectively.

For Strategy B, from only observing all written sets
does not give any certainty of transaction real inputs to the
general in Game-1. In Game-2, since the general is able to
adaptively choose both its queries during the practice and
the target written set after practice, the guarantee is much
more difficult to analyse. For example, the general may start
by asking Sun Tzu to reveal the real input of S1. If “1” is
the real input, then the general could choose to compromise
number “4” through the corruption oracle, i.e. the solider
with tag number “4” is a traitor. Since “4”, “5”, “6”, and
“7” must be inputs of S2, S3, S4, and S5 (in some order),
we known that “4” must be an input of either S2, S3, or
S4. So, it will allow the general to make a correct guess on
S5 with 100% probability, even though none of the numbers
in S5 has been compromised through the corruption oracle
or de-anonymization oracle. For example, if “4” is the real
input of S2, then we know that “6” and “7” must be the real
input of S3 and S4, respectively. Thus, “5” must be the real
input of S5 = {5, 6, 7}, even though only “1” and “4” are
revealed through the two oracles. In this special case, the
individual untraceability of “5” is 0 rather than the desired
optimal untraceability, which is 2. However, if “1” is not
the real input of S1, then the individual untraceability of
“5” may not be 0. It is very difficult to analyse all cases
in order to obtain the correct individual untraceability of
“5”, as it typically requires considering all possible cases.
In blockchains, this might be impossible to analyse as there
are millions (or even billions) of transactions.

In the above example, the general first makes a query
about S1 to the de-anonymization oracle, then a query about
tag with number “4” to the corruption oracle, and finally
choose S5 as the target. Now, to show that the attacker can
adaptively choose the queries and the target, considering
the following example.

The general still starts by asking Sun Tzu to reveal the
real input of S1. However, this time “2” is the real input.
Similar to the above example, the general is able to observe
that “8”, “9”, “10”, and “11” must be the inputs of S6,
S7, S8, and S9, in some order; and “8” must be the real

input of either S6, S7, or S8. Now, the general requests
to compromise number “8” through the corruption oracle.
Similar to the above example, no matter the real input of
which of the three sets is “8”, the general can always make
a correct guess on S9 and S10. For example, if “8” is the
real input of S7, then the general can conclude that “9” and
“11” are the real inputs of S6 and S8. Thus, “10” and “13”
must be the real input of S9 and S10, even though no number
in S9 and S10 have been directly revealed by using the two
oracles. In this example, the attacker adaptively chooses its
second query and its target based on the answer of the first
query.

In fact, we show in the next section that analysing the
hardness of untraceability of a given strategy is very difficult
– it is a #P -complete problem. Fortunately, we are able
to obtain some meaningful results through our new model.
In particular, we show that it is possible to calculate the
least upper bound of the hardness, and we provide ways to
achieve optimal individual untraceability.

5. Towards Global Untraceability

To solve the challenges in the Sun Tzu survival problem,
this section considers a new untraceability property, which
we call global untraceability. This property serves as helper
to assist us analysing individual untraceability.

We first provide a game for global untraceability, and
then prove that given a strategy that is not ideal, it is very
hard (#P -complete) to compute the global untraceability
(or the guess difficulty) of this system. Thus, it it difficult
to compare the global untraceability of two different unideal
systems.

Fortunately, we are able to provide meaningful results —
we provide least upper bound of the global untraceability in
this game. Moreover, we provide an ideal strategy, i.e. it
achieves the least upper bound of the global untraceability.

Furthermore, we show that the ideal strategy in this
game also achieves optimal individual untraceability in the
active adaptive model (Game-2), even though the game only
considers a passive adversary. Thus, the global untraceability
property provides a stronger notion and is a useful helper
property for analysing and understanding transaction un-
traceability in the blockchain.

5.1. Sun-Tzu survival problem with global untrace-
ability

(N, `)-Sun-Tzu Game-3 We consider a setting similar
to Game-1. Now, when the general is given the paper, he
makes a guess on each of the written set, and marks all the
guesses on the paper. If all guesses are correct, then all the
soldiers will be executed. Otherwise, they will be freed.

To maximise the possibility of saving his soldiers, Sun
Tzu needs to create a smart strategy for the soldiers to
choose decoy numbers, such that the damage caused by each
correct guess is reduced to minimal.

7

TABLE 2: Possible combinations of real tags.

Strategy A.
Written set S1 S2 S3 S4
Selected tags {1,2} {2,3} {2,3} {1,4}
Combination 1 1 2 3 4
Combination 2 1 3 2 4

Strategy B.
Written set S1 S2 S3 S4
Selected tags {1,2} {3,4} {1,3} {2,4}
Combination 1 1 4 3 2
Combination 2 2 3 1 4

Strategy C.
Written set S1 S2 S3 S4
Selected tags {1,2} {1,2} {3,4} {3,4}
Combination 1 1 2 3 4
Combination 2 1 2 4 3
Combination 3 2 1 3 4
Combination 4 2 1 4 3

Understanding the Sun Tzu survival problem and
global untraceability.

We call the difficulty that the general makes correct
guesses on all written sets the global untraceability. Given
a sequence S of the written sets {S1, . . . , SN}, let Ncombo
be the number of all possible combinations of real tag
guessing. So, for a given S, the probability that all the
general’s guesses are correct is 1

Ncombo
. In other words, the

larger the Ncombo is, the more difficult for the general to
make correct guesses on all written sets. So, to have an ideal
strategy, Sun Tzu needs to solve the following challenges:

• Challenge 1: Since soldiers may propose strategies
for Sun Tzu to consider, Sun Tzu needs to compute
the Ncombo of the proposed strategies to select the
best one among all the proposals;

• Challenge 2: Finding the least upper bound of
Ncombo for all possible strategies. We use Nmax

combo
to denote this upper bound;

• Challenge 3: In the case that no proposed strategy is
optimal, Sun Tzu needs to find a strategy to achieve
the maximum number Nmax

combo of possible real tag
combinations.

It is easy to see that ` − 1 and Nmax
combo − 1 represent

the upper bounds of individual untraceability and global
untraceability of all possible strategies. In other words, they
are the guess difficulties in the ideal case. Loosely speaking,
Challenge 1 aims at allowing Sun Tzu to compare all
possible strategies, Challenge 2 seeks the upper bound of
the global untraceability, and Challenge 3 is looking for a
strategy that achieves the best global untraceability.

We use the example below to demonstrate the idea of
global untraceability.

Example 4. We consider the three strategies in Example 1
again:
Strategy A: {1,2}, {2,3}, {2,3}, {1,4}
Strategy B: {1,2}, {3,4}, {1,3}, {2,4}
Strategy C: {1,2}, {1,2}, {3,4}, {3,4}

{1, 2}

{3, 4}

{1, 3}

{2, 4}

1

2

3

4

X Y

(a) Graph of Strategy B.

{1, 2}

{1, 2}

{3, 4}

{3, 4}

1

2

3

4

X Y

(b) Graph of Strategy C.

Figure 4: Graphs representing the selections in the defined
game. All two possible perfect matcchings of Strategy B’s
graph are presented by using solid lines (as one perfect
matching) and dashed lines (as the other).

As demonstrated previously, the Strategy C offers a
better individual untraceability in Game-2. We now consider
the global untraceability. As shown in Table 2, Ncombo of
Strategy A, B, and C is 2, 2, and 4, respectively. That is,
there are 2 different possible combinations of real tags in
Strategy A and B, and 4 possible combinations in Strategy
C. So, the global untraceability is 1 for both Strategy A
and B, and 3 for Strategy C. In other words, the general
can execute all soldiers with at most 2 guesses in the first
two strategies, and at most 4 guesses in the last strategy.
This shows that different strategies may give very different
guarantees.

As we can see, even though the global untraceability
of both Strategy A and B is the same, their individual
untraceability is different. This seems to suggest that for
a given strategy, both individual untraceability and global
untraceability should be considered. However, as we will
show later (in Lemma 2), optimal global untraceability
implies optimal individual untraceability.

5.2. Linking the problem to graph theory

To solve the challenges in the Sun Tzu Survival Problem,
we first present the relations between all written sets (each of
size `) and the N tags into a bipartite graph G = (X,Y,E),
such that |X| = |Y | = N , |E| = N · `, and every vertex in
X has the same degree `. In particular, the left partitioned
set X represents all written sets {S1, . . . , SN}, the right
partitioned set Y represents the N wooden tags, and the edge
from a vertex in X to a vertex in Y represents a possible
real tag guess. Since each vertex in X is a selection of size
`, each vertex in X has a degree `, which is the number
of possible real tag guesses in the correspond written set.
We call such graph G the graph of (N, `)-Sun-Tzu game,
defined as follows.

Definition 1. G = (X,Y,E) is a graph of (N, `)-Sun-Tzu
game if X = {S1, S2, . . . , SN}, Y = {1, 2, . . . , N}, |E| =
` ·N , and the degree of each Si ∈ X is `.

Figure 4 shows two example bipartite graph G by using
the Strategy B and C. In particular, Figure 4a shows the

8

graph with selection sequence [{1, 2}, {3, 4}, {1, 3}, {2, 4}],
and Figure 4b shows the graph with selection sequence
[{1, 2}, {1, 2}, {3, 4}, {3, 4}].

A matching of G is a set of edges from X to Y such that
no two edges in the set are adjacent in G. A matching of
G is perfect if every vertex of G is incident to exactly one
edge of the matching. So, each perfect matching represents
a possible sequence of real tag guesses on all written sets;
and the number of possible perfect matchings is equal to
the number of possible sequences of the real tag guesses.
Hence, the upper bound of the perfect matching represents
the maximum number of possible sequences of real tag
guesses.

Example 5. As shown in Figure 4a, the two possible perfect
matchings represent all two possible guessing combinations,
as presented in the Table 2. In particular, there are only two
possible perfect matchings, one is represented by the solid
lines and the other is represented by the dashed lines. The
former represents the guessing combination 1, and the latter
represents the guessing combination 2.

This leads us to the following axiom.

Axiom 1. Finding Ncombo as stated in the Challenge 1, is
equivalent to calculating the number of perfect matchings
in all possible bipartite graph G of (N, `)-Sun-Tzu game.

It has been proven that, for a given bipartite graph G, the
number of perfect matchings in G is equal to the permanent
of its incidence matrix [5]. More precisely, given a graph
G = (X,Y,E), we have that its incidence matrix is a (0,1)-
matrix A = (axy)(x,y)∈X×Y , such that axy = 1 if xy is
an edge, and axy = 0 otherwise. The permanent of A is
defined as

per(A) =
∑
σ∈SN

N∏
i=1

aiσ(i)

where SN is the symmetric group, i.e. SN denotes the
set of all permutations of N elements.

Example 6. Graph of Strategy B (Figure 4a)’s incidence
matrix is

A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


The permanent of A is 2, as calculated in Appendix A.

Thus, the number of all possible perfect matching is 2.

We have the following axiom.

Axiom 2. The permanent of an incidence matrix of a
bipartite graph G is the number of perfect matchings in
G.

The term ‘permanent’ was introduced by Sir Thomas
Muir in 1882 [10]. As proven in Valiant’s seminal paper,
computing the permanent of a N×N (0,1)-matrices is #P -
complete, which is believed to be even more difficult than
solving NP problems [16].

Theorem 1. (Valiant’s theorem) The complexity of comput-
ing the permanent of N×N (0,1)-matrices is #P -complete.

So, unfortunately, calculating the global untraceability is
#P -complete. Thus, the Challenge 1 is infeasible to solve.

However, in 1963 Minc [8] conjectured the upper bounds
for permanents of an N×N (0,1)-matrix, and this conjecture
was later proved by Lev Bregman in 1973 [2]. (A simpler
proof was provided by Schrijver in 1978 [13].) We present
the Bregman’s theorem (a.k.a. Bregman-Minc inequality)
[2], as follows.

Theorem 2. (Bregman’s theorem.) Let A be an N × N
(0, 1) matrix, i.e. A = [aij]

N
i,j=1 ∈ {0, 1}N×N . If for all

i ∈ [1, N], A has non-zero row sums ri =
∑N

j=1 aij , then
the permanent of A satisfies the inequality

per(A) ≤
N∏
i=1

(ri!)
1
ri

where equality holds if and only if up to permutation of rows
and columns A is a block diagonal matrix in which each
block is a square all-1 matrix.

From Axiom 1 and Axiom 2, we have that the Challenge
2 is equivalent to finding the upper bounds of the permanent
of G’s incidence matrix. In other words, given a graph G =
(X,Y,E), the Challenge 2 is to calculate the upper bound
of permanent of A = (axy)(x,y)∈X×Y , such that axy = 1 if
xy is an edge, and axy = 0 otherwise.

Lemma 1. For all possible graph G = (X,Y,E) of
(N, `)-Sun-Tzu game, given its incidence matrix A =
(axy)(x,y)∈X×Y , we have that

∀x ∈ X, rx =

n∑
y=1

axy = `

Proof. This lemma can be trivially proved due to the fact
that for all x ∈ X , its degree is `. So, each vertex in X is
an endpoint of ` edges. Thus, the row sum rx = ` for all
possible selection x.

Theorem 3. For any (N, `)-Sun-Tzu game, the maximum
number Nmax

combo of sequences of the real tag guesses is

Ncombo = (`!)
N
`

Proof. Let G = (X,Y,E) be a graph of (N, `)-Sun-Tzu
game, and A the incidence matrix of G. Due to Axiom 1
and Axiom 2, we have that Nmax

combo = per(A).
Due to Lemma 1, we have that for all possible G, the

row sum of each row in G’s incidence matrix is `. Due to
Theorem 2, we have

Nmax
combo = per(A) =

N∏
i=1

(`!)
1
` = (`!)

N
`

Similarly, we have the following theorem when we allow
each soldier to write down a set Si with different size `i.

9

Theorem 4. For any (N, `)-Sun-Tzu game with written sets
Si of size `i, the maximum number Nmax

combo of sequences of
the real tag guesses is

Nmax
combo =

N∏
i=1

(`i!)
1
`i

Thus, we have that for an (N, `)-Sun-Tzu game, such
that N/` = a for some integer a and all sets of the same size
`, the solution to Challenge 2 is (`!)

N
` . More generally, if

each written set Si is of size `i, then the least upper bound
is

∏N
i=1(`i!)

1
`i .

Lemma 2. In (N, `)-Sun-Tzu game, if a strategy achieves
optimal global untraceability of Nmax

combo, then it also
achieves optimal individual untraceability `− 1.

Proof. As stated in the Theorem 2, the upper bound Nmax
combo

of global untraceability is achieved if and only if up to
permutation of rows and columns, A is a block diagonal
matrix in which each block is a square all-1 matrix. If an
element axy of A is “1”, then we know that there is an edge
from x ∈ X to y ∈ Y in the associated graph G, i.e, y is
1-out-of-` tags selected in x. Since each vertex in X is of
degree `, each vertex in X is an end point of ` edges. So,
the size of each square all-1 matrix (i.e. the size of each
block in A) is `. In addition, since A is a block diagonal
matrix, for any two blocks, they don’t share the same edge
of the graph. So, the individual untraceability of each block
representing a written set is `− 1, which is optimal.

Lemma 3. For all possible graph G = (X,Y,E) of
(N, `)-Sun-Tzu game, given any incidence matrix A =
(axy)(x,y)∈X×Y , it is efficiently verifiable that whether the
strategy represented by A achieves the least upper bound of
global untraceability.

Proof. This can be proved easily by using The Bregman’s
theorem, i.e., the strategy represented by A achieves the
least upper bound of global untraceability, if and only if up
to permutation of rows and columns A is a block diagonal
matrix in which each block is a square all-1 matrix.

Lemma 4. For all possible graph G = (X,Y,E) of
(N, `)-Sun-Tzu game, given any incidence matrix A =
(axy)(x,y)∈X×Y , it is efficiently verifiable that whether the
strategy represented by A achieves the least upper bound of
both global untraceability and individual untraceability.

Proof. This is a trivial result based on Lemma 2 and Lemma
3. According to Lemma 2, a solution achieving optimal
global untraceability (in a static model) also achieves opti-
mal individual untraceability (in an adaptive model). Thus,
if a strategy achieves the least upper bound of global un-
traceability, it also achieves individual untraceability.

Remark 1. Intuitively, the individual untraceability pro-
vides more capabilities to an attacker, namely the ability
to compromise a transaction and the ability to practice
and to adaptively choose a target. Thus, we conjecture that

Figure 5: Possible relations between the set I and set
G. Set I and G represent all systems achieving optimal
individual untraceability and optimal global untraceability,
respectively. Relation C,D,E are not possible due to our
Lemma 2, which shows that a system achieving optimal
global untraceability also achieves optimal individual un-
traceability.

individual untraceability and global untraceability implies
each other (i.e., relation B of Figure 5).

If this conjecture is correct, then thanks to Theorem 2
and Lemma 4, we provide ways to efficiently and auto-
matically verify whether a given ledger achieves optimal
untraceability, both for each individual transaction and for
the entire ledger.

If it turns out that our conjecture is incorrect, i.e., the
relation A is correct, then our above statement still holds,
and we even additionally provide global untraceability as a
stronger model to the study in the transaction untraceability.

The solution to Challenge 3, fortunately, can be ob-
tained based on the results from Challenge 2. For an (N, `)-
Sun-Tzu game, if Sun Tzu picks N/` distinct sets of ` tags
as N/` distinct selections, and repeat each of them ` times
such that each time a different tag in the selection is marked
as a real selection, then the incidence matrix of the resulting
graph G is a block diagonal matrix in which each block is a
square all-1 matrix. According to Theorem 2 and Theorem
3, this achieves Nmax

combo.
From this, we know that for any anonymity set in a cryp-

tocurrency system, all elements (i.e. the real input and decoy
inputs) of this set should not be contained in other sets. In
this way, the set of all anonymity sets would result in a
matrix, such that up to permutation of its rows and columns,
the matrix is a block diagonal matrix in which each block is
a square all-1 matrix. Thus, it guarantees the upper bound
of Ncombo, and provides the optimal global untraceability.
As stated previously in Lemma 2, this strategy, in fact,
also achieves the optimal individual untraceability. Loosely
speaking, in the above strategy, since all distinct anonymity
sets do not contain the same element, any anonymity set
will not leak information about a different anonymity set.
So, the difficulty of making correct guesses on a anonymity
set of size ` is always ` − 1, regardless how many correct
guesses one has made on other anonymity sets.

6. Application to Monero

This section applies our theoretical results to CryptoNote
style protocols. In particular, we choose Monero as a con-

10

crete example to simplify our presentation. We first review
existing attacks, then propose our suggestions on mix-in
selection for Monero.

6.1. Review of existing attacks

In January 2015, a report [7] from Monero research
lab shows that earlier version of Monero does not offer
untraceability. In particular, three issues have been identi-
fied, namely zero-mix spending, temporal association, and
common root spending.

Zero-mix spending refers to the transaction inputs that
do not use any mix-in for the ring signature. When spending
an unspent transaction output (UTXO) without mix-ins,
anyone can trace the output of this transaction back to
the input, so can break the untraceability. Recent research
[9], [6] further explore the possible effects of zero-mix
spending. In particular, their assessments show that zero-mix
spending not only breaks the untraceability of the zero-mix
transactions, but will also weaken the untraceability of other
mixed spendings where the output of the zero-mix spending
is used as a mix-in. The issue of zero-mix spending is fixed
in the later versions (> 0.9.0.) of Monero, by making at
least 2 mix-ins per transaction mandatory.

Temporal association refers to the extra information
leaked by the coin age. This has two effects. First, in an
earlier version of Monero (version before 0.9.0), mix-ins
are selected uniformly. So, older coins have been selected
as mix-ins more often than younger coins. This makes older
coins more damaging than the younger coins, when they are
possessed by an attacker. Second, it is likely that an older
(e.g. 1 year old) coin has already been spent compared to
a younger (e.g. 5 days old) coin. So, younger coins in the
mixed spending are most likely to be the genuine coins being
spent. To mitigate the issue of temporal associations, later
versions (after 0.9.0) of Monero select mix-ins according to
the triangular distribution, and in the latest versions (after
0.10.1) to date, they additionally require that some of the
mix-ins are selected from the “recent zone” (i.e., those coins
created within the last 5 days).

Common root spending refers to transactions that spend
coins obtained from a single previous transaction. For ex-
ample, if two coins in the set of inputs and mix-ins of a
transaction were obtained from a single previous transaction,
then it is very likely that the two coins are the genuine inputs
and owned by the same user. To address this issue, the report
[7] recommends to generate a separate transaction for each
output. However, if the outputs of this transaction are spent
from a common tree of transactions, from a common block,
or from within a short span of time, then they are also likely
to be associated. So, the report also suggests that only one
input from the payer and only one output to the payee should
be used for every transaction. As a result, the payer needs
to generate multiple transactions in order to complete one
target transaction. However, the authors admit that this is
very inefficient and expensive.

6.2. Mix-in selection for Monero

Based on our theoretical results, we present an optimal
mix-in selection strategy for Monero, which guarantees op-
timal global untraceability and individual untraceability.

Additional considerations. We consider three main
out-of-model factors in the mix-in selection, namely the
information leakage from transactions, multiple inputs and
outputs, and the advantage of malicious block creators.

In our model, we assume that public information of
coins will not reveal extra information (e.g., we assume that
the coin age will not leak useful information), and each
transaction only contains one real input and one output.
They lead to our first two considerations.

For information leakage, it cannot be prevented com-
pletely as demonstrated by the three identified attacks,
namely zero-mix spending, temporal association, and com-
mon root spending. The zero-mix spending leaks informa-
tion about a real coin input of a transaction when no mix-in
is added, and this can be easily mitigated by making having
mix-ins mandatory, as implemented in Monero since version
0.9.0. Temporal association refers to the extra information
leaked by the coin age. Existing works suggest to either
put more weight on the younger coins, or try to select mix-
ins based on the real coin-spending distribution. However,
the first proposal still leaks extra information to an attacker,
and the second proposal is difficult to achieve as the distri-
bution of transaction output ages varies over time, and, is
depending on the economic performance of the currency [7].
We observe that, if a coin and its associated mix-ins have
the same age, then the coin age will not provide any extra
information to a third party. Thus, we propose to choose
mix-ins from the coins with the same age, i.e. real inputs
and decoy inputs are chosen from the same block. Common
root spending attack refers to the extra information leaked
when two to-be-spent coins are generated from the same
transaction. As mentioned previously, the report [7] suggests
that only one input from the payer and only one output to the
payee should be used for every transaction. However, this is
very inefficient and expensive in practice, as a payer needs
to generate multiple transactions in order to complete one
target transaction. So, to balance the efficiency and privacy,
we will enforce that no two real inputs of a transaction can
come from the same ring.

For multiple inputs and outputs, we choose mix-ins for
each input separately and independently according to our
strategy, then perform the required computation with all
inputs.

The last consideration is the advantage of a malicious
miner. More precisely, we concern the extra power a miner
has, namely a miner is able to choose the transactions to be
included in a block, and to decide their order in the block.
If our strategy chooses mix-ins from the same block with
a deterministic algorithm, then in order to trace a targeted
transaction, a malicious miner may put his `−1 transactions
around the targeted transaction in the way that they will be
chosen as mix-ins of the targeted transaction according to
the strategy. Although this attack is expensive, not scalable,

11

and its success rate depends on the mining power of the
attacker, it still provides practical targeted attacks.

We aim at making the attackers job much more difficult
and expensive. In particular, we choose mix-ins not only
from the same block as the real input, we also choose
mix-ins from neighbour blocks. We call these neighbour
blocks ring neighbour blocks of the to-be-spent coin. In this
way, a malicious miner has to successfully create multiple
successive blocks without the other miners finding blocks
between them. Assuming that the mining power rate of
a malicious miner over the entire mining network is α,
and the defined number of neighbour blocks is k, then the
probability of successfully launching this targeted attack is
αk. In addition, the information leakage from the coin age
is kept minimal as mix-ins are of a very similar age, i.e.,
the age difference of coins are about several minutes.

Putting these all together, we minimise the potential
information leakage from transactions.

Algorithm 1 Mix-in selection

Input: The set Sπ := {coinπ,1, . . . , coinπ,m} of coins to be
spent in a transaction.

Output: The set mixk of mix-ins for each coin coinπ,k,
where (k ∈ [1,m]).

1: k = 1
2: RingPos = {}

RingPos records the position of all rings.

3: while k ≤ m do
4: (i, j)← coin pos(coinπ,k)
5: p1 ← bj/qc
6: p2 ← bi/`′c
7: if (p1, p2) /∈ RingPos then
8: RingPos = RingPos ∪ {(p1, p2)}

(p1, p2) are used to mark the ring position.

9: else
10: Break with common root spending warning.
11: end if
12: for all y ∈ [p1 · q + 1, (p1 + 1) · q] do
13: for all x ∈ [p2 · `′ + 1, (p2 + 1) · `′] do
14: if x==i and y==j then
15: continue
16: else
17: mixk = mixk ∪ {pos coin(x, y)}
18: end if
19: end for
20: end for
21: k++
22: end while

Mix-in selection strategy. Let coin pos(·) be the
function that takes a coin as input, returns the position (i, j)
of the coin indicating that the coin is the i-th coin of all coins
in the j-block. Let pos coin(·) be the function that takes a
position (i, j) as input, outputs the coin of this position. We
assume that `′ mix-ins are chosen from each of q successive

blocks, such that ` = `′ · q. In addition, we assume that
each block in the blockchain contains the same number of
outputs, and the number of outputs is divisible by `′. In
practice, this can be easily enforced on the miner side when
they are creating and validating a block.

Given the set Sπ := {coinπ,1, . . . , coinπ,m} of coins to
be spent, the process of selecting the set mixk of mix-ins for
each coin coinπ,k (k ∈ [1,m]) is presented in the Algorithm
1.

Loosely speaking, to ensure that all rings are indepen-
dent to each other, instead of choosing them randomly, we
choose them deterministically. We take the advantage of
the transparency offered by the blockchain, and use it to
coordinate the mix-in selection from all users (line 4-6,
12-20). In particular, we partition each block into distinct
parts, such that the collection of `′ successive coins (a.k.a.
transaction outputs) in every q blocks form a ring, and no
coin is contained in different rings. This way of forming
rings provides two advantages. First, it ensures that all rings
are independent. So, this achieves the upper bound of global
untraceability and individual untraceability, as proved in the
previous section. Second, since all members of a ring are
contained in the associated q successive blocks, they have
the same or very similar age. This solves the challenges of
how to match mix-in selection with coin-spending distribu-
tion, as the coin age leaks no extra information now.

To spend a coin where all ring neighbour blocks are al-
ready confirmed, the payee can make the transaction directly
and does not need to wait for any extra time. However, if
not all ring neighbour blocks are confirmed, then the payee
may need to wait for extra time t in order to known which
coin to be used as a mix-in. This only happens if the coin is
located at the tail of the blockchain, i.e. the coin is contained
in the latest confirmed blocks. Currently a Monero block
is created every two minutes in average, so in the worst
case — when the coin is in the last confirmed block of
the blockchain and the coin is the first block amongst all
successive ring neighbour blocks — the waiting time is 2
minutes for each ring neighbour block. Currently, in Monero
96% of transactions have at most 4 mix-ins [6], and the
suggested confirmation time is 10 confirmations × 2 minutes
= 20 minutes. If we assume that each real input has 4 mix-
ins, and 2 of them are chosen from the same block and the
other 2 are chosen from the ring neighbour blocks, then in
the worst case a payee needs to wait for 4 extra minutes,
which is considered acceptable.

Moreover, to prevent common-root spending attacks, as
also recommended in [7], we enforce a user to spend coins
only if they are not from the same ring (line 7-11).

7. Discussion

Randomised selection strategies. One may think
that all mentioned strategies in our examples are fixed and
do not account for randomised selection. However, in fact,
the example strategies mentioned in the paper mainly serve
as examples to demonstrate the possible outcome of any type
of strategies. In particular, we first show that if randomized

12

strategies give a certain kind of outcome (such as the one
in our examples), then the privacy cannot be guaranteed.
Second, we show that according to our theorem, the random-
ized strategies will not be able to provide optimized privacy
guarantee, as the overlapped sets will leak extra information.

Modeling consideration. Intuitively, it is reasonable
to define the global untraceability in a similar way as
defining the individual untraceability. For example, a straw
man definition could be defining the global untraceability
as the least number of coins required to be corrupted in
order to de-anonymize any transaction. Let’s call it “least-
number model (LNM)” for simplicity. However, this model
is actually weaker than our proposed model due to the
cascade effect. Considering Example 1, where Strategy B is
{1,2}, {3,4}, {1,3}, {2,4}, and Strategy C is {1,2}, {1,2},
{3,4}, {3,4}. In the LNM model, the global untraceability
for both B and C is “1”, i.e., the least number of coins
required to be corrupted in order to de-anonymize any
transaction is “1”. However, the compromise of a single
coin in B will de-anonymize all transactions, but this is not
the case in C. In contrast, our model considers the diffi-
culty of de-anonymising all transactions, which is stronger,
i.e., our model considers the cascade effect, and the ideal
global untraceability in our model implies the idea global
untraceability in the LNM.

Model limitation. As the focus of our model is
on the snapshots of a CryptoNote-style blockchain, we do
not consider timing issues in our model. Including timing
considerations certainly deserves more care, and extending
our model to cover them is an interesting future work.

Global coordinator. We do not assume any global
coordinator for choosing decoy transactions. In our model,
Sun Tzu, which might be misunderstood as a global coor-
dinator, models the community who decides the blockchain
protocol rules, which will be hard-coded in the client soft-
ware. This is the reason that our model only allows Sun
Tzu to distribute the strategies to the soldiers before they
receive a wooden tag, and does not allow Sun Tzu to have
any communication with the soldiers after they received
their strategies. For example, if considering the rule of the
maximum size of a block in BitCoin as a strategy (for a
different purpose of course), then the “global coordinator”
is the community who decides the hard-coded maximum
block size. In practice, these rules are hard-coded in the
client. For example, similar to the current version of Monero
client which already enforces the minimum number of mix-
ins, our scheme can be integrated into the Monero client to
choose mix-ins according to the blockchain data.

Binned mixin sampling. Binned mixin sampling
[9] is a leading and advanced mixin strategy that aims
at preventing attacks using the knowledge of spend-time
distribution. It has a design principle similar to the strategy
proposed in Section 6.2. In particular, binned mixin sam-
pling groups all outputs in a CryptoNote-style blockchain
into “bins”, which are sets of a fixed size. All outputs in a
bin are chosen from the same block or neighboring blocks.
So, outputs in the same bin have a similar age. If any of
the output in a bin is used as an input in a transaction, then

all other outputs should be mixed in as well. To eliminate
the the advantage of a malicious miner, the assignment of
outputs to bins are determined by the block header, which
prevents a malicious miner to predict the assignment of
outputs to bins.

However, while being able to prevent timing-related
attacks, it does not achieve optimal individual untraceability.
In particular, with binned mixin sampling, transactions can
have arbitrary number of bins that is calculated based on the
number of used mixins. Thus, it is possible that rings in dif-
ferent transactions have partial overlapped bins. This allows
an attacker to rule out some overlapped bins, to increase its
success rate of guessing a real input in a transaction.

8. Conclusion

Blockchains have become popular in the last years, and
blockchain-based cryptocurrencies have a capital market of
billions of dollars. This motivates attackers to break user
privacy in order to learn more about their transactions. We
observed new attacks to show the importance of mix-in
selection strategy. The observed attacks can by applied by
a passive attacker and/or an active adaptive attacker. We
also proposed new games to model the different transac-
tion untraceability properties, and modeled them by using
bipartite graphs. Our models allowed us to provide several
important results, such as the least upper bound of global
untraceability, and the relations between global untraceabil-
ity and individual untraceability. We further provided ways
to evaluate whether a given ledger achieves optimal global
untraceability, and strategies to achieve optimal global un-
traceability and individual untraceability.

References

[1] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in IEEE Symposium on Security and Privacy, 2014, pp. 459–
474.

[2] L. M. Bregman, “Some properties of nonnegative matrices and their
permanents,” in Soviet Math. Dokl, vol. 14, no. 4, 1973, pp. 945–949.

[3] “Cryptocurrency market capitalizations,” retrieved 2017-07-01.
[Online]. Available: http://coinmarketcap.com/

[4] “Cryptonote currencies,” 2018. [Online]. Available: https:
//cryptonote.org/coins/

[5] D. C. Kozen, The Design and Analysis of Algorithms. New York,
NY, USA: Springer-Verlag New York, Inc., 1992.

[6] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of monero’s blockchain,” in ESORICS, 2017, pp. 153–173.

[7] A. Mackenzie, S. Noether, and M. C. Team, “Improving obfuscation
in the cryptonote protocol,” Monero research lab report MRL-0004,
2015. [Online]. Available: https://lab.getmonero.org/pubs/MRL-0004.
pdf

[8] H. Minc, “Upper bounds for permanents of (0, 1)-matrices,” Bulletin
of the American Mathematical Society, vol. 69, no. 6, pp. 789–791,
1963.

[9] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin,
“An empirical analysis of traceability in the monero blockchain,”
PoPETs, vol. 2018, no. 3, pp. 143–163, 2018.

13

http://coinmarketcap.com/
https://cryptonote.org/coins/
https://cryptonote.org/coins/
https://lab.getmonero.org/pubs/MRL-0004.pdf
https://lab.getmonero.org/pubs/MRL-0004.pdf

[10] T. Muir, “On a class of permanent symmetric functions,” Proceedings
of the Royal Society of Edinburgh, vol. 11, pp. 409–418, 1882.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

[12] S. Noether, “Ring signature confidential transactions for monero,”
Cryptology ePrint Archive, Report 2015/1098, 2015, http://eprint.iacr.
org/2015/1098.

[13] A. Schrijver, “A short proof of minc’s conjecture,” Journal of com-
binatorial theory, Series A, vol. 25, no. 1, pp. 80–83, 1978.

[14] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “RingCT 2.0: A
Compact Accumulator-Based (Linkable Ring Signature) Protocol for
Blockchain Cryptocurrency Monero,” ESORICS, 2017.

[15] Sun Tzu, The Art of War, 771 BC to 476 BC.

[16] L. G. Valiant, “The complexity of computing the permanent,” Theo-
retical computer science, vol. 8, no. 2, pp. 189–201, 1979.

[17] N. van Saberhagen, “Cryptonote v 1.0,” 2012. [Online]. Available:
https://cryptonote.org/whitepaper v1.pdf

[18] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F. Lau, “New
empirical traceability analysis of cryptonote-style blockchains,” in
Financial Cryptography and Data Security (FC), 2019.

Appendix

A, as below, is the incidence matrix (given below) of
Graph of Strategy B (Figure 4a). The permenent of A is
calculated as follows.

A = (axy)(x,y)∈4×4 =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


Per(A) =

∑
σ∈SN

∏N
i=1 aiσ(i)

= a11 · a22 · a33 · a44 + a12 · a23 · a34 · a41

+a13 · a24 · a31 · a42 + a14 · a21 · a32 · a43

+a11 · a23 · a32 · a44 + a12 · a24 · a31 · a43

+a13 · a22 · a34 · a41 + a14 · a21 · a33 · a42

+a11 · a24 · a33 · a42 + a12 · a21 · a34 · a43

+a13 · a22 · a31 · a44 + a14 · a23 · a32 · a41

+a11 · a22 · a34 · a43 + a12 · a24 · a33 · a41

+a13 · a21 · a32 · a44 + a14 · a23 · a31 · a42

+a11 · a23 · a34 · a42 + a12 · a21 · a33 · a44

+a13 · a24 · a32 · a41 + a14 · a22 · a31 · a43

+a11 · a24 · a32 · a43 + a12 · a23 · a31 · a44

+a13 · a21 · a34 · a42 + a14 · a22 · a33 · a41

= 2

14

http://eprint.iacr.org/2015/1098
http://eprint.iacr.org/2015/1098
https://cryptonote.org/whitepaper_v1.pdf

	Introduction
	Our Contribution.
	Experimental analysis and disclosure.

	Background
	Threat model
	The Sun Tzu Survival Problem
	Individual untraceability (Static model)
	Individual untraceability (Adaptive model)

	Towards Global Untraceability
	Sun-Tzu survival problem with global untraceability
	Linking the problem to graph theory

	Application to Monero
	Review of existing attacks
	Mix-in selection for Monero

	Discussion
	Conclusion
	References
	Appendix

