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Abstract. A cryptographic checksum is a small data item that is com-
puted from a data structure and can be used to prevent undetected in-
tentional modification by making it difficult for an adversary to construct
a different data structure that has the same checksum. We broaden the
concept of a checksum to include the concept of a data item intended
to prevent certain modifications while tolerating others. An omission-
tolerant checksum is computed from a data structure that represents a
set and does not change when elements are omitted from the set, while
making it difficult for an adversary to modify the set in any other way
without invalidating the checksum.
We use the root label of a typed hash tree to implement an omission-
tolerant checksum. A typed hash tree is a variation on a Merkle tree,
where each node has a type and a label. The root label of a typed hash
tree does not change when a subtree is pruned from the tree. The same is
true for a Merkle tree, but in a Merkle tree this a “bug” to be mitigated,
while in a typed has tree it is a “feature” that makes it possible to use
the label of the root node as an omission-tolerant checksum for a set of
key-value pairs. To do so, we encode each key-value pair as the type and
label of a leaf node of an incomplete typed hash tree without internal-
node labels, then serialize the tree to obtain a bit-string encoding of the
set. To compute the checksum on the encoding we deserialize the bit-
string, compute the missing internal nodes, and output the label of the
root node as the checksum.
We use Boneh and Shoup’s system parameterization and attack game
methodology to prove that, given a set of key-value pairs, an efficient
adversary has a negligible probability of producing a set of key-value
pairs, other than a subset of the given one, that has the same checksum.

1 Introduction

A checksum is a small data item that is computed from a data structure and
can be used to verify its integrity, i.e. to verify that the data structure has not
been accidentally or intentionally modified. We are primarily concerned with
cryptographic checksums that are used to prevent undetected intentional mod-
ification by making it difficult for an adversary to construct a different data
structure that has the same checksum. An example of a cryptographic checksum
is a cryptographic hash computed on a bit-string encoding of a data structure. A
cryptographic checksum can be verified by comparing it to an original checksum
supplied by the originator of the data structure, or by verifying a signature on
the checksum by the originator.



In this paper we broaden the concept of a checksum to include the concept of
a data item intended to prevent certain modifications while tolerating others. An
omission-tolerant checksum is computed from a data structure that represents a
set and does not change when elements are omitted from the set, i.e. when the
set is replaced with a subset, while making it difficult for an adversary to modify
the set in any other way without invalidating the checksum.

More broadly, given a binary relation defined among the elements of a set,
a relaxed-integrity checksum with respect to the relation is a data item that is
computed from a data structure representing an original element of the set and
does not change when the original element is replaced with a different element
that is related to the original one, while it is difficult for an adversary to find
an unrelated element that has the same checksum. Omission-tolerant integrity
is the special case of relaxed integrity where the binary relation is the subset
relation.

We use a typed hash tree to represent a set of key-value pairs with omission-
tolerant integrity protection provided by the root label of the tree, i.e. by the
label of its root node. In a typed hash tree each node has a type and a label, and
the label of an internal node is a cryptographic hash of an encoding of the types
and labels of its children called the prelabel of the node. A distinguished type
is assigned to all the internal nodes and possibly to some of the leaf nodes. The
key and the value of a key-value pair are encoded as bit strings and represented
by the type and the label of a leaf node that has an undistinguished type. The
same key may be associated with multiple values, and thus a typed hash tree can
be used to represent a set of unstructured elements as a special case of a set of
key-value pairs where there is only one key, associated with all the unstructured
elements.

The key-value pairs in a subtree can be omitted without modifying the root
label of the tree by “pruning” the subtree, causing its root node to become a leaf
node whose type is the distinguished type; we refer to such a node as a dangling
node; this can be used to implement selective disclosure by pruning different
subtrees when presenting the tree to different verifiers. When the tree is used for
selective disclosure, a dangling node with a random label may be used to make
it infeasible to tell whether a subtree rooted at that node has been pruned or
the node was originally dangling.

If a typed hash tree Y is derived from a typed hash tree X by pruning one or
more subtrees, then X and Y have the same root label. Conversely, we formally
prove that if X and Y have the same root label, then either Y is isomorphic to
a pruned derivative of X, or the label of an internal node of Y is equal to the
label of a dangling node of X, or an internal node of Y has the same label as an
internal node of X but a different prelabel.

From this formal result it follows that if a typed hash tree is used to represent
a set of key-value pairs and the hash function used to construct the tree is
collision and preimage resistant, then the root label of the tree can serve as
an omission-tolerant checksum of that set. This is easy to see informally, but a
formal proof faces the well known difficulty of formalizing the concepts of collision
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and preimage resistance for a keyless hash function. We solve this difficulty using
the novel concept of system parameterization proposed by Boneh and Shoup in
[2], and the attack game methodology that they use.

A further difficulty arises from the fact that some of the algorithms in-
volved in the attack games are hybrid non-deterministic algorithms, which make
two kinds of non-deterministic choices: probabilistic choices, and arbitrary, non-
probabilistic ones. The output of such an algorithm is a random variable that
has a well-defined distribution over a probability space only if the probabilistic
choices that define the space are made after the non-probabilistic ones and after
any probabilistic ones not included in the definition of the space. We solve this
difficulty in the asymptotic security setting by letting only some aspects of a
typed hash tree be dependent on the security parameter.

An omission-tolerant checksum has many possible applications. A particu-
larly important one is a method for implementing selective disclosure of data
items bound to a public key by a public key certificate, either by including the
omission-tolerant checksum in a traditional X.509 certificate and presenting the
data with any omissions separately, or by defining a new certificate format that
includes the data, with omissions as desired at presentation time, and the sig-
nature computed on the omission-tolerant checksum. Cryptographic credentials
that feature selective disclosure of attributes, such as anonymous credentials [3]
or U-Prove tokens [5], have been proposed before; but they are more difficult to
use than public key certificates and have failed to be widely deployed. Public
key certificates with selective disclosure would be much easier to deploy for a
wide range of privacy-preserving applications, such as TLS client authentication.
Details of such applications are left for future work.

1.1 Prior work and present contributions

Hash trees were first proposed by Merkle [11]. In a Merkle tree, each internal
node is labeled by a hash of the concatenation of the labels of its children, and
each leaf node is labeled by a hash of a data block. In both kinds of trees, a
subtree can be pruned without modifying the root label of the tree. But in the
case of a Merkle tree this is a “bug” to be mitigated if the tree is to provide
integrity protection, while in the case of a typed hash tree it is a “feature” that
allows the root label of the tree to be used as an omission-tolerant checksum.
The root label of a Merkle tree is a checksum of a collection of data blocks whose
hashes label the leaf nodes. The root label of a typed hash tree is a checksum of
a collection of key-value pairs, the key and value of each pair being represented
by the type and the label of a leaf node. Pruning a subtree causes data blocks
in the case of a Merkle tree, or key-value pairs in the case of typed hash tree, to
be removed from the checksummed collection without modifying the checksum.
But in the case of a Merkle tree, it also causes an extraneous data block to be
added to the collecion, viz. the concatenation of the labels of the children of the
root of the subtree. In the case of a typed hash tree, nothing is added to the
collection, because the type and label of a leaf node do not represent a key-value
pair when the type of the leaf node is the distinguished type.
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In Certificate Transparency [8], the subtree pruning “bug” of a Merkle hash
tree is mitigated by prepending a byte to the data that is hashed into the label
of a node, the value of the byte being 0x00 for leaf nodes and 0x01 for internal
nodes. This byte is akin to a type in a typed hash tree, but the intended effect
of the byte is to alter the value of the root label of the tree when a subtree is
pruned. So this kind of type cannot be used for implementing omission-tolerant
integrity protection.

The Secure Electronic Transactions (SET) protocol [10,13], uses a “dual sig-
nature” to disclose different information about an online credit card transaction
to the merchant and to the acquiring bank. The dual signature uses a cascade of
hashes that can be mapped to a very special case of a typed hash tree. Neither
a broadly applicable concept of an omission-tolerant checksum nor a proof of
security are provided.

We originally proposed the concept of omission-tolerant integrity protection
in a white paper concerned with a specific application [9]. NIST has subsequently
but independently proposed the equivalent concept of “integrity protection with
erasure capability” [6]. In the method that NIST uses to implement the concept,
data items, referred to as blocks, are arranged in a two-dimensional matrix,
and integrity is verified by the hashes of the rows and columns of the matrix.
Zeroing out one of the blocks alters the hashes of the row and column of the
block, but the hashes of the other rows and columns can still be used to verify the
integrity of the other blocks. A carefully designed algorithm assigns a sequence
of blocks to matrix positions excluding the diagonal, in a manner that ensures
that two consecutive blocks can be zeroized without losing integrity protection
for other blocks. An advantage of this method over ours is that a data block can
be altered in any way, not just deleted by zeroing it, without losing integrity
protection for other blocks. A disadvantage is that, when a block is zeroized
or otherwise altered, multiple hashes have to be individually checked to verify
the integrity of the remaining blocks. Origin authentication by digital signature
would thus requires all the row and column hashes to be individually signed.
It is interesting that the collection of row and column hashes provides integrity
protection but does not constitute an omission-tolerant checksum, since two of
the hashes in the collection change when a block is zeroized or altered. This
shows that the concepts of omission-tolerant checksum and omission-tolerant
integrity protection are not equivalent.

US patent 6,802,002 [4] describes “structured certificates”, which are pub-
lic key certificates containing nested “certificate folders” than can be open or
closed, where closing a folder means replacing it with a cryptographic hash of
the folder. This is essentially equivalent to binding the public key to the root
label of a typed hash tree, a folder being equivalent to a subtree, and closing a
folder being equivalent to pruning the corresponding subtree. Thus the certifi-
cates described in the patent provide selective disclosure of certified information.
However neither a broadly applicable concept of an omission-tolerant checksum
nor a proof of security are provided.

The contributions made by this paper include:
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1. The concepts of omission-tolerant checksum and omission-tolerant integrity
protection, and the broader concept of relaxed integrity protection with re-
spect to a binary relation.

2. The concept of a typed hash tree.
3. A fundamental theorem relating the structures of typed hash trees having

the same root label (Theorem 1).
4. A method for using a typed hash tree to represent a set of key-value pairs

(or, as a special case, a set of unstructured elements all associated as values
with the same key), serializing the tree to obtain a bit-string encoding of the
set, and using the root label of the tree as an omission-tolerant cryptographic
checksum of the encoding.

5. A formal proof in an asymptotic security setting that given a set of key-value
pairs, an efficient adversary has a negligible probability of producing a set
of key-value pairs, other than a subset of the given one, that has the same
root-label checksum (Theorem 3).

2 Preliminaries

2.1 Algorithms

Many definitions of the concept of algorithm have been proposed [14]. We shall
not use a particular one or propose our own. We think of an algorithm in a
practical way as an abstraction of the concrete concept of a computer program,
and all algorithms described in the paper can be readily implemented in a modern
programming language.

An algorithm may be passed any input or inputs, but may stop without
output if it receives an unexpected input, or for other reasons. Stopping without
output is an abstraction of the programming concept of throwing an exception.
When we say that an algorithm takes as input data of some particular form we
mean that it determines whether the input is of that form before performing
any other computation, and stops without output if it is not of that form. An
algorithm may also have parameters, which may be viewed as being hardcoded
into the program that implements the algorithm or as additional inputs.

An algorithm may be deterministic or non-deterministic. Non-deterministic
algorithms may make probabilistic choices or arbitrary, non-probabilistic choices.
Examples of algorithms that make non-probabilistic choices, in a variety of con-
texts, include: ASN.1 encoding with Basic Encoding Rules (BER), which allow
more than one way of encoding a data item into a byte string; the algorithm
for generating the DSA domain parameters p and q specified in [12, Appendix
A.1.1.2], which chooses an arbitrary domain parameter seed at step 5; and the
non-deterministic polynomial time algorithms used in the definition of the com-
plexity class NP. Examples of algorithms that make probabilistic choices, again
in a variety of contexts, include: the Miller-Rabin primality testing algorithm;
the OAEP padding algorithm for RSA encryption; randomized signature schemes
such as DSA or ECDSA; and Boneh & Shoup’s concept of a system parameter-
ization algorithm [2, Definition 2.9] further discussed below in Section 5.1.
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Some algorithms make both kinds of choices. For example, the the algorithm
for generating the DSA domain parameters p and q specified in [12, Appendix
A.1.1.2] chooses an arbitrary domain parameter seed at step 5, then uses the
Rabin-Miller primality test, which makes probabilistic choices. We refer to such
algorithms as hybrid algorithms, and to an algorithm that only makes proba-
bilistic choices as a probabilistic algorithm.

The output of a probabilistic algorithm is a random variable with a probabil-
ity distribution that only depends on its inputs. We will have the need to view
the output of a hybrid algorithm as a random variable whose probability dis-
tribution depends on the non-probabilistic choices and some of the probabilistic
choices, and make statements about that random variable that are universally
quantified over the inputs and the other choices. However such probability dis-
tribution is only well defined if the choices that define the probability space are
made after the other choices, and we will be careful to ensure that this is indeed
the case.

When describing specific algorithms, for the sake of brevity and as is done
elsewhere, e.g., in [1], we shall sometimes blur the distinction between algorithmic
variables, which take different values at different stages of an execution of an
algorithm, and particular values of those variables.

2.2 Games

We use attack games to define security properties as in [2].
A game has a challenger and an adversary, which are algorithms, and param-

eters that are available to the challenger and the adversary. The challenger may
be a hybrid algorithm, but the adversary may not make any non-probabilistic
choices, and is therefore either deterministic or probabilistic.

Executing the game means invoking the challenger algorithm, with the ad-
versary algorithm provided as an input to the challenger algorithm. As its last
step, the challenger usually invokes the adversary algorithm, providing it with
inputs, and obtaining any outputs produced by the adversary. In exceptional
cases, the challenger may stop without invoking the adversary. The game pro-
tocol specifies the steps taken by the challenger, the inputs that the challenger
provides to the adversary, whether the adversary is deemed to have won or lost
if it is not invoked by the challenger, and winning conditions on any outputs
produced by the adversary that determine if the adversary wins the game, in
the usual case where it is invoked by the challenger. After running the adversary,
the challenger produces a boolean output indicating whether the adversary has
won the game. It also relays any outputs produced by the adversary as part of
its own outputs, and may produce other outputs that it has computed itself.

2.3 Notations and conventions

We write {0, 1}∗ for the set of all bit strings, {0, 1}n for the set of bit strings of
length n, {0, 1}<n for the set of bit strings less than n, and Z≥1 for the set of
the positive integers.
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We write f : S 7→ S′ to state that f is a function with domain S and
codomain S′.

As in [1], we use the term “fact” to refer to a theorem whose proof is left to
the reader.

2.4 Hash functions

It is difficult to provide formal definitions for the security properties of hash
functions, especially for collision resistance [7, end of §5.1.1], [2, preamble of
§8.1]. In an asymptotic security setting, the difficulty comes from the absence
of randomness in the inputs and algorithms of hash functions, and is usually
avoided by defining security properties for keyed hash functions that take a ran-
dom key as an additional input, rather than for keyless hash functions such as
those of the SHA-2 family. As further discussed below in Section 5.1, we over-
come this difficulty using the system parameterization methodology of [2], which
introduces randomness without adding a key argument to the hash function.

For our purposes we need hash functions with domain {0, 1}<a and codomain
{0, 1}b with a much greater than b and we only consider such hash functions. The
hash functions of the SHA-2 family satisfy this requirement, with b equal to 224,
256, 384 and 512 for SHA-224, SHA-256, SHA-384 and SHA-512 respectively, and
a being equal to 264 for SHA-224 and SHA-256, and 2128 for SHA-384 and SHA-
512, as determined by the number of bits used to specify the length of the input
in the padding. This requirement motivates the following definition of a simple
hashing scheme. A definition of a hashing scheme with system parameterization
will be provided in Section 5.

Definition 1 (Simple hashing scheme). A simple hashing scheme is a triple
(a, b, h), where a and b and positive integers such that a > b and h is a function
with domain {0, 1}<a and codomain {0, 1}b.

A hash function should be hard to invert and have security properties such as
collision and preimage resistance. The following broad definition does not capture
such requirements, but formal definitions of collision and preimage resistance are
provided below in Section 5 using attack games.

Definition 2 (Hash function). A function h is a hash function if there exist
positive integers a and b such that (a, b, h) is a simple hashing scheme.

2.5 Simple encoding schemes

We will need the following simple notion of an encoding scheme. A more complex
definition of an encoding scheme with system parameterization will be provided
in Section 5.

Definition 3 (Simple encoding scheme). A simple encoding scheme for the
elements of a set S is a triple E = (S,E,D), where
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1. S is the set of data items to be encoded.
2. E is an algorithm, possibly non-deterministic, called the encoding algorithm

of the scheme, that takes as input an element x of S and outputs a bit string
y called an encoding of x.

3. D is a deterministic algorithm, called the decoding algorithm of the scheme,
that takes as input a bit string y and is such that:
(a) If y is an output of E on input x, then D outputs x on input y.
(b) If y is not an output of E, then D stops without output.

3 Typed hash trees

A typed hash tree is an ordered tree augmented by assignments of types and
labels to its nodes, where the label of each internal node is a hash of a prelabel
consisting of the types and labels of its children. The formal definition is in four
stages, which define the concepts of an ordered tree, an ordered tree augmented
with types and labels, a prelabel, and finally a typed hash tree.

There are many equivalent ways of defining an ordered tree. Here we define
it as a set of nodes together with a function mapping each node to the sequence
of its children.

Definition 4 (Ordered tree). An ordered tree is a pair (N , C) where

1. N is a finite set whose elements are called the nodes of the tree.
2. C is a function that maps each node N ∈ N to a sequence without repeti-

tions, the nodes in the sequence being called the children of N , nodes without
children being called leaf nodes and nodes with children being called internal
nodes, such that:
(a) Every node N is a child of at most one other node, which is called the

parent of N .
(b) The parent-child relation is a directed acyclic graph.
(c) Exactly one node, called the root of the tree, has no parent.

In an ordered tree augmented with types and labels, the types are bit strings
of fixed length m, while the labels of some nodes are of variable length less then
2m and the labels of some other nodes are of fixed length b. These complications
are due to the fact that b is the bit length of the output of the hash function,
which will grow with the security parameter in the asymptotic security setting
of Section 5 while m will be constant.

Definition 5 (Ordered tree augmented with types and labels). An or-
dered tree augmented with types and labels or, more briefly, an augmented
ordered tree, is a tuple (N , C,m, d, b, T ,L) that augments an ordered tree (N , C)
with the following components:

1. A positive integer m, large enough that the number of children of any node
can be binary-encoded as m bits (i.e. greater than the base-2 logarithm of the
degree of the tree).
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2. A bit string d of length m, known as the distinguished type.
3. A positive integer b.
4. A function T : N 7→ {0, 1}∗ that maps each node N ∈ N to a bit string

of length m called the type of N , such that every internal node and zero or
more leaf nodes have type d, nodes having type d being called distinguished
nodes and distinguished leaf nodes, if any, being called dangling nodes.

5. A function L : N 7→ {0, 1}∗ that maps each node N ∈ N to a bit string
called the label of N , such that distinguished nodes have labels of length b
and undistinguished nodes have labels of length less than 2m.

In the following definition, m determines the length of the length indicator of
certain labels, in addition to determining the length of types, and the length of
the binary encoding of the number of children of a node (for tree serialization).
We let the same parameter m play these three roles for the sake of simplicity.
There would be no difficulty in using three different parameters, other than
additional complication.

Definition 6 (Prelabel). Let T = (N , C,m, d, b, T ,L) be an augmented or-
dered tree, and N a node of T . The prelabel of N is the bit string obtained by
concatenating, for each node N ′ in the sequence C(N) of the children of N :

1. The type of N ′, of fixed length m; and
2. Either

(a) The label of N ′, of length b, if the type of N ′ is d, or
(b) The label of N ′, of length less than 2m, preceded by the m-bit binary

representation of its length, if the type of N ′ is other than d.

In the following definition, the tuple (N , C,m, d, a, b, h, T ,L) is a mathe-
matical definition of a typed hash tree X, not a data structure representing
X. Implementations of algorithms that create and manipulate typed hash trees
may use any data structure suitable to the programming language in which the
algorithm is implemented.

Definition 7 (Typed hash tree). A typed hash tree is a tuple X = (N , C,
m, d, a, b, h, T ,L) where (N , C,m, d, b, T ,L) is an augmented ordered tree and (
a, b, h) a simple hashing scheme, such that for every internal node N ∈ N the
prelabel p of N is a bit string of length less than a and the label of N is h(p).

We say that two typed hash trees having the same parameters m, d, a, b and
h are of the same kind and define the kind of a typed hash tree accordingly.

Definition 8 (Kind of a typed hash tree). A kind of typed hash tree is
a tuple (m, d, a, b, h) where m is a positive integer, d is a bit string of length
m, and (a, b, h) is a simple hashing scheme. A typed hash tree (N , C,m, d, a, b,
h, T ,L) is said to be of kind (m, d, a, b, h).

We need a notion of isomorphism for typed hash trees of a particular kind.
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Definition 9 (Isomorphism of typed hash trees). Let (m, d, a, b, h) be a
kind of typed hash tree. We say that two typed hash trees of kind (m, d, a, b, h)
are isomorphic if there exists a bijection between their sets of nodes such that
corresponding nodes have same type, same label, and sequences of corresponding
children.

The subtree of a typed hash tree X = (N , C,m, d, a, b, h, T ,L) rooted at a
node N of X is the typed hash tree X ′ = (N ′, C′,m, d, a, b, h, T ′,L′), where N ′
is the set of descendants of N (including N itself), and C′, T ′ and L′ are the
restrictions of the functions C, T and L to the domain N ′. Pruning X ′ means
removing fromX the descendants ofN other thanN itself, and thus results in the
typed hash tree X ′′ = (N ′′, C′′,m, d, a, b, h, T ′′,L′′), where N ′′ = (N \N ′)∪{N},
C′′ = (C \ C′) ∪ {(N, ∅)}, and T ′′ and L′′ are the restrictions of the functions T
and L to the domain N ′′. A pruned derivative of X is the result of pruning zero
or more subtrees from X. If X ′′ is the result of pruning X ′ from X, we also say
that X is the result of grafting X ′ onto X ′′.

The labels of the internal nodes of a typed hash tree can be computed from
the types and labels of the leaf nodes, hence they can be omitted when the tree
is serialized. Algorithm 1 below attempts to compute the internal-node labels
of a typed hash tree where they are missing either because the tree is under
construction, or because they have been omitted. In the former case it may fail
and stop without output if it encounters a prelabel that is too long. The details
of the algorithm are worth noting because a trace of the algorithm is used in the
proof of Theorem 1.

We need a formal notion of an incomplete typed hash tree without internal-
node labels to characterize the input to the label computation algorithm. A
similar notion of and incomplete typed hash tree without distinguished-node labels
will be needed later for other purposes. We provide both definitions together.

Definition 10 (Incomplete typed hash tree without internal-node or
distinguished-node labels). An incomplete typed hash tree without internal-
node labels (resp. without distinguished-node labels) is a tuple (N , C,m, d, b, T ,L)
(resp. (N , C,m, d, T ,L)) where N , C, m, d, b, T , and L (resp. N , C, m, d, T
and L) are as in Definition 5, except that L is a partial function that only assigns
labels to leaf nodes (resp. distinguished nodes).

We also need definitions of a kind of incomplete typed hash tree without
internal-node labels and a kind of incomplete typed hash tree without distinguished-
node labels, and corresponding definitions of isomorphism.

Definition 11 (Kinds and isomorphism of incomplete typed hash trees).
A kind of typed hash tree without internal-node labels (resp. without distinguished-
node labels) is a tuple (m, d, b) (resp. (m, d) where m and b are positive integers
(resp. m is a positive integer) and d is a bit string of length m. An incomplete
typed hash tree (N , C,m, d, b, T ,L) resp. (N , C,m, d, T ,L) without internal-node
labels (resp. undistinguished node labels) is said to be of kind (m, d, b). (resp.
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(m, d)). Two incomplete typed hash trees without internal-node labels (resp. with-
out distinguished-node labels) of the same kind are isomorphic if there exists a
bijection between their sets of nodes such that corresponding nodes have the same
type, the same set of labels (comprising zero or one labels), and sequences of cor-
responding children.

We will make use of the following fact.

Fact 1. Let X and Y be incomplete typed hash trees without internal-node la-
bels of kind (m, d, b), and let X ′ and Y ′ be incomplete typed hash trees without
distinguished-node labels derived from X and Y by removing the labels of the
internal nodes. Then if X and Y are isomorphic as incomplete typed hash trees
without internal-node labels of kind (m, d, b), X ′ and Y ′ are isomorphic as in-
complete typed hash trees without distinguished-node labels of kind (m, d).

Algorithm 1 (Label computation). Let (m, d, a, b, h) be a kind of typed hash
tree. The (m, d, a, b, h)-label computation algorithm, takes as input an incom-
plete typed hash tree X without internal-node labels of kind m, d, b, maintains a
state consisting of a stack of type-label pairs and a node list, and performs the
following steps:

1. Initialize the stack to be empty, and the node list to the list of all the nodes
in the tree in depth-first post-order.

2. While the node list is not empty, perform a step, said to be “triggered” by
the first node N in the list, as follows:

(a) If N has no children, push a type-label pair with its type and its label
onto the stack.

(b) If N has n > 0 children, the type-label pairs of those children can be
found at the top of stack. Use them to assemble the prelabel p. Stop
without output if the bit length of p is not less than a. Otherwise compute
l = h(p), augment X by assigning l as the label of N , pop the top n
entries from the stack, and push the type-label pair (d, l) onto the stack.

(c) Remove N from the node list.

3. Output X, as augmented.

Algorithm 1 outputs a typed hash tree of kind (m, d, a, b, h) unless it encoun-
ters a prelabel that is too long.

The omission-tolerant integrity protection provided by the root label of a
typed hash tree is based on the following fundamental theorem about the struc-
ture of typed hash trees that have the same root label.

Theorem 1 (Fundamental theorem: typed hash trees with same root
label). Let X and Y be two typed hash trees of the same kind. If X and Y have
the same root label, then either (i) Y is isomorphic to a pruned derivative of X,
or (ii) the label of an internal node of Y is equal to the label of a dangling node
of X, or (iii) an internal node of Y has the same label as an internal node of X
but a different prelabel.
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Proof. Let X and Y be two typed hash trees of kind K = (m, d, a, b, h) that
have the same root label. To prove that Y satisfies one of the conditions (i), (ii)
or (iii) of the theorem we consider the computation of the internal labels of the
nodes of Y , X, and various pruned derivatives of X using Algorithm 1. Strictly
speaking, Algorithm 1 takes as input an incomplete typed hash tree without
internal-node labels. For our present purposes we let it take as input a complete
typed hash tree, ignoring and recomputing its internal-node labels.

Recall that Algorithm 1 maintains a state consisting of a stack of type-label
pairs and a node list. We define the label computation trace (LCT) of a typed
hash tree as the sequence of states in an execution of the algorithm when given
the tree as input, except that the node list contains entries corresponding to the
nodes instead of the nodes themselves, each entry being a tuple consisting of the
type, the number of children, and the label of the node, except that the label
is omitted if the number of children is zero; thus the entry corresponding to an
internal node N is a pair (d, nN ), where d is the distinguished type and nN is
the number of children of N . We still refer to nodes, rather than node entries,
as “triggering” the steps of the algorithm.

The stack is empty in the initial state and never becomes empty again. In
the final state it contains a single type-label pair, where the type is d and the
label is the root label. The node list contains entries for all the nodes in the
initial state, and is empty in the final state. It is easy to see that the LCT is
entirely determined by its initial state, and that two typed hash trees of kind K
with the same LCT are isomorphic.

Let τ be the LCT of Y . Since X and Y have the same root label, the last
state of τ is also the last state of the LCT of X. Let σ be the earliest state of
τ that is also a state of the LCT of a pruned derivative of X and let X ′ be a
minimally pruned such derivative, i.e. let X ′ be a pruned derivative of X that
has σ as a state of its LCT and is not a pruned derivative of another pruned
derivative of X that also has σ as a state of its LCT. Let τ ′ be the LCT of X ′.

If the stack is empty in state σ, σ is the initial state of both τ and τ ′, hence τ
and τ ′ are identical and Y and X ′ are isomorphic. Therefore Y satisfies condition
(i) of the theorem.

If the stack is not empty in state σ, let (t, l) be the type-label pair at the top
of the stack. Let N be the node of Y and N ′ the node of X ′ that trigger the
steps leading to state σ in the label computations of Y and X ′ respectively. N
and N ′ both have type t and label l.

Type t must be d, because otherwise N and N ′ would be leaf nodes of Y
and X ′, and the state preceding σ would be the same in τ and τ ′, contradicting
the definition of σ as the earliest state of τ that is also a state of the LCT of a
pruned derivative of X (such as X ′). Therefore each of N and N ′ must be either
an internal node or a dangling node.

N ′ cannot be an internal node of X ′ if N is a dangling node of Y . Otherwise
let X ′′ be the pruned derivative X ′′ of X obtained by further pruning from X ′

the subtree rooted at N ′. N ′ would be a dangling node of X ′′ triggering a step
leading to σ in the label computation of X ′′. Since a label computation proceeds
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in depth-first post order, the LCTs of X ′′, X and Y would be identical from
state σ onward. But then, N ′ and N being leaf nodes of X ′′ and Y , the states
preceding σ would be the same in X ′′ and Y , contradicting the definition of σ
as the earliest state of τ that is also a state of the LCT of a pruned derivative
of X (such as X ′′).

This leaves two possibilities. N may be an internal node of Y while N ′ is a
dangling node of X ′, or both may be internal nodes.

Consider first the case where N is an internal node of Y and N ′ is a dangling
node of X ′. N ′ must also be a dangling node of X, for otherwise the tree X ′′′

derived from X ′ by grafting the subtree of X rooted at N ′ would be a pruned
derivative of X having σ as a state of its LCT, and X ′ would be a pruned deriva-
tive of X ′′′ distinct from X ′′′, contradicting the minimality of X ′. Therefore N ′

is a dangling node of X having the same label l as the internal node N of Y ,
hence Y satisfies condition (ii) of the theorem.

Now consider the case where N and N ′ are internal nodes of Y and X ′. Let
nN be the number of children of N in Y and nN ′ the number of children of N ′

in X ′. Let ρN and ρN ′ be the states that precede σ in the LCTs of Y and X ′

respectively, with N triggering the transition from ρN to σ in the LCT of Y and
N ′ the transition from ρN ′ to σ in the LCT of X ′.

By the definition of σ, ρN and ρN ′ must be different. This implies that the
sequences of type-label pairs of the children of N and N ′ must be different,
since the stack of σ is derived by popping the type-label pairs of the children
of N from ρN before pushing (t, l) as well as by popping the type-label pairs
of the children of N ′ from ρN ′ before pushing (t, l), and the node list of σ is
derived by removing the entry (d, nN ) from the front the node list of ρN as well
as by removing the entry (d, nN ′) from the front of the node list of ρN ′ ; so if the
sequences of type-label pairs of the children of N and N ′ were the same, both
the states and the node lists of ρN and ρN ′ would be the same, and thus ρN and
ρN ′ would be the same.

But if the sequences of type-label pairs of the children of N and N ′ are
different, so must be the prelabels of N in Y and N ′ in X ′. Hence N is an
internal node of Y having the same label l as the internal node N ′ of X ′ but a
different prelabel. But it follows from the fact that N ′ is an internal node of a
pruned derivative of X that N ′ is also an internal node of X and has the same
prelabel in X as in X ′. Thus an internal node of Y has the same label as an
internal node of X but a different prelabel, and Y satisfies condition (iii) of the
theorem. ut

4 An omission-tolerant checksum

4.1 Overview

The root label of a typed hash tree can be used as an omission-tolerant checkum
of a bit string encoding of a finite set of key-value pairs, as follows. A non-
deterministic algorithm is used to produce an incomplete typed hash tree with-
out distinguished-node labels that represents the set of key-value pairs. The
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representation algorithm is free to choose the form of the tree, and may choose
to include dangling nodes. If the tree has dangling nodes, random labels are
assigned to them to obtain an incomplete typed hash tree without internal-node
labels. That tree is then serialized to produce the bit string encoding of the
set of key-value pairs. A checksum computation algorithm applies to the bit
string encoding, deserializes it to obtain an incomplete typed hash tree without
internal-node labels, uses the label computation algorithm to compute the labels
of the internal nodes, and outputs the label of the root node as the checksum.

In this section we define the representation algorithm, a derepresentation
algorithm, and the the serialization and deserialization algorithms. The encoding
and checksum algorithms are defined in Section 5 in an asymptotic security
setting.

4.2 Representation of a set of key-value pairs

When a typed hash tree is used to represent a set of key-value pairs, the key
and the value of each pair are represented as the type and the label of an undis-
tinguished leaf node. But in order to represent a key as a type and a value as a
label, the key and the value must be encoded as bit strings. This motivates the
following definitions.

Definition 12 (Space of key-value pairs). A space of key-value pairs is
a pair (K,V ), where K is a finite non-empty set of elements called keys and
V = (Vk)k∈K is a family of finite non-empty sets, the elements of Vk being
the values that can be associated with key k. In the context of such a space, a
key-value pair is an element of the cartesian product

∏
k∈K Vk, and a set of key-

value pairs is an element of the powerset of the cartesian product, which we write
SetsK,V = P(

∏
k∈K Vk).

Definition 13 (Representation framework for sets of key-value pairs).
A representation framework for sets of key-value pairs is a tuple F = (m, d,K, V,
KE,KD,VE,VD) where

1. (m, d) is a kind of incomplete typed hash tree without distinguished-node
labels.

2. (K,V ) is a space of key value pairs.

3. KE and KD are the encoding and decoding algorithms of a simple encoding
scheme (K,KE,KD) such that, for every k ∈ K, on input k, KE outputs a
bit string of length m other than d.

4. VE = (VEk)k∈K and VD = (VDk)k∈K are families of algorithms such that,
for all k ∈ K, (Vk,VEk,VDk) is a simple encoding scheme such that, for all
v ∈ Vk, VEk outputs a bit string of length less than 2m on input v.

We can now define the representation algorithm, using a representation frame-
work F as a parameter.
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Algorithm 2 (F-representation of a set of key-value pairs). Let F =
(m, d,K, V,KE,KD,VE,VD) be a representation framework for sets of key-value
pairs. The F-representation algorithm takes as input an element x of SetsK,V
and outputs an incomplete typed hash tree without distinguished-node labels of
kind (m, d), constructed by the following steps:

1. Construct an ordered tree X having a number of leaf nodes at least equal to
the cardinality |x| of x.

2. For each key-value pair (k, v) ∈ x, run KE on input k and VEk on input v
and assign their outputs to the type and label of a leaf node that has not been
assigned a type yet.

3. For each node N that has not been assigned a type yet (including all internal
nodes and possibly some of the leaf nodes), assign d as the type of N .

4. Output X, which is now an incomplete typed hash tree without distinguished-
node labels of kind (m, d).

The above F-representation algorithm is non-deterministic, as it makes non-
probabilistic choices in step 1, then calls KE and VE, which may make proba-
bilistic and/or non-probabilistic choices. It has a deterministic inverse, which we
call the F-derepresentation algorithm.

Algorithm 3 (F-derepresentation). Let F = (m, d,K, V,KE,KD,VE,VD)
be a representation framework for sets of key-value pairs. The F-derepresentation
algorithm takes as input an incomplete typed hash tree without distinguished-
node labels X of kind (m, d) and performs the following steps to construct a set
x ∈ SetsK,V .

1. Let the initial value of x be ∅.
2. Traverse X, enumerating its nodes in depth-first post-order. (The traversal

order is immaterial, but one must be specified if the algorithm is to be deter-
ministic.) For each undistinguished node N do the following, where l is the
label of N :

(a) Run KD on input t and stop without output if KD stops without output,
or else let k ∈ K be the output of KD.

(b) Run VDk on input l and stop without output if VDk stops without output,
or else let v ∈ Vk be the output of VDk.

(c) Stop without output if (k, v) is already in x, or else add (k, v) to x.

3. Output x.

Fact 2. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, let R and D be the F-representation and derepresenta-
tion algorithms, and let X be an incomplete typed hash tree without distinguished-
node labels of kind (m, d). Then:

1. If X is an output of R on input x ∈ SetsK,V , then D outputs x on input X.

2. If X is not an output of R on any input, then D stops without output.
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Fact 3. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, let D be F-derepresentation algorithm, and let X and
Y be incomplete typed hash trees without distinguished-node labels of kind (m, d).
If D outputs x on input X and Y is isomorphic to X, then D outputs x on input
Y .

Fact 4. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, and let R and D be the F-representation and derep-
resentation algorithms. Let x be an element of SetsK,V , X an incomplete typed
hash tree of kind (m, d) output by R on input x, and Y an incomplete typed hash
tree of kind (m, d) isomorphic to X. Then D outputs x on input Y .

Fact 5. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, let X and Y be typed hash trees of kind (m, d, a, b,
h), let X ′ and Y ′ be the incomplete typed hash trees obtained by removing the
distinguished-node labels from X and Y , and let x and y be outputs of the F-
derepresentation algorithm on inputs X ′ and Y ′ respectively. If Y is a pruned
derivative of X, then y ⊆ x.

Algorithm 4 ((m, d, b)-serialization of an incomplete typed hash tree
without internal node labels). Let (m, d, b) be a kind of incomplete typed
hash tree without internal-node labels. The (m, d, b)-serialization algorithm takes
as input an incomplete typed hash tree X without internal-node labels of kind
(m, d, b) and outputs a bit string computed by the following steps:

1. Initialize a bit string s to have length 0.
2. Traverse X in depth-first post-order and, for each node N , append to s a

node description string consisting of:
(a) The type of N , which is an m-bit string.
(b) The m-bit binary representation of the number of children of N .
(c) If N is a dangling node (i.e. if the type of N is d and the number of

children is 0), the label of N , which is a bit string of length b.
(d) If N is an undistinguished leaf node, the label of N preceded by the m-bit

representation of its bitlength.
3. Output s.

Algorithm 5 ((m, d, b)-deserialization of an incomplete typed hash tree
without internal node labels). Let (m, d, b) be a kind of incomplete typed hash
tree without internal-node labels. The (m, d, b)-deserialization algorithm takes as
input a bit string s and performs the following steps:

1. Attempt to parse s as a concatenation of node description strings and con-
struct a sequence r of corresponding node description entries, each having
components specifying a type, a number of children, and a label if the number
of children is not 0, as follows:
(a) Initialize r to be empty.
(b) While s is not empty do the following:

i. Create a node description entry e.
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ii. Stop without output if the length of s is less than m; otherwise let
the bit string comprising the first m bits of s be the type component
of e and remove the bits from s.

iii. Stop without output if the length of s is less than m; otherwise parse
the first m bits of s as a nonnegative integer n, let n be number-of-
children component of e, and remove the bits from s.

iv. If n = 0, stop without output if the length of s is less than m; other-
wise parse the first m bits of s as a nonnegative integer l and remove
those bits from s; then let the bit string comprising the first l bits of
s be the label component of e, stopping without output if the length
of s is less than l.

v. Append e to r.
2. Attempt to construct an incomplete typed hash tree without internal node

labels X of kind (m, d, b) as follows:
(a) Initialize to empty a stack that will be used to store nodes of X tem-

porarily as they are created by the algorithm.
(b) Initialize the set of nodes of X as being empty.
(c) While the sequence r is non-empty do the following:

i. If the number-of-children component of the first entry of r is 0, create
a node, add it to the set of nodes of X, assign to it the type and the
label specified by the entry, and push it onto the stack.

ii. If the number-of-children component of the first entry of r is n > 0:
A. Stop without output if the type specified by the entry is not d.
B. Create a node N , add it to the set of nodes of X, and assign to

it the type specified by the entry.
C. Stop without output if there are fewer than n nodes in the stack;

otherwise assemble a sequence of the top n nodes in the stack
and assign it to N as the sequence of its children.

D. Pop the top n nodes off the stack and push N onto the stack.
E. Remove the first entry from r.

(d) Stop without output if the stack does not contain a single node.
3. Output X.

Fact 6. Let (m, d, b) be a kind of incomplete typed hash tree without internal-
node labels, let S and D be the (m, d, b)-serialization and deserialization algo-
rithms, and let s a bit string. Then:

1. If s is an output of S on input X, where X is an incomplete typed hash tree
without internal-node labels of kind (m, d, b), then D outputs an incomplete
typed hash tree Y without internal-node labels of kind (m, d, b) isomorphic to
X on input s.

2. If s is not an output of S on any input, then D stops without output.

The serialization algorithm is deterministic, but the deserialization algorithm
is non-deterministic because it does not specify what the nodes that it creates
are. (It could be made deterministic by specifying that the nodes are, for exam-
ple, integers denoting positions in a total order such as depth-first post order; but
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that is unnecessary.) But it is deterministic up to isomorphism in the following
sense:

Fact 7. Let (m, d, b) be a kind of incomplete typed hash trees without internal-
node labels, and s a bit string. If X and Y are outputs of the (m, d, b)-de-
serialization algorithm on input s, then X and Y are isomorphic as incomplete
typed hash trees without internal-node labels of kind (m, d, b).

5 Asymptotic security

5.1 Boneh and Shoup’s system parameterization

In an asymptotic security setting, a cryptographic scheme is said to be secure if
an adversary has a negligible probability of breaching a specified security prop-
erty. This requires a security parameter, so that a “negligible probability” can
be defined as a probability that is asymptotically negligible as a function of the
security parameter. It also requires a probability space, which in a traditional
asymptotic security setting is defined by randomness inherent in the scheme. In
[2, §2.4.2], Boneh and Shoup define a novel asymptotic security setting that uses
both a security parameter λ and an additional system parameter Λ, output by
a system parameterization algorithm P on input λ. The algorithm P is proba-
bilistic, and thus provides a probability space independent of any randomness
inherent in the scheme. This is essential if the scheme itself has no randomness.

In particular, randomized system parameterization makes it possible to pro-
vide a formal definition of collision resistance for a keyless hash function. Colli-
sion resistance in an asymptotic security setting is traditionally defined for keyed
rather than keyless hash functions, and introduce a probability space by letting
the key be random. Boneh and Shoup define a keyless hash function as an al-
gorithm that takes as inputs λ and Λ in addition to the message m. They say
on one hand that this is “really the same” as the keyed hash function approach,
where the random key can be viewed as a system parameter; but they also sug-
gest, on the other hand, that each choice of system parameter can be viewed as
describing a different hash function. We adopt the latter view by referring to the
algorithm that takes as inputs λ and Λ as a hashing scheme rather than a hash
function, and using the hashing scheme to define a family of ordinary keyless
hash functions parameterized by the security and system parameters.

We find the idea of a family of hash functions indexed by security and system
parameters intuitive and close to actual practice. After all, SHA-2 is a family
of hash functions defined for several security parameters, whose design includes
various constants that could have been chosen at random. More generally, one
could think of the randomness of a system parameterization algorithm taken as
input by a cryptographic scheme as the randomness of the process of technolog-
ical evolution resulting in the design of the scheme.

Besides the above-mentioned change in terminology, we simplify Boneh and
Shoup’s treatment of hash functions by defining the domain and codomain of
a hash functions in terms of bit lengths, as is done in actual practice, and we
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provide a formal definition of preimage resistance, which is not provided in [2].
We also adapt and simplify Boneh and Shoup’s complex definition of an efficient
algorithm, which they allow to not terminate [2, Definition 2.8]. We say that an
algorithm is efficient if it terminates and its run time is bounded by a poly-
nomial function of the security parameter, independently of the length of other
inputs; we can do this because, as explained above in Section 2.1, our algorithms
stop without output when given unexpected inputs, and may thus stop without
output when given inputs that are too long.

Definition 14 (Efficient algorithm). We say that an algorithm A that takes
as its first input a security parameter λ is efficient if there exists a polynomial p
such that, for all λ ∈ Z≥1, the running time of A until it stops with or without
output is less than p(λ).

Boneh and Shoup define a system parameter Λ as a bit string that is effi-
ciently generated by a probabilistic algorithm P when given as input a security
parameter λ and has a length bounded by a polynomial function of λ . They
use the notation Supp(P (λ)) to refer to the support of the distribution of Λ, i.e.
to the range of possible values that P may output on input λ. We must require
that it be possible to determine efficiently if Λ ∈ Supp(P (λ)), so that an efficient
algorithm that takes λ and Λ as inputs can stop without output if Λ is not in
its expected range, in accordance with our definition in Section 2.1 of what it
means to take as an input data of some particular form. Hence the following
definition.

Definition 15 (System parameterization). A system parameterization P
is an efficient probabilistic algorithm that takes as input a security parameter
λ ∈ Z≥1 and outputs a bit string Λ called a system parameter, such that

1. there exists a polynomial p such that the length of Λ is less than p(λ) for all
λ ∈ Z≥1, and

2. there exists an efficient deterministic algorithm that takes as inputs λ ∈
Z≥1 and Λ ∈ {0, 1}∗ and outputs a boolean value indicating whether Λ ∈
Supp(P (λ)).

Definition 16 (Hashing scheme with system parameterization). A hash-
ing scheme with system parameterization P is a tuple H = (P,A,B,H) where:

1. P be a system parameterization.
2. A and B are indexed families of positive integers Aλ, Bλ, with λ ∈ Z≥1. ‘
3. H is an efficient deterministic algorithm that takes as inputs λ ∈ Z≥1, Λ ∈

Supp(P (λ)) and a bit string x ∈ {0, 1}<a, and outputs a bit string y ∈
{0, 1}b, where a = Aλ and b = Bλ.

Definition 17 (Family of hash functions defined by a hashing scheme
with system parameterization). A hashing scheme H = (P,A,B,H) with
system parameterization P defines an indexed family of hash functions Hλ,Λ,
where each Hλ,Λ has domain {0, 1}<a with a = Aλ and codomain {0, 1}b with
b = Bλ, and maps each x ∈ {0, 1}<a to the output of H on inputs λ, Λ and x.
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(In the above definition the notation H is used to refer both to the hashing
scheme and to the family of hash functions that it defines, but this abuse of
notation should create no confusion.)

The following attack game is used to define collision resistance for a hashing
scheme.

Game 1 (Attack on collision resistance).

Game parameters:

1. A hashing scheme with system parameterization H = (P,A,B,H).

2. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

2. The challenger runs the adversary on input λ and Λ.

3. Let a = Aλ and b = Bλ. The adversary wins the game if it outputs a
collision of the hash function h = Hλ,Λ, i.e. a pair of distinct elements
(u, u′) of {0, 1}<a such that h(u) = h(u′).

Definition 18 (Collision resistance of a hashing scheme with system
parameterization). A hashing scheme H = (P,A,B,H) with system parame-
terization P is collision resistant if for every efficient adversary A, the probability
that A wins Game 1 with parameters H and λ is a negligible function of λ.

The following attack game is used to define preimage resistance for a hashing
scheme.

Game 2 (Preimage resistance). [Attack on preimage resistance]

Game parameters:

1. A hashing scheme with system parameterization H = (P,A,B,H).

2. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

2. Let b = Bλ. The challenger chooses an element v of {0, 1}b at random
with uniform distribution.

3. The challenger runs the adversary on inputs λ, Λ and v.

4. Let a = Aλ. The adversary wins the game if it outputs an element u of
{0, 1}<a such that h(u) = v.

Definition 19 (Preimage resistance). A hashing scheme H = (P,A,B,H)
with system parameterization P is preimage resistant if for every efficient ad-
versary A, the probability that A wins Game 2 is a negligible function of λ.
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5.2 Encoding schemes with system parameterization

Definition 20 (Encoding scheme with system parameterization). An
encoding scheme with system parameterization is a tuple E = (P, S,E,D) where

1. P is a system parameterization.
2. S is the set of data items to be encoded.
3. E is an efficient algorithm, possibly non-deterministic, called the encoding

algorithm of the scheme, that takes as inputs λ ∈ Z≥1, Λ ∈ Supp(P (λ)),
and an element x of S and outputs a bit string y called an E-encoding of x
for security and system parameters (λ,Λ).

4. D is an efficient deterministic algorithm, called the decoding algorithm of
the scheme, that takes as inputs λ ∈ Z≥1, Λ ∈ Supp(P (λ)) and a bit string
y and
(a) outputs an element x of S if y is an output of E on inputs λ, Λ and x,

or
(b) stops without output otherwise.

Definition 21 (Checksum scheme with system parameterization). A
checksum scheme with system parameterization is a pair (P,C) where

1. P is a system parameterization.
2. C is an efficient deterministic algorithm that takes as inputs λ ∈ Z≥1, Λ ∈

Supp(P (λ)), and a bit string, and outputs a bit string or stops without output.

A checksum scheme with system parameterization (P,C) may be used in
conjunction with an encoding scheme (P, S,E,D) if both have the same system
parameterization P . Then, if E outputs y on inputs λ, Λ and an element x of
S, and C outputs z on inputs λ, Λ and y, z is said to be an (E,C)-checksum of
x for security and system parameters (λ,Λ).

As a warm-up for the proof of Theorem 3, we now prove that a hashing
scheme with system parameterization provides full integrity protection for an
encoding scheme with system parameterization, in the special case where the
encoding algorithm does not make any non-probabilistic choices, i.e. in the case
where it is deterministic or probabilistic.

Fact 8. If (P,A,B,H) is a hashing scheme with system parameterization, then
(P,H) is a checksum scheme with system parameterization.

Game 3 (Attack on full integrity protection).

Game parameters:
1. An encoding scheme with system parameterization E = (P, S,E,D) where

the encoding algorithm E is deterministic or probabilistic.
2. A checksum scheme with system parameterization C = (P,C).
3. An element x of S.
4. A security parameter λ ∈ Z≥1.

Game protocol:
1. The challenger runs P on input λ, and P outputs Λ.
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2. The challenger runs E on inputs λ, Λ and x, and E outputs a bit string
y.

3. The challenger runs C on inputs λ, Λ and y, and either C stops without
output or it outputs a bit string z.

4. If C stops without output, the challenger stops without invoking the ad-
versary and the adversary is deemed to have lost the game.

5. The challenger runs the adversary on inputs λ, Λ and y. (The adversary
may run C on inputs λ, Λ and y to obtain z.)

6. The adversary wins the game if it outputs a bit string y′ satisfying the
following winning conditions:

(a) C outputs the same bit string z on inputs λ, Λ and y′ as on inputs
λ, Λ and y.

(b) y′ is an E-encoding of an element x′ of S for security and system
parameters (λ,Λ), computable by running D on inputs λ, Λ and y′.

(c) x′ 6= x.

Definition 22 (Full integrity protection with system parameterization).
Let E = (P, S,E,D) be an encoding scheme with system parameterization where
E is deterministic or probabilistic. A checksum scheme C = (P,C) is said to
provide full integrity protection for E if for every x ∈ S and every efficient
adversary A, the probability that A wins Game 3 with parameters E, C, x and
λ ∈ Z≥1 is a negligible function of λ.

Theorem 2 (Integrity protection provided by a collison-resistant hash-
ing scheme). Let E = (P, S,E,D) be an encoding scheme with system param-
eterization where E is deterministic or probabilistic. If H = (P,A,B,H) is a
collision-resistant hashing scheme, then the checksum scheme C = (P,H) pro-
vides full integrity protection for E.

Proof. Let E , H and C be as stated. Reasoning by contradiction, assume that
C does not provide integrity protection for E . This means that there exists an
element x of S and an efficient adversary A of Game 3 such that the probability
p(λ) that A wins Game 3 with parameters E , C, x and λ ∈ Z≥1 is not a negligible
function of λ. Let x̄ and Ā be particular selections of such an x and A.

For every λ ∈ Z≥1, consider an execution of Game 1 with parameters H =
(P,A,B,H) and λ. The challenger of Game 1 runs P on input λ, and P out-
puts Λ; then the challenger runs the adversary on inputs λ and Λ. Consider a
particular adversary ACR of Game 1 defined as follows. ACR plays Game 3 with
parameters E , C, x and λ, instructing the challenger to use Ā as the adversary,
and modifying the challenger so that it uses the system parameter Λ produced
by the challenger of Game 1 instead of running P to generate Λ. This modi-
fication makes no difference to ¯mathcalA, which still has a probability p(λ) of
winning Game 3. ACR further modifies the challenger of Game 3 to output the
pair (y, y′) whenever the adversary of Game 3 wins the game, and ACR relays
such pair as its own input in Game 1; so with probability p(λ), ACR outputs a
pair (y, y′) where
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1. y is an output of E on inputs λ, Λ and x̄, by construction;
2. H outputs the same bit string z on inputs λ, Λ and y as on inputs λ, Λ

and y′, by the first winning condition of Game 3, i.e. h(y) = z = h(y′) with
h = HlL;

3. D outputs an element x′ of S on inputs λ, Λ and y′, by the second winning
condition of Game 3; and

4. x′ 6= x̄ by the third winning condition of Game 3.

Since y is an output of E on inputs λ, Λ and x̄, x̄ is an output or D on inputs λ, Λ
and y. Hence since x′ is an output of D on inputs λ, Λ and y′, D is deterministic,
and x′ 6= x̄, we have that y′ 6= y. And since h(y) = h(y′), (y, y) is a collision of
h. Therefore ACR wins Game 1.

Furthermore ACR is an efficient algorithm, because the algorithms E and H
used by the modified challenger of Game 3 and Ā are efficient. Thus ACR is
an efficient adversary that wins Game 1 with non-negligible probability (p(λ),
contradicting the hypothesis that H is collision resistant. ut

5.3 Omission-tolerant integrity protection in the asymptotic
security setting

In Game 3 the probability that the adversary wins the game would not be well
defined if the encoding algorithm were allowed to make non-probabilistic choices,
because those choices would be made after the probabilistic choices made by P
for the computation of Λ. Since omission-tolerant integrity protection is achieved
by representing data as a typed hash tree whose construction involves non-
probabilistic choices, we must now find a way of allowing the encoding algorithm
to make such choices.

We do that by splitting the encoding algorithm into two phases, a first phase
EI that is allowed to make non-probabilistic choices but does not take as inputs
security and system parameters, and a second phase EII that takes as inputs
security and system parameters but is only allowed to make probabilistic choices.
The output EI need not be a bit string, so we refer to EI as the representation
phase while we refer to EII as the encoding phase. Since the output of EI does
not depend of the security parameter, we refer to it as a fixed representation of
the input.

Definition 23 (Two-phase split). A two-phase split of an encoding algorithm
with system parameterization is a tuple (P, S,EI, EII) where

1. P is a system parameterization.
2. S is a set of data items to be encoded.
3. EI is an algorithm, possibly exhibiting hybrid non-determinism, that takes as

input an element x of S and outputs a data structure X known as a fixed
representation of x.

4. EII is a deterministic or probabilistic algorithm that takes as inputs λ ∈ Z≥1,
Λ ∈ Supp(P (λ)), and a fixed representation X of an element x of S and
outputs a bit string y known as an encoding of x for security and system
parameters (λ,Λ).
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Algorithm 6 (Two-phase encoding). Let S = (P, S,EI, EII) be a two-phase
split of an encoding algorithm with system parameterization. The two-phase en-
coding algorithm with system parameterization defined by S takes as inputs
λ ∈ Z≥1, Λ ∈ Supp(P (λ)), and an element x of S and performs the following
steps:

1. Run EI on input x and let X be the output.
2. Run EII on inputs λ, Λ, and X and let y be the output.
3. Output y.

The following attack game is used in the definition of omission-tolerant in-
tegrity protection.

Game 4 (Attack on omission-tolerant integrity protection).

Game parameters:
1. An encoding scheme with system parameterization E = (P, S,E,D) where

the elements of S are sets and E is a two-phase encoding algorithm de-
fined by a two-phase split (P, S,EI, EII).

2. A checksum scheme with system parameterization C = (P,C).
3. An element x of S.
4. A fixed representation X of x, i.e. an output X of EI on input x.
5. A security parameter λ ∈ Z≥1.

Game protocol:
1. The challenger runs P on input λ, and P outputs Λ.
2. The challenger runs EII on inputs λ, Λ and X, and EII outputs a bit

string y.
3. The challenger runs C on inputs λ, Λ and y, and either C stops without

output or it outputs a bit string z.
4. The challenger runs the adversary on inputs λ, Λ and y. (The adversary

can compute Z and z from y as needed.)
5. The adversary wins the game if it outputs a bit string y′ satisfying the

following winning conditions:
(a) C outputs the same bit string z on inputs λ, Λ and y′ as on inputs

λ, Λ and y.
(b) y′ is an E-encoding of an element x′ of S for security and system

parameters (λ,Λ), computable by running D on inputs λ, Λ and y′.
(c) x′ 6⊆ x.

Definition 24 (Omission-tolerant integrity protection with system pa-
rameterization). Let E = (P, S,E,D) be an encoding scheme with system pa-
rameterization where the elements of S are sets and E is a two-phase encoding
algorithm defined by a two-phase split (P, S,EI, EII). A checksum scheme with
system parameterization C = (P,C) is said to provide omission-tolerant integrity
protection for E if for every x ∈ S, every fixed representation X of x, and every
efficient adversary A, the probability that A wins Game 4 with parameters E, C,
x, X and λ ∈ Z≥1 is a negligible function of λ. An (E,C)-checksum is then said
to be an omission-tolerant checksum.
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Algorithm 7 (Assign-and-serialize). Let F = (m, d,K, V,KE,KD,VE,VD)
be a representation framework for sets of key-value pairs, and H = (P,A,B,H)
a hashing scheme with system parameterization. The (F ,H)-assign-and-serialize
algorithm takes as inputs λ ∈ Z≥1, Λ ∈ Supp(P (λ) and an incomplete typed hash
tree X without internal-node labels of kind (b,m, d) with b = Bλ and performs
the following steps:

1. Assign random labels to the dangling nodes of X, if any, each assigned label
being uniformly distributed over {0, 1}b, to obtain an incomplete typed hash
tree U without internal-node labels of kind (m, d, b).

2. Run the (m, d, b)-serialization algorithm on input U to obtain a bit string y.
3. Output y.

Algorithm 8 (Encoding of a set of key-value pairs with system pa-
rameterization). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation
framework for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme
with system parameterization. The (F ,H)-encoding algorithm for sets of key-
value pairs with system parameterization is the two-phase encoding algorithm
defined by the two-phase split (P, S,EI, EII) where EI is the F-representation
algorithm and EII is the (F ,H)-assign-and-serialize algorithm.

Algorithm 9 (Decoding of a set of key-value pairs with system param-
eterization). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme with
system parameterization. The (F ,H)-decoding algorithm for sets of key-value
pairs with system parameterization takes as input λ ∈ Z≥1, Λ ∈ Supp(P (Λ))
and a bit string y and performs the following steps:

1. Run the (m, d, b)-deserialization algorithm on input y with b = Bλ and let
U be the output if one is produced, or stop without output otherwise. If U is
produced, it is an incomplete typed hash tree without internal-node labels of
kind (m, d, b).

2. Remove the labels of the dangling nodes of U , if any, obtaining an incomlete
typed hash tree X without distinguished-node labels of kind (m, d).

3. Run the F-derepresentation algorithm on input X and let x be the output if
one is produced, or stop without output otherwise.

4. Output x.

Algorithm 10 (Checksum of a set of key-value pairs with system pa-
rameterization). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation
framework for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme
with system parameterization. The (F ,H)-checksum algorithm for sets of key-
value pairs with system parameterization takes as input λ ∈ Z≥1, Λ ∈ Supp(P (Λ))
and a bit string y and performs the following steps:

1. Run the (m, d, b)-deserialization algorithm on input y, where b = Bλ, and
let Y be the output if one is produced, or stop without output otherwise.
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2. Run the (m, d, a, b, h)-internal node label computation algorithm on input Y ,
where a = Aλ, b = Bλ and h = Hλ,Λ, and let Z be the ouput if one is
produced, or stop without output otherwise.

3. Output the root label z of Z.

Fact 9. The (F ,H)-encoding, decoding and checksum algorithms for sets of
key-value pairs with system parameterization are efficient algorithms.

Theorem 3. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme with sys-
tem parameterization that is collision and preimage resistant. Let E = (P, S,E,D)
be the encoding scheme with system parameterization where S = SetsK,V , and
E and D are the (F ,H)-encoding and decoding algorithms with system parame-
terization. Let C = (P,C) be the checksum scheme with system parameterization
where C is the (F ,H)-checksum algorithm for sets of key-value pairs with system
parameterization. Then C provides omission-tolerant integrity protection for E.

Proof. Let F , H, E and C be as stated and let EI and EII be the phases of
the two-phase encoding algorithm E. Reasoning by contradiction, assume that
C does not provide omission-tolerant integrity protection for E . This means that
there exists an element x of S, a fixed representation X of x output by EI,
and an efficient adversary A, such that the function p that maps λ ∈ Z≥1 to
the probability that A wins Game 4 with parameters E , C, x, X and λ is not
negligible.

Consider an execution of Game 4 with the stated parameters where A wins
the game. X is an incomplete typed hash tree without distinguished-node labels
of kind (m, d), where the type-label pairs of leaf nodes with undistinguished
types are the key-value pairs of x.

The challenger runs P on input λ, and P outputs Λ. Let a = Aλ, b = Bλ,
and h = Hλ,Λ.

Then the challenger runs EII, which is the (F ,H)-assign-and-serialize algo-
rithm, on inputs λ, Λ and X. Let N1, . . .Nj , j ≥ 0 be the dangling nodes of
X, if any. For each i, 1 ≤ i ≤ j, EII chooses a random element of {0, 1}b with
uniform distribution and assigns it to the dangling node Ni. This results in an
incomplete typed hash tree U without internal-node labels. Then EII runs the (
m, d, b)-serialization algorithm on input U and outputs the bit string y that it
produces.

Then the challenger runs C, which is the (F ,H)-checksum algorithm for sets
of key-value pairs, on inputs λ, Λ and y. C runs the (m, d, b)-deserialization al-
gorithm, which outputs an incomplete typed hash tree Y without internal-node
labels of kind (m, d, b). Then C runs the (m, d, a, b, h)-label computation algo-
rithm on input Y , which adds internal-node labels to Y and outputs a complete
typed hash tree Z. Then C outputs the root label z of Z.

Then the challenger runs the adversary on inputs λ, Λ and the adversary wins
the game by outputting a bit string y′ that satisfies the winning conditions.

One of the winning conditions is that D outputs an element x′ of S on inputs
λ, Λ and y′. D computes x′ in three stages. It runs the (m, d, b)-deserialization al-
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gorithm on input y′ to obtain an incomplete typed hash tree U ′ without internal-
node labels of kind (m, d, b). Then it removes the dangling-node labels from U ′

to obtain an incomplete typed hash tree X ′ without distinguished-node labels
of kind (m, d). Then it runs the F-derepresentation algorithm on input X ′ to
obtain x′.

Another winning conditions is that C outputs z on inputs λ, Λ and y′. To
do so, C runs the (m, d, b)-deserialization algorithm and obtains an incomplete
typed hash tree Y ′ without internal-node labels of kind (m, d, b). Then C runs
the (m, d, a, b, h)-label computation algorithm on input Y ′, obtaining a complete
typed hash tree Z ′ whose root label is z.

Z and Z ′ are typed hash trees of same kind (m, d, a, b, h) that have the same
root label z. Therefore, by Theorem 1, either (i) Z ′ is isomorphic to a pruned
derivative of Z, or (ii) the label of an internal node of Z ′ is equal to the label
of a dangling node of Z, or (iii) an internal node of Z ′ has the same label as an
internal node of Z but a different prelabel.

But (i) can be ruled out by the following argument:

1. U and Y are isomorphic as incomplete typed hash trees without internal-
node labels of kind (m, d, b) by Fact 6, and so are U ′ and Y ′ by Fact 7.

2. Since U is derived from X by assigning labels to the internal nodes, X is
derived from U by removing those labels. Let V be derived from Y and
V ′ from Y ′ by removing the labels of the internal nodes. Then X, V , X ′

and V ′ are incomplete typed hash trees without distinguished node labels
derived respectively from U , Y , U ′ and Y ′ by removing the labels of the
internal nodes. Therefore, by Fact 1, since (U, Y ) and (U ′, Y ′) are pairs of
isomorphic incomplete typed hash trees without internal-node labels of kind
(m, d, b), (X,V ) and (X ′, V ′) are isomorphic incomplete typed hash trees
without distinguished-node labels of kind (m, d).

3. Since X and V are isomorphic, from the fact that the F-representation algo-
rithm outputs X on input x it follows by Fact 4 that the F-derepresentation
algorithm outputs x on input V .

4. Since X ′ and V ′ are isomorphic, from the fact that the F-derepresentation
algorithm outputs x′ on input X ′ it follows by Fact 3 that it also outputs x′

on input V ′.
5. Now suppose that (i) holds, i.e. that Z ′ is isomorphic to a pruned derivative

of Z. Since Z is output by the m, d, a, b, h-label computation algorithm on
input Y , Y is derived from Z by removing the internal-node labels, and
therefore V is derived from Z by removing the distinguished-node labels.
Similarly V ′ is derived from Z ′ by removing the distinguished-node labels.
Since x and x′ are output by the F-derepresentation algorithm on inputs V
and V ′ respectively, it follows by Fact 5 that x′ is a subset of x. But this is
ruled out by the contradiction hypothesis.

Hence either an internal node of Z ′ has the same label as an internal node of
Z but a different prelabel, or the label of an internal node of Z ′ is equal to the
label of one of the dangling nodes of Z, which are also the dangling nodes of U
and the dangling nodes Ni, 1 ≤ i ≤ j of X.
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Let E be the event that A wins Game 4 with parameters E , C, x, X and
λ, whose probability is p(λ). Let p′0 be the function that maps λ ∈ Z≥1 to the
probability that E occurs and furthermore an internal node of Z ′ has the same
label as an internal node of Z but a different prelabel. Similarlhy, for 1 ≤ i ≤ j,
let p′i(λ) be the probability that E occurs, and furthermore the label of an
internal node of Z ′ is equal to the label of Ni. Since one or more of the further
eventualities must occur when event E occurs, we have

p(λ) ≤
j∑
i=0

p′i(λ) (1)

The fact that the function p is not negligible means that there exists c ∈ Z≥1
such that, for all λ ∈ Z≥1 there exists λ′ > λ such that p(λ′) ≥ 1

λ′c ; or that, for
such a c, the set

L = {λ ∈ Z≥1|p(λ) ≥ 1

λc
}

is infinite. Define

Li = {λ ∈ Z≥1|p′i(λ) ≥ 1

(j + 1)λc
}

for 0 ≤ i ≤ j. From (1) it follows that, since L is infinite, at least one of the Li
is infinite. And if Li is infinite, so is

L′i = {λ ∈ Z≥1|p′i(λ) ≥ 1

λc′
}

for c′ = c+ 1, which implies that p′i is not negligible.
If p′0 is non-negligible, consider an execution of Game 1, used in the definition

of collision resistance, with parameters (P,A,B,H) and λ, played by a collision
resistance challenger CCR and a collision resistance adversary ACR. CCR runs P
on λ, P outputs Λ, and CCR invokes ACR on inputs λ and Λ. ACR executes
Game 4 with parameters E , C, x, X and λ, invoking the challenger algorithm
and specifying the adversary algorithm to be run by providing it an input to the
challenger.

The adversary of Game 4 that ACR specifies is the particular adversary A
that has a probability p(λ) of winning the game, modified as needed to ensure
that it outputs Z and Z ′ if it wins the game. ACR also modifies the challenger
of Game 4 so that it takes Λ as an input instead of obtaining it by running P on
input λ; then it passes the Λ of Game 1 as input to the challenger of Game 4.
These modifications do not change the probability p′0(λ) that A wins the game
and an internal node of Z ′ has the same label as an internal node of Z but a
different prelabel.

If A wins the game, which happens with probability p(λ), the challenger of
Game 4 relays Z and Z ′ to ACR, which looks for nodes N0 of Z and N ′0 of Z ′

that have the same label l but different prelabels u and u′. If it finds such nodes,
which happens with probability p′0(λ), it outputs (u, u′) as a collision of h, thus
winning Game 1.
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Furthermore, ACR is efficient according to Definition 14, for the following
reasons:

1. The algorithms run by the unmodified challenger of Game 4, the unmodified
challenger itself, and the unmodified adversary A are efficient.

2. Z and Z ′ are of size polynomial in λ because they are constructed by efficient
algorithms.

3. The challenger of Game 4 and the adversary A remain efficient when modi-
fied to output Z and Z ′ respectively because Z and Z ′ are of size polynomial
in λ.

4. Finding N0 and N ′0 takes polynomial time because Z and Z ′ are of polyno-
mial size.

5. Outputting u and u′ takes polynomial time because u and u′ are of polyno-
mial size.

Thus ACR is an efficient adversary that wins Game 1 with non-negligible proba-
bility p′0(λ), contradicting the assumption that (P,A,B,H) is collision-resistant.

If p′i is non-negligible for some i in the range 1 ≤ i ≤ j, consider an execu-
tion of Game 2, used in the definition of preimage resistance, with parameters
(P,A,B,H) and λ, played by a preimage resistance challenger CPR and a col-
lision resistance adversary APR. CPR runs P on λ and P outputs Λ. Then CPR

chooses an element v of {0, 1}b at random with uniform distribution, and invokes
APR on inputs λ, Λ and v. APR executes Game 4 with parameters E , C, x, X
and λ, invoking the challenger algorithm and specifying the adversary algorithm
to be run by providing it an input to the challenger.

As above, APR specifies A as the adversary of Game 4, modifying it so that
it outputs Z and Z ′ if it wins the game, modifying the challenger of Game 4
so that it takes Λ as an input instead of obtaining it by running P on input λ,
and passing the Λ of Game 1 as input to the challenger of Game 4. Furthermore
APR modifies the parameter E of Game 4 so that its second phase EII assigns v
as the label of Ni, instead of generating a fresh random label. Given that v is an
element of {0, 1}b randomly generated with uniform distribution, none of these
modifications change the probability p′i(λ) that A wins the game and the label
of an internal node of Z ′ is equal to the label of Ni.

The challenger of Game 4 relays Z and Z ′ to APR, which traverses Z ′ looking
for an internal node whose label coincides with the label v of the i-th dangling
node of Z. If it can find such a node, which happens with probability p′i(λ), it
wins Game 2 by outputting its prelabel. Like ACR above, APR is an efficient
algorithm because the data structures that it manipulates are of size polynomial
in λ and the algorithms that it invokes are themselves efficient. Thus APR is
an efficient adversary that wins Game 2 with non-negligible probability p′i(λ),
contradicting the assumption that (P,A,B,H) is preimage resistant.

Having reached a contradiction in both cases, we can conclude that E does
provide omission-tolerant integrity protection. ut
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6 Conclusion

We have introduced the concepts of an omission-tolerant checksum and a typed
hash tree, and described a method for using a typed hash tree to represent a set
of key-value pairs or, as a special case, a set of unstructured elements, serializing
the tree to obtain a bit-string encoding of the set, and using the root label of
the tree as an omission-tolerant cryptographic checksum of the encoding. Using
Boneh & Shoup’s system parameterization and attack game methodology, we
have proved that, given a set of key-value pairs, an efficient adversary has a
negligible probability of producing a set of key-value pairs other than a subset
of the given one that has the same root-label checksum.

An omission-tolerant checksum has many possible applications. A particu-
larly important one is a method for implementing selective disclosure of data
items bound to a public key by a public key certificate such as, e.g., a TLS client
certificate. We leave the details of this application for future work.
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