
Classical zero-knowledge arguments for quantum computations

Thomas Vidick∗ Tina Zhang†

Abstract

We show that every language in BQP admits a classical-verifier, quantum-prover zero-knowledge ar-
gument system which is sound against quantum polynomial-time provers and zero-knowledge for classical
(and quantum) polynomial-time verifiers. The protocol builds upon two recent results: a computational
zero-knowledge proof system for languages in QMA, with a quantum verifier, introduced by Broadbent et
al. (FOCS 2016), and an argument system for languages in BQP, with a classical verifier, introduced by
Mahadev (FOCS 2018).

1 Introduction

The paradigm of the interactive proof system is a versatile tool in complexity theory. Although traditional
complexity classes are usually defined in terms of a single Turing machine—NP, for example, can be defined as
the class of languages which a non-deterministic Turing machine is able to decide—many have reformulations
in the language of interactive proofs, and such reformulations often inspire natural and fruitful variants on
the traditional classes upon which they are based. (The class MA, for example, can be considered a natural
extension of NP under the interactive-proof paradigm.)

Intuitively speaking, an interactive proof system is a model of computation involving two entities, a verifier
and a prover, the former of whom is computationally efficient, and the latter of whom is unbounded but
untrusted. The verifier and the prover exchange messages, and the prover attempts to ‘convince’ the verifier
that a certain problem instance is a yes-instance. We can define some particular complexity class as the
set of languages for which there exists an interactive proof system that 1) is complete, 2) is sound, and 3)
has certain other properties which vary depending on the class in question. Completeness means, in this
case, that for any problem instance in the language, there is an interactive proof involving r messages in
total that the prover can offer the verifier which will cause it to accept with at least some probability p;
and soundness means that, for any problem instance not in the language, no prover can cause the verifier to
accept, except with some small probability q. For instance, if we require that the verifier is a deterministic
polynomial-time Turing machine, and set r = 1, p = 1, and q = 0, the class that we obtain is of course the
class NP. If we allow the verifier to be a probabilistic polynomial-time machine, and set r = 1, p = 2

3 , q = 1
3 ,

we have MA. Furthermore, if we allow the verifier to be an efficient quantum machine, and we allow the
prover to communicate with it quantumly, but we retain the parameter settings from MA, we obtain the
class QMA. Finally, if we allow r to be any polynomial in n, where n is the size of the problem instance,
but otherwise preserve the parameter settings from MA, we obtain the class IP.

For every complexity class thus defined, there are two natural subclasses which consist of the languages that
admit, respectively, a statistical and a computational zero-knowledge interactive proof system with otherwise
the same properties. The notion of a zero-knowledge proof system was first considered by Goldwasser, Micali

∗Department of Computing and Mathematical Sciences, California Institute of Technology, USA. vidick@cms.caltech.edu
†Department of Physics, California Institute of Technology, USA. tinazhang@caltech.edu

1

and Rackoff in [GMR89], and formalises the surprising but powerful idea that the prover may be able to
prove statements to the verifier in such a way that the verifier learns nothing except that the statements are
true. Informally, an interactive proof system is statistical zero-knowledge if an arbitrary malicious verifier is
able to learn from an honest prover that a problem instance is a yes-instance, but can extract only negligible
amounts of information from it otherwise; and the computational variant provides the same guarantee
only for malicious polynomial-time verifiers. For IP in particular, the subclass of languages which admit a
statistical zero-knowledge proof system that otherwise shares the same properties had by proof systems for
languages in IP is known by the abbreviation SZK. Its computational sibling, meanwhile, is known by the
abbreviation CZK. It is well-known that, contingent upon the existence of one-way functions, NP ⊆ CZK:
computational zero-knowledge proof systems have been known to exist for every language in NP since the
early 1990s ([GMW91]). However, because these proof systems often relied upon intractability assumptions
or techniques (e.g. ‘rewinding’) that failed in quantum settings, it was not obvious until recently how to
obtain an analogous result for QMA. One design for a zero-knowledge proof system for languages in QMA
was introduced by Broadbent, Ji, Song and Watrous in [BJSW16]. Their work establishes that, provided
that a quantum computationally concealing, unconditionally binding commitment scheme exists, QMA ⊆
QCZK.

There are, of course, a myriad more variations on the theme of interactive proofs in the quantum setting,
each of which defines another complexity class. For example, motivated partly by practical applications,
one might also consider the class of languages which can be decided by an interactive proof system involving
a classical verifier and a quantum prover communicating classically, in which the soundness condition still
holds against arbitrary provers, but the honest prover can be implemented in quantum polynomial time.
(For simplicity, we denote this class by IPBQP.) The motivation for this specific set of criteria is as follows:
large-scale quantum devices are no longer so distant a dream as they seemed only a decade ago. If and when
we have such devices, how will we verify, using our current generation of classical devices, that our new
quantum computers can indeed decide problems in BQP? This problem—namely, the problem of showing
that BQP ⊆ IPBQP—is known informally as the problem of quantum verification.

The problem of quantum verification has not yet seen a solution, but in recent years a number of strides
have been made toward producing one. As of the time of writing, protocols are known for the following
three variants on the problem:

1. It was shown in [ABE10, ABOEM17] and [BFK09, FK17] that a classical verifier holding a single-
qubit quantum register can decide languages in BQP by communicating quantumly with a single BQP
prover. The protocol presented for this purpose is sound against arbitrary provers.

2. It was shown in [RUV13] that an entirely classical verifier can decide languages in BQP by interacting
classically with two entangled, non-communicating BQP provers. This protocol is likewise sound
against arbitrary provers.

3. It was shown in [Mah18] that an entirely classical verifier can decide languages in BQP by executing
an argument system with a single BQP prover. (An argument system differs from a proof system in
that it need not be sound against arbitrary provers, but only computationally bounded ones. In this
case, the argument system in [Mah18] is sound against quantum polynomial-time provers. The class
of languages for which there exists an argument system involving a classical probabilistic polynomial-
time verifier and a quantum polynomial-time prover is referred to throughout [Mah18] as QPIP0.) The
argument system introduced in [Mah18] is reliant upon cryptographic assumptions about the quantum
intractability of Learning With Errors (LWE; see [Reg09]) for its soundness. For practical purposes,
if this assumption holds true, the problem of verification can be considered solved.

The last of these three results establishes that BQP ⊆ QPIP0, contingent upon the intractability of LWE. In
this work, we show that the protocol which [Mah18] introduces for this purpose can be combined with the
zero-knowledge proof system for QMA presented in [BJSW16] in order to obtain a zero-knowledge argument

2

system for BQP. It follows naturally that, if the LWE assumption holds, and quantum computationally
hiding, unconditionally binding commitment schemes exist, BQP ⊆ CZK-QPIP0, where the latter refers to
the class of languages for which there exists a computational zero-knowledge interactive argument system
involving a classical verifier and a quantum polynomial-time prover. Zero-knowledge protocols for languages
in NP are an essential component of many cryptographic constructions, such as identification schemes, and
are often used in general protocol design (for example, one can force a party to follow a prescribed protocol
by requiring it to produce a zero-knowledge proof that it did so). Our result opens the door for the use
of zero-knowledge proofs in protocols involving classical and quantum parties which interact classically in
order to decide languages defined in terms of quantum information (for instance, to verify that one of the
parties possesses a quantum state having certain properties).

We now briefly describe our approach to the problem. The proof system for languages in QMA presented in
[BJSW16] is almost classical, in the sense that the only quantum action which the honest verifier performs is
to measure a quantum state after applying Clifford gates to it. The key contribution which [Mah18] makes
to the problem of verification is to introduce a measurement protocol which, intuitively, allows a classical
verifier to obtain honest measurements of its prover’s quantum state. The combining of the proof system
from [BJSW16] and the measurement protocol from [Mah18] is therefore a fairly natural action.

That the proof system of [BJSW16] is complete for languages in QMA follows from the QMA-completeness
of a problem which the authors term the 5-local Clifford Hamiltonian problem. However, the argument
system which [Mah18] presents relies upon the QMA-completeness of the well-known 2-local XZ Hamiltonian
problem (see Definition 2.1). For this reason, the two results cannot be composed directly. Our first step
is to make some modifications to the protocol introduced in [BJSW16] so it can be used to verify that an
XZ Hamiltonian is satisfied, instead of verifying that a Clifford Hamiltonian is satisfied. We then introduce
a composite protocol which replaces the quantum measurement in the protocol from [BJSW16] with an
execution of the measurement protocol from [Mah18]. With the eventual object in mind of proving that the
result is sound and zero-knowledge, we introduce a trapdoor check step into our composite protocol, and
split the coin-flipping protocol used in the proof system from [BJSW16] into two stages. We explain these
decisions briefly here, after we present a summary of our protocol, and refer the reader to Sections 3 and 5
for fuller expositions.

Protocol 1.1. Zero-knowledge, classical-verifier argument system for BQP (informal summary).

Parties.

The protocol involves

1. A verifier, which runs in classical probabilistic polynomial time;

2. A prover, which runs in quantum polynomial time.

Inputs. The protocol requires the following primitives:

• A perfectly binding, quantum computationally concealing commitment protocol.

• A zero-knowledge proof system for NP.

• An extended trapdoor claw-free function family (ETCFF family), as defined in [Mah18].

Apart from the above cryptographic primitives, we assume that the verifier and the prover also receive the
following inputs.

1. Input to the verifier: a 2-local XZ Hamiltonian H (see Definition 2.1), along with two numbers, a and
b, which define a promise about the ground energy of H. Because the 2-local XZ Hamiltonian promise
problem is complete for QMA, and BQP ⊆ QMA, any input to any decision problem in BQP can be
reduced to an instance of the 2-local XZ Hamiltonian problem.

3

2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state ρ = σ⊗m, where
σ is a ground state of the Hamiltonian H.

Protocol.

1. The prover applies an encoding process to ρ. Informally, the encoding can be thought of as a com-
bination of an encryption scheme and an authentication scheme: it both hides the witness state ρ
and ensures that the verifier cannot meaningfully tamper with the measurement results that it reports
in step 5. Like most encryption and authentication schemes, this encoding scheme is keyed. For
convenience, we refer to the encoding procedure determined by a particular encoding key K as EK .1

2. The prover commits to the encoding key K from the previous step using a classical commitment
protocol, and sends the resulting commitment string z to the verifier.

3. The verifier and the prover jointly decide which random terms from the Hamiltonian H the verifier
will check by executing a coin-flipping protocol. (‘Checking terms of H’ means that the verifier obtains
measurements of the state EK(ρ) and checks that the outcomes are distributed a particular way—or,
alternatively, asks the prover to prove to it that they are.) However, because it is important that the
prover does not know which terms will be checked before the verifier can check them, the two parties
only execute the first half of the coin-flipping protocol at this stage. The verifier commits to its part
of the random string, rv, and sends the resulting commitment string to the prover; the prover sends
the verifier rp, its own part of the random string; and the verifier keeps the result of the protocol
r = rv ⊕ rp secret for the time being. The random terms in the Hamiltonian which the verifier will
check are determined by r.

4. The verifier and the prover execute the measurement protocol from [Mah18]. Informally, this allows the
verifier to obtain honest measurements of the qubits of the prover’s encoded witness state, so that it can
check the Hamiltonian term determined by r. The soundness guarantee of the measurement protocol
prevents the prover from cheating, even though the prover, rather than the verifier, is physically
performing the measurements. This soundness guarantee relies on the security properties of a family
of trapdoor one-way functions termed an ETCFF family in [Mah18]. Throughout the measurement
protocol, the verifier holds trapdoors for these one-way functions, but the prover does not, and this
asymmetry is what allows the (intrinsically weaker) verifier to ensure that the prover does not cheat.

5. The verifier opens its commitment to rv, and also sends the prover its measurement outcomes u and
function trapdoors from the previous step.

6. The prover checks, firstly, that the verifier’s trapdoors are valid, and that it did not tamper with the
measurement outcomes u. (It can determine the latter by making use of the authentication-scheme-like
properties of EK from step 1.) If both tests pass, it then proves the following statement to the verifier,
using a zero-knowledge proof system for NP:

There exists a string sp and an encoding key K such that z = commit(K, sp) and Q(K, r, u) = 1.

The function Q is a predicate which, intuitively, takes the value 1 if and only if both the verifier and
the prover were honest. In more specific (but still informal) terms, Q(K, r, u) takes the value 1 if u
contains the outcomes of honest measurements of the state EK(ρ), where ρ is a state that passes the
set of Hamiltonian energy tests determined by r.

The reason we delay the verifier’s reveal of rv (rather than completing the coin-flipping in one step, as is
done in the protocol in [BJSW16]) is fairly easily explained. In our classical-verifier protocol, the prover
cannot physically send the quantum state EK(ρ) to its verifier before the random string r is decided, as the
prover of the protocol in [BJSW16] does. If we allow our prover to know r at the time when it performs
measurements on the witness ρ, it will trivially be able to cheat.

1The notation used here for the encoding key is not consistent with that which is used later on; it is simplified for the
purposes of exposition.

4

The trapdoor check, meanwhile, is an addition which we make because we wish to construct a classical
simulator for our protocol when we prove that it is zero-knowledge. Since our verifier is classical, we need to
achieve a classical simulation of the protocol in order to prove that its execution (in yes-instances) does not
impart to the verifier any knowledge it could not have generated itself. During the measurement protocol,
however, the prover is required to perform quantum actions which no classical polynomial-time algorithm
could simulate unless it had access to the verifier’s function trapdoors. Naturally, we cannot ask the verifier
to reveal its trapdoors before the measurement protocol takes place. As such, we ask the verifier to reveal
them immediately afterwards instead, and show in Section 5 that this (combined with the encryption-
scheme properties of the prover’s encoding EK) allows us to construct a classical simulator for Protocol 1.1
in yes-instances.

The organisation of the paper is as follows.

1. Section 2 (‘Ingredients’) outlines the other protocols which we use as building blocks.

2. Section 3 (‘The protocol’) introduces our argument system for BQP.

3. Section 4 (‘Soundness of protocol’) proves that the argument system introduced in section 3 is sound
against quantum polynomial-time provers.

4. Section 5 (‘Zero-knowledge property of protocol’) proves that the argument system is zero-knowledge
(that yes-instance executions can be simulated classically).

Acknowledgments. We thank Zvika Brakerski, Andru Gheorghiu, and Zhengfeng Ji for useful discussions.
Thomas Vidick is supported by NSF CAREER Grant CCF-1553477, AFOSR YIP award number FA9550-
16-1-0495, MURI Grant FA9550-18-1-0161, a CIFAR Azrieli Global Scholar award, and the IQIM, an NSF
Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Founda-
tion (GBMF-12500028). Tina Zhang acknowledges support from the Richard G. Brewer Prize and Caltech’s
Ph11 program.

2 Ingredients

The protocol we present in section 3 combines techniques which were introduced in prior works for the
design of protocols to solve related problems. In this section, we outline these protocols in order to introduce
notation and groundwork which will prove useful in the remainder of the paper.

2.1 Single-qubit-verifier proof system for QMA ([MF16])

Morimae and Fitzsimons ([MF16]) present a proof system for languages in QMA whose verifier is classical
except for a single-qubit quantum register, and which is sound against arbitrary quantum provers. The
proof system relies on the QMA-completeness of the 2-local XZ Hamiltonian problem, which is defined as
follows.

Definition 2.1 (2-local XZ Hamiltonian (promise) problem).
Input. An input to the problem consists of a tuple x = (H, a, b), where

1. H =
∑S

s=1 dsHs is a Hamiltonian acting on n qubits, each term Hs of which

(a) has a weight ds which is a polynomially bounded rational number,

(b) satisfies 0 ≤ Hs ≤ I,

(c) acts as the identity on all but a maximum of two qubits,

(d) acts as the tensor product of Pauli observables in {σX , σZ} on the qubits on which it acts non-
trivially.

5

2. a and b are two real numbers such that

(a) a < b, and

(b) b− a = Ω(1
poly(|x|)).

Yes: There exists an n-qubit state σ such that
〈
σ,H

〉
≤ a.2

No: For every n-qubit state σ, it holds that
〈
σ,H

〉
≥ b.

Remark 2.2. Given a Hamiltonian H, we call any state σ∗ which causes
〈
σ∗, H

〉
to take its minimum possible

value a ground state of H, and we refer to the value
〈
σ∗, H

〉
as the ground energy of H.

The following theorem is proven by Biamonte and Love in [BL08, Theorem 2].

Theorem 2.3. The 2-local XZ Hamiltonian problem is complete for QMA.

We now describe an amplified version of the protocol presented in [MF16], and give a statement about
its completeness and soundness which we will use. (See [MF16] for a more detailed presentation of the
unamplified version of this protocol.)

Protocol 2.4 (Amplified variant of the single-qubit-verifier proof system for QMA from [MF16]).

Notation. Let L be any language in QMA; let x ∈ {0, 1}∗ be an input; and let (H, a, b) be the instance of
the 2-local XZ Hamiltonian problem to which x reduces.

1. If x ∈ L, the ground energy of H is at most a.

2. if x /∈ L, the ground energy of H is at least b.

3. b− a ≥ 1
poly(|x|) .

Let H =
∑S

s=1 dsHs, as in Definition 2.1. Define

πs =
|ds|∑
s |ds|

.

Parties. The proof system involves

1. A verifier, who implements a classical probabilistic polynomial-time procedure with access to a one-
qubit quantum register; and

2. A prover, who is potentially unbounded, but whose honest behaviour in yes-instances can be imple-
mented in quantum polynomial time.

The verifier and the prover communicate quantumly.

Inputs.

1. Input to the verifier: the Hamiltonian H and the numbers a and b.

2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state ρ = σ⊗m, where
σ is a ground state of the Hamiltonian H.

Protocol.

2The angle brackets
〈
·, ·

〉
denote an inner product between two operators which is defined as follows:

〈
A,B

〉
= Tr(A∗B) for

any A,B ∈ L(X ,Y), where the latter denotes the space of linear maps from a Hilbert space X to a Hilbert space Y.)

6

1. The verifier selects uniformly random coins r = (r1, . . . , rm).

2. For each j ∈ {1, . . . ,m}, the verifier uses rj to select a random sj ∈ {1, . . . , S} according to the
distribution D specified as follows:

D(s) = πs, for s ∈ {1, . . . , S} .

3. The prover sends a state ρ to the verifier one qubit at a time. (The honest prover sends the state σ⊗m

that consists of m copies of the ground state of H.)

4. The verifier measuresHsj for j = 1, . . . ,m, taking advantage of the fact that—if the prover is honest—it
is given m copies of σ. (‘Measuring Hsj ’, in this case, entails performing at most two single-qubit
measurements, in either the standard or the Hadamard basis, on qubits in ρ, and then computing the
product of the two measurement outcomes.)

5. The verifier initialises a variable Count to 0. For each j ∈ {1, . . . ,m}, if the jth product that it
obtained in the previous step was equal to −sign(dj), the verifier adds one to Count.

6. If Count
m is closer to 1

2 −
a∑
s 2|ds|

than to 1
2 −

b∑
s 2|ds|

, the verifier accepts. Otherwise, it rejects.

Claim 2.5. Given an instance x = (H, a, b) of the 2-local XZ Hamiltonian problem, there is a polynomial
P (depending only on a and b) such that, for any m = Ω(P (|x|)), the following holds. In a yes-instance, the
procedure of Protocol 2.4 accepts the state ρ = σ⊗m with probability exponentially close (in |x|) to 1. In a
no-instance, it accepts with probability exponentially small in |x|.

Proof. Consider the probability (over the choice of rj and the randomness arising from measurement) that
the jth measurement from step 4 of Protocol 2.4 yields −sign(dj). Denote this probability by qj .

As shown in [MNS16, Section IV], it is not hard to verify that

1. when x ∈ L, qj ≥ 1
2 −

a∑
s 2|ds|

, and

2. when x /∈ L, qj ≤ 1
2 −

b∑
s 2|ds|

.

The difference between the two cases is inverse polynomial in the size of the input to the 2-local XZ Hamil-
tonian problem. It is straightforward to show that, for an appropriate choice of m, this inverse polynomial
gap can be amplified to an exponential one: see Appendix B.

Remark 2.6. It will be useful later to establish at this point that, if the string r from step 1 of Protocol 2.4
is fixed, it is simple to construct a state ρr which will pass the challenge determined by r with probability
1. One possible procedure is as follows.

1. For each j ∈ 1, . . . ,m:

Suppose that Hsj = djP1P2, and that P1, P2 ∈ {σX , σZ} act on qubits `1 and `2, respectively.

(a) If −sign(dj) = 1, initialise the ((j − 1)n + `1)th qubit to the +1 eigenstate of P1, and likewise,
initialise the ((j − 1)n+ `2)th qubit to the +1 eigenstate of P2.

(b) If −sign(dj) = −1, initialise the ((j − 1)n+ `1)th qubit to the +1 eigenstate of P1, and initialise
the ((j − 1)n+ `2)th qubit to the −1 eigenstate of P2.

2. Initialise all remaining qubits to |0〉.

It is clear that the ρr produced by this procedure is a tensor product of |0〉, |1〉, |+〉 and |−〉 qubits.

7

2.2 Measurement protocol ([Mah18])

In [Mah18], Mahadev presents a measurement protocol between a quantum prover and a classical verifier
which, intuitively, allows the verifier to obtain trustworthy standard and Hadamard basis measurements of
the prover’s quantum state from purely classical interactions with it. The soundness of the measurement
protocol relies upon the security properties of functions that [Mah18] terms noisy trapdoor claw-free functions
and trapdoor injective functions, of which Mahadev provides explicit constructions presuming upon the
hardness of LWE. (A high-level summary of these constructions can be found in Appendix A.) Here, we
summarise the steps of the protocol, and state the soundness property that it has which we will use.

Protocol 2.7 (Classical-verifier, quantum-prover measurement protocol from [Mah18]).

Parties. The proof system involves

1. A verifier, which implements a classical probabilistic polynomial-time procedure; and

2. A prover, which implements a quantum polynomial-time procedure.

The verifier and the prover communicate classically.

Inputs.

1. Input to the prover: an n-qubit quantum state ρ, whose qubits the verifier will attempt to derive
honest measurements of in the standard and Hadamard bases.

2. Input to the verifier:

(a) A string h ∈ {0, 1}n, which represents the bases (standard or Hadamard) in which it will endeavour
to measure the qubits of ρ. hi = 0 signifies that the verifier will attempt to obtain measurement
outcomes of the ith qubit of ρ in the standard basis, and hi = 1 means that the verifier will
attempt to obtain measurement outcomes of the ith qubit of ρ in the Hadamard basis.

(b) An extended trapdoor claw-free function family (ETCFF family), as defined in Section 4 of
[Mah18]. The description of an ETCFF family specifies a large number of algorithms, and we do
not attempt to enumerate them. Instead, we proceed to describe the verifier’s prescribed actions
at a level of detail which we believe to be sufficient for our purposes, and refer the reader to
[Mah18] for a finer exposition.

Protocol.

1. For each i ∈ {1, . . . , n} (see ‘Inputs’ above for the definition of n), the verifier generates an ETCFF
function key κi using algorithms provided by the ETCFF family, along with a trapdoor τκi for each
function, and sends all of the keys κ to the prover. It keeps the trapdoors τ to itself. If hi = 0, the
ith key κi is a key for a trapdoor injective (g) function, and if hi = 1, it is a key for a noisy trapdoor
claw-free (f) function. Intuitively, the g functions are one-to-one trapdoor one-way functions, and the
f functions are two-to-one trapdoor collision-resistant hash functions. The keys for f functions and
those for g functions are computationally indistinguishable. (For convenience, we will from now on
refer to the function specified by κi either as fκi or as gκi . Alternatively, we may refer to it as ηκi if we
do not wish to designate its type.3) A brief outline of how these properties are achieved using LWE is
given in Appendix A.

We make two remarks about the functions ηκi which will become relevant later.

(a) The functions ηκi always have domains of the form {0, 1}×X , where X ⊆ {0, 1}w for some length
parameter w.

(b) The outputs of both the f and the g functions should be thought of not as strings but as probability
distributions. The trapdoor τκi inverts the function specified by κi in the sense that, given a sample

3The letter η has been chosen because it bears some resemblance to the Latin letter h.

8

y from the distribution Y = ηκi(b‖x), along with the trapdoor τκi , it is possible to recover b‖x,
as well as any other b′‖x′ which also maps to Y under ηκi (should it exist).

Definition 2.8. Suppose that ηκi is the function specified by κi, whose output on each input b‖x
in its domain {0, 1} × X is a probability distribution Y . Define a (deterministic) function η∗κi(b‖x, e)
which takes as input an b‖x ∈ {0, 1} × X and a randomness e ∈ E , for some well-defined finite set E ,
and returns a sample ye from the distribution Y = ηκi(b‖x).

Definition 2.9. Let ηκi be the function specified by κi, with domain {0, 1} × X . Let y be a sample
from one of the distributions Y ∈ Y, where Y is the range of ηκi . We call b‖x ∈ {0, 1}×X a preimage of
y if y is in the support of the probability distribution ηκi(b‖x). (It is guaranteed that the distributions
in the range of ηκi have compact support.)

2. The prover uses the function keys κ1, . . . , κn to ‘commit’ to the quantum state of each of the n qubits
of ρ, and sends n commitment strings y1, . . . , yn to the verifier. We direct the reader to Sections
2.2 and 5.1 of [Mah18] for a high-level, and then a more detailed, description of the commitment
procedure, and explanations of how such a procedure will allow the verifier to extract trustworthy
standard and Hadamard basis measurements of the qubits of ρ. For convenience, we summarise the
procedure without justification here.

For each i, the prover concatenates to the qubit indexed by i (which we call, following [Mah18], the
ith ‘committed qubit’, and whose state we denote by4 |ψi〉 = γi |0〉 + δi |1〉) a register (the ‘preimage
register’) containing a uniform superposition over all x ∈ X (where {0, 1} × X is the domain of the
function ηκi). It also concatenates to it a register containing a superposition over all e ∈ E , with E
defined as it is in Definition 2.8. It then applies the function η∗κi (see Definition 2.8) in superposition to∑

x |ψi〉 |x〉 |e〉, and collects the outputs in a new register (the ‘output register’), obtaining the quantum
state ∑

x∈{0,1}w
γi |0〉 |x〉 |e〉 |η∗κi(0‖x, e)〉+ δi |1〉 |x〉 |e〉 |η∗κi(1‖x, e)〉 .

Finally, the prover measures the output register, obtains a sample yi, and sends yi to the verifier as
its ith commitment string.

3. The verifier then chooses at random to run either a test round or a Hadamard round. Each option is
chosen with probability 1

2 .

(a) If a test round is chosen, the verifier requests standard basis measurements of each committed
qubit |ψi〉 and its associated preimage register (recall that, in the previous step, only the output
registers were measured), and receives measurement results βi, xi for i ∈ {1, . . . , n} from the
prover. It then checks, for each i ∈ {1, . . . , n}, whether the ith measurement result is a preimage
of yi. (See Definition 2.9 for a definition of the phrase ‘preimage of y’.) More precisely: if hi = 0,
the verifier accepts iff yi is in the support of gκi(βi‖xi) (recalling that gκi(βi‖xi) is a probability
distribution); and if hi = 1, the verifier accepts iff yi is in the support of fκi(βi‖xi).

(b) If a Hadamard round is chosen, the verifier requests Hadamard basis measurements of each
committed qubit and its associated preimage register, and receives βi, di for i ∈ {1, . . . , n} from
the prover. (We note, for future reference, that the distribution of the strings di sent by the
honest prover is the uniform distribution over {0, 1}w.) It then obtains the measurement results
it desires using the procedure outlined in Section 2.2 of [Mah18]:

i. If hi = 0, the verifier ignores the measurement results βi, di, and uses the trapdoor τκi to
invert yi. The inversion procedure outputs a preimage (mi, xmi,yi); the verifier stores mi as
the standard-basis measurement outcome. (If the inverse does not exist, the verifier stores a

4Strictly speaking, the state of the ith commited qubit may not be a pure state, but we ignore this fact for simplicity of
presentation.

9

random bit as mi and rejects. The specification that the verifier stores a random bit is made
so that the n-bit string of measurement results, m, is well-defined even when the verifier
rejects.)

ii. If hi = 1, the verifier computes the two preimages x0,i and x1,i to yi under fκi using the
trapdoor τκi . It then stores βi⊕di ·(x0,i⊕x1,i) as the Hadamard basis measurement outcome.
(Once again, if either inverse does not exist, the verifier stores a random bit as mi and rejects.)

The soundness property of this measurement protocol (Claim 7.1 in [Mah18]) is stated below. Before we
state it, we briefly introduce the notation used in [Mah18]. (For a more detailed exposition, we refer the
reader to Section 5.3 of [Mah18].) DP,h refers to the distribution over measurement results m ∈ {0, 1}n that
the verifier obtains when it executes a Hadamard round with the prover labelled P on the basis choice h.
DC

P,h is the same distribution, but conditioned on the verifier accepting (in a Hadamard round). Dξ,h is the
distribution over measurement outcomes in {0, 1}n that would result from directly measuring the quantum
state ξ in the bases determined by h. ph,T and ph,H are defined so that the verifier’s probability of accepting
(on basis choice h) in a test and a Hadamard round, respectively, are 1−ph,T and 1−ph,H . ‖·‖TV denotes the
total variation norm, and A ≈c B indicates that two distributions A and B are (quantum) computationally
indistinguishable.

Claim 2.10. Assume that the Learning With Errors problem (with the same choices of parameters as those
made in [Mah18, Section 9]) is quantum computationally intractable. Then, for any arbitrary quantum
polynomial-time prover P who executes the measurement protocol (Protocol 2.7) with the honest verifier V ,
there exists a quantum state ξ, a prover P′ and a negligible function µ such that

‖DC
P,h −DP′,h‖TV ≤

√
ph,T + ph,H + µ and

DP′,h ≈c Dξ,h .

2.3 Zero-knowledge proof system for QMA ([BJSW16])

In [BJSW16], Broadbent, Ji, Song and Watrous describe a protocol involving a quantum polynomial-time
verifier and an unbounded prover, interacting quantumly, which constitutes a zero-knowledge proof system
for languages in QMA. (Although it is sound against arbitrary provers, the system in fact only requires
an honest prover to perform quantum polynomial-time computations.) We summarise the steps of their
protocol below. For details and fuller explanations, we refer the reader to [BJSW16, Section 3].

Protocol 2.11 (Zero-knowledge proof system for QMA from [BJSW16]).

Notation. Let L be any language in QMA. For a definition of the k-local Clifford Hamiltonian problem,
see [BJSW16, Section 2]. The k-local Clifford Hamiltonian problem is QMA-complete for k = 5; therefore,
for all possible inputs x, there exists a 5-local Clifford Hamiltonian H (which can be computed efficiently
from x) whose terms are all operators of the form C∗ |0k〉 〈0k|C for some Clifford operator C, and such that

1. if x ∈ L, the ground energy of H is ≤ 2−p,

2. if x /∈ L, the ground energy of H is ≥ 1
q ,

for some positive integers p and q.

Parties. The proof system involves

1. A verifier, who implements a quantum polynomial-time procedure;

2. A prover, who is unbounded, but who is only required by the protocol to implement a quantum
polynomial-time procedure.

10

The verifier and the prover communicate quantumly.

Inputs.

1. Input to the verifier:

(a) The Hamiltonian H.

(b) A quantum computationally concealing, perfectly binding (classical) commitment protocol.

(c) A proof system for NP sound against arbitrary quantum provers.

2. Input to the prover:

(a) The Hamiltonian H.

(b) The n-qubit quantum state ρ, where ρ is a ground state of the Hamiltonian H.

(c) A quantum computationally concealing, perfectly binding (classical) commitment protocol.

(d) A proof system for NP sound against arbitrary quantum provers.

Protocol.

1. The prover’s encoding step. The prover firstly applies a concatenated Steane code (which maps every
one qubit to N qubits) to each qubit in ρ. (For details on the concatenated Steane code, see [BJSW16,
Appendix A.6]. It will be important to Broadbent et al.’s purposes—and ours, in Section 3—that this
code admits transversal applications of Clifford operations.) It then executes the following steps:

(a) Concatenate N trap qubits to the end of each logical qubit (alternatively, to the end of each
N -qubit block) in the result of applying the concatenated Steane code to ρ. Each trap qubit
is initialised uniformly at random to one of |0〉 , |+〉 , |+y〉.5 Denote the string that records the
choices of trap qubits for all n logical qubits by t = t1, . . . , tn.

(b) Permute each 2N -tuple of qubits in the result of (a) according to a uniformly random permutation
π ∈ S2N . (Note that the same permutation π is applied to every 2N -tuple.)

(c) Apply a Pauli one-time pad XaZb, for uniformly random a, b ∈ {0, 1}2nN , to the entire 2nN -qubit
state.

Remark 2.12. The number N functions as a security parameter, both for this protocol and for the
protocol that we construct in section 3. Accordingly, we assume that N is polynomial in the size of
the verifier’s input.

The prover’s encoding applied to ρ is denoted by E(ρ), and the procedure E is fully determined by the
encoding key (t, π, a, b) which the prover chose to use. At this point, the prover sends the state E(ρ)
to the verifier, along with a commitment (using some perfectly binding, computationally concealing
classical commitment protocol) to the tuple (π, a, b). (A commitment to the sequence of trap qubits t
is unnecessary because, in a sense, the trap qubits exist only to check the verifier.) Let the prover’s
commitment string be denoted z.

2. Coin-flipping protocol. The prover and the verifier execute a coin-flipping protocol, choosing a string
r of fixed length uniformly at random. This random string r determines a local Hamiltonian term
Hr = C∗r |0k〉 〈0k|Cr that is to be tested. (This step can be implemented, of course, using the same
classical commitment protocol that the prover employed in the previous step.)

3. Verifier’s challenge. The verifier applies the Clifford Cr transversally to the qubits on which the k-local
Hamiltonian term Hr acts nontrivially, and measures them in the standard basis. It then sends the
measurement results ui1 , . . . , uik which it obtained to the prover. (Each ui is a 2N -bit string, and
i1, . . . , ik are the indices of the logical qubits on which the term Hr acts nontrivially.)

5|+y〉 here refers to the state 1√
2
(|0〉+ i |1〉).

11

4. Prover’s response. The prover receives the verifier’s measurement results u, and firstly checks whether
they cause a predicate Q(t, π, a, b, r, u) to be satisfied. (We will explain the predicate Q in more detail
shortly. Intuitively, Q is satisfied if and only if both verifier and prover behaved honestly.) If Q is not
satisfied, the prover aborts, causing the verifier to reject. If Q is satisfied, then the prover proves to
the verifier, using an NP zero-knowledge protocol, that there exists randomness sp and an encoding
key (t, π, a, b) such that z = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.

We now describe the predicate Q in precise terms. For convenience, Broadbent et al. define a predicate
Rr, which represents the prover’s check after it reverses the effects on u of the one-time pad XaZb,
and then proceed to define Q in terms of Rr. Since we will shortly have cause to alter the definition of
Rr, we quote the definition of Rr used in [BJSW16] for comparison. (Note that we have altered their
notation slightly: the strings that they call yi we have called qi, to avoid a conflict.)

Definition 2.13. Definition of Rr.

Let ui1 , . . . , uik be the measurement results that the verifier sent to the prover in step 3. For each
i ∈ {i1, . . . , ik}, define strings qi, zi in {0, 1}N such that π(qi‖zi) = ui (alternatively: π−1(ui) = qi‖zi).
The predicate Rr(t, π, u) takes the value 1 if and only if the following two conditions are met:

(a) qi ∈ DN for every i ∈ {i1, . . . , ik}, and qi ∈ D1
N for at least one index i ∈ {i1, . . . , ik}. (DN =

D0
N ∪ D1

N is the set of all valid classical N -bit codewords of the concatenated Steane code. We
note, as an aside, that D0

N and D1
N are both sets of size 8t, where t is an even positive integer

such that 7t = N ; as such, DN is polynomially sized.)

(b) 〈zi1 · · · zik |C⊗nr |ti1 · · · tik〉 6= 0.

Now we define the predicate Q(t, π, a, b, r, u) in terms of Rr:

Definition 2.14. Definition of Q.

Let c1, . . . , cn, d1, . . . , dn ∈ {0, 1}2N be the unique strings such that

C⊗2Nr (Xa1Zb1 ⊗ · · · ⊗XanZbn) = α(Xc1Zd1 ⊗ · · · ⊗XcnZdn)C⊗2Nr

for some α ∈ {1, i,−1,−i}. (It is possible to efficiently compute c = c1, . . . , cn and d = d1, . . . , dn given
a, b and Cr.) The predicate Q is then defined by

Q(t, π, a, b, r, u) = Rr(t, π, u⊕ ci1 · · · cik) .

2.4 Replacing Clifford verification with XZ verification in Protocol 2.11

The authors of [BJSW16] introduce a zero-knowledge proof system which allows the verifier to determine
whether the prover holds a state that has sufficiently low energy with respect to a k-local Clifford Hamiltonian
(see Section 2 of [BJSW16]). In this section, we modify their proof system so that it applies to an input
encoded as an instance of the XZ local Hamiltonian problem (Definition 2.1) rather than as an instance of
the Clifford Hamiltonian problem.

Before we introduce our modifications, we explain why it is necessary in the first place to alter the proof
system presented in [BJSW16]. Modulo the encoding E which the prover applies to its state in Protocol
2.11, the quantum verifier from the same protocol is required to perform a projective measurement of
the form {Π = C∗ |0k〉 〈0k|C, Id−Π} of the state that the prover sends it (where C is a Clifford unitary
acting on k qubits) and reject if it obtains the first of the two possible outcomes. Due to the properties
of Clifford unitaries, this action is equivalent to measuring k commuting k-qubit Pauli observables C∗ZiC
for i ∈ {1, . . . , k} (where Zi is a Pauli σZ observable acting on the ith qubit), and rejecting if all of said
measurements result in the outcome +1.

12

Our goal is to replace the quantum component of the verifier’s actions in Protocol 2.11—a component which,
fortunately, consists entirely of performing the projective measurement just described—with the measure-
ment protocol introduced in [Mah18] (summarized as Protocol 2.7). Unfortunately, the latter protocol 1.
only allows for standard and Hadamard basis measurements, and 2. does not accommodate a verifier who
wishes to perform multiple successive measurements on the same qubit: for each qubit that the verifier
wants to measure, it must decide on a measurement basis (standard or Hadamard) prior to the execution
of the protocol, and once made its choices are fixed for the duration of its interaction with the prover.
This allows the verifier to, for example, obtain the outcome of a measurement of the observable C∗ZiC for
some particular i, by requesting measurement outcomes of all k qubits in the appropriate basis and taking
the product of the outcomes obtained. However, it is not obvious how the same verifier could request the
outcome of measuring a k-tuple of commuting Pauli observables which all act on the same k qubits.

To circumvent this technical issue, we replace the Clifford Hamiltonian problem used in [BJSW16] with the
QMA-complete XZ Hamiltonian problem. The advantage of this modification is that it becomes straight-
forward to implement the required energy measurements using the measurement protocol from [Mah18].
Unfortunately, in order to make the change, we sacrifice the perfect completeness which is a property of the
proof system in [BJSW16], and also require that the verifier’s measurements act on a linear, rather than a
constant, number of qubits with respect to the size of the problem input.

A different potentially viable modification to the proof system of [BJSW16] is as follows. Instead of replacing
Clifford Hamiltonian verification with XZ Hamiltonian verification, we could also repeat the original Clifford-
Hamiltonian-based protocol a polynomial number of times. In such a scheme, the honest prover would hold
m copies of the witness state (as it does in Protocol 2.4). The verifier, meanwhile, would firstly choose a
random term C∗r |0k〉 〈0k|Cr from the Clifford Hamiltonian, and then select m random Pauli observables of
the form C∗rZiCr—where Cr is the particular Cr which it picked—to measure. (For each repetition, i would
be chosen independently and uniformly at random from the set {1, . . . , k}.) The verifier would accept if and
only if the number of times it obtains −1 from said Pauli measurements is at least m

2k . This approach is very
similar to the approach we take for XZ Hamiltonians (which we explain below), and in particular also fails
to preserve the perfect completeness of the original protocol in [BJSW16]. For simplicity, we choose the XZ
approach. We now introduce the alterations which are necessary in order to make it viable.

Firstly, we require that the honest prover possesses polynomially many copies of the witness state σ, instead
of one. We do this because we want the honest verifier to accept the honest prover with probability expo-
nentially close to 1, which is not naturally true in the verification procedure for 2-local XZ Hamiltonians
presented by Morimae and Fitzsimons in [MF16], but which is true in our amplified variant, Protocol 2.4.
Secondly, we need to modify the verifier’s conditions for acceptance. In [BJSW16], as we have mentioned,
these conditions are represented by a predicate Q (that in turn evaluates a predicate Rr; see Definitions 2.13
and 2.14).

We now describe our alternative proof system for QMA, and claim that it is zero-knowledge. Because the
protocol is very similar to the protocol from [BJSW16], this can be seen by following the proof of zero-
knowledge in [BJSW16], and noting where our deviations require modifications to the reasoning. On the
other hand, we do not argue that the proof system is complete and sound, as we do not need to make explicit
use of these properties. (Intuitively, however, the completeness and the soundness of the proof system follow
from those of Protocol 2.4, and the soundness of the latter is a property which we will use.)

Protocol 2.15 (Alternative proof system for QMA).

Notation. Refer to notation section of Protocol 2.4.

Parties. The proof system involves

1. A verifier, who implements a quantum polynomial-time procedure;

2. A prover, who is unbounded, but who is only required by the protocol to implement a quantum

13

polynomial-time procedure.

The verifier and the prover communicate quantumly.

Inputs.

1. Input to the verifier:

(a) The Hamiltonian H, and the numbers a and b.

(b) A quantum computationally concealing, perfectly binding (classical) commitment protocol.

(c) A proof system for NP sound against arbitrary quantum provers.

2. Input to the prover:

(a) The Hamiltonian H, and the numbers a and b.

(b) The n-qubit quantum state ρ = σ⊗n, where σ is the ground state of the Hamiltonian H.

(c) A quantum computationally concealing, perfectly binding (classical) commitment protocol.

(d) A proof system for NP sound against arbitrary quantum provers.

Protocol.

1. Prover’s encoding step: The same as the prover’s encoding step in Protocol 2.11, except that t ∈
{0,+}N rather than {0,+,+y}N . (This change will be justified in the proof of Lemma 2.18.)

2. Coin flipping protocol: Unmodified from Protocol 2.11, except that r = (r1, . . . , rm) represents the
choice of m terms from the 2-local XZ Hamiltonian H (with the choices being made as described in
step 2 of Protocol 2.4) instead of a random Clifford. Note that r determines the indices of the 2m
logical qubits which the verifier will measure in step 3.

3. Verifier’s challenge: The same as the verifier’s challenge in Protocol 2.11, except that the verifier now
applies Ur transversally instead of Cr.

4. Prover’s response: The same as Protocol 2.11 (but note that the predicate Q, which the prover checks
and then proves is satisfied, is the Q described in Definition 2.17 below).

Definition 2.16 (Redefinition of Rr). Let i1, . . . , i2m be the indices of the logical qubits which were chosen
for measurement in step 2 of Protocol 2.15, ordered by their corresponding js (so that i1 and i2 are the qubits
that were measured in order to determine whether Hs1 was satisfied, and so on). Let ui1 , . . . , ui2m be the
2N -bit strings which the verifier claims are the classical states that remained after said measurements were
performed, and for each i ∈ {i1, . . . , i2m}, define N -bit strings qi, zi such that π(qi||zi) = ui (alternatively:
π−1(ui) = qi||zi). In Protocol 2.15, the predicate Rr(t, π, u) takes the value 1 if and only if the following
conditions are met:

1. qi ∈ DN for every i ∈ {i1, . . . , i2m}.

2. The number Count
m (where Count is obtained by executing the following procedure) is closer to

1
2 −

a∑
s 2|ds|

than to 1
2 −

b∑
s 2|ds|

.

(a) Initialise Count to 0.

(b) For each j ∈ {1, . . . ,m}: Suppose that Hsj = djP1P2, for some P1, P2 ∈ {σX , σZ}. The tuple
(P1, u2j−1, P2, u2j) determines a ‘logical’ measurement result that could equally have been ob-
tained by measuring Hrjσ, where σ is the unencoded witness state. We denote this measurement
result by λ. If λ = −sign(dj), add one to Count.

(c) Let Ur be the circuit obtained from the following procedure:

i. For each j ∈ {1, . . . ,m}, replace any σXs in the term Hsj with H (Hadamard) gates, and
replace any σZs inHsj with I. (For example, ifHrj = πjσX,`1σZ,`2 , where the second subscript
denotes the index of the qubit on which the observable in question acts, then Uj = H`1I`2 ,

14

where the subscripts `1 and `2 once again the denote the indices of the qubits on which the
gates H and I act.)

ii. Apply Uj to the qubits indexed (j − 1)n+ 1 through jn.

It must then be the case that 〈zi1 · · · zi2m |U⊗Nr |ti1 · · · ti2m〉 6= 0 (where each ti is an N -bit string
that represents the pattern of trap qubits which was concatenated to the ith logical qubit during
step 1 of Protocol 2.15).

Definition 2.17 (Redefinition of Q). Let c1, . . . , cn, d1, . . . , dn ∈ {0, 1}2N be the unique strings such that

U⊗2Nr (Xa1Zb1 ⊗ · · · ⊗XanZbn) = α(Xc1Zd1 ⊗ · · · ⊗XcnZdn)U⊗2Nr

for some α ∈ {1, i,−1,−i}. (It is possible to efficiently compute c = c1, . . . , cn and d = d1, . . . , dn given a, b
and Ur. In particular, recalling that Ur is a tensor product of H and I gates, we have that ci = ai and
di = bi for all i such that the ith gate in U⊗2Nr is I, and ci = bi, di = ai for all i such that the ith gate in
U⊗2Nr is H.) The predicate Q is then defined by

Q(t, π, a, b, r, u) = Rr(t, π, u⊕ ci1 · · · cik) ,

where Rr is as in Definition 2.16.

Lemma 2.18. The modified proof system for QMA in Protocol 2.15 is computationally zero-knowledge for
quantum polynomial-time verifiers.

Proof. We follow the argument from [BJSW16, Section 5]. Steps 1 to 3 only make use of the security of the
coin-flipping protocol, the security of the commitment scheme, and the zero-knowledge properties of the NP
proof system, none of which we have modified. Step 4 replaces the real witness state ρ with a simulated
witness ρr that is guaranteed to pass the challenge indexed by r; this we can do also (see Remark 2.6).
Step 5 uses the Pauli one-time-pad to twirl the cheating verifier, presuming that the honest verifier would
have applied a Clifford term indexed by r before measuring. We note that, since Ur is a Clifford, the same
reasoning applies to our modified proof system.

Finally, using the fact that the Pauli twirl of step 5 restricts the cheating verifier to XOR attacks, step 6
from [BJSW16, Section 5] proves the following statement: if the difference |p0 − p1| is negligible (where p0
and p1 are the probabilities that ρ and ρr respectively pass the verifier’s test in an honest prover-verifier
interaction indexed by r), then the channels Ψ0 and Ψ1 implemented by the cheating verifier in each case
are also quantum computationally indistinguishable. It follows from this statement that the protocol is
zero-knowledge, since, in an honest verifier-prover interaction indexed by r, ρr would pass with probability
1, and ρ would pass with probability 1− negl(N). (This latter statement is true both in their original and
in our modified protocol.) The argument presented in [BJSW16] considers two exclusive cases: the case
when |v|1 < K, where v is the string that the cheating verifier XORs to the measurement results, |v|1 is the
Hamming weight of that string, and K is the minimum Hamming weight of a nonzero codeword in DN ; and
the case when |v|1 ≥ K. The analysis in the former case translates to Protocol 2.15 without modification,
but in the latter case it needs slight adjustment.

In order to address the case when |v|1 ≥ K, Broadbent et al. use a lemma which—informally—states that
the action of a Clifford on k qubits, each of which is initialised uniformly at random to one of |0〉 , |+〉, or
|+〉y, has at least a 3−k chance of leaving at least one out of k qubits in a standard basis state. We may
hesitate to replicate their reasoning directly, because our k (the number of qubits on which our Hamiltonian
acts) is not a constant. While it is possible that a mild modification suffices to overcome this problem, we
note that in our case there is a simpler argument for an analogous conclusion: since Ur is a tensor product
of only H gates and I gates, it is straightforward to see that, if each of the 2m qubits on which it acts is
initialised either to |0〉 or to |+〉, then 1) each of the 2m qubits has exactly a 50% chance of being left in a
standard basis state, and 2) the states of these 2m qubits are independent.

15

Now we consider the situation where a string v = v1 v2 · · · v2m, of length 4mN and of Hamming weight at
least K, is permuted (‘permuted’, here, means that π ∈ S2N is applied to each vi individually) and then
XORed to the result of measuring 4mN qubits (2m blocks of 2N qubits each) in the standard basis after
Ur has been transversally applied to those qubits. It is straightforward to see, by an application of the
pigeonhole principle, that there must be at least one vi whose Hamming weight is ≥ K

2m . Consider the result
of XORing this vi to its corresponding block of measured qubits. Half of the 2N qubits in that block would
originally have been encoding qubits, and half would have been trap qubits; half again of the latter, then,
would have been trap qubits left in a standard basis state by the transversal action of Ur. As such, the
probability that none of the 1-bits of vi are permuted into positions which are occupied by the latter kind of

qubit is (34)−
K
2m , which is negligibly small as long as K is made to be a higher-order polynomial in N than

2m is. The remainder of the argument in [BJSW16, Section 5] follows directly.

3 The protocol

In this section, we present our construction of a zero-knowledge argument system for languages in BQP.
The argument system can be implemented with a verifier that runs in probabilistic polynomial time and a
prover that runs in quantum polynomial time, and is sound under the following assumptions:

Assumptions 3.1.

1. The Learning With Errors problem (LWE) [Reg09] is quantum computationally intractable. (Specifi-
cally, we make the same asssumption about the hardness of LWE that is made in [Mah18, Section 9]
in order to prove the soundness of the measurement protocol.)

2. There exists a commitment scheme (gen, initiate, commit, reveal, verify) of the form described in Ap-
pendix C that is unconditionally binding and quantum computationally concealing. (This assumption
is necessary to the soundness of the proof system presented in [BJSW16].)

Remark 3.2. Our argument system also allows a classical probabilistic polynomial-time verifier and a quan-
tum polynomial-time prover to verify that any problem instance x belongs to any particular language L ∈
QMA, provided that the prover has access to polynomially many copies of a valid quantum witness for an
instance of the 2-local XZ local Hamiltonian problem to which x is mapped by the reduction implicit in
Theorem 2.3.

The following exposition of our protocol relies on definitions from Section 2, and we encourage the reader to
read that section prior to approaching this one. We also direct the reader to Figures ?? and ?? for diagrams
that chart the protocol’s structure.

Protocol 3.3. Zero-knowledge, classical-verifier argument system for BQP.

Notation. Let L be any language in BQP (or QMA), and let (H =
∑S

s=1 dsHs, a, b) be an instance of the
2-local XZ Hamiltonian problem to which L can be reduced (see Definition 2.1 and Theorem 2.3). Define

πs =
|ds|∑
s |ds|

.

Following [BJSW16], we take the security parameter for this protocol to be N , the number of qubits in
which the concatenated Steane code used during the encoding step of the protocol (step 1) encodes each
logical qubit. We assume, accordingly, that N is polynomial in the size of the problem instance x.

Parties.

The protocol involves

16

1. A verifier, which runs in classical probabilistic polynomial time;

2. A prover, which runs in quantum polynomial time.

Inputs. The protocol requires the following primitives:

• A perfectly binding, quantum computationally concealing commitment protocol (gen, initiate, commit, reveal,
verify) (which will be used twice: once for the prover’s commitment in step 2, and then again for the
coin-flipping protocol in step 3). We assume that this commitment protocol is of the form described
in Appendix C.

• A zero-knowledge proof system for NP.

• An extended trapdoor claw-free function family (ETCFF family), as defined in [Mah18]. (Note that
we fall short of using the ETCFF family as a black box: for the trapdoor check of step 8, we rely on
the specific properties of the LWE-based construction of an ETCFF family that [Mah18] provides. See
Appendix A for details.)

Apart from the above cryptographic primitives, we assume that the verifier and the prover also receive the
following inputs.

1. Input to the verifier: the Hamiltonian H and the numbers a and b.
2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state ρ = σ⊗m, where
σ is a ground state of the Hamiltonian H.

Protocol.

1. The prover encodes the witness. The prover encodes the quantum witness ρ by applying the following
steps:

(a) Apply concatenated Steane code

(b) Concatenate trap qubits |t〉
(c) Apply a random permutation π

(d) Apply a Pauli one-time-pad XaZb

The encoding process here is the same as that from step 1 of Protocol 2.15; we direct the reader to
Protocol 2.15, and the Protocol 2.11 to which it refers, for a more detailed explanation of the steps.
Denote the application of the prover’s encoding to the state ρ by E(ρ).

2. The prover commits to its encoding keys. The prover commits to the strings (π, a, b) from the previous
step, using randomness sp. Call the prover’s commitment string z, so that z = commit((π, a, b), sp).

3. The verifier and the prover execute the first half of a two-stage coin-flipping protocol.6 The verifier
commits to rv, its part of the random string that will be used to determine which random terms in the
Hamiltonian H it will check in subsequent stages of the protocol. Let c = commit(rv, sv). The prover
sends the verifier rp, which is its own part of the random string. The random terms will be determined
by r = rv ⊕ rp. (r is used to determine these terms in the same way that r is used in Protocol 2.4.)

4. The verifier initiates the measurement protocol. (Refer to Protocol 2.7 for an outline of the steps in
said measurement protocol.) The verifier chooses the measurement bases h = h1 · · ·h2nN in which it
wishes to measure the state E(ρ). 2kN out of the 2nN bits of h—corresponding to k logical qubits—
are chosen so that the verifier can determine whether σ satisfies the Hamiltonian terms specified by
r = rv ⊕ rp. In our particular case, k = 2m, where m is the number of Hamiltonian terms that the
verifier will check are satisfied. For the remaining qubits i, the verifier sets hi to 0. The verifier sends
the function keys κ = κ1, . . . , κ2nN to the prover.

6We need to execute the coin-flipping protocol in two stages because, in our (classical-verifier) protocol, the prover cannot
physically send the quantum state E(ρ) to its verifier before the random string r is decided, as the prover of Protocol 2.11 does.
If we allow our prover to know r at the time when it performs measurements on the witness ρ, it will trivially be able to cheat.

17

5. The prover commits to its encoded witness state, as per the measurement protocol. The prover commits
to the quantum state E(ρ) by concatenating a preimage register to each qubit in E(ρ), applying the
functions specified by κ1, . . . , κ2nN in superposition as Protocol 2.7 describes, measuring the resulting
output superpositions, and sending the outcomes y1, . . . , y2nN to the verifier.

6. The verifier chooses at random to run either a test round or a Hadamard round. Each option is chosen
with probability 1

2 .

(a) If a test round is chosen, the verifier requests standard basis measurements of each committed
qubit |ψi〉 in E(ρ) and its associated preimage register, and receives measurement results βi, xi
for i ∈ {1, . . . , 2nN} from the prover. It then checks, for each i ∈ {1, . . . , 2nN}, whether the ith
measurement result is a preimage of yi. (See Definition 2.9 for a definition of the phrase ‘preimage
of y’.) More precisely: if hi = 0, the verifier accepts iff yi is in the support of gκi(βi‖xi) (recalling
that gκi(βi‖xi) is a probability distribution); and if hi = 1, the verifier accepts iff yi is in the
support of fκi(βi‖xi).

(b) If a Hadamard round is chosen, the verifier requests Hadamard basis measurements of each
committed qubit and its associated preimage register, and receives βi, di for i ∈ {1, . . . , 2nN}
from the prover. It then obtains the measurement results it desires using the procedure outlined
in Section 2.2 of [Mah18]:

i. If hi = 0, the verifier ignores the measurement results βi, di, and uses the trapdoor τκi to
invert yi. The inversion procedure outputs a preimage (mi, xmi,yi); the verifier stores mi as
the standard-basis measurement outcome. (If the inverse does not exist, the verifier stores a
random bit as mi and rejects.)

ii. If hi = 1, the verifier computes the two preimages x0,i and x1,i to yi under fκi using the
trapdoor τκi . It then stores βi⊕di ·(x0,i⊕x1,i) as the Hadamard basis measurement outcome.
(Once again, if either inverse does not exist, the verifier stores a random bit as mi and rejects.)

7. The verifier opens its commitment, and sends the prover its measurement outcomes and function
trapdoors. If a test round was chosen in the previous step, the verifier now accepts the prover directly,
provided that the preimage test was satisfied for all i. (If not all the preimage tests passed, the
verifier directly rejects the prover.) If a Hadamard round was chosen, and the verifier instead opens
its commitment to rv and sends its measurement outcomes m = m1, . . . ,m2nN to the prover, along
with its trapdoors τκ1 , . . . , τκ2nN .

8. The prover checks that the verifier’s measurement outcomes and trapdoors were consistent; it then
proves that the verifier’s measurement outcomes were consistent. The prover checks that τκ1 , . . . , τκ2nN
are indeed trapdoors for the functions specified by κ1, . . . , κ2nN , by checking that, for each yi, the
trapdoor τκi returns all the preimages to yi under the function specified by κi, and no others7. (See
Definition 2.9 for a definition of the phrase ‘preimages to y’.) It also defines u = ui1 · · ·ui2m (each ui
is 2N bits long) = m`1 · · ·m`4mN , where `1, . . . , `4mN are the indices of the qubits on which U⊗2Nr acts
nontrivially, and checks that u causes the predicate Q(t, π, a, b, r, u) to be satisfied. (The Q we refer to
here is the Q of Definition 2.17. We define Ur in the same way that Ur was defined in Definition 2.16.)
If either of these tests fails, the prover aborts. If both tests pass, then the prover proves, using an NP
zero-knowledge proof system,8 that the verifier’s outcomes are consistent in the following sense:

The verifier’s outcomes u are consistent if there exists a string sp and an encoding key (t, π, a, b)
such that z = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.

7We describe an efficient procedure for administering this test in Appendix A, and give a sketch of a proof that it delivers
the guarantee we describe.

8It was shown in [Wat09] that the second item in Assumptions 3.1 suffices to guarantee the existence of a proof system
for languages in NP that is zero-knowledge against quantum polynomial-time verifiers. Our proof that our protocol is zero-
knowledge for classical verifiers only requires that the NP proof system used here is (likewise) zero-knowledge against classical
verifiers; however, it becomes necessary to require post-quantum security of this proof system if we want our protocol also to
be zero-knowledge for potentially quantum malicious verifiers.

18

Figure 1: Diagrammatic representation of an honest execution of Protocol 3.3. We omit communication
between the different parts of the prover for neatness, and we also omit the initial messages i (see Appendix
C) from executions of the perfectly binding, quantum computationally concealing commitment protocol
which we refer to in Assumptions 3.1. The blue parts of the diagram indicate what occurs in the case of a
test round, and the red parts indicate what occurs in the case of a Hadamard round.

Figure 2: Diagrammatic representation of Protocol 3.3 with a cheating verifier. The cheating verifier V ∗

may take some (classical) auxiliary input Z0, store auxiliary information (represented by Z1 and Z2), and
produce a final output Z3 that deviates from that specified by the protocol.

19

4 Soundness of protocol

Let the honest verifier of the argument system in Protocol 3.3 be denoted V , and let an arbitrary quantum
polynomial-time prover with which V interacts be denoted P. For this section, we will require notation from
Section 5.3 of [Mah18], the proof of Theorem 8.6 of the same paper, and Section 4 of [BJSW16]. We will by
and large introduce this notation as we proceed (and some of it has been introduced already in Sections 2.2
and 2.3, the sections containing outlines of the measurement protocol from [Mah18] and the zero-knowledge
proof system from [BJSW16]), but the reader should refer to the above works if clarification is necessary.

We begin by making some preliminary definitions and proving a claim, from which the soundness of Protocol
3.3 (Lemma 4.6) will naturally follow. Firstly, we introduce some notation from Section 4 of [BJSW16]:

Definition 4.1 (Projection operators Π0 and Π1). Define N as it is defined in Protocol 3.3. Let D0
N be

the set of all the classical codewords in the concatenated Steane code of Protocol 2.11 (or of Protocol 3.3)
which are encodings of 0, and let D1

N likewise be the set of classical codewords in the concatenated Steane
code which encode 1. (See Definition 2.13, and Section A.6 of [BJSW16], for details about the concatenated
Steane code. The first condition in Definition 2.13 will provide some motivation for the following definitions
of Π0 and Π1.) Define

Π0 =
∑
x∈D0

N

|x〉 〈x| , Π1 =
∑
x∈D1

N

|x〉 〈x| .

Definition 4.2 (Projection operators ∆0 and ∆1). Define N as it is defined in Protocol 3.3. Let ∆0 and
∆1 be the following projection operators:

∆0 =
I⊗N + Z⊗N

2
, ∆1 =

I⊗N − Z⊗N

2
.

∆0 is the projection onto the space spanned by all even-parity computational basis states, and ∆1 is its
equivalent for odd-parity basis states. Note that, since all the codewords in D0 have even parity, and all the
codewords in D1 have odd parity, it holds that Π0 ≤ ∆0 and that Π1 ≤ ∆1.

Definition 4.3 (The quantum channel Ξ). Define a quantum channel mapping N qubits to one qubit as
follows:

ΞN (σ) =
〈I⊗N , σ〉I + 〈X⊗N , σ〉X + 〈Y ⊗N , σ〉Y + 〈Z⊗N , σ〉Z

2
.

Loosely, ΞN can be thought of as a simplification of the decoding operator to the concatenated Steane code
that the honest prover applies to its quantum witness in Protocol 2.11 (or in Protocol 3.3). Its adjoint is
specified by

Ξ∗N (σ) =
〈I, σ〉I⊗N + 〈X,σ〉X⊗N + 〈Y, σ〉Y ⊗N + 〈Z, σ〉Z⊗N

2
,

and has the property that

Ξ∗N (|0〉 〈0|) = ∆0 , Ξ∗N (|1〉 〈1|) = ∆1 ,

a property which we will shortly use.

Let z be prover P’s commitment string from step 2 of Protocol 3.3. Because the commitment proto-
col is perfectly binding, there exists a unique, well-defined tuple (π, a, b) and a string sp such that z =
commit((π, a, b), sp).

20

Definition 4.4. For notational convenience, we define a quantum procedure M on a 2nN -qubit state ρ as
follows:

1. Apply XaZb to ρ, to obtain a state ρ′.

2. Apply π−1 to each 2N -qubit block in the state ρ′, to obtain a state ρ′′.

3. Discard the last N qubits of each 2N -qubit block in ρ′′, to obtain a state ρ′′′.

4. To each N -qubit block in ρ′′′, apply the map ΞN .

We also define the procedure M̃ as the application of the first four steps in M , again for notational conve-
nience.

Intuitively, we think of M as an inverse to the prover’s encoding procedure E. M may not actually invert
the prover’s encoding procedure, if the prover lied about the encoding key that it used when it sent the
verifier z = commit((π, a, b), sp); however, this is immaterial.

We now prove a claim from which the soundness of Protocol 3.3 will follow. Before we do so, however, we
make a remark about notation for clarity. When we write ‘V accepts the distribution Dξ,h with probability
p’ (or similar phrases), we mean that, in [Mah18]’s notation from section 8.2,∑

h∈{0,1}2nN
vh(1− p̃h(Dξ,h)) = p.

Here, h represents the verifier’s choice of measurement bases, as before; vh is the probability that the honest
verifier will select the basis choice h, and 1 − p̃h(D) is defined, for any distribution D over measurement
outcomes m ∈ {0, 1}2nN , as the probability that the honest verifier will accept a string drawn from D on
basis choice h. (When we refer to the latter probability, we assume, following [BJSW16, Section 4], that the
prover behaves optimally—in terms of maximising the verifier’s eventual probability of acceptance—after
the verifier sends it measurement outcomes at the end of step 6 in Protocol 3.3. For the purposes of the
present soundness analysis, therefore, we can imagine that the verifier checks the predicate Q itself after
step 6, instead of relying on the prover to prove to it during step 8 that Q is satisfied.)

Claim 4.5. Suppose there exists a quantum state ξ such that the honest verifier V accepts the distribution
Dξ,h with probability p. Then the state M(ξ) is accepted by the verifier of Protocol 2.4 with probability at
least p.

Proof. Fix a choice of r (see step 3 of Protocol 3.3 for a definition of r). Let Zr be the subset of {0, 1}n
such that the verifier of Protocol 2.4 accepts if and only if the n-bit string that results from concatenating
the measurement results it obtains in step 4 of said protocol is a member of Zr. It is unimportant to the
analysis what Zr actually is; it matters only that it is well-defined.

For this choice of r, we can express the probability that the verifier of Protocol 2.4 accepts a state τ as∑
z∈Zr

〈
U∗r |z1, . . . , zn〉 〈z1, . . . , zn|Ur, τ

〉
.

(Though only 2m of the n qubits in τ are relevant to Ur, we assume here for notational simplicity that Ur is
a gate on n qubits, and that the verifier measures all n qubits of Urτ and ignores those measurement results
which are irrelevant.)

For the same choice of r, we can express the probability that the verifier V from Protocol 3.3 will eventually
accept the distribution Dξ,h as

pr =
∑
z∈Zr

〈
(U∗r)⊗N (Πz1 ⊗ · · · ⊗Πzn)(Ur)

⊗N , M̃(ξ)
〉
.

21

Following [BJSW16], we note that∑
z∈Zr

〈
(U∗r)⊗N (Πz1 ⊗ · · · ⊗Πzn)(Ur)

⊗N , M̃(ξ)
〉

≤
∑
z∈Zr

〈
(U∗r)⊗N (∆z1 ⊗ · · · ⊗∆zn)(Ur)

⊗N , M̃(ξ)
〉

=
∑
z∈Zr

〈
(U∗r)⊗N

(
Ξ∗N (|z1〉 〈z1|)⊗ · · · ⊗ Ξ∗N (|zn〉 〈zn|)

)
(Ur)

⊗N , M̃(ξ)
〉

=
∑
z∈Zr

〈
(Ξ⊗nN)∗(U∗r)⊗N |z1, . . . , zn〉 〈z1, . . . , zn| (Ur)⊗N , M̃(ξ)

〉
=
∑
z∈Zr

〈
U∗r |z1, . . . , zn〉 〈z1, . . . , zn|Ur,M(ξ)

〉
.

We conclude that, if the distribution Dξ,h is accepted by V with probability p =
∑

r vrpr =
∑

h vh(1 −
p̃h(Dξ,h)) (where vr is the probability that a given r will be chosen, and the second expression is simply a
formulation in alternative notation of the first), the state M(ξ) is accepted by the verifier of Protocol 2.4
with probability at least p.

Now we turn to arguing that Protocol 3.3 has a soundness parameter s which is negligibly close to 3
4 .

Lemma 4.6. Suppose that the instance x = (H, a, b) of the 2-local XZ Hamiltonian problem that is provided
as input to the verifier and prover in Protocol 3.3 is a no-instance, i.e. the ground energy of H is larger than
b. Then, provided that Assumptions 3.1 hold, the probability that the honest verifier V accepts in Protocol
3.3 after an interaction with any quantum polynomial-time prover P is at most 3

4 + negl(|x|).

Proof. Claim 7.1 of [Mah18] guarantees that, for any arbitrary quantum polynomial-time prover P who
executes the measurement protocol with V , there exists a state ξ, a prover P′ and a negligible function µ
such that

‖DC
P,h −DP′,h‖TV ≤

√
ph,T + ph,H + µ , and

DP′,h ≈c Dξ,h . (1)

(See the paragraph immediately above Claim 2.10 for relevant notation.)

It follows from (1) that, if V accepts the distribution DP′,h with probability p, it must accept the distribution
Dξ,h with probability p− negl(N), because the two are computationally indistinguishable and the verifier V
is efficient. Therefore (using Claim 4.5), if V accepts DP′,h with probability p, the verifier of Protocol 8.3
from [Mah18] accepts the state M(ξ) with probability at least p − negl(N). By the soundness of Protocol
2.4 (Claim 2.5), we conclude that p = negl(N) when the problem Hamiltonian is a no-instance.

We now apply a similar argument to that which is used in Section 8.2 of [Mah18] in order to establish an
upper bound on the probability φ that V accepts P in a no-instance. Let EHP,h denote the event that the
verifier V does not reject the prover labelled P in a Hadamard round indexed by h during the measurement
protocol phase of Protocol 3.3. Let ETP,h denote the analogous event in a test round. Furthermore, let EP,h
denote the event that the verifier accepts the prover P in the last step of Protocol 3.3. The total probability
that V accepts P is the average, over all possible basis choices h, of the probability that V accepts P after a
test round indexed by h, plus the probability that V accepts P after a Hadamard round indexed by h. As

22

such,

φ =
∑

h∈{0,1}2nN
vh(

1

2
Pr[ETP,h] +

1

2
Pr[EHP,h ∩ EP,h])

=
∑

h∈{0,1}2nN
vh(

1

2
Pr[ETP,h] +

1

2
Pr[EHP,h]Pr[EP,h|EHP,h])

=
∑

h∈{0,1}2nN
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DC

P,h))) .

Since Lemma 3.1 and Claim 7.1 of [Mah18] taken together yield the inequality

p̃h(DP′,h)− p̃h(DC
P,h) ≤ ‖DC

P,h −DP,h‖TV ≤
√
ph,T + ph,H + µ ,

it follows that

φ ≤
∑

h∈{0,1}2nN
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DP′,h) +

√
ph,T + ph,H + µ))

≤ 1

2
µ+

1

2

∑
h∈{0,1}2nN

vh(1− ph,T + (1− ph,H)(ph,H +
√
ph,T)) +

1

2

∑
h∈{0,1}2nN

vh(1− p̃h(DP′,h))

≤ 1

2
µ+

3

4
+

1

2
p .

We conclude that Protocol 3.3 has a soundness parameter s which is negligibly close to 3
4 .

5 Zero-knowledge property of protocol

In this section, we establish that Protocol 3.3 is zero-knowledge against arbitrary classical probabilistic
polynomial time (CPPT) verifiers. Specifically, we show the following:

Lemma 5.1. Suppose that the instance x = (H, a, b) of the 2-local XZ Hamiltonian problem that is provided
as input to the verifier and prover in Protocol 3.3 is a yes-instance, i.e. the ground energy of H is smaller
than a. Then (provided that Assumptions 3.1 hold), for any arbitrary CPPT verifier V ∗, there exists a
simulator S which can be implemented in CPPT such that the distribution of V ∗’s final output after its
interaction with the honest prover P in Protocol 3.3 is (classical) computationally indistinguishable from S’s
output distribution.

Remark 5.2. Lemma 5.1 formulates the zero-knowledge property in terms of classical verifiers and compu-
tational indistinguishability against classical distinguishers, because this is the most natural setting for a
protocol in which verifier and interaction are classical. However, the same proof can be adapted to show that,
for any quantum polynomial-time verifier executing Protocol 3.3, there exists a quantum polynomial-time
simulator whose output is QPT indistinguishable in yes-instances from that of the verifier. (In particular,
the latter follows from the fact that the second item in Assumptions 3.1 implies an NP proof system which
is zero-knowledge against quantum polynomial-time verifiers, an implication shown to be true in [Wat09].)

We show that Protocol 3.3 is zero-knowledge by replacing the components of the honest prover with compo-
nents of a simulator one at a time, and demonstrating that, when the input is a yes-instance, the dishonest
verifier’s output after each replacement is made is at the least computationally indistinguishable from its
output before. The argument proceeds in two stages. In the first, we show that the honest prover can be

23

replaced by a quantum polynomial-time simulator that does not have access to the witness ρ. In the second,
we de-quantise the simulator to show that the entire execution can be simulated by a classical simulator
who likewise does not have access to ρ. (The latter is desirable because the verifier is a classical entity.)

We begin with the protocol execution between the honest prover P and an arbitrary cheating verifier V ∗,
the latter of whom may take some (classical) auxiliary input Z0, store information (represented by Z1 and
Z2), and produce an arbitrary final output Z3. A diagram representing the interaction between V ∗ and P
can be found in Figure ??.

5.1 Eliminating the coin-flipping protocol

Our first step in constructing a simulator is to eliminate the coin-flipping protocol, which is designed to
produce a trusted random string r, and replace it with the generation of a truly random string. (This step
is entirely analogous to step 1 of Section 5 in [BJSW16], and we omit the analysis.) The new diagram is
shown below. In this diagram, coins represents a trusted procedure that samples a uniformly random string
r of the appropriate length.

5.2 Introducing an intermediary

Our next step is to introduce an intermediary, denoted by I, which pretends—to the cheating verifier of
Protocol 3.3—to be its prover P , while simultaneously playing the role of verifier to the prover from the
zero-knowledge proof system of Protocol 2.15 9. (We denote the honest prover and honest verifier for the
proof system of Protocol 2.15 by P and V, respectively, to distinguish them from the prover(s) P and
verifier(s) V of the classical-verifier protocol currently under consideration.) We remark, for clarity, that
I is a quantum polynomial-time procedure. The essential idea of this section is that I will behave so it is
impossible for the classical verifier V to tell whether it is interacting with the intermediary or with its honest
prover. (We achieve this simply by making I output exactly the same things that P would.) Given that
this is so, the map that V implements from its input to its output, including its auxiliary registers, cannot
possibly be different in the previous section as compared to this section.

9Protocol 2.15 is identical in structure to the protocol presented in [BJSW16]. We refer the reader to Figure 4 in that paper
for a diagram representing the appropriate interactions.

24

Figure 3: The intermediary interacting with the honest prover from the proof system of Protocol 2.15,
denoted by P, and also with the cheating classical verifier V ∗. I1 receives the encoded quantum witness,
which we have denoted by Y , from P, in addition to P’s commitment z. It then sends z to V ∗1 , along with
Z1, the auxiliary input that V ∗1 is supposed to receive, and r, the random string generated by coins. I2
passes on any output V ∗1 produces to V ∗2 , performs itself the procedure for committing to a quantum state
from [Mah18], and executes the measurement protocol with V ∗2 . I3 receives the measurement outcomes u
and the trapdoors τ from V ∗2 , and checks whether the trapdoors are valid. If they are invalid, it aborts
directly; if they are valid, it sends u on to P3 and passes Z2 to V ∗3 , so that P3 and V ∗3 can execute the NP
zero-knowledge proof protocol. (Each part of I should also send everything it knows to its successor, but we
have omitted these communications for the sake of cleanliness, as we omitted the communication between
parts of the prover in previous diagrams.)

5.3 Simulating the protocol with a quantum simulator

We now note that Figure 3 looks exactly like Figure 4 from [BJSW16], if we consider the intermediary I and
the cheating classical verifier V ∗ taken together to be a cheating verifier V ′ for the proof system of Protocol
2.15.

25

Figure 4: Compare to Figure 4 of [BJSW16]. Note that S1 includes the behaviour of an arbitrary V ′1; the
reason it is called S1 and not V ′1 is because V ′1 obtains r from a coin-flipping protocol, while S1 generates r
using coins. In all other respects, S1 is the same as V ′1.

Using similar reasoning as in [BJSW16] (and recalling that, by Lemma 2.18, it still works when the Hamil-
tonian being verified is an XZ Hamiltonian), therefore, we conclude that we can replace ρ in Figure 4 with
ρr—where ρr is a quantum state specifically designed to pass the challenge indexed by r—without affect-
ing the verifier’s output distribution (to within computational indistinguishability). See Remark 2.6 for a
procedure that explicitly constructs ρr. Note that, if our objective was to achieve a quantum simulation
without knowing the witness state ρ, our task would already be finished at this step. However, our verifier is
classical; therefore, in order to prove that our classical verifier’s interaction with its prover does not impart
to it any knowledge (apart from the fact that the problem instance is a yes-instance) that it could not have
generated itself, we need to achieve a classical simulation of the argument system.

5.4 Simulating the protocol with a classical simulator

5.4.1 Replacing P0 and I1

If we want to simulate the situation in Figure 4 classically, then we need to de-quantise P0, I1 and I2. (I3
and P3 are already classical.) Our first step is to replace P0 and I1 with a single classical entity, I ′1.

I ′1 simply chooses encoding keys (t, π, a, b) and generates z, a commitment to the encoding keys (π, a, b). It
then sends z, r and Z1 to V ∗1 , as I1 would have. Because I ′1 has exactly the same output as I1, the verifier’s
output in Figure 5 is the same as its output in Figure 4. (We assume that the still-quantum I2 now generates
ρr for itself.)

26

Figure 5: P0 and I1 have been replaced by I ′1.

5.4.2 Some simplifications (which make it possible to de-quantise I2)

Following [BJSW16], we make some alterations to Figure 5 that will allow us to eventually de-quantise I2.
The alterations are as follows:

1. Replace V ∗3 and P3 with an efficient simulation S3. (An efficient simulation of the NP proof protocol
execution between V ∗3 and P3 is guaranteed to exist because the NP proof protocol is zero-knowledge.)
Recall that the statement P3 is meant to prove to V ∗3 in a zero-knowledge way is as follows: ‘There exists
a string sp and an encoding key (t, π, a, b) such that z = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.’
The zero-knowledge property of the NP proof system guarantees that, for yes-instances, the output
of S3 is indistinguishable from the output of the protocol execution between V ∗3 and P3. In our case,
I ′1 always holds sp and (π, a, b) such that z = commit((π, a, b), sp), and the honest prover will abort
the protocol if Q(t, π, a, b, r, u) = 0. Therefore, whenever the prover does not abort, the output of S3
is computationally indistinguishable from that of V ∗3 and P3. We assume, following [BJSW16], that
S3 also behaves as V ∗3 would when the prover aborts. If it does, then Figure 6 is computationally
indistinguishable from Figure 5.

27

Figure 6: V ∗3 and P3 have been replaced by S3. Note that S3 does not require access to the witness
(sp, t, π, a, b), and so sp can be discarded immediately after I ′1 is run.

2. Replace the generation of the genuine commitment z with the generation of a commitment z′ =
commit((π0, a0, b0), sp), where π0, a0 and b0 are fixed strings independent of the encoding key (t, π, a, b)
that I ′1 chooses. Because the commitment protocol is (computationally) concealing, and the com-
mitment is never opened (recall that sp is discarded after I ′1 is run), V ∗1 should not be able to tell
(computationally speaking) that z has been replaced by z′.

The genuine encoding key is still used to evaluate the predicate Q. Note that, because z has been
replaced with z′, the statement for which S3 must simulate the execution of a zero-knowledge proof
between V ∗3 and P3 is now as follows: ‘There exists a string sp and an encoding key (t, π, a, b) such
that z′ = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.’ This statement is, in general, no longer true,
because the commitment protocol is perfectly binding. However, if the predicate Q is still satisfied
for the encoding key (t, π, a, b) that I3 sent, then S3 will proceed to generate a transcript for the
no-instance that is computationally indistinguishable from a transcript for a yes-instance. If Q is no
longer satisfied, then S3 will abort, as before. In effect, therefore, the cheating verifier V ∗ will not be
able to tell (up to computational indistinguishability) that z has been replaced by z′, and that the NP
statement being ‘proven’ to it is no longer true.

5.4.3 De-quantising I2

We now replace I2 with a classical entity I ′2. In the process, we require modifications to the behaviour of I3.

Knowing r, I ′2 can calculate for itself what ρr should be, though it cannot physically produce this state. As
we noted in Remark 2.6, ρr is a simple state: it is merely the tensor product of |0〉 , |1〉 , |+〉 and |−〉 qubits.
Applying the concatenated Steane code to ρr will then result in a tensor product of N -qubit states that look
like ∑

x∈D0
N

|x〉 ,
∑
x∈D1

N

|x〉 ,
∑
x∈D0

N

|x〉+
∑
x∈D1

N

|x〉 , and
∑
x∈D0

N

|x〉 −
∑
x∈D1

N

|x〉 , (2)

after appropriate normalisation.

A brief argument will suffice to establish that it is possible to classically simulate standard or Hadamard
basis measurements on the qubits in E(ρr). Each qubit of E(ρr) is either an encoding qubit or a trap qubit,
up to the application of a random single-qubit Pauli operator. Simulating standard-basis measurements of

28

encoding qubits is classically feasible, because D0
N and D1

N are polynomially sized, and the expressions in (2)
only involve superpositions over those sets with equal-magnitude coefficients. Simulating standard-basis
measurements of trap qubits, which are always initialised either to |0〉 or |+〉, is trivially feasible.

To simulate a Hadamard basis measurement, we can take advantage of the transversal properties of the
encoding scheme, and apply H before we apply the concatenated Steane code. Denote the application of
the concatenated Steane code to ρr by S(ρr). We have that

S(H⊗nρrH
⊗n) = H⊗nNS(ρr)H

⊗nN

by transversality. To simulate a Hadamard basis measurement of E(ρr), we then

1. Apply H⊗n to ρr. This is easy to classically simulate, because ρr is a tensor product of |0〉 , |1〉 , |+〉
and |−〉 qubits.

2. Apply the concatenated Steane code to H⊗nρrH
⊗n. Simulating this is classically feasible, by the same

argument that we used for standard basis measurements, because H⊗nρrH
⊗n is still a tensor product

of |0〉 , |1〉 , |+〉 and |−〉 qubits.

3. Concatenate trap qubits to each N -qubit block in S(H⊗nρrH
⊗n) = H⊗nNS(ρr)H

⊗nN . Simulate the
application of H to each trap qubit (which is, once again, classically easy to do because each trap
qubit is initialised either to |0〉 or to |+〉).

4. Apply the permutation π to each 2N -tuple.

5. Simulate a standard basis measurement of the result.

6. XOR the string b to the measurement outcome (b was previously the Z-key for the Pauli one-time
pad).

Having established that it is possible to classically simulate standard and Hadamard basis measurements of
the qubits in E(ρr), we now describe the procedure that the classical I ′2 should follow for each qubit i in the
state E(ρr).

1. During the commitment phase, I ′2 simulates a standard basis measurement on the ith qubit, obtains a
simulated measurement result βi, and then chooses a uniformly random preimage xi from the domain
of the function specified by κi. It applies the function specified by κi to βi‖xi and sets yi = ηκi(βi‖xi).

2. If the verifier requests a test round, I ′2 sends βi‖xi to the verifier. This is exactly what the quantum
prover I2 would send in the case of a test round, so the verifier cannot tell that it is interacting with
I ′2 instead of I2.

3. If the verifier requests a Hadamard round, I ′2 sends a uniformly random string si ∈ {0, 1}w+1 to the
verifier, where w is the length of the preimages. In the same situation, the quantum I2 would have
sent Hadamard basis measurements of the w + 1 qubits in the ith committed qubit in E(ρ) and its
associated preimage register.

(a) If hi = 0, the outcomes of these measurements are uniformly distributed and thus indistinguishable
from the distribution of strings si reported by I ′2.

(b) Let |ψi〉 be the state of the ith qubit of E(ρ), let x0,i and x1,i be the two preimages to yi under
the function fκi , and let bi be the ith bit of the one-time-pad Z-key b from I ′1’s encoding key
(t, π, a, b). If hi = 1, the outcomes of I2’s Hadamard basis measurements can be represented as a
tuple (βi, di), where di is uniformly random, and

βi = di · (x0,i ⊕ x1,i)⊕ bi ⊕Meas(H |ψi〉) .

(Meas here denotes a standard basis measurement.)

29

Note that the distribution over (bi, βi, di) which one would obtain by measuring |ψi〉 in the
Hadamard basis, choosing di and bi uniformly at random, and letting

βi = di · (x0,i ⊕ x1,i)⊕ bi ⊕Meas(H |ψi〉)

is equivalent to the one that one would obtain choosing a uniformly random si, measuring |ψi〉 in
the Hadamard basis, calculating

bi = si,1 ⊕ di · (x0,i ⊕ x1,i)⊕Meas(H |ψi〉) ,

and finally setting βi = si,1, di = si,2 · · · si,w+1.

The former set of actions is equivalent to the set of actions that I2 performs. The latter set
of actions is (as we will shortly show) classically feasible provided that we have the verifier’s
trapdoors. Note that I ′2 only needs to send the verifier si, and can rely on its successor I3, who
will have access to the verifier’s trapdoors, to calculate the bits bi retroactively. It follows that,
given that I3 can produce correct bits bi (we will shortly show that it can), the distribution of
strings reported by I ′ is identical to the distribution of outcomes reported by I.

Having established that I ′2 and I2 are the same from V ∗2 ’s perspective (meaning that it must have the same
behaviour that it did in Figure 5 after I2 is replaced with I ′2), it remains to ensure that the choice of the
one-time pad Z-key b is consistent with the si that I ′2 picked. We relegate the task of making this choice to
I ′3, our new version of I3, because it has access to the verifier’s trapdoors τ . If any of the trapdoors that it
receives from the verifier are invalid, I ′3 aborts, as specified in Protocol 3.3. (‘Validity’, here, means what
we defined it to mean in step 8 of Protocol 3.3: that, for each yi, the trapdoor τκi returns all the preimages
to yi under the function specified by κi, and no others. See Definition 2.9 for a definition of the phrase
‘preimages to y’.) Presuming upon valid trapdoors, I ′3 then deduces the verifier’s choices of measurement
basis, h, from τ . Given that the trapdoors are valid, I ′3 can be confident that its deductions in this regard
will lead it to behave in the same way that the honest prover would: because the trapdoors return all the
preimages to yi under κi and no others, I ′3 knows exactly which superpositions the honest prover would have
obtained during the measurement protocol after following the verifier’s instructions.

I ′3 subsequently executes the following procedure for all i such that hi = 1:

1. Set di to be the last w bits of si, and compute di · (x0,i ⊕ x1,i) using the trapdoor τκi .

2. Simulate a standard basis measurement of HXai |ψ∗i 〉. Denote the result by βi. (Here, ai refers to the
ith bit of a, where a is taken from I ′1’s initial choice of one-time pad keys. |ψ∗i 〉, meanwhile, denotes
the ith qubit of the state obtained by applying the first three steps of E—but not the last—to ρr.)

3. Set b′i (the ith bit of b′, the new Z-key for the one-time pad) to be equal to βi ⊕ si,1 ⊕ di · (x0,i ⊕ x1,i)
(where si,1 refers to the first bit of si). This will cause the equation Meas(H |ψi〉)⊕di ·(x0,i⊕x1,i) = si,1
to be satisfied:

Meas(H |ψi〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ Meas(HZbiXai |ψ∗i 〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi ⊕Meas(HXai |ψ∗i 〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi ⊕ βi ⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi = βi ⊕ si,1 ⊕ di · (x0,i ⊕ x1,i).

Having done this, I ′3 then feeds (t, π, a, b′) into Q. In all other respects I ′3 behaves the same way that I3 did.

The final simulation will be as follows:

30

Since all the entities in this simulation are classical and efficient, and none have access to information about
the witness state ρ, it follows that the protocol is zero-knowledge.

A The trapdoor check can be implemented efficiently

For this proof sketch, we rely on the specific properties of the LWE-based ETCFF family that is used
in [Mah18]. As such, we begin by briefly introducing at a high level how the instantiations of the keys κ
and the trapdoors τ for noisy trapdoor claw-free (f) and trapdoor injective (g) functions, whose properties
we have relied upon in a black-box way for the rest of this work, are respectively achieved. For details, we
refer the reader to Section 9 of [Mah18].

The key (κ1, κ2) for an f (two-to-one) function is (A,As + e), where A is an LWE matrix and e is an
error vector with small and bounded magnitude. The key for a g (injective) function is (A, u), where u is
a random vector not of the form As + e for any e of small enough magnitude. (The distribution of u is
uniform over all vectors that satisfy this latter requirement.) The trapdoor in both cases is the trapdoor
for A proposed by [MP11]. Theorem 5.1 of [MP11] states that there exists a pair of efficient algorithms
GenTrap and Invert which, respectively, generates a matrix A along with its trapdoor τA, such that A is
computationally indistinguishable from a uniformly random matrix of the correct dimensions; and, given
As+e (with e of sufficiently small magnitude) and the trapdoor τA for A, returns (s, e) with high probability.

The functions fκ and gκ both take as input a bit b and a vector x and output a probability distribution.
Given a sample y from one such probability distribution Y , the trapdoor τA can be used to recover the
tuple(s) (b, x) which map to Y under the function specified by κ. The functions fκ and gκ can be defined
(loosely, but the most intuitively) as follows:

Definition A.1 (Informal definition of trapdoor claw-free and trapdoor injective functions).

(a) fκ(b, x) = Ax+ e0 + b · (As+ e) ,

where e0 is distributed as a Gaussian with small Gaussian parameter

(b) gκ(b, x) = Ax+ e0 + b · u .

What the above notation means, in a slightly more precise sense, is that one samples from the distribution
determined by the input (b, x) and the function key κ = (κ1, κ2) by sampling e0 from the appropriate
Gaussian and then computing κ1x+e0+b·(κ2). It follows from hardness of the (decisional) LWE assumption
that the keys for the f functions and the keys for the g functions are computationally indistinguishable.

31

Now we state, and prove, a claim that bears upon the one we eventually want to make.

Claim A.2. Let A be an LWE matrix, let κ = (A, κ2), and let the function ηκ be defined by ηκ(b, x) =
Ax + e0 + b · κ2. (The output of ηκ is, as in Definition A.1, a probability distribution.) Suppose that the
trapdoor τA inverts the matrix A, in the sense that, given r = As + e for some e of sufficiently small
magnitude, τA can be used to recover the unique (s, e) such that As+ e = r for all but a negligible fraction of
possible r. Then one can use τA to efficiently recover all the preimages to any distribution Y in the image
of the function ηκ (provided with a sample y from the distribution Y), except with negligible probability.

Proof. Note, firstly, that κ2 is either of the form As+ e for some (s, e) (with e of small enough magnitude),
or it is not; there are no other alternatives. We do not know a priori which of these is the case, but the
procedure that we perform in order to recover the preimage(s) to Y , given y, is the same in both cases:

1. Use the trapdoor τA to attempt to find (x1, e1) such that Ax1 + e1 = y. If such an (x1, e1) exists,
record 0‖x1 as the first preimage.

2. Use the trapdoor τA to attempt to find (x2, e2) such that Ax2 + e2 = y− κ2. If such an (x2, e2) exists,
record 1‖x2 as the second preimage.

If κ2 = As + e for some s and e, then this procedure will (except with negligible probability) return two
preimages. In step 1, it will recover x such that y = Ax + e0 for some small e0, because (by linearity) y is
always of the form Ax+ e0. In step 2, it will recover x′ = x− s, because x′ = x− s will satisfy the equation
y− (As+ e) = Ax′ + e′ for e′ = e0 − e. We know that ηκ has two preimages when κ2 = As+ e, so this is all
of the preimages to Y under ηκ and no others.

It can be seen by similar reasoning that, when κ2 = u for u 6= As + e, this procedure will return (except
with negligible probability) exactly one preimage, which is what we expect when κ2 = u.

In the context of Protocol 3.3, the honest prover knows that ηκi has been evaluated correctly for all i,
because the prover evaluated these functions for itself. Therefore, given Claim A.2, if our goal is to show
that the honest prover can efficiently determine whether or not a purported trapdoor τ ′Ai can be used to
recover all the preimages to yi under ηκi , with κi = (Ai, κ2,i), it is sufficient to show that a procedure exists
to efficiently determine whether or not τ ′Ai truly ‘inverts Ai’, i.e. recovers (s, e) correctly from all but a
negligible fraction of possible r = Ais+ e. Given the instantiation of τA presented in [MP11], this is simple
to achieve: for example (using notation from Algorithm 1 of the same paper), the prover can request that
the verifier sends it Ā,H and R—G is public—and check whether A = [Ā |HG− ĀR].

B Completeness and soundness of Protocol 2.4

For notational convenience, define α = a∑
s 2|ds|

and β = b∑
s 2|ds|

.

The Chernoff bound for Bernoulli variables gives us

Pr
[
|Count− µ| ≥ δµ

]
≤ 2e−

µδ2

3 .

We would like to calculate the probability that the deviation |Count− µ| is greater than 1
2m(β − α), with

µ = m(12 − α), because this is an upper bound for the probability that we will make the wrong decision
when we are given the genuine witness ρ = σ⊗m. We proceed to calculate the appropriate δ.

32

δµ =
1

2
m(β − α)

δ =
1

2
(β − α) · m

µ

=⇒ µδ2

3
=

1

12
(β − α)2 · m

2

µ

=
1

12
(β − α)2 · m

1
2 − α

.

Since β − α is inverse polynomial, by [MNS16], and α is bounded away from 1
2 , the probability 2e−

µδ2

3 can
be made exponentially small by choosing m to be a sufficiently large constant times |x|(β − α)2(12 − α)−1.
The completeness of Protocol 2.4 follows.

To prove soundness, we simply replace µ with m(12−β) in the calculation above, and once again arrive at the
conclusion that the probability we make the wrong decision can be made exponentially small by choosing
m as above, with (12 − α)−1 replaced by (12 − β)−1.

C Commitment scheme

We provide an informal description of a generic form for a particular (and commonly seen) kind of commit-
ment scheme. The protocol for making a commitment under this scheme requires three messages in total
between the party making the commitment, whom we refer to as the committer, and the party receiving
the commitment, whom we call the recipient. The first message is an initial message i from the recipient
to the committer; the second is the commitment which the committer sends to the recipient; and the third
message is a reveal message from the committer to the recipient. The scheme consists of a tuple of algorithms
(gen, initiate, commit, reveal, verify) defined as follows:

• gen(1`) takes as input a security parameter, and generates a public key pk.

• initiate(pk) takes as input a public key and generates an initial message i (which the recipient should
send to the committer).

• commit(pk, i,m, s) takes as input a public key pk, an initial message i, a message m to which to commit,
and a random string s, and produces a commitment string z.

• reveal(pk, i, z,m, s) outputs the inputs it is given.

• verify(pk, i, z,m, s) takes as argument an initial message i, along with a purported public key, com-
mitment string, committed message and random string, evaluates commit(pk, i,m, s), and outputs 1 if
and only if z = commit(pk, i,m, s).

For brevity, we sometimes omit the public key pk and the initial message i as arguments in the body of
the paper. The commitment schemes which we assume to exist in the paper have the following security
properties:

• Perfectly binding : If commit(pk, i,m, s) = commit(pk, i,m′, s′), then (m, s) = (m′, s′).

• (Quantum) computationally concealing : For any public key pk ← gen(1`), fixed initial message i, and
any two messages m,m′, the distributions over s of commit(pk, i,m, s) and commit(pk, i,m′, s) are
quantum computationally indistinguishable.

33

It has been stated informally ([?], [?]) that a commitment scheme with the above form and security properties
can be obtained from a quantum-secure pseudorandom generator (the latter of which exists assuming the
quantum hardness of LWE).

References

[ABE10] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computa-
tions. In Andrew Chi-Chih Yao, editor, Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 453–469. Tsinghua Univer-
sity Press, 2010.

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs for
quantum computations. arXiv preprint arXiv:1704.04487, 2017.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computa-
tion. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on,
pages 517–526. IEEE, 2009.

[BJSW16] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zero-knowledge proof systems
for qma. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 31–40. IEEE, 2016.

[BL08] Jacob D. Biamonte and Peter J. Love. Realizable Hamiltonians for universal adiabatic quantum
computers. Physical Review A, 78:012352, July 2008.

[FK17] Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum computa-
tion. Physical Review A, 96(1):012303, 2017.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, July 1991.

[Mah18] Urmila Mahadev. Classical verification of quantum computations. In Foundations of Computer
Science (FOCS), 2018 IEEE 59th Annual Symposium on, pages 259–267, Oct 2018.

[MF16] Tomoyuki Morimae and Joseph F. Fitzsimons. Post hoc verification with a single prover. arXiv
e-prints, March 2016. https://arxiv.org/pdf/1603.06046.pdf.

[MNS16] Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be verified using
only single-qubit measurements. Physical Review A, 93:022326, February 2016.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
Cryptology ePrint Archive, Report 2011/501, 2011. https://eprint.iacr.org/2011/501.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM), 56(6):34, 2009.

[RUV13] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.
Nature, 496(7446):456, 2013.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Computing,
39(1):25–58, 2009.

34

	Introduction
	Ingredients
	Single-qubit-verifier proof system for QMA (xz)
	Measurement protocol (measurement)
	Zero-knowledge proof system for QMA (qma)
	Replacing Clifford verification with XZ verification in Protocol 2.11

	The protocol
	Diagrammatic representation of protocol
	The honest protocol
	Protocol with cheating verifier

	Soundness of protocol
	Zero-knowledge property of protocol
	Eliminating the coin-flipping protocol
	Introducing an intermediary
	Simulating the protocol with a quantum simulator
	Simulating the protocol with a classical simulator
	Replacing P0 and I1
	Some simplifications (which make it possible to de-quantise I2)
	De-quantising I2

	The trapdoor check can be implemented efficiently
	Completeness and soundness of Protocol 2.4
	Commitment scheme

