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Abstract. There are two main ways of performing computation on private data: one method uses linear secret-
sharing, in which additions require no communication and multiplications require two secrets to be broadcast; the
other method is known as circuit garbling, in which a circuit is somehow randomised by one set of parties and then
evaluated by another. There are different advantages and disadvantages to each method in terms of communication
and computation complexity. The main disadvantage of secret-sharing-based computation is that many non-linear
operations require many rounds of communication. On the other hand, garbled circuit (GC) solutions require only
constant rounds. Mixed protocols aim to leverage the advantages of both methods by switching between the two
dynamically.
In this work we present the first mixed protocol secure in the presence of a dishonest majority for any number
of parties and an active adversary. We call the resulting mixed arithmetic/Boolean circuit a marbled circuit3. Our
implementation showed that mixing protocols in this way allows us to evaluate a linear Support Vector Machine
with 400 times fewer AND gates than a solution using GC alone albeit with twice the preprocessing required using
only SPDZ (Damgård et al., CRYPTO ’12). When evaluating over a WAN network, our online phase is 10 times
faster than the plain SPDZ protocol.

1 Introduction

One of the major modern uses of cryptography is for mutually-distrustful parties to compute a function on
their combined secret inputs so that all parties learn the output and no party learns anything more about
other parties’ inputs than what can be deduced from their own input and the output alone. This is known as
secure multiparty computation (MPC).

Recently, MPC has been shown to be very efficient for evaluating general Boolean [NNOB12,DZ13] and
arithmetic [DPSZ12,DKL+13,KOS16,KPR18] circuits. Many real-world use cases of computing on private
data involve some form of statistical analysis, requiring evaluation of arithmetic formulae. Perhaps the most
common method of computing arithmetic circuits on private data is secret-sharing, in which secret inputs
are split up into several pieces and distributed amongst a set of parties, which then perform computation on
these shares, and recombine them at the end for the result.

Most modern MPC protocols for arithmetic circuits are designed in the preprocessing model, in which
the computation is split into a computationally-expensive input-independent preprocessing phase called the
offline phase, and an online phase which makes use of this preprocessed data but only uses information-
theoretic primitives. Since the online phase is information-theoretically secure, the protocol as a whole is
generally “as secure” as the offline phase. In the online phase of these protocols, additions usually come “for
free” – meaning no communication amongst parties is required – and the multiplication of two secret-shared
field elements requires only two messages to be broadcasted per party.

3 See paper marbling.



MPC over a finite field or a ring is used to emulate arithmetic over the integers, and consequently,
non-linear operations such as comparisons between secrets (i.e. <,>,=) are an important feature of MPC
protocols. One of the shortcomings of MPC based on secret-sharing is that these natural but more compli-
cated procedures require special preprocessing and several rounds of communication.

One way to mitigate these costs would be to use circuit-garbling instead of secret-sharing for circuits in-
volving lots of non-linear operations, since this method has low (in fact, constant) round complexity. Recent
work has shown that multiparty Boolean circuit garbling with active security in the dishonest majority setting
can be made very efficient [WRK17,HSS17,KY18]. However, performing general arithmetic computations
in Boolean circuits can be expensive since the arithmetic operations must be accompanied with reduction
modulo a prime inside the circuit. Moreover, efficient constructions of multiparty constant-round protocols
for arithmetic circuits remain elusive. Indeed, the best-known optimisations for arithmetic circuits such as
using a primorial modulus [BMR16] are expensive even for passive security in the two-party setting. The
only work of which the authors are aware in the multiparty setting is the passively-secure honest-majority
work by Ben-Efraim [BE17].

So-called mixed protocols are those in which parties switch between secret-sharing (SS) and a garbled
circuit (GC) mid-way through a computation, thus enjoying the efficiency of the basic addition and multi-
plication operations in any field using the former and the low-round complexity of GCs for more complex
subroutines using the latter. One can think of mixed protocols as allowing parties to choose the most efficient
field in which to evaluate different parts of a circuit.

Demmler et al. [DSZ15] constructed a mixed protocol with passive security in the two-party setting. In
their work, known as ABY, they convert between arithmetic, Boolean, and Yao sharings. For small subcir-
cuits, converting arithmetic shares to Boolean shares (of the bit decomposition) of the same secret – i.e. with-
out any garbling – suffices for efficiency gains over performing the same circuits in with arithmetic shares;
however, for large subcircuits, using garbling allows reducing online costs. Mohassel and Rindal [MR18]
constructed a three-party protocol known as ABY3 for mixing these three types of sharing in the malicious
setting assuming at most one corruption.

For mixed protocols to be efficient, clearly the cost of switching between secret-sharing and garbling,
performing the operation, and switching back must be more efficient than the method that does not require
switching, perhaps achieved by relegating some computation to the offline phase. For active security, it is
additionally essential to retain authentication of secrets through the conversion. For secret-sharing-based
MPC the de facto method of authentication is to use linearly-homomorphic information-theoretic MACs
on all of the secrets. One of the key difficulties of creating mixed protocols in the active setting is that
authenticating in this way requires that the conversion maintain authentication under MAC keys in different
fields through the switch into and out of the circuit.

In this work we show how to do this – specifically, how to realise a circuit and arithmetic black box
(CABB), given by the functionality FCABB in Figure 1 – and thus we obtain an efficient mixed protocol
in the full-threshold malicious setting. Our solution uses MPC in a black-box way and, while the circuit
garbling requires small modification, is compatible with many state-of-the-art multiparty Boolean circuit
garbling techniques, the only requirement being that parties should be able to authenticate their own choices
of inputs, and that XOR can be computed between authenticated bits. (This is discussed in detail later.) As the
garbling takes place in the FMPC-hybrid model, we need make no restriction on the access structure, making
it compatible with the recent generalized compilers for various access structures [ABF+18, AKO+18]. The
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usual functionality FMPC from [LPSY15, KY18] is given as part of the functionality FPrep in Figures 4 and
5.

Functionality FCABB

The function BitDec : F → {0, 1}blog |F|c takes an element of F and computes its bit-decomposition as
a sequence of bits. The functionality keeps track of the current session using a session identifier sid. If
a party provides an input with sid different from what was sent in Initialise, the functionality outputs
Reject to all parties and awaits another message.

Initialise On input (Initialise,F, sid) from all parties, initialise a database of secrets Val with indices
Val.Keys and store the field as Val.Field← F.

Input On input (Input, i, id, x, sid) from Pi and (Input, Pi, id,⊥, sid) from all other parties, if id 6∈
Val.Keys and x ∈ Val.Field then insert id into Val.Keys and set Val[id]← x.

Add On input (Add, idx, idy, id, sid), if idx, idy ∈ Val.Keys then set Val[id]← Val[idx] + Val[idy].
Multiply On input (Multiply, idx, idy, id, sid), if idx, idy ∈ Val.Keys then set Val[id] ← Val[idx] ·

Val[idy].
Evaluate Circuit On input (EvaluateCircuit, C, id1, . . . , idt, id, sid) where t · log |Val.Field| is the arity

of Boolean circuit C, if idi ∈ Val.Keys for all i ∈ [t], then await a message OK or Abort from
the adversary. If it is Abort, then send Abort to all parties and halt, and otherwise set Val[id] ←
C(BitDec(Val[id1]), . . . ,BitDec(Val[idt])) and continue.

Output On input (Output, id, sid) from all parties, if id ∈ Val.Keys then send Val[id] to the adversary
and await a response OK or Abort. If the message is OK, then send Val[id] to all parties and continue,
and otherwise send Abort and halt.

Fig. 1. Functionality FCABB

1.1 Our Contribution

The main contribution of this work is a mixed protocol in the dishonest majority setting with active security.
Our implementation shows that this is achievable with concrete efficiency.

When considering mixed protocols in the active setting, the primary technical challenge is in maintaining
authentication through the transition from secret-shared inputs and secret inputs inside the GC, and vice
versa. The naı̈ve way of obtaining authentication from SS to GC is for parties to bit-decompose the shares
of their secrets and the MACs locally and use these as input bits to the circuit, and validating inside the GC.
This solution would require O(n · κ · log |F|) bits per party to be sent to switch inputs in the online phase,
where n is the number of parties, κ is the computational security parameter, and F is the MPC field, since
each party needs to broadcast a GC key for each bit of the input. This method also requires garbling several
additions and multiplications inside the circuit to check the MAC. The advantage of this solution, despite
these challenges, is that it requires no additional preprocessing, nor adaptations to the garbling procedure.

Contrasting this approach, our solution makes use of special preprocessing to speed up the conversion.
This results in reducing the circuit size by approximately 100, 000 AND gates per conversion for a field with
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a 128-bit prime modulus (assuming Montgomery multiplication is used). Let Fq denote the finite field of
order q. In this work we show how to convert between secret-shared data in Fp, where p is a large prime and
is the MPC modulus, and GCs in F2k through the use of “double-shared” authenticated bits which we dub
daBits, following the nomenclature set out by [NNOB12]. These doubly-shared secrets are values in {0, 1}
shared and authenticated both in Fp and F2k , where by 0 and 1 we mean the additive and multiplicative
identity, respectively, in each field. In brief, the conversion of a SS input a into a GC involves constructing a
random secret r in Fp using daBits, opening a− r in MPC, bit decomposing this public value (requiring no
communication) and using these as signal bits for the GC, and then in the circuit adding r and computing this
modulo p, which is possible since the bit decomposition of r is doubly-shared. This keeps the authentication
check mostly outside of the circuit instead requiring that the MAC on a− r is correct. Going the other way
around, the output of the circuit is a set of public signal bits whose masking bits are chosen to be daBits.
To get the output, parties XOR the public signal bits with the Fp shares of the corresponding daBit masks,
which can be done locally. These shares can then be used to reconstruct elements of Fp (or remain as bits if
desired).

The only use of doubly-shared masks is at the two boundaries (input and output) between a garbled
circuit and secret-sharing; all secrets used in evaluating arithmetic circuits (i.e. using standard SS-based
MPC) are authenticated shares in Fp only; all wire masks “inside” the circuit (that is, for all wires that are
not input or output wires) are authenticated shares of bits in F2k only. The online communication cost of our
solution is that of each party broadcasting a single field element and then broadcasting log |F| key shares
per input, for a circuit of any depth. Thus the cost is O(κ log |F|) per party, per field input to the circuit. The
offline cost grows quadratically in n as generating daBits requires every party to communicate with every
other party.

While the main focus of this work is to allow Boolean circuits to be evaluated on (the bits of) field
elements of Fp, our method gives a full arithmetic/Boolean/garbled circuit mixed protocol as once the bits
of a − r are public and the bit decomposition of r is known in F2k , the parties can run the Boolean circuit
computing (a − r) + r mod p to obtain the bits of a in the field F2k with authentication. Converting
back to Fp involves XORing the public signal bits with shared daBits (which is free in F2k ). Our work is
also compatible of converting classic SPDZ shares in Fp with the recent protocol SPDZ2k of Cramer et
al [CDE+18].

We remark that several of the multiparty arithmetic garbling techniques of [Ben17] require the use of
“multifield shared bits”, which precisely correspond to our daBits (albeit in an unauthenticated honest-
majority setting), and consequently we suggest that our idea of generating daBits may lead to more efficient
actively-secure multiparty garbling of arithmetic circuits.

Our construction involves two steps: the first extends the MPC functionality to allow for the same bits to
be generated in two independent FMPC sessions in two different fields; the second uses this extended MPC
functionality to perform the garbling SPDZ-BMR-style [LPSY15], which we explain in detail in Section 2.
Thus, while replacing the garbling is not an entirely black-box procedure, the necessary modifications to
existing protocols are modest.

Active security beyond bounded inputs While essentially all of the basic actively-secure MPC protocols
enable the evaluation of additions and multiplications, for more complicated non-linear functions the only
solutions that exist are those that require additional assumptions on the input data. For example, comparison
requires bit decomposition, which itself requires that secrets be bounded by some constant. Since the bits of
each input are directly inserted into the circuit, we can avoid this additional assumption. We refer the reader
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to [DFK+06] or the documentation for the SCALE/MAMBA project [AKO+18, §10 Advanced Protocols]
for an overview of implementations of other functions in MPC.

2 Preliminaries

In this section we explain the basics of MPC and SDPZ-BMR. In our protocol, one instance of MPC is
used to perform the secret-sharing-based MPC over a prime field, and another instance is used to perform
circuit-garbling over a large field of characteristic 2.

2.1 General

We denote the number of parties by n, and the set of indices of parties corrupted by the adversary by A. We
write [j] to denote the set ∪ji=1{i}. We write F to denote a field, and Fq to denote the finite field of order
q. The arithmetic circuit will be computed in the field Fp where p is a large prime, and the keys and masks
for the garbled circuit in F2k . By log(·) we always mean the base-2 logarithm, log2(·). We denote by sec
and κ the statistical and computational security parameters, respectively. We say that a function ν : N→ R
is negligible if for every polynomial f ∈ Z[X] there exists N ∈ N such that |ν(X)| < |1/f(X)| for all
X > N . If an event X happens with probability 1 − ν(sec) where ν is a negligible function then we say

thatX happens with overwhelming probability in sec. We write x $← S to mean that x is sampled uniformly
from the set S, and use x ← y to mean that x is assigned the value y. We will sometimes denote by, for
example, (a− b)j the jth bit in the binary expansion of the integer a− b.

2.2 Security

UC Framework We prove our protocols secure in the universal composability (UC) framework of Canetti
[Can00]. Protocols proved secure in this model are secure even when executed alongside arbitrarily many
other protocols, concurrently, sequentially or both. We assume the reader’s familiarity with this framework.
In Figure 2 we give a functionality FRand for obtaining unbiased random data that we need for our protocol.
In Appendix A Figure 15 we provide the protocol ΠRand that securely realises FRand (without proof as
it is standard and straightforward). As the instantiation of ΠRand requires commitments, for completeness
we also include the standard commitment functionality FCommit in Figure 16 and its protocol in Figure
17. We implicitly use a random oracle FRO, given in Figure 18, since it is required for realising (our) UC
commitments. The random oracle model is common in the MPC literature as its use gives efficient protocols
and is not believed to lead to practical attacks.

Adversary We assume an active, static adversary corrupting at most n − 1 out of n parties. An active
adversary may deviate arbitrarily from the protocol description, and a static adversary is permitted to choose
which parties to corrupt only at the beginning of the protocol, and cannot corrupt more parties later on. Our
protocol allows corrupt parties to cause the protocol to abort before honest parties receive output, but if the
adversary cheats then the honest parties will not accept an incorrect output. This is known as “security-with-
abort” in the literature. Adversaries corrupting at most all parties but one are called “full-threshold”. While
this work focuses on the full-threshold setting, since FMPC is used as a black box, the access structure of
our protocol is solely dependent on the access structure admitted by the instantiation(s) of FMPC.
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Functionality FRand

Random subset On input (RSubset, X, t) where X is a set satisfying |X| ≥ t, sample S $← {A ⊆ X :
|A| = t} and send S to all parties.

Random buckets On input (RBucket, X, t) where X is a set and t ∈ N such that |X|/t ∈ N, set
n← |X|/t and then for each i = 1, . . . , n do the following:

1. Sample Xi
$← {A ⊆ X : |A| = t}.

2. Set X ← X \Xi.
Finally, send (Xi)

n
i=1 to all parties.

Fig. 2. Functionality FRand

Communication We assume point-to-point secure channels, and synchronous communication. Additionally,
we assume a broadcast channel, which can be instantiated in the random oracle model over point-to-point
secure channels4. A round of communication is a period of time in which parties perform computation and
then send and receive messages. Messages sent in a round cannot depend on messages received during the
current round, but messages may depend on messages sent in previous rounds. So-called constant-round
protocols require O(1) rounds for the entire protocol.

2.3 MPC

Our protocol makes use of MPC as a black box, with functionality outlined in Figure 4. The functionality
FMPC over a field F is realised using protocols with statistical security sec if |F| = Ω(2sec) and computa-
tional security κ depending on the computational primitives being used. We will describe MPC as executed
in the SPDZ-family of protocols [DPSZ12, DKL+13, KOS16, KPR18, CDE+18].

Secret-sharing A secret x ∈ F is said to be additively shared if a dealer samples a set {x(i)}n−1
i=1

$← F, fixes
x(n) ← x−

∑n−1
i=1 x

(i), and for all i ∈ [n] sends x(i) to party Pi. Any set of n−1 shares is indistinguishable
from a set of n−1 uniformly-sampled shares, and the sum of all n shares is the secret x. This secret-sharing
is linear: the sum of corresponding shares of two secrets is a sharing of the sum of the two secrets, so no
communication is required for linear functions.

There are three different types of shared value in our scheme, over two different fields, always additively
shared. Additionally, information-theoretic MACs are used to ensure the adversary can cheat without de-
tection with only negligible probability, which he does by correctly guessing the global MAC key. A secret
a ∈ Fp is shared amongst the parties by additively sharing the secret a in Fp along with a linear MAC γp(a)
defined as γp(a)← α·a, where α ∈ Fp is a global MAC key, which is also additively shared. By “global” we
mean that every MAC in the protocol uses this MAC key, rather than each party holding their own key and
authenticating every share held by every other party. Similarly, a secret c ∈ F2k and its MAC γ2k(c) = ∆ ·c,
where ∆ ∈ F2k is an additively-shared global MAC key, are additively shared in F2k amongst the parties.

4 This can be done using a class of ε-almost universal hash functions as described in [DPSZ12, App. A.3]. In the setting of
dishonest majority we cannot guarantee termination of a broadcast protocol, but honest parties will abort if there are significant
delays between messages since synchronicity is assumed.
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We denote shared, authenticated secrets in the following ways:

Sharing in Fp [[a]]p = (a(i), γp(a)(i), α(i))ni=1

where a ∈ Fp and a(i), γp(a)(i), α(i) ∈ Fp for all i ∈ [n].

Sharing in F2k [[c]]2k = (c(i), γ2k(c)(i), ∆(i))ni=1

where c ∈ F2k and c(i), γ2k(c)(i), ∆(i) ∈ F2k for all i ∈ [n].

Sharing in both [[b]]p,2k = ([[b]]p, [[b]]2k) where b ∈ {0, 1}.

The shares are considered correct if(∑n
i=1 γp(a)(i)

)
=
(∑n

i=1 a
(i)
)
·
(∑n

i=1 α
(i)
)

and (∑n
i=1 γ2k(c)(i)

)
=
(∑n

i=1 c
(i)
)
·
(∑n

i=1∆
(i)
)

and party Pi holds every value indexed by i. Moreover, secret [[b]]p,2k is considered correct if the bit is the
same in both fields, by which we mean they are either both the additive identity or are both the multiplicative
identity, in their fields. Creating these bits efficiently is one of the main contributions of this work. Notice
that the superscript on the MACs is outside the bracket: the parties each hold one share of the MAC α · a
on a, not MACs on the shares a(i). The security of the MACs comes from the fact that, any adversary learns
at most n − 1 values and so does not know the global MAC key and hence can only alter the secret and its
MAC correctly with probability at most 1/|F|.

Addition of secrets Since the MAC is linear, authenticated addition is also local:

[[a]] + [[b]]← [[a+ b]] = (a(i) + b(i), γp(a)(i) + γp(b)
(i), α(i))ni=1

and similarly in F2k . Multiplication by public constants follows immediately.

Addition of public values Addition of public values is also local:

[[a]] + b←
(

(a(1) + b, γp(a)(1) + α(1) · b, α(1)), (a(i), γp(a)(i) + α(i) · b, α(i))ni=2

)
.

I.e. P1 adds b to its share of a and every party adds b · α(i) to their share of the MAC. Observe that∑n
i=1 α

(i)b = α · b so the MAC is correct.

Multiplication Using a technique due to Beaver [Bea92], multiplication of secrets can be computed as
a linear operation of public values if the parties have access to some precomputed data. This data takes
the form of so-called Beaver triples – triples of authenticated secrets ([[a]], [[b]], [[a · b]]), where a and b are
uniformly random and unknown to the parties. To multiply [[x]] and [[y]], the parties compute [[x− a]] ←
[[x]] − [[a]] and [[y − b]] ← [[y]] − [[b]] locally and open them (i.e. they broadcast their shares of [[x− a]] and
[[y − b]] so all parties learn x− a and y − b), and then compute the product as

[[x · y]]← [[a · b]] + (x− a) · [[b]] + (y − b) · [[a]] + (x− a) · (y − b).
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Since a and b are unknown to any party, x− a and y− b reveal nothing about x and y. We refer to protocols
that generate Beaver triples as SPDZ-like; the generation of this input-independent data is called the offline
phase, and the actual circuit evaluation the online phase. The main cost of SPDZ-style protocols comes from
generating these Beaver triples. The two main ways of doing this are either using somewhat homomorphic
encryption (SHE) [DPSZ12, DKL+13, KPR18] or oblivious transfer (OT) [KOS16, CDE+18].

Active security Since all operations in the online phase are linear, if we assume a secure preprocessing
(offline) phase, in the online phase only additive errors need to be detected. This is where the MACs are
used: if the MAC on the final output of the circuit being computed is incorrect, then an additive error has
been introduced on the MAC or the secret, and in this case the parties abort. If there is no error, then either
the output is correct, or (it can be shown that) the adversary must have learnt enough information to guess
the global MAC key. If p is O(2sec) then the chance of the adversary doing so is already negligible, and
otherwise parties can generate dsec/ log pe independent global MAC keys, hold this number of MACs on
each secret and require that all MACs on the final output be correct. We refer the reader to [DKL+13] for
details on the MAC checking procedure.

Conditions on the secret-sharing field Let l = blog pc. Throughout, we assume the MPC is over Fp where
p is some large prime, but we require that one must be able to generate uniformly random field elements by
sampling bits uniformly at random {[[rj ]]p}l−1

j=0 and summing them to get [[r]]p ←
∑l−1

j=0 2j · [[rj ]]p. For this to

hold in Fp, we require that p−2l

p = O(2−sec). Roughly speaking this says that p is slightly larger than a power
of 2. (By symmetry of this argument we can require that p be close to a power of 2.) Recall that sampling
a uniform element of {0, 1}l produces the same distribution as sampling l bits independently by standard
measure theory. It follows from Lemma 1 that the statistical distance between the uniform distribution over
Fp and the same over {0, 1}l is negligible.

Lemma 1. Let l = blog pc, let P be the probability mass function for the uniform distribution P over
[0, p) ∩ Z and let Q be the probability mass function for the uniform distribution Q over [0, 2l) ∩ Z. Then
the statistical distance between distributions is negligible in the security parameter if p−2l

p = O(2−sec).

Proof. By definition of statistical distance,

∆(P,Q) =
1

2
·
p−1∑
x=0

|P (x)−Q(x)| = 1

2
·

2l−1∑
x=0

∣∣∣∣1p − 1

2l

∣∣∣∣+
1

2
·
p−1∑
x=2l

∣∣∣∣1p − 0

∣∣∣∣
=

1

2
· 2l · p− 2l

p · 2l
+

1

2
· p− 2l) · 1

p
=
p− 2l

p
= O(2−sec).

Arbitrary Rings vs Fields Our protocol uses actively-secure MPC as black box, so there is no reason the
MPC cannot take place over any ring Z/mZ where m is possibly composite, as long as m is (close to) a
power of 2. The security of our procedure for generating daBits can tolerate zero-divisors in the ring, so
computation may, for example, take place over the ring Z/2lZ for any l, for which actively-secure FMPC

can be realised using [CDE+18].
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Notation The functionalities sometimes refer to identifiers for variables such as id, where the value inside
is Val[id]. We will use [[x]] to denote the variable identifier id for the value x, so Val[[[x]]] = x, and saying
that the parties have [[x]] does not imply they know the secret x. This intentional collision of notation for
authenticated secrets is to demonstrate that the realisation of the dictionary Val occurs via the secret sharing
with MACs. To save on overloaded notation, we will occasionally write [[z]]← [[x]]+[[y]] to mean that parties
send the command (Add, [[x]], [[y]], [[z]]) to some functionality, and similarly for multiplication. Where not
explicitly specified, new identifiers are taken from a counter which the parties initialise to 0 at the start of
the protocol.

Note on XOR In our context, we will require heavy use of the (generalised) XOR operation. This can be
defined in any field as the function

f : Fp × Fp → Fp
(x, y) 7→ x+ y − 2 · x · y, (1)

which coincides with the usual XOR function for fields of characteristic 2. In SS-based MPC, addition
requires no communication, so computing XOR in F2k is for free; the cost in Fp (char(p) > 2) is one
multiplication, which requires preprocessed data and some communication. This operation is the main cost
associated with our offline phase, since generating daBits with active security requires generating lots of
them and then computing several XORs in both fields.

2.4 Garbled Circuits

In this section we describe circuit garbling in the multiparty setting.

SPDZ-BMR Garbling Lindell et al. [LPSY15] gave generic multiparty method, known as SPDZ-BMR,
for garbling in a constant number of rounds with malicious security where the preprocessed material is
obtained from SPDZ [DPSZ12]. Their method is (roughly) to execute the classic [BMR90] multiparty gar-
bling protocol using SPDZ to generate all the necessary secrets and to compute the ciphertexts. While the
circuits are Boolean, the wires masks are arithmetic shares in Fp of binary values and the wire keys random
elements of Fp secret-shared amongst the parties. Importantly, it was shown that it was not necessary for
parties to provide zero-knowledge proofs that the evaluations of the pseudorandom function (PRF) used for
encryption was done honestly, as the evaluators would abort with overwhelming probability in κ if parties
cheated in this way.

The FreeXOR garbling technique [KS08] is an optimisation of Yao’s original garbling [Yao86, Oral pre-
sentation] that requires no data to be sent between the garbler and evaluator for an XOR gate, and crucially
relies on the fact that the keys are elements of a field of characteristic 2. Towards the goal of a multiparty
garbling protocol with FreeXOR, one might hope to perform SPDZ-BMR over F2k . One of the reasons
this was not considered for SDPZ-BMR was (presumably) that the SPDZ offline phase was much faster
for large prime fields than extension fields. Indeed, the most efficient variant of SPDZ used BGV [BGV11]
as the SHE scheme, which meant that while the offline phase could parallelise through ciphertext packing,
for large extension fields – and in particular for finite extensions of F2 – the amount of available packing
was limited. However, shortly after this Keller et al. [KOS16] showed how to use oblivious transfer (OT) to
perform the offline phase even more efficiently. This solution was shown to be more efficent than using SHE
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for extension fields. Despite recent work [KPR18] showing that SHE solutions outperform OT solutions for
large prime fields, [KOS16] remains faster over extension fields. Subsequently, Keller and Yanai [KY18]
showed how to apply FreeXOR in the multiparty setting using SPDZ-BMR-style garbling where the SPDZ
shares are in F2k instead of Fp.

Meanwhile, Hazay et al. [HSS17] also showed how to obtain FreeXOR in the multiparty setting, again
over F2k , but take a different approach from SPDZ-BMR: they do not make use of a a full-blown MPC
functionality and instead produce an unauthenticated garbled circuit – it is merely additively shared, whereas
in SPDZ-BMR and [KY18], the garbled circuit is authenticated with MACs. Active security comes from the
fact that an incorrectly-garbled circuit will only cause the parties to abort when evaluating it. This approach
requires only a single (authenticated) F2 multiplication per AND gate.

We use the multiparty Boolean circuit garbling protocol [KY18] for our implementation. The [KY18]
protocol is less efficient than [HSS17] and [WRK17], but the implementation [Ana19] is easier to integrate
with the SPDZ compiler to be able to switch between different online phases of an MPC program [ABF+18].
Despite this we have good reason to believe that the generation of the specialised preprocessing required in
our solution dovetails with most if not all of these alternative these garbling schemes as the only requirements
are the following:

– Parties should be able to authenticate their own secret inputs (in fact, secret bits suffices), for whatever
authentication method is used in the protocol.

– Parties should be able to compute the XOR of authenticated bits.
Unfortunately, the authentication is usually abstracted away garbling functionalities so we cannot make
straightforward claims about using garbling in a black-box way.

Encryption Before we describe the garbling, we first briefly describe the encryption scheme used in the
protocol. The formalism of the security of using FreeXOR in the multiparty context was not given in [KY18]
so we provide an overview here based on [HSS17]. In the garbling protocol, messages are encrypted by com-
puting the XOR of the message with a pseudorandom one-time-pad generated by a PRF under keys held by
multiple parties. The SPDZ-BMR technique of encryption requires a PRF which is a pseudorandom func-
tion under multiple keys [LPSY15, Defn 1] (see Definition 2 in Appendix B). In order to use the FreeXOR
technique, a stronger assumption is needed: circular 2-correlation robust. Detailed analysis of a similar as-
sumption for hash functions was given by [CKKZ12], and Hazai et al. [HSS17] gave a variant for PRFs, of
which we now give an outline.

To make the definition, we define the following oracles. Sample R $← {0, 1}κ and let |C| denote the
number of gates in the circuit. For a PRF F : {0, 1}κ × {0, 1}κ × {0, 1}log |C|+logn → {0, 1}κ, define two
oracles which take inputs from the set {0, 1}κ × {0, 1}κ × [|C|]× [n]× {0, 1}3:

– Oracle CircR: on input (k1, k2, g, j, b1, b2, b3), return Fk1⊕b1·R,k2⊕b2·R(g||j))⊕ b3 ·R.
– Oracle RO: on input (k1, k2, g, j, b1, b2, b3), if the message has been queried before, output whatever

was given last time; otherwise, sample a random string k3
$← {0, 1}κ and output k3.

Definition 1 (See [HSS17, Defn 2.3]). A PRF F is called circular 2-correlation robust if for any non-
uniform polynomial-time distinguisher D making legal queries (see below) to its oracle, there exists a neg-
ligible function ν such that∣∣∣Pr[R

$← {0, 1}κ;DCircR(·)(1κ) = 1]− Pr[DRO(·)(1κ) = 1]
∣∣∣ ≤ ν(κ).
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“Legal queries” are defined as any query except the following:
– (k1, k2, g, j, 0, 0, b3) (otherwise the distinguisher can distinguish trivially as it learns Fk1,k2(g||j) and it

can compute this on its own).
– The query (k1, k2, g, j, b1, b2, 1 − b3) if the query (k1, k2, g, j, b1, b2, b3) has already been made (other-

wise the global difference is leaked).
The encryption of a message m ∈ {0, 1}κ under keys ku ← k1

u|| · · · ||knu and kv ← k1
v|| · · · ||knv and nonce r,

where Pi holds they keys kiu, k
i
v ∈ {0, 1}κ, is defined as

Encku,kv(m; r)←

 n⊕
j=1

F
kju,k

j
v
(r)

⊕m.
For clarity, we will write the formula explicitly in the circuit garbling rather than abstract to the encryption
notation.

Garbling Protocol The high-level view is as follows. Let g : {0, 1}2 → {0, 1} denote the gate g. In circuit
garbling, first the garbler samples a a “zero key” and a “one key” for every wire in the circuit. A wire
connection exiting one gate and entering another is considered one wire, as are all circuit input and output
wires. Then, each Boolean fan-in-two gate with input wires u, v and output wire w is converted to a set of
4 ciphertexts in the following way: for each (α, β) ∈ {0, 1}2 the garbler encrypts the key kw,g(α,β) under
the pair of input keys ku,α and kv,β . The garbler converts all gates to quadruples of ciphertexts. Note that
this can be done in parallel for all gates. To evaluate the circuit, the evaluator is given the circuit input wire
keys corresponding to his inputs (obliviously), and using these can decrypt one ciphertext in each quadruple
(gate) to obtain the final output. Other measures, as we describe below, are required to hide information
about intermediate wire values as the circuit is being garbled, but this is the basic outline.

In BMR garbling, every party acts as both garbler and evaluator. Each party generates a circuit for which
it knows all the wire keys, but where each ciphertext is encrypted under all parties’ corresponding wire keys.
This means that every party must evaluate all n circuits in parallel to decrypt each subsequent gate and so
learn all n succeeding keys. The idea of SPDZ-BMR garbling is to use MPC to compute the ciphertexts.
The full protocol, modified for our purposes and incorporating FreeXOR, is provided in Figures 10, 11, 12
and 13, but we give an overview of correctness here. The functionality FMPC is part of FPrep in Figure 4.
The parties first call FMPC with input (Initialise,F2k , 1) where 1 is a session identifier.

Global difference Once at the beginning of the protocol, for each i ∈ [n] the parties call FMPC with input
(RElt, [[Ri]]2k , 1) and then (Open, i, [[Ri]]2k , 1) so that Pi obtains a random Ri ∈ F2k , called its “global
difference”. These are used later for defining keys in a special way.

Wire Masks For each wire in the circuit, the parties call FMPC with input (RBit, [[λw]]2k , 1). These are
known as the masking or permutation bits and are used to permute the four ciphertexts in each gate, which
is necessary to hide intermediate wire values (which leak information on the circuit inputs). Instead of
evaluating g(α, β) on the actual inputs ρ and σ, evaluators hold “signal bits” Λu ← ρ⊕λu and Λv ← σ⊕λv
and compute Λw ← g̃(Λu, Λv) where g̃ is defined as (α, β) 7→ g(α ⊕ λu, β ⊕ λv) ⊕ λw where λw is the
mask for the output wire5.

5 This is equivalent to randomly permuting the four ciphertexts (indexed by {1, 2, 3, 4}) by the (secret) permutation
((13)(24))λu((12)(34))λv .
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Garbling
– For an AND gate g with input wires u and v and output wire w, for each i ∈ [n] the parties call FMPC

with input (RElt, [[kiu,0]]2k , 1) to obtain a random field element and open it to party Pi. The one key
kiu,1 is set to be kiu,0 ⊕ Ri by Pi and the parties compute [[kiu,1]]2k ← [[kiu,0]]2k ⊕ [[Ri]]2k . The parties
do the same for v and w. It is possible to garble with random one keys as described in the overview
above, but this global difference allows more efficient garbling and evaluation as outlined below with
no loss to security. Then each party evaluates the PRF on the four combinations of their own input keys
{(kiu,α, k

i
v,β) : α, β ∈ {0, 1}} and calls FMPC with input(

Input, i, [[F g,i,jα,β ]]2k , Fkiu,α,k
i
v,β

(g||j), 1
)

which form 4n authenticated (pseudorandom one-time-pad) encryption keys, indexed by α, β ∈ {0, 1}
and j ∈ [n]. In MPC, the parties then compute, for all (α, β) ∈ {0, 1}2 and all j ∈ [n], the ciphertext

[[g̃jα,β]]2k ←

(
n⊕
i=1

[[
F g,i,jα,β

]]
2k

)
⊕ [[kjw,0]]2k ⊕ [[Rj ]]2k · (([[λu]]2k ⊕ α) · ([[λv]]2k ⊕ β)⊕ [[λw]]2k) .

In other words, for each j ∈ [n] the parties compute an encryption in MPC of wire key kjw,0 ⊕ Rj ·
((λu ⊕ α) · (λv ⊕ β)⊕ λw) under all four possible pairs of input keys of every other party. Note that
the jth set of four ciphertexts are permuted by the same masks for every j.

– For an XOR gate, the parties set kjw,0 ← kju,0 ⊕ kjv,0 for all j and the output mask as λw ← λu ⊕ λv.
After all the garbling is performed, all the ciphertexts (currently held in the MPC engine) are opened.

Input For a party Pi to provide an input x ∈ {0, 1} on wire w, the parties open [[λw]]2k to Pi and then Pi
broadcasts Λw ← x⊕ λw, known as a signal bit. For all j ∈ [n], Pj broadcasts kjw,Λw .

Evaluation After the n keys and signal bits, one for each input wire, are obtained, the parties do the follow-
ing.

– For an AND gate, for every j ∈ [n], each party computes the n succeeding wire keys as

kjw,· ← g̃jΛu,Λv ⊕
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g||j)

= kjw,0 ⊕R
j · ((λu ⊕ Λu) · (λv ⊕ Λv)⊕ λw)

Then each Pi compares kiw,· to the two keys kiw,0 and kiw,1 that it owns in order to determine the signal
bit Λw. By the security of the PRF (as argued in SPDZ-BMR), the ciphertexts corresponding to the other
keys cannot be decrypted. Observe that since Λu = x ⊕ λu and Λv = y ⊕ λv where x and y are the
actual inputs, the resulting keys (for j ∈ [n] are kjw,0⊕Rj · (x · y⊕λw), which are exactly kjw,Λw where
Λw = x · y ⊕ λw.

– For an XOR gate, every party computes the n output signal bit as Λw ← Λu ⊕ Λv and sets the keys as
kjw,Λw ← ku,Λu ⊕ kv,Λv . Observe that

Λw ← Λu ⊕ Λv = (x⊕ λu)⊕ (y ⊕ λv) = (x⊕ y)⊕ (λu ⊕ λv) = (x⊕ y)⊕ λw
by the way the masks are constructed; similarly,

kjw,Λw ← kju,Λu ⊕ kjv,Λv = (kju,0 ⊕R
j · Λu)⊕ (kjv,0 ⊕R

j · Λv) = kjw,0 ⊕R
j · (Λu ⊕ Λv) = kjw,Λw .
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Output In the usual BMR protocol, immediately after garbling, the parties open the masks for output wires.
This enables all parties to view the output bits. We will assume the parties simply hold the final output in
secret-shared form, which they can do simply by not opening the output masks, and by computing (locally)
the XOR of the public signal bit with the output mask. I.e. an output bit is shared as

[[b]]2k ← [[λw]]2k ⊕ Λw.

In Section 3.2 we describe the modifications necessary to this standard garbling technique to provide
inputs from get outputs to Fp.

3 Protocol

In our protocol, one instance of FMPC over Fp is used to perform addition and multiplication in the field,
and one instance of FMPC over F2k is used to perform the garbling. Note that since the keys for the PRF
live in the field F2k in the garbling protocol, the instance of FMPC must be over a field with k = O(κ) for
computational security. Indeed, we emphasise that in our protocol k is not directly related to log p. Once the
garbling is completed, the full MPC engine in F2k is no longer required: the parties only maintain the Fp
instance of FMPC and retain the garbled circuits in memory, and will additionally need to make sure they
can still perform the procedure Check in FMPC on values opened in the evaluation of the GC.

In summary, our protocol requires a single opening of a secret-shared value and then locally bit-decomposing
this public value to obtain the input wire signal bits to the garbled circuit. Once the parties have these, they
open the appropriate keys for circuit evaluation, and the rest of the protocol (including retrieving outputs in
secret-shared form) is local. The key challenge in creating the garbled circuit is that for some wire masks,
namely a certain set of input masks and all the output wires, we need wire masks which are the same value
in Fp and F2k (i.e. both the additive identity or both the multiplicative identity in each field), which then
must be used in the garbling stage of the preprocessing.

We construct the functionality FCABB by first showing how to generate daBits, and then showing how
this procedure coupled with two instances of the standard FMPC functionality gives a preprocessing phase
which we call FPrep, given in Figures 4 and 5, which can be used to realise FCABB via the SPDZ-BMR
protocol with some slight modifications, called ΠABB+BMR. This is flow is outlined in Figure 3.

It would be straightforward to instantiate FCABB directly in the FMPC-hybrid model, using two inde-
pendent instances of FMPC over the fields Fp and F2k . However, we choose to build up to FCABB via the
functionality FPrep for three reasons:
1. This approach more faithfully resembles the execution of the protocols in our implementation, where

daBits are generated and the “extended” FMPC functionality FPrep is used to run the extended BMR
protocol.

2. The daBits are “raw” preprocessed data, so FPrep really forms a complete “offline” phase from which
garbling and secret-sharing can be done.

3. Any future work giving a better protocol for creating daBits for two independent FMPC instances does
not require reproving the security of the extended BMR protocol that makes use of daBits.
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FMPC FPrep FCABB

ΠdaBits+MPC ΠABB+BMR

Fig. 3. Functionality dependencies

3.1 Generating daBits using Bucketing

Any technique for generating daBits require some form of checking procedure to ensure consistency between
the two fields. Checking consistency often means checking random linear combinations of secrets produce
the same result in both cases. Unfortunately, in our case such comparisons are meaningless since the fields
have different characteristics, so shares are uniform in Fp and F2k and so multiplications in the field are
not compatible. We can, however, check XORs of bits, which in Fp involves multiplication. (See Equation
1 in Section 2.) It is therefore necessary to use a protocol that minimises (as far as possible) the number
of multiplications. Consequently, techniques using oblivious transfer (OT) such as [WRK17] to generated
authenticated bits require a lot of XORs for checking correctness, so are undesirable for generating daBits.

Our chosen solution uses FMPC as a black box. In order to generate the same bit in both fields, each
party samples a bit and calls the Fp and F2k instances of FMPC with this same input and then the parties
compute the n-party XOR. To ensure all parties provided the same inputs in both fields, cut-and-choose and
bucketing procedures are required, though since the number of bits it is necessary to generate is a multiple
of log p ≈ sec and we can batch-produce daBits, the parameters are modest.

We use similar cut-and-choose and bucketing checks to those described by Frederiksen et al. [FKOS15,
App. F.3], in which “triple-like” secrets can be efficiently checked. The idea behind these checks is the
following. One first opens a random subset of secrets so that with some probability all unopened bits are
correct. This ensures that the adversary cannot cheat on too many of the daBits. One then puts the secrets into
buckets, and then in each bucket designates one secret as the one to output, uses all other secrets in bucket
to check the last, and discards all but the designated secret. For a single bucket, the check will only pass (by
construction) if either all secrets are correct or all are incorrect. Thus the adversary is forced to corrupt whole
multiples of the bucket size and hope they are grouped together in the same bucket. Fortunately, (we will
show that) there is no leakage on the bits since the parameters required for the parts of the protocol described
above already preclude it. The protocol is described in Figure 6; we prove that this protocol securely realises
the functionality FPrep in Figures 4 and 5 in the FMPC-hybrid model. To do this, we require Proposition 1.

Proposition 1. For a given ` > 0, choose B > 1 and C > 1 so that C−B ·
(
B`
B

)−1
< 2−sec. Then the

probability that one or more of the ` daBits output after Consistency Check by ΠdaBits+MPC in Figure 6 is
different in each field is at most 2−sec.

Proof. Using FpMPC and F2k

MPC as black boxes ensures the adversary can only possibly cheat in the input
stage. We will argue that:
1. If both sets of inputs from corrupt parties to FpMPC and F2k

MPC are bits (rather than other field elements),
then the bits are consistent in the two different fields with overwhelming probability.

2. The inputs in F2k are bits with overwhelming probability.
3. The inputs in Fp are bits with overwhelming probability.

We will conclude that the daBits are bits in the two fields, and are consistent.
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Functionality FPrep

This functionality extends the reactive functionality FMPC with commands to generate the same bits in
two independent sessions.

Instances of FMPC

Independent copies of FMPC are identified via session identifiers sid; FPrep maintains one dictionary
Valsid for each instance. Entries cannot be changed, for simplicity. If a party provides an input with an
sid which has not been initialised, output Reject to all parties and awaits another message.

Initialise On input (Initialise,F, sid) from all parties, if sid is a new session identifer then initialise a
database of secrets Valsid indexed by a set Valsid.Keys and store the field as Valsid.Field ← F. Set
the internal flag Abortsid to false.

Input On input (Input, i, id, x, sid) from Pi and (Input, i, id,⊥, sid) from all other parties, if id 6∈
Valsid.Keys then insert it and set Valsid[id]← x. Then call the procedure Wait.

Add On input (Add, idx, idy, id, sid), if idx, idy ∈ Valsid.Keys then set Valsid[id] ← Valsid[idx] +
Valsid[idy].

Multiply On input (Multiply, idx, idy, id, sid), if idx, idy ∈ Valsid.Keys then set Valsid[id]← Valsid[idx]·
Valsid[idy]. Then call the procedure Wait.

Random element On input (RElt, id, sid), if id 6∈ Valsid.Keys then set Valsid[id]
$← Valsid.Field. Then

call the procedure Wait.
Random bit On input (RBit, id, sid), if id 6∈ Valsid.Keys then set Valsid[id]

$← {0, 1}. Then call the
procedure Wait.

Open On input (Open, i, id, sid) from all parties, if id ∈ Valsid.Keys,
– if i = 0 then send Valsid[id] to the adversary and run the procedure Wait. If the message was

(OK, sid), await an error ε from the adversary. Send Valsid[id] + ε to all honest parties and if
ε 6= 0, set the internal flag Abortsid to true.

– if i ∈ A, then send Valsid[id] to the adversary and then run Wait.
– if i ∈ [n] \A, then call the procedure Wait, and if not already halted then await an error ε from

the adversary. Send Valsid[id] + ε to Pi and if ε 6= 0 then set the internal flag Abortsid to true.
Check On input (Check, sid) from all parties, run the procedure Wait. If not already halted and the

internal flag Abortsid is set to true, then send the message (Abort, sid) to the adversary and honest
parties and ignore all further messages to FMPC with this sid; otherwise send the message (OK, sid)
and continue.

Internal procedure:

Wait Await a message (OK, sid) or (Abort, sid) from the adversary; if the message is (OK, sid) then
continue; otherwise, send the message (Abort, sid) to all honest parties and ignore all further mes-
sages to FMPC with this sid.

(continued...)

Fig. 4. Functionality FPrep
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Functionality FPrep (continued)

Additional commands

daBits On receiving (daBits, id1, . . . , id`, sid1, sid2), from all parties where idi 6∈ Val.Keys for all i ∈ `,
await a message OK or Abort from the adversary. If the message is OK, then sample {bj}j∈[`]

$←
{0, 1} and for each j ∈ [`], set Valsid1 [idj ] ← bj and Valsid2 [idj ] ← bj and insert the set {idi}i∈[`]

into Valsid1 .Keys and Valsid2 .Keys; otherwise send the messages (Abort, sid1) and (Abort, sid2) to
all honest parties and the adversary and ignore all further messages to FMPC with session identifier
sid1 or sid2.

Fig. 5. Functionality FPrep (continued)

1. Let c be the number of inconsistent daBits generated by a given corrupt party. If c > B` then every
set of size (C − 1)B` contains an incorrect daBit so the honest parties will always detect this in Cut and
Choose and abort. Since (C − 1)B` out of CB` daBits are opened, on average the probability that a daBit
is not opened is 1− (C − 1)/C = C−1, and so if c < B` then we have:

Pr[None of the c corrupted daBits is opened] = C−c. (2)

At this point, if the protocol has not yet aborted, then there are B` daBits remaining of which exactly c are
corrupt.

Suppose a daBit [[b]]p,2k takes the value b̃ in Fp and b̂ in F2k . If the bucketing check passes then for every
other daBit [[b′]]p,2k in the bucket it holds that b̃⊕ b̃′ = b̂⊕ b̂′, so b̃′ = (b̂⊕ b̂′)⊕ b̃, and so b̃ = b̂⊕ 1 if and
only if b̃′ = b̂′ ⊕ 1. (Recall that we are assuming the inputs are certainly bits at this stage.) In other words,
within a single bucket, the check passes if and only if either all daBits are inconsistent, or if none of them
are. Thus the probability Consistency Check passes without aborting is the probability that all corrupted
daBits are placed into the same buckets. Moreover, this implies that if the number of corrupted daBits, c, is
not a multiple of the bucket size, this stage never passes, so we write c = Bt for some t > 0. Then we have:

Pr[All corrupted daBits are placed in the same buckets] =(
Bt
B

)
·
(B(t−1)

B

)
· · ·
(
B
B

)
·
(
B`−Bt
B

)
·
(
B`−Bt−B

B

)
· · ·
(
B
B

)(
B`
B

)
·
(
B`−B
B

)
· · ·
(
B
B

)
=

(Bt)!

B!t
· (B`−Bt)!

B!`−t
· B!`

(B`)!
=

(
B`

Bt

)−1

. (3)

Since the randomness for Cut and Choose and Check Correctness is independent, the event that both
checks pass after the adversary corrupts c daBits is the product of the probabilities. To upper-bound the
adversary’s chance of winning, we compute the probability by maximising over t: thus we need C and B so
that

max
t

{
C−Bt ·

(
B`

Bt

)−1
}
< 2−sec (4)
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Protocol ΠdaBits+MPC

This protocol is in the FMPC-hybrid model.

Initialise
1. Call an instance of FMPC with input (Initialise,Fp, 0); denote it by FpMPC.
2. Call an instance of FMPC with input (Initialise,F2k , 1); denote it by F2k

MPC.
Calls to FMPC Dealt with by FpMPC or F2k

MPC, as appropriate.

To generate ` bits, all of the following procedures are performed, in order.
Generate daBits

1. Let m← CB` where C > 1 and B > 1 are chosen so that CB ·
(
B`
B

)
> 2sec.

2. For each i ∈ [n],

(a) Party Pi samples a bit string (bi1, . . . , b
i
m)

$← {0, 1}m.
(b) Call FpMPC where Pi has input (Input, i, [[bij ]]p, b

i
1, 0)mj=1 and Pj (j 6= i) has input

(Input, i, [[bij ]]p,⊥, 0)mi=1.

(c) Call F2k

MPC where Pi has input (Input, i, [[bij ]]2k , b
i
1, 1)mj=1 and Pj (j 6= i) has input

(Input, i, [[bij ]]2k ,⊥, 1)mi=1.
Cut and Choose

1. Call FRand with input (RSubset, [CB`], (C − 1)B`) to obtain a set S.
2. Call FpMPC with inputs (Open, 0, [[bij ]]p, 0)j∈S for all i ∈ [n].

3. Call F2k

MPC with inputs (Open, 0, [[bij ]]2k , 1)j∈S for all i ∈ [n].
4. If any party sees daBits which are not in {0, 1} or not the same in both fields, they send the

message Abort to all parties and halt.
Combine For all j ∈ S, do the following:

1. Set [[bj ]]p ← [[b1j ]]p and then for i from 2 to n compute
(a) [[bj ]]p ← [[bj ]]p + [[bij ]]p − 2 · [[bj ]]p · [[bij ]]p

2. Compute [[bj ]]2k ←
⊕n

i=1[[bij ]]2k .
Consistency Check

1. Call FRand with input (RBucket, [B`], B) and use the returned sets (Si)
`
i=1 to put the B` daBits

into ` buckets of size B.
2. For each bucket Si,

(a) Relabel the bits in this bucket as b1, . . . , bB .
(b) For j = 2 toB, compute [[cj ]]p ← [[b1]]p+[[bj ]]p−2·[[b1]]p·[[bj ]]p and [[cj ]]2k ← [[b1]]2k⊕[[bj ]]2k .
(c) Call FpMPC with inputs (Open, 0, [[cj ]]p, 0)Bj=2.

(d) Call F2k

MPC with inputs (Open, 0, [[cj ]]2k , 1)Bj=2.
(e) If any party sees daBits which are not in {0, 1} or not the same in both fields, they send the

message Abort to all parties and halt.
(f) Set [[bi]]p,2k ← [[b1]]p,2k .

3. Call FpMPC with input (Check, 0).
4. Call F2k

MPC with input (Check, 1).
5. If the checks pass without aborting, output {[[bi]]p,2k}`i=1 and discard all other bits.

Fig. 6. Protocol ΠdaBits+MPC
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The maximum occurs when t is small, and t ≥ 1 otherwise no cheating occurred; thus since the proposition
stipulates that C−B ·

(
B`
B

)−1
< 2−sec, the daBits are consistent in both fields, if they are indeed bits in both

fields.
2. Next, we will argue that the check in Cut and Choose ensures that the inputs given to F2k

MPC are
indeed bits. It follows from Equation 2 that the step Cut and Choose aborts with probability C−c if any
element of either field is not a bit, as well as if the element in the two fields does not match. Moreover, in
Consistency Check, in order for the check to pass in F2k for a given bucket, the secrets’ higher-order bits
must be the same for all shares so that the XOR is always zero when the pairwise XORs are opened. Thus
the probability that this happens is the same as the probability above in Equation 4 since again this can only
happen when the adversary is not detected in Cut and Choose, that he cheats in some multiple of B daBits,
and that these cheating bits are placed in the same buckets in Consistency Check.

3. We now show that all of the the Fp components are bits. To do this, we will show that if the Fp
component of a daBit is not a bit, then the bucket check passes only if all other daBits in the bucket are also
not bits in Fp.

If the protocol has not aborted, then in every bucket B, for every 2 ≤ j ≤ B, it holds that

b1 + bj − 2 · b1 · bj = cj (5)

where cj ∈ {0, 1} are determined by the XOR in F2k . Note that since cj =
⊕n

i=1 b
1
i ⊕

⊕n
i=1 b

j
i and at least

one bji is generated by an honest party, this value is uniform and unknown to the adversary when he chooses
his inputs at the beginning.

Suppose b1 ∈ Fp \ {0, 1}. If b1 = 2−1 ∈ Fp then by Equation 5 we have b1 = cj ; but cj is a bit, so the
“XOR” is not the same in both fields and the protocol will abort. Thus we may assume b1 6= 2−1 and so we
can rewrite the equation above as

bj =
b1 − cj

2 · b1 − 1
. (6)

Now if bj is a bit then it satisfies bj(bj − 1) = 0, and so

0 =

(
b1 − cj

2 · b1 − 1

)
·
(
b1 − cj

2 · b1 − 1
− 1

)
= −(b1 − cj)(b1 − (1− cj))

(2 · b1 − 1)2

so b1 = cj or b1 = 1 − cj ; thus b1 ∈ {0, 1}, which is a contradiction. Thus we have shown that if b1 is not
a bit then bj is not a bit for every other bj in this bucket. Moreover, for each j = 2, . . . , B, there are two
distinct values bj ∈ Fp \ {0, 1} solving Equation 6 corresponding to the two possible values of cj ∈ {0, 1},
which means that if the bucket check passes then the adversary must also have guessed the bits {cj}Bj=1,
which he can do with probability 2−B since they are constructed using at least one honest party’s input.
Thus the chance of cheating without detection in this way is at most 2−Bt · C−Bt ·

(
B`
Bt

)−1
.

Thus we have shown that the probability that b1 ∈ Fp \ {0, 1} is given as output for the Fp component
is at most the probability that the adversary corrupts a multiple of B daBits, that these daBits are placed in
the same buckets, and that the adversary correctly guesses c bits from honest parties (in the construction of
the bits {bj}j∈B) so that the appropriate equations hold in the corrupted buckets. Indeed, needing to guess
the bits ahead of time only reduces the adversary’s chance of winning from the same probability in the F2k

case.
We conclude that the daBits are bits in both fields and are the same in both fields with probability except

with probability at most 2−sec. ut
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Theorem 1. The protocol ΠdaBits+MPC securely realises FPrep in the (FMPC,FRand)-hybrid model against
an active adversary corrupting up to n− 1 out of n parties.

Proof. To prove security in the UC framework we must show that to any environmentZ , for any adversaryA
there exists a simulator S such that the execution of an idealised version of the protocol run by a trusted third
party F with the simulator is indistinguishable from a real execution of the protocol Π between the honest
parties and the adversary. The environment specifies the code run by the adversary as well as the inputs of
all parties, honest and dishonest. Additionally, the environment sees all outputs of all parties; it does not
see the intermediate interactions in subroutines of the honest parties’ executions, otherwise distinguishing
would be trivial as honest parties either perform Π or interact with F. In the (FMPC,FRand)-hybrid model,
the adversary is allowed to make oracle queries to these functionalities and S must generate the responses.

Note the functionality does not have access to the random tapes honest parties as this would make dis-
tinguishing between worlds trivial: it would be impossible for the simulator to emulate honest parties to the
real-world adversary indistinguishably since for any random tape sampled by the simulator, the environment
would always be able to execute the protocol internally, using its knowledge of the random tapes of honest
parties to execute the entire protocol deterministically, and compare it to the output of the simulator.

Following standard practice, and as described in [Can00, §4.2.2], we define a simulator which interacts
with the adversary A as a black box. This allows us to make the claim that the simulator works regardless
of the code run by the adversary and hence prove the claim.

Suppose the adversary corrupts t < n parties in total, indexed by a setA. We define a sequence of hybrid
worlds (Hybrid h)n−th=0 and show that each is indistinguishable from the previous. Hybrid h is defined as:

Hybrid h The simulator has the actual input of n− t− h honest parties and must simulate the remaining h
honest parties towards the adversary.

The simulator is described in Figure 7.

Claim. The FMPC,FRand-hybrid world is indistinguishable from Hybrid 0.

Proof. Correctness of the simulation holds as follows. The simulator emulates FpMPC, F2k

MPC and FRand,
so all calls made to these oracles are dealt with as in an execution of the protocol. Indeed, for all calls to
FMPC in either field which are outside of the daBits generation procedure, the commands are forwarded
to FPrep and relayed back to A, and since FPrep has the same interface as FMPC by definition, there is
no difference between the worlds. As for the daBit generation, when the adversary makes calls to provide
(random) inputs and then perform Cut and Choose, the simulator does not forward the messages through
to FPrep since all bits used in the protocol except the final output bits are discarded. Instead the command
(daBits, id1, . . . , id`, 0, 1) is sent to FPrep and the simulator executes the daBit routines honestly with the
adversary, making random choices for honest parties by sampling in the same way as in the protocol.

Now we argue indistinguishability between executions: we must show that for any algorithmA specified
by the environment Z , it holds that

EXEC(Z,AFMPC,FRand , ΠdaBits+MPC) ∼ EXEC(Z,S0
Prep,FPrep)

where ∼ denotes statistical indistinguishability of distributions, and the randomness of these distributions is
taken over the random tapes of honest parties and the adversary and simulator.

First, note that the oracles FMPC and FRand are executed honestly by S0
Prep so the contribution to the

distributions is the same in both executions.
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Simulator ShPrep

The simulator is (vacuously) parameterised by h, which means the simulator knows the actual inputs of
n− t− h honest parties, and must simulate for the remaining h. We denote the adversary by A.

Initialise On receiving the call to FMPC with inputs (Initialise,Fp, 0) and (Initialise,F2k , 1), initialise
corresponding internal copies.

Calls to FpMPC All calls for producing preprocessing, other than what is described below, sent from A
to FpMPC should be forwarded to FPrep. All response messages from FPrep are sent directly to A.

Calls to F2k

MPC All calls for producing preprocessing, other than what is described below, sent from the
A to F2k

MPC should be forwarded to FPrep. All response messages from FPrep are sent directly to A.

For the following procedures, send the calls to the internal copies of FpMPC, F2k

MPC and FRand as de-
scribed in the protocol.

[Start] Call FPrep with input (daBits, id1, . . . , id`, 0, 1).
Generate daBits Run Generate daBits from ΠdaBits+MPC with A, sampling inputs for all honest par-

ties.
Cut and Choose Run Cut and Choose from ΠdaBits+MPC with A.
Combine Run Combine from ΠdaBits+MPC with A.
Check Correctness Run Check Correctness from ΠdaBits+MPC with A.
[Finish] If the protocol aborted, send Abort to FPrep, and otherwise send OK.

Fig. 7. Simulator ShPrep

Second, since the inputs of honest parties are sampled during the protocol, they are not specified or
known by the environment. However, if the adversary performs a selective-failure attack, then the environ-
ment may learn information. A selective failure attack is where the environment can learn some information
if the protocol does not detect cheating behaviour. For example, if the environment guesses an entire bucket
of bits and chooses inputs for the adversary’s input so that the bucket check would pass based on these
guesses, then if the protocol does not abort then the environment learns that its guesses were correct. Then if
the final output bit is not the XOR of all parties’ inputs then the execution must have happened in Hybrid 0
since in this world the output depends on the random tape of FPrep and is independent of the adversary’s
and honest parties’ random tapes, contrasting the output in the FMPC,FRand-hybrid world in which the final
output is an XOR of bits on these tapes (which were guessed by the environment). Since this happens with
probability 1

2 , in expected 2 executions, the environment can distinguish. However, by Proposition 1, the
environment can only mount a selective failure attack with success with probability at most 2−sec by the
choice of parameters.

Thus the only way to distinguish between worlds is if the transcript leaks information on the honest
parties’ inputs. In Check Correctness, XORs are computed in both fields and the result is opened; however,
this reveals no information on the final daBit outputs as the linear dependence between the secret and the
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public values is broken by discarding all secrets in each bucket except the designated (i.e. first) bit. We
conclude that the overall distributions of the two executions are statistically indistinguishable in sec. �

Claim. Hybrid h is indistinguishable from Hybrid h+ 1 for h = 0, . . . , n− t− 1.

Proof. There is no difference between these worlds since honest parties’ (random) inputs are sampled the
same way in both cases. �

Since FMPC is secure up to t = n− 1, the result follows. ut

3.2 Garbling and Switching

In this section we describe the garbling, and how the parties provide input to the circuit from secret-shared
data, and vice versa. In Figure 8 we show pictographically what happens at the barrier between secret-
sharing and garbling, though note we have shown a circuit output that will be reconstructed to an element of
Fp: the circuit output can be any string of bits. We first discuss the methods of switching into and out of the
garbled circuit, and then present the modified SPDZ-BMR protocol ΠABB+BMR in Figures 10, 11, 12 and
13 which we show securely realises FCABB in the FPrep-hybrid model.

(a− r)0 ⊕ 0

(a− r)1 ⊕ 0

...
(a− r)k−1 ⊕ 0 +

r
m
o
d
p

(b− s)0 ⊕ 0

(b− s)1 ⊕ 0

...
(b− s)k−1 ⊕ 0 +

s
m
o
d
p

C
M

as
k
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nv
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si

on [[c0]]p

[[c1]]p
...
[[ck−1]]p

Fig. 8. Overview

Correctness of providing circuit inputs In brief, the parties open a− r in MPC where r =
∑blog pc−1

j=0 2j ·
[[rj ]]p is constructed from daBits {[[rj ]]p,2k}

blog pc−1
j=0 , and FMPC is called with input (Check, 0) either at this

point or later on, and then these public values are taken to be signal bits to the circuit. To correct the offset
r, the circuit simply takes in the F2k parts of the daBits of r as input, and the circuit (a − r) + r mod p
is computed inside the garbled circuit. Since a − r is a public value, there is no need to have masks for the
corresponding input wires, so they are set to 0. Furthermore, since r is independent of the online inputs, the
keys corresponding to these inputs can be obtained directly during garbling in Step 6 of Input layer instead
of waiting to open keys in the online phase.

In more detail, we define the following Boolean circuit

ADDMOD(x, y, p)← (x+ y)− p ·
(

(x+ y)
?
≥ p
)
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where the computation takes place over the integers and the inputs x and y are supplied as a string of bits.
Let the input wires of ADDMOD(x, y, p) be (uj)

blog pc−1
j=0 for the bits of x, (vj)

blog pc−1
j=0 for the bits of y,

and the output wires be (wj)
blog pc−1
j=0 , and let the input wires of C be (u′j)

blog pc−1
j=0 . Then the circuit that the

parties garble in ΠABB+BMR is the circuit obtained by associating wire wj with wire u′j for all j = 0 to
blog pc − 1. Now if x = a − r and y = r then clearly C ◦ ADDMOD(x, y, p) = C(a) where ◦ denotes the
wiring association as above.

An obvious optimisation that we use in our implementation is to note that if the masking bits [[λwi,j ]]2k
for inputs yi,j are just taken to be [[ri,j ]]2k then the signal bits are 0 and this reveals nothing about ri,j , so we
save on generating log p masking bits.

Correctness of receiving circuit outputs The output of a multiparty garbled circuit is one or more keys and
corresponding public signal bits. In normal SPDZ-BMR, the output wire masks are revealed after garbling
so that all parties can learn the final outputs. A simple way of retaining shared output of the circuit, which
is what we want, is for the parties not to reveal the masks for output wires after garbling and instead to
compute the XOR of the secret-shared mask with the public signal bit, in MPC. In other words, for output
wire w they obtain a sharing of the secret output bit b by computing

[[b]]2k ← Λw ⊕ [[λw]]2k .

In our case, we want the shared output of the circuit to be in Fp, and to do this it suffices for the masks on
circuit output wires to be daBits and for the parties to compute (locally)

[[b]]p ← Λw + [[λw]]p − 2 · Λw · [[λw]]p.

To make our whole approach more more modular, we define an additional layer to the circuit after the
output layer which converts output wires with masks only in F2k to output wires with masks as daBits,
without changing the real values on the wire. To do this, parties do the following: for every output wire w,
1. In the garbling stage,

(a) Take a new daBit [[λw′ ]]p,2k .
(b) Set [[λw0 ]]2k ← [[λw]]2k ⊕ [[λw′ ]]2k
(c) Call FPrep with input (Open, 0, 0⊕ [[λw0 ]]2k) an call this Λw0 .

2. In the evaluation stage, upon obtaining Λw,
(a) Compute Λw′ ← Λw ⊕ Λw0 .
(b) Compute the final (Fp-secret-shared) output as [[b]]p ← Λw′ + [[λw′ ]]p − 2 · Λw′ · [[λw′ ]]p.

Observe that Λw0 ≡ λw0 so this procedure is just adding a layer of XOR gates where the masking bits are
daBits and the other input wire is always 0 (so the gate evaluation doesn’t change the real wire value). Note
that since the signal bits for XOR gates are determined from input signal bits and not the output key, there
is no need to generate an output key for wire w0. For correctness, observe that:

Λw′ ⊕ λw′ = (Λw ⊕ Λw0)⊕ (λw ⊕ λw0)

= ((b⊕ λw)⊕ (0⊕ λw0))⊕ (λw ⊕ λw0)

= b.

Correctness of the actual garbling was outlined in Section 2. The proof of Theorem 2 is deferred to the
appendices as it is straightforward, following from the security of SPDZ-BMR [LPSY15] and the fact that
the additional input and output procedures perfectly hide the actual circuit inputs and outputs.
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(w, [[λw]]2k , Λw, kw,Λw )

(w0, [[λw0 ]]2k , Λw0 ,⊥)
(w′, [[λw′ ]]p,2k , Λw′ ,⊥)

Fig. 9. Circuit output wires

Theorem 2. ΠABB+BMR securely realises FCABB in the FPrep-hybrid model.

Proof. See Appendix C.

4 Implementation

We have implemented daBit generation and the conversion between arithmetic shares and garbled circuits.
Our code is developed on top of the MP-SPDZ framework [Ana19] and experiments were run on computers
with commodity hardware connected via a 1Gb/s LAN connection with an average round-trip ping time
of 0.3ms. The FpMPC functionality is implemented using LowGear, one of the two variants of Overdrive
[KPR18]; the F2k

MPC functionality is implemented using MASCOT [KOS16]. In our experiments, F2k is
always taken with k = κ = 128 since this is the security of PRF keys used in SPDZ-BMR. The daBits are
always generated with κ = 128 and the same statistical security sec as the protocol for FMPC.

Primes. We require that p be close to a power of 2 so that a− r is indistinguishable from a uniform element
of the field, as discussed in Section 2. Since we use LowGear in our implementation, for a technical reason
we also require that p be congruent to 1 mod N where N = 32768. (This is the amount of packing in the
ciphertexts.) Consequently, using LowGear means we always lose 15 = log 32768 bits of security if p >
65537 since then the k-bit prime must be of the form 2k−1 + t ·215 + 1 for some t where 1 ≤ t ≤ 2k−16−1,
so the secret masks r constructed from a sequence of bits “miss” at least this much of the field.

Cut and choose optimisation. One key observation that enables reduction of the preprocessing overhead in
F2k is that parties only need to input bits (instead of full F2k field elements) into FMPC during ΠdaBits+MPC.
For a party to input a secret x in MASCOT, the parties create a random authenticated mask r and open
opened it to the party, and the party then broadcasts x + r. Since the inputs are just bits, it suffices for the
random masks also to be bits. Generating authenticated bits using MASCOT is extremely cheap and comes
with a small communication overhead (see Table 2).

More efficient packing for MAC Check. Instead of a set of k secret bits being opened as full F2k field
elements (0, . . . , 0, b1), . . . , (0, . . . , 0, bt) ∈ Fk2 ∼= F2k , we can save on all the redundant 0’s being sent by
sending a single field element (bk, . . . , b1) ∈ F2k . This optimisation reduces by a factor 2 the amount of
data sent for the online phase of daBit generation.

Complexity analysis. In LowGear (Overdrive) and MASCOT the authors choose to avoid reporting any
benchmarks for random bit masks in F2k or random input masks in Fp since they focused on the entire triple
generation protocol. Fortunately their code is open source and easy to modify so we micro-benchmarked
their protocols in order to get concrete costs for the procedure Input for FpMPC and F2k

MPC. For example,
in the two-party case, to provide an input bit costs overall 0.384kbits with MASCOT in F2k . For LowGear
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Protocol ΠABB+BMR

This protocol is secure in the FPrep-hybrid model.

Initialise The parties call FPrep with inputs (Initialise,Fp, 0) and (Initialise,F2k , 1).

Arithmetic

Input For Pi to provide input x ∈ Fp, Pi calls FPrep with input (Input, i, [[x]]p, x, 0) and all other
parties call FPrep with input (Input, Pi, [[x]]p,⊥, 0), where [[x]]p is a fresh identifier.

Add To add secrets x and y, parties call FPrep with input (Add, [[x]]p, [[y]]p, [[z]]p, 0) where [[z]]p is a new
identifier.

Multiply To multiply secrets x and y, parties call FPrep with input (Add, [[x]]p, [[y]]p, [[z]]p, 0) where
[[z]]p is a new identifier.

Output To receive output with identifier id, parties do the following:
1. The parties call FPrep with input (Check, 0).
2. The parties call FPrep with input (Open, 0, id, 0).
3. The parties call FPrep with input (Check, 0).

Circuit (All of the following procedures are performed, in order.)

Initialise garbling To garble a Boolean circuit C with identifiers W for wires, GAND for AND gates
and GXOR for XOR gates, the parties do the following:
1. The parties call FPrep with input (daBits, {[[λw]]p,2k}w∈Wo , 0, 1) where Wo denotes the set in-

dexing circuit output wires.
2. For each i ∈ [n], the parties call FPrep with input (RElt, [[Ri]]2k , 1) and then call FPrep with

input (Open, i, [[Ri]]2k , 1) to reveal Ri to Pi.
Input layer Let the number of Fp inputs to the circuit be t. The parties do the following:

1. Call FPrep with input (daBits, ({[[ri,j ]]p,2k}
blog pc−1
j=0 )ti=1, 0, 1).

2. Set [[ri]]p ←
∑blog pc−1

j=0 2j [[ri,j ]]p.
3. For i = 1, . . . , t, create the circuit ADDMOD(xi, yi, p) and prepend these circuits to the circuit C

to be garbled, augmenting GAND and GXOR as appropriate. See Section 3.2 for details.
4. For each input wire w ∈W , for each i ∈ [n],

(a) Call FPrep with input (RElt, [[kiw,0]]2k , 1).
(b) Call FPrep with input (Open, i, [[kiw,0]]2k , 1) to reveal kiw,0 to Pi.
(c) Pi sets the one key as kiw,1 ← kiw,0 ⊕Ri and the parties set [[kiw,1]]2k ← [[kiw,0]]2k ⊕ [[Ri]]2k .

5. For every input wire w corresponding to an input xi,j of ADDMOD(xi, yi, p), set λwi,j ← 0.
6. For every input wire w corresponding to an input yi,j of ADDMOD(xi, yi, p), call FPrep with input

(RBit, [[λw]]2k , 1) followed by (Open, 0, [[ri,j ]]2k ⊕ [[λwi,j ]]2k , 1) and store this as Λwi,j . Then for
every l ∈ [n], Pl sends klwi,j ,Λwi,j to all other parties.

Garble Refer to ΠGarble
ABB+BMR in Figure 12.

(continued...)

Fig. 10. Protocol ΠABB+BMR
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Protocol ΠABB+BMR (continued)

Output layer For every wire w that is an (external, circuit) output wire, the parties do the following
1. Retrieve a daBit [[λw′ ]]p,2k from memory, generated in Initialise.
2. Compute [[λw0 ]]2k ← [[λw]]2k ⊕ [[λw′ ]]2k .
3. Call FPrep with input (Open, 0, [[λw0 ]]2k , 1); all parties store this locally in memory as the value
Λw0 .

Open To open the circuit, the parties do the following:
1. For all i ∈ [n], call FPrep with input (Open, 0, [[g̃jα,β]]2k , 1) for all g ∈ GAND, for all j ∈ [n], for

all (α, β) ∈ {0, 1}2. If the functionality returns ⊥, the parties abort, and otherwise the parties
(locally) output ((g̃j0,0, g̃

j
0,1, g̃

j
1,0, g̃

j
1,1)nj=1)g∈G and the input mask identifiers [[r1]]p, . . . , [[rt]]p.

2. Call FPrep with input (Check, 1).
Evaluate Refer to ΠEval

ABB+BMR in Figure 13.

Fig. 11. Protocol ΠABB+BMR (continued)

providing bits as input is equivalent to providing an entire Fp field element, strongly contrasting the case for
F2k ; thus the cost for an input is 2.048kb. Hence, with the current state of protocols, inputs are cheap in a
binary field whereas triples are cheap in a prime field.
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Fig. 14. Total communication costs for all parties per preprocessed element.

Bucketing parameters. Recall that our goal is to minimise the total amount of communication and time spent
by parties generating each daBit. After examining the input and triple costs for LowGear and MASCOT (see
Table 6 in Appendix D) we observed that the optimal communication for statistical security sec = 64 and
a p ≈ 2128 is achieved with a generation of l = 8192 daBits per loop, a cut-and-choose parameter and
C = 5 and a bucket size B = 4. Then we ran the daBit generation along with LowGear and MASCOT for
multiple parties on the same computer configuration to get the total communication cost in order to see how
communication scales in terms of number of parties. Results are given in Figure 14. Although MASCOT
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Subprotocol ΠGarble
ABB+BMR

Garble Traversing the circuit in topological order, for every gate g ∈ G with (internal) input wires u
and v and (internal) output wire w,

– If g is an XOR gate, i.e. g ∈ GXOR,
1. The parties set [[λw]]2k ← [[λu]]2k ⊕ [[λv]]2k .
2. For each i ∈ [n], Pi computes kiw,0 ← kiu,0 ⊕ kiv,0 and kiw,1 ← kiw,0 ⊕ Ri and all parties set

[[kiw,0]]2k ← [[kiu,0]]2k ⊕ [[kiv,0]]2k and [[kiw,1]]2k ← [[kiw,0]]2k ⊕ [[Ri]]2k .
– If g is an AND gate, i.e. g ∈ GAND,

1. The parties call FPrep with input (RBit, [[λw]]2k , 1).
2. For each i ∈ [n],

(a) Call FPrep with input (RElt, [[kiw,0]]2k , 1).
(b) Call FPrep with input (Open, i, [[kiw,0]]2k , 1) to reveal kiw,0 to Pi.
(c) Pi sets the one key as kiw,1 ← kiw,0⊕Ri and all parties set [[kiw,1]]2k ← [[kiw,0]]2k⊕[[Ri]]2k .
(d) For all four distinct values of (α, β) ∈ {0, 1}2, and for every j ∈ [n], Pi calls
FPrep with input

(
Input, i, [[F g,i,jα,β ]]2k , Fkiu,α,k

i
v,β

(g||j), 1
)

and the other parties with input(
Input, i, [[F g,i,jα,β ]]2k ,⊥, 1

)
.

3. For all j ∈ [n] and all (α, β) ∈ {0, 1}2, the parties compute

[[g̃jα,β]]2k ←
(⊕n

i=1

[[
F g,i,jα,β

]]
2k

)
⊕ [[kjw,0]]2k

⊕ [[Rj ]]2k · (([[λu]]2k ⊕ α) · ([[λv]]2k ⊕ β)⊕ [[λw]]2k)

Fig. 12. Subprotocol ΠGarble
ABB+BMR

triples are never used during the daBit production, we believe that comparing the cost of a daBit to the best
triple generation in F2k helps to give a rough idea of how expensive a single daBit is.

sec > 40 sec > 64 sec > 80

# daBits 128 1024 8192 128 1024 8192 128 1024 8192

Calls to F{p,2
k}

MPC .Input 40 16 12 42 40 40 36 28 24
Calls to FpMPC.Multiply 7 7 5 13 9 7 17 13 11
Achieved sec 40 47 44 67 64 64 82 84 90

Table 1. Two parties pre-processing costs per daBit while varying the number of daBits per batch and statistical security. Parameters
minimize for total communication given by LowGear and MASCOT.

To see how efficiency scales when the statistical security parameter sec is increased, we record the fewest
numbers of calls to FMPC, optimising for total (actual) communication cost in Table 1. Since the numbers
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are dependent on integers (number of parties, size of buckets, and cut and choose parameter), several of
the numbers in the table give far better security than the minimum stated. Note that since we optimise for
the total communication cost and not for the smallest Cut and Choose and Bucketing parameters that
achieve each level of security, in the cost for sec = 64 the number of calls to FMPC.Input is larger than for
sec = 80. The bucket size, correlated with the number of calls to FMPC.Multiply, is therefore is smaller
than for sec = 80.

sec log p k
Comm. (kb)

Total (kb)
Time (ms)

Total(ms)
FpMPC F2k

MPC daBitgen FpMPC F2k

MPC daBitgen

40 128 128 76.60 2.30 6.94 85.84 0.159 < 10ns 0.004 0.163

64 128 128 146.47 7.68 9.39 163.54 0.303 < 10ns 0.010 0.313

80 128 128 192.95 4.60 7.32 204.88 0.485 < 10ns 0.008 0.493
Table 2. 1Gb/s LAN experiments for two-party daBit generation per party. For all cases, the daBit batch has length 8192.

4.1 Share conversion

To reduce the amount of garbling when converting an additive share to a GC one, if we assume the Fp input
to the garbled circuit is bounded by p/2sec, then a uniform r in Fp is 2sec times larger than a so a − r is
statistically-indistinguishable from a uniform element of Fp; consequently, one need only garble a + r and
not a + r mod p, which makes the circuit marginally smaller – 379 AND gates for a 128 bit prime rather
than ≈ 1000 AND gates for an addition mod p circuit.

In Table 3 we split the conversion into two phases: the total cost of generating 127 daBits for doing a
full conversion (including the preprocessing triples from LowGear) and the online phase of SPDZ-BMR.

Comparison to semi-honest conversion. When benchmarked with 40 bit statistical security, the online phase
to convert 1000 field elements of size 32 bits takes 193ms. Our solution benefits from merging multiple
conversions at once due to the SIMD nature of operations and that we can perform a single MAC-Check to
compute the signal bits for the GC. Note that our conversion from an arithmetic SPDZ share to a SPDZ-
BMR GC share takes about 14 times more than the semi-honest arithmetic to an Yao GC conversion in ABY
or Chameleon on an identical computer configuration [RWT+18, DSZ15].

4.2 Multiple class Support Vector Machine

We have benchmarked the online phase of a multi-class Linear SVM (Support Vector Machine) with 100
classes and 128 features over a simulated WAN network with a round-trip ping time of 100ms and 50Mb/s
bandwidth) with two parties. This is the same SVM structure used by Makri et al. [MRSV17] to classify
the Caltech-101 dataset which contains 102 different categories of images such as aeroplanes, dolphins,
helicopters and others [FFFP04].

An SVM is just a simple computation of argmax([[A]][[x]] + [[b]]) (i.e. the index of the first component of
the vector [[A]][[x]] + [[b]] attaining ||[[A]][[x]] + [[b]]||∞) where the where the feature vector [[x]] has length 128,
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Conversion
daBit (total) SPDZ-BMR

Comm. (kbits) Time (ms) ANDs Online (ms)

SPDZ 7→ GC 20769 39.751 379 0.106

GC 7→ SPDZ 10303 19.719 0 0.005

Table 3. Two parties 1Gb/s LAN experiments converting a 63 bit field element with 64 statistical security. BMR online phase times
are amortized over 1000 executions in parallel (single-threaded).

the matrix [[A]] ∈ F102×128
p and vector [[b]] ∈ F102

p . The particular SVM used by Makri et al. has bounded
inputs x where log |x| ≤ 25, a field size log p = 128 and statistical security sec = 64. We chose this
particular circuit because it is easy to see which part has to be done with arithmetic sharing ([[A]] · [[x]] + [[b]])
and which part within GC (argmax).

We have implemented a special instruction in MP-SPDZ which loads a secret integer modulo p (a SPDZ
share) into the SPDZ-BMR machine. To merge all modulo p instructions of SPDZ shares into SPDZ-BMR
to form an universal Virtual Machine requires some extra engineering effort: this is why we chose to bench-
mark in Table 4 the different stages of the online phase: doing [[y]]p ← [[A]][[x]] + [[b]] with SPDZ, then
the conversion instruction on [[y]]2k ← switch([[y]]p), ending with the evaluation stage of SPDZ-BMR on
argmax([[y]]2k). We name this construction Marbled-SPDZ.

The results are given in Table 4, where the sum of the last three columns gives the total time for Marbled-
SPDZ. The online phase using Marbled-SPDZ is more than 10 times faster than SPDZ-BMR and about 10
times faster than SPDZ. The preprocessing effort for the garbling (AND gates) is reduced by a factor of
almost 400 times. Unfortunately, the triple generation effort for SPDZ increases by a factor of 2.6.

Protocol Sub-Protocol
Online cost Preprocessing cost

Comm. rounds Time (ms) Total (ms) Fp triples Fp bits AND gates

SPDZ 54 2661 2661 19015 9797 -

SPDZ-BMR 0 2786 2786 - - 14088217{ SPDZ 1 133
271.73

13056 0 -
Marbled-SPDZ daBit convert 2 137 63546 0 27030

SPDZ-BMR 0 1.73 - - 8383
Table 4. Two-party linear SVM: single-threaded (non-amortized) online phase costs and preprocessing costs with sec = 64.

Instantiating the preprocessing. As described in Section 2, since our method works independently of the
underlying GC scheme we can instantiate it with more efficient garbling protocols such as Wang et al.
[WRK17] or Hazay et al. [HSS17]. To estimate the total communication effort done by Marbled-SPDZ for
the GC part in the preprocessing we used Wang et al. measurements for 40 bit statistical security. In order
to give a fair comparison we also take daBits which are generated with sec = 40 (see Table 2). We also
set the plain online phase of SPDZ to perform comparisons with 40 bit statistical security. Lowering this
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parameter for SPDZ online comparisons also reduces the amount of random shared bits needed, hence a
smaller preprocessing cost.

The online phase masking is done with 25 + 40 daBits instead of 25 + 64 daBits as Table 4. This takes
only 193 AND gates to remove the randomness inside the GC, as opposed to 265 ANDs as in Table 4. We
can see that the total communication done by Marbled-SPDZ when instantiated with WRK garbling is two
times larger than performing plain SPDZ. This seems to be a trade-off that one has to pay in order to have a
constant round protocol in the online phase.

Circuit type Sub-Protocol
Preprocessing protocol (comm.)

Total
LowGear WRK (indep.) WRK (dep.)

SPDZ 49.4 MB - - 49.4 MB

GC - 4917 MB 1768 MB 6685 MB{ SPDZ 24.48 MB - -
108.87 MBMarbled daBit convert 71.13 MB 6.83 MB 2.45 MB

GC - 2.92 MB 1.05 MB
Table 5. Two-party linear SVM communication cost for preprocessing in MBytes and statistical security sec = 40.
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Subprotocol ΠEval
ABB+BMR

Evaluate The parties, holding the output ((g̃i0,0, g̃
i
0,1, g̃

i
1,0, g̃

i
1,1)ni=1)g∈G of FGarble+

BMR , evaluate in the
following way, traversing the circuit in topological order:
1. For each input {[[ai]]p}i∈[t], the parties do the following:

(a) Retrieve from memory the secret mask [[ri]]p produced in Input layer.
(b) Compute the secret [[xi]]p ← [[ai]]p − [[ri]]p.
(c) Call FPrep with input (Open, [[xi]]p, 0).
(d) Denote the corresponding input wires by {wi,j}blog pc−1

j=0 . Bit-decompose the public value xi
and let the bits be {xi,j}blog pc−1

j=0 .
(e) For each j = 0, . . . , blog pc − 1, retrieve from memory the wire mask λwi,j from Input

layer for xi,j and set Λwi,j ← xi,j ⊕ λwi,j .
(f) For each l ∈ [n], Pl sends {klwi,j ,Λwi,j }

blog pc−1
j=0 to all other parties.

2. For every g ∈ G,
(a) If g is an XOR gate,

i. Party Pi computes Λw ← Λu ⊕ Λv.
ii. Party Pi computes all n output keys indexed by j ∈ [n], as kjw,Λw ← kju,Λu ⊕ kjv,Λv .

(b) If g is an AND gate,
i. Each party computes the n keys indexed by j ∈ [n] as

kjw,Λw ← g̃jΛu,Λv ⊕

(
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g||j)

)

and compares its keys kiw,0 and kiw,1 to the ith key obtained to determine the global signal
bit Λw.

3. For every external output wire w,
(a) Retrieve from memory the corresponding public signal bit Λw0 produced in Output layer.
(b) Locally compute Λw′ ← Λw0 ⊕ Λw.
(c) Locally compute the secret output as

[[bw]]p ← Λw′ + [[λw′ ]]p − 2 · Λw′ · [[λw′ ]]p.

4. Send the message (Check, 1) to FPrep.

Fig. 13. Subprotocol ΠEval
ABB+BMR
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A Various Functionalities and Protocols

In Figures 15, 16, 17 and 18 we give some of the standard functionalities and protocols securely realising
them in the UC framework. We omit the proofs as they are standard.

Protocol ΠRand

This protocol is in the FCommit-hybrid model. Let RShuffle(seed, s) denote any deterministic algorithm
that takes a random seed seed and a vector s and outputs a permutation of components of s. Recall κ is
the computational security parameter.

Initialise Parties agree on a session identifier sid and call FCommit with input (Initialise, {0, 1}κ, sid).
Seed This is a subroutine. Parties do the following:

1. For each i ∈ [n], Pi samples seedi
$← {0, 1}κ.

2. For each i ∈ [n], Pi sends the message (Commit, i, seedi, sid) to FCommit and all other parties
send (Commit, i,⊥, sid); all parties receive idseedi in response.

3. All parties call (Open, i, idseedi , sid) to obtain {seedi}i∈[n].
4. Pi sets seed←

⊕n
i=1 seedi.

Random subset To compute a random subset of size t of a set X , parties run Seed to obtain a seed
seed for a PRG and then do the following:
1. Let X = {xi}|X|i=1. Parties set the vector s = (s1, . . . , s|X|) ← (1, . . . , 1, 0, . . . , 0) ∈ {0, 1}|X|,

where the first t bits are set to 1 and the remaining bits set to 0.
2. Each Pi locally computes s′ = (s′1, . . . , s

′
|X|) ← RShuffle(seed, s) and outputs the set S ←

{xi : s′i = 1}.
Random buckets To put a set of items indexed by a set X into buckets of size t where t divides |X|,

parties run Seed to obtain a seed seed for a PRG and then do the following:
1. Let X = {xi}|X|i=1. Each Pi locally computes s′ ← RShuffle(seed, s) where s← (i)

|S|
i=1.

2. For each i = 1 to |S|/t, let Si ← {xs′j : (i− 1) · t < j ≤ i · t}.

Fig. 15. Protocol ΠRand

B SPDZ-BMR PRF Assumption

The non-existence of circular 2-correlation robust PRFs required for using the multiparty FreeXOR tech-
nique would force garbling protocols to garble XOR gates in the same way as AND gates, providing PRFs
under the (supposed) weaker assumption of pseudorandom function under multiple keys exist. These are
defined as follows:
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Functionality FCommit

The functionality keeps track of the current session using a session identifier sid. If a party provides an
input with sid different from what was sent in Initialise, the functionality outputs Reject to all parties
and awaits another message. Recall that κ is the computational security parameter.

Initialise On input (Initialise, X, sid) from all parties where X is a set, initialise a dictionary of values
Val with identifiers Val.Keys.

Commit On input (Commit, i, x, sid) from Pi, or the adversary if Pi is corrupt, and (Commit, i,⊥, sid)

from all other parties, where x ∈ X , choose new identifier idx
$← {0, 1}κ, add idx to Val.Keys, set

Val[idx]← x, and send idx to all parties.
Open On input (Open, i, idx, sid) from all parties where idx ∈ Val.Keys, if Pi is corrupt then await a

message OK or Reject from the adversary. If the message is OK or Pi is honest then send Val[idx]
to all parties and otherwise halt.

Fig. 16. Functionality FCommit

Definition 2. Let F : {0, 1}κ × {0, 1}κ → {0, 1}κ be an efficient, length-preserving, keyed function. We
say that F is a pseudorandom function under multiple keys if for all polynomial time distinguishers D there
exists a negligible function ν such that:∣∣∣Pr[DFk̄(·)(1sec) = 1]− Pr[Df̄(·)(1sec) = 1]

∣∣∣ ≤ ν(κ).

where Fk̄ denotes the tuple (Fk1 , . . . , Fkn) of the pseudorandom function F keyed using k1, . . . , kn and f̄
denotes the tuple (f1, . . . , fn) of random functions {fi : {0, 1}κ → {0, 1}κ}ni=1.

Lindell et al. proved that the SPDZ-BMR technique is secure under this assumption on the PRF.

C Proof of Theorem 2

Proof. We define a simulator in Figure 19. Note that the only secrets to which the simulator is not privy are
the secret inputs of honest parties. Everything else in the protocol involves calls to FPrep which is locally
emulated by the simulator.

We define the hybrids in the same way as in the proof of Theorem 1. Suppose the adversary corrupts
t < n parties in total, indexed by a set A. We define a sequence of hybrid worlds (Hybrid h)n−th=0 and show
that each is indistinguishable from the previous. Hybrid h is defined as:

Hybrid h The simulator has the actual input of n− t− h honest parties and must simulate the remaining h
honest parties towards the adversary.

The simulator is described in Figure 19, parameterised by h.

Claim. The FPrep-hybrid world is indistinguishable from Hybrid 0.
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Protocol ΠCommit

This protocol is in the FRO-hybrid model (ROM). Recall that κ is the computational security parameter.
We write a||b to mean a concatenated with b.

Initialise The parties agree on a session identifier sid and call FRO with input (Initialise, {0, 1}κ, sid).
Commit For Pi to commit to x, the parties do the following:

1. Pi samples r $← {0, 1}κ
2. Pi calls FRO with input (Query, x||r, sid), receives hx in response and broadcasts it.
3. All other parties store hx locally.

Open For Pi to open the commitment to x, the parties do the following:
1. Pi broadcasts x and r.
2. Pj calls FRO with input (Query, x||r, sid) and checks that the response is equal to hx received

during commitment.

Fig. 17. Protocol ΠCommit

Functionality FRO

The functionality keeps track of the current session using a session identifier sid. If a party provides an
input with sid different from what was sent in Initialise, the functionality outputs Reject to all parties
and awaits another message.

Initialise On input (Initialise, X, sid) from all parties, initialise a dictionary of values Val.
Random Element On input (Query, q, sid) from party Pi where q ∈ {0, 1}∗, if Val[q] has not yet been

defined, uniformly sample Val[q]
$← X and send Val[q] to Pi.

Fig. 18. Functionality FRO

Proof. For the emulation of FPrep with sid = 0, the simulation is perfect.
For the emulation of FPrep with sid = 1, there are no private inputs of honest parties to the garbling,

so it only remains to show that the transcript during evaluation reveals nothing about the (honest) parties’
inputs.

In this hybrid, the simulator has access to all honest parties’ inputs, so the simulator follows the protocol
exactly in Evaluate, so the worlds are indistinguishable. �

Claim. Hybrid h is indistinguishable from Hybrid h+ 1 for h = 0, . . . , n− t− 1.

Proof. For the emulation of FPrep with sid = 0 and for the garbling the simulation is still perfect since
honest parties’ inputs are not required.

Indeed, the only call to Input is when when the parties callFPrep during Garble for the PRF evaluations.
The simulator can perform the PRF evaluations locally since the keys and global differences for honest
parties are obtained from the emulation of FPrep.
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Simulator SABB+BMR

Let HR denote the indexing set of the h honest parties whose inputs are known to ShABB+BMR. Initialise
and run an internal copy of FPrep with the adversary, answering every query by executing the code of
FPrep. For simplicity of relaying messages between A and FCABB, we assume sid = 0 for FCABB as
well as the Fp instance of FPrep.

Initialise Initialise a local copy of FPrep and await the inputs (Initialise,Fp, 0) and Initialise,F2k , 1)
from A.

ABB For calls to FPrep with sid = 0:
Input On input (Input, i, id, 0), forward the message to FCABB.
Add On input (Add, idx, idy, id, 0), forward the message to FCABB.
Multiply On input (Multiply, idx, idy, id, 0), forward the message to FCABB.
Output 1. Await a message (Check, 0) from A to FPrep and then await a message (OK, 0) or

(Abort, 0) from A, and if it is (Abort, 0) then ignore all further calls to FPrep with sid = 0
and otherwise continue.

2. On input (Open, 0, id, 0) to FPrep, send the message (Output, id, 0) to FCABB and relay the
response x to A.

3. Await a reply x+ ε from A and the call by A to FPrep with input (Check, 0).
4. Await another message (OK, 0) or (Abort, 0) fromA. If ε = 0 and the message was (OK, 0)

then send OK toFCABB, and otherwise send Abort toFCABB and (Abort, 0) toA and ignore
all further calls to FPrep with sid = 0 and otherwise continue.

Initialise garbling Run Initialise from ΠABB+BMR with A.
Input layer Run Input layer from ΠABB+BMR with A.
Garble Run ΠGarble

ABB+BMR with A.
Output layer Run Output layer from ΠABB+BMR with A.
Open Run Open from ΠABB+BMR with A.
Evaluate Suppose a circuit input x is from an honest party’s input.

1. Send the message (EvaluateCircuit, C, id1, . . . , idt, id, 0) to FCABB.
2. Await the call (Open, 0, [[a− r]]) from A. Then:

– If a is an input dependent on honest parties’ inputs known to ShABB+BMR, retrieve the bits of
the mask r from memory and compute and send x← a− r to the adversary.

– If a is dependent on one or more honest parties’ inputs then sample x← r′
$← Fp and send

it to A.
3. Await a response x+ε and if ε 6= 0 then send (Abort, 0) toA and Abort toFCABB and terminate;

otherwise, continue.
4. Await the calls to FPrep with input (Open, 0, [[kuj ,xj ]]2k , 1)

dlog pe−1
j=0 fromA, where uj is the wire

for the jth input bit xj of x, and respond honestly.
5. The simulator computes what honest parties would compute in the circuit evaluation. If an hon-

est party would have aborted then the simulator sends Abort to FCABB, and otherwise sends OK
and continues.

Fig. 19. Simulator ShABB+BMR
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The only part of the circuit evaluation that may depend on honest parties’ inputs is in Evaluate. Since
the secret masks [[r]]p are constructed from uniformly-sampled bits, by Lemma 1 the distribution of the

uniformly sample r′ $← Fp is statistically close to the distribution of a − r mod p where a is the input of

an honest party and r $← {0, 1}blog pc.
Now since the masking bits are sampled uniformly during the garbling and are unknown to the adversary

(or environment), and the circuit can only be evaluated once, the intermediate wire values and the final bit
(masked) outputs reveal nothing about the initial inputs to the circuit. Indeed, after evaluating the circuit
the parties just have an identifier corresponding to the circuit output, which reveals no information on the
underlying value by definition of the functionality. Thus the environment cannot use the evaluation to dis-
tinguish between the circuit evaluated on the actual value a − r and the circuit evaluated on the sampled
value random r′, even though the parties will obtain an “incorrect” output identifier with high probability.
The simulator easily deals with this by obtaining the output from FCABB and sending this to A, ensuring
that if the evaluation of the garbled circuit did caused an honest party to abort then the interaction with A
and FCABB also abort. �

Since FPrep is secure for t = n− 1, the result follows. ut

D MASCOT and LowGear

Here we provide more data on the communcation complexity of these two protocols benchmarked for fields
Fp and F2k where k = 128, log p > 128, and statistical security sec = 64.

# Parties MASCOT F2k LowGear Fp

Input (bit) Triple Input Triple

2 0.384 360.44 2.048 30.146
3 1.024 1081.32 5.888 89.67
4 1.92 2162.64 11.520 178.572
5 3.072 3604.4 18.94 296.85

Table 6. Communication costs (kbits) for fields with different characteristic.
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