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Abstract

The Winternitz one-time signature (WOTS) scheme, which can be described
using a certain number of so-called “function chains”, plays an important role
in the design of both stateless and stateful many-time signature schemes. This
work introduces WOTSGES, a new WOTS type signature scheme in which the
need for computing all of the intermediate values of the chains is eliminated.
This significantly reduces the number of required operations needed to calculate
the algorithms of WOTSGES. To achieve this results, we have used the con-
cept of “leveled” multilinear maps which is also referred to as graded encoding
schemes. In the context of provable security, we reduce the hardness of graded
discrete-logarithm (GDL) problem to the EU-CMA security of WOTSGES in
the standard model.
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1. Introduction

Multilinear maps are useful tools that provide many applications in cryp-
tography such as one-round multi-party key exchange protocol and broadcast
encryption scheme [6]. The notion of multilinear maps was introduced by Boneh
and Silverberg [6] as an extension of bilinear maps. Different from bilinear maps,
which can be built from pairing of elliptic curves, constructing multilinear maps
was a long-standing open problem. This problem was eventually solved by Garg
et al. [14], who constructed the first approximate construction of multilinear
maps. They introduced the notion of graded encoding scheme as a variant of
multilinear maps, and proposed a candidate construction by using ideal lattices.
This proposed instantiation of graded encoding schemes is called GGH13.
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Graded encoding schemes are one of the most important cryptographic tools,
enabling many important applications, such as functional encryption [27], obfus-
cation [15, 3] and also cryptanalysis of obfuscation [10], witness encryption [16],
multipartite key exchange [14], aggregate signature scheme [19] and so on. In
this paper, we offer another application of graded encoding schemes in signature
schemes.

1.1. Background

Digital signature schemes [5, 9, 11, 1, 21] are useful cryptographic primitives
in practice. They provide many uses for data security in a variety of applications,
including authenticity and non-repudiation, securing software updates, the use
in secure communication protocols SSL/TLS and more.

In one-time digital signature schemes the signer is limited to sign a single
message [25]. These schemes are important cryptographic primitives that used
as the core of the design of many-time digital signature schemes. One-time
signature schemes have other important applications like digital signatures with
forward security property [28, 8], network routing protocols [17] and so on.

So far, several techniques have been presented for constructing one-time
digital signature schemes, one of the most interesting of which is the Winternitz
one-time signature (WOTS) scheme [29]. One-time signature schemes designed
using this technique play important roles in the design of both stateless and
stateful many-time signature schemes [8, 22, 23, 5, 24, 4, 21]. For example, if a
Merkle signature scheme is built using a WOTS type signature scheme, there is
no need to put the public verification key of WOTS scheme in the signature [8].
In addition, in WOTS type signature schemes, it is possible to make a trade-off
between the runtime and the size of signature.

Using the concept of “function chain”, we can give a good description of
WOTS scheme. A function chain, using a function (family), produces a chain
of values starting from a given point. The main idea of WOTS scheme is the
use of a limited number of function chains, all of which begin at some random
values. These values are in fact the private signing key of WOTS scheme. The
public verification key is also the final values of each function chain. Finally,
to calculate the signature, the message is mapped to one intermediate value of
each chain.

1.2. Related work

Along the years, several different versions of WOTS scheme have been pre-
sented for various purposes [29, 18, 12, 7, 20, 24]. The main idea of the WOTS
scheme was first presented in [29]. Using this basic idea, the one-time digital
signature schemes [18, 12] were designed using an undetectable, collision resis-
tant hash function. Afterwards, a WOTS type signature scheme was introduced
that achieve existential unforgeability under adaptive chosen message attacks
(EU-CMA) security using a pseudorandom function family [7].

Under the name WOTS+, Hülsing [20] later introduced a WOTS type signa-
ture scheme based on minimal security requirements i.e. undetectable, second-
preimage resistant, one-way hash functions. In this scheme, using the bitmasks,
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the need for collision resistant hash functions has been resolved. The secu-
rity proof of WOTS+ is tight, which allows the signature size to be reduced
compared to the previous WOTS type signature schemes. Therefore, WOTS+

has been given more attention than previous WOTS type signature schemes.
For example, the one-time signature which is used in the structure of stateless
many-time signature schemes SPHINCS [5] and SPHINCS+ [21] is WOTS+.

The variations of WOTS scheme that have been described so far are all
vulnerable to multi-target attacks. More precisely, if an adversary has several
targets to attack them, then the probability of being able to attack at least
one of them is more than he can attack exactly one. There is another WOTS
type signature scheme which is referred to as WOTS-T [24]. This scheme is
considered as an improved version of WOTS+ that resists against multi-target
attacks. The major difference between WOTS-T and WOTS+, which makes
WOTS-T resistant to multi-target attacks, is that it uses an addressing scheme.
Using this, a new bitmask is produced every time the used hash function is
called.

1.3. Motivation

As discussed above, using the concept of function chain, there exists a good
description of WOTS scheme. Considering this fact, the difference between all
WOTS type signature schemes is in the method that the used function chain
is constructed. In the function chain used in each of the WOTS type signature
schemes [29, 18, 12, 7, 20, 24], a function has been used that must be repeated
a certain number of times in order to generate the intermediate values of the
chains. The total number of production of each intermediate value in the key
generation, signature and verification algorithms of this signature schemes is
two. Thus, reducing the number of required intermediate values, can reduce the
number of operations required for these algorithms.

1.4. Contribution

In this work, we introduce WOTSGES, a new variant of the Winternitz one
time signature scheme in which the need for computing all of the intermediate
values of the chains is eliminated. More precisely, in each of the key genera-
tion, signature and verification algorithms of the proposed signature scheme,
it is necessary to calculate only one intermediate value in each function chain.
This significantly reduces the number of required operations needed to calculate
these algorithms. To achieve this results, we have used the concept of “leveled”
multilinear maps which is also referred to as graded encoding schemes. We also
show how the used graded encoding scheme can be instantiated using GGH13.

Another important part of this work is the tight security proof that we
provide for WOTSGES by giving the exact relation between the graded discrete-
logarithm (GDL) problem and the security of WOTSGES. More formally, we
prove that WOTSGES has EU-CMA security, if the GDL problem is hard.
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1.5. Organization

This paper is organized as follows. Section 2, describes the required tools.
In section 3, we give description of the generic WOTS scheme. In section 4, we
propose W-OTSGES based on graded encoding schemes and its security is dis-
cussed in section 5. In section 6, the instantiation of W-OTSGES using GGH13
is discussed and finally in section 7, we conclude the paper.

2. Preliminaries

Here, we review some basic concepts about multilinear maps, graded encod-
ing schemes and also digital signature schemes. The definitions and concepts
presented in this section are used throughout this paper.

2.1. Multilinear maps

The notion of multilinear maps is defined as follows [6]. For cyclic groups
G1, . . . , Gk and GT of the same prime order q, a k-multilinear map e : G1 ×
· · · ×Gk −→ GT is a map such that:

1. Multilinear: For all g1 ∈ G1, . . . , gk ∈ Gk and a1, . . . , ak ∈ Z∗
q we have

e(ga1
1 , . . . , gak

k ) = e(g1, . . . , gk)
a1...ak .

2. Non-degenerate: If for 1 ≤ i ≤ k, gi ∈ Gi be a generator of the group
Gi, then e(g1, . . . , gk) is a generator of GT .

3. Computable: For all g1 ∈ G1, . . . , gk ∈ Gk, the value e(g1, . . . , gk) is
computed efficiently.

2.2. Graded encoding schemes

Garg et al. [14] defined the notion of k-graded encoding schemes as an
approximation of k-multilinear maps as follows:

Definition 1 (k-graded encoding scheme). Let R be a ring and S = {S(α)
i ⊂

{0, 1}∗
∣∣ 0 ≤ i ≤ k, α ∈ R} be a family of sets such that for each constant in-

dex i, the sets {S(α)
i

∣∣ α ∈ R} are disjoint. Then a k-graded encoding scheme
GES(R,S) with the ring R and the family of sets S consists of the following
procedures:

• InstGen(1λ, k) : The randomized instance-generation procedure takes as in-
put a security parameter λ and also multilinearity parameter k. It outputs
(params, Pzt), where Pzt is a zero-test parameter (as below) and params is
description of the k-graded encoding scheme.

• Samp(params) : The randomized ring sampler procedure outputs a ∈ S
(α)
0

which is a “level-zero encoding”, where α ∈ R is a random and nearly
uniform element.
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• Enc(params, i, a) : The (possibly randomized) encoding procedure takes as

input an index i ≤ k and a “level-zero” encoding a ∈ S
(α)
0 and outputs

u ∈ S
(α)
i which is a “level-i” encoding for the same α ∈ R.

• Add(params, i, u1, u2),Neg(params, i, u1) : On input of params, an index i ≤
k and two level-i encodings u1 ∈ S

(α1)
i and u2 ∈ S

(α2)
i , the addition and

negation procedures compute Add(params, i, u1, u2) = u1 + u2 ∈ S
(α1+α2)
i

and Neg(params, i, u1) = −u1 ∈ S
(−α1)
i , respectively. Here, −α1 and

α1 + α2 are negation and addition in the ring R.

This implies that for a collection of h encodings uj ∈ S
(αj)
i where j =

1, . . . , h, we get u1 + · · ·+ uh ∈ S
(α1+···+αh)
i .

• Mul(params, i1, u1, i2, u2) : On input of params, two indices i1, i2 with i1+

i2 ≤ k, a level-i1 encoding u1 ∈ S
(α1)
i1

and a level-i2 encoding u2 ∈ S
(α2)
i2

,
the multiplication procedure computes Mul(params, i1, u1, i2, u2) = u1 ×
u2 ∈ S

(α1·α2)
i1+i2

, where i1+ i2 is integer addition and α1 ·α2 is multiplication
in the ring R.

This implies that for a collection of h encodings uj ∈ S
(αj)
ij

where j =

1, . . . , h, we get u1 × · · · × uh ∈ S
(
∏h

j=1 αj)

i1+···+ih
as long as

∑h
j=1 ij ≤ k.

• isZero(params, Pzt, u) : On input of params, the zero-test parameter Pzt

and u, the zero-test procedure outputs 1 if u ∈ S
(0)
k and 0 otherwise. In

other words, this procedure only outputs 1 if u be the level-k encoding of
0.

• Ext(params, Pzt, u) : On input of params, the zero-test parameter Pzt and

u ∈ S
(α)
k , the extraction procedure outputs s ∈ {0, 1}λ such that:

a) For every α ∈ R and two level-k encodings u1, u2 ∈ S
(α)
k ,

Ext(params, Pzt, u1) = Ext(params, Pzt, u2). (1)

b) The distribution {Ext(params, Pzt, u)
∣∣ u ∈ S

(α)
k , α ∈ R} over {0, 1}λ

is nearly uniform, where λ is the security parameter.

We now give a more precise description of the above procedures: Garg et al.
proposed GGH13 which is a k-graded encoding scheme over ideal lattices and
is parameterized by the security parameter λ and the multilinearity parameter
k ≤ poly(λ). Their realization of the above procedures has two changes in the
zero-test and extraction procedures as follows:

• Zero-test: This procedure sometime allows false positives, but not false

negatives. More precisely, for every u ∈ S
(0)
k it is hold that isZero(params, u) =

1, but for α ∈ R which is a nearly uniform random element,

Pr[∃ u ∈ S
(α)
k

∣∣ isZero(params, u) = 1] = negl(λ).
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• Extraction: According to the ring sampler and encoding procedures, in
order to get a level-i encoding of a nearly uniform random element α ∈ R
where 1 ≤ i ≤ k, we first run the ring sampler procedure to get a level-
0 encoding of α, and then run the encoding procedure to get a level-i
encoding of α. On the other hand, in the extraction procedure of GGH13,
there is a good probability of generating the same output for any two
different level-k encodings of α.

Thus, the properties a) and b) of the extraction procedure are replaced
by two weaker requirements:

a′) For every a ← Samp(params) where a ∈ S
(α)
0 , if the (randomized)

encoding procedure is run twice on a to obtain two level-k encodings

u1, u2 ∈ S
(α)
k , then:

Pr[Ext(params, Pzt, u1) = Ext(params, Pzt, u2)] ≥ 1− negl(λ).

b′) The following distribution over {0, 1}λ is nearly uniform:

{Ext(params, Pzt, u)
∣∣ a← Samp(params), u← Enc(params, i, a)}.

Remark 1. As explained in the extraction procedure, for every α ∈ R and

two level-k encodings u1, u2 ∈ S
(α)
k , it is hold that Ext(params, Pzt, u1) =

Ext(params, Pzt, u2) ∈ {0, 1}λ (with high probability in the real-life version).
In this paper, for simplicity we work with the dream version of extraction pro-
cedure in which this probability is one. If we want to use the real-life ver-
sion, we must consider the negligible probability that Ext(params, Pzt, u1) ̸=
Ext(params, Pzt, u2). Thus, for every α ∈ R, we write Ext(params, Pzt, S

(α)
k ) to

denote this λ bit string.

Remark 2. A k-graded encoding scheme may be consist of some secret param-
eters (for example, see the description of GGH13 in [13]). Nevertheless, anyone
can use a k-graded encoding scheme without knowing their secret parameters.

Remark 3. We can assume that a level 1 encoding of 1 ∈ R is published as

part of the instance-generation procedure, namely an element y ∈ S
(1)
1 [13].

2.2.1. Graded Discrete-Logarithm (GDL) problem

The analog of discrete logarithm problem in a k-graded encoding scheme

GES(R,S) can be considered as follows: Given a level-i encoding ui ∈ S
(α)
i ,

where 1 ≤ i ≤ k and α ∈ R is a random and nearly uniform element, the

adversary must output a level-j encoding uj ∈ S
(α)
j , where j < i. Here, the

value i is chosen uniformly at random from the interval [1, k].
More formally, the following experiment can be defined between a challenger

C and an adversary B:

Experiment ExpGDL
GES(B, λ):
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1. Based on the multilinearity parameter k and the security parameter λ,
the challenger C runs (params, Pzt) ← InstGen(1λ, k) to get description of
a k-graded encoding scheme.

2. Now, the challenger C firstly runs a ← Samp(params) to get a level-zero

encoding a ∈ S
(α)
0 , where α ∈ R is a random and nearly uniform element.

Then, C runs ui ← Enc(params, i, a) to get a level-i encoding ui ∈ S
(α)
i .

Next, C sends (params, Pzt, ui) to the adversary B.
3. Finally, B outputs a value uj .

4. The output is defined to be 1 iff uj ∈ S
(α)
j and j < i.

The success probability of an adversary B in the experiment ExpGDL
GES(B, λ)

can be defined as follows.

SuccGDL
GES(B, λ) = Pr

[
ExpGDL

GES(B, λ) = 1
]
.

We say that the GDL problem is hard, if for each polynomial time adversary
B running in time ≤ t, SuccGDL

GES(B, λ) is a negligible function of λ. In other
words,

InSecGDL(GES; t, λ) := max
B
{SuccGDL

GES(B, λ)} = negl(λ). (2)

Note that according to the Remark 3, the adversary B can simply get a level-

j′ encoding uj′ ∈ S
(α)
j′ in the above experiment, by running the multiplication

procedure

uj′ := ui × y × · · · × y︸ ︷︷ ︸
j′-i times

∈ S
(α)
j′ , where i < j′.

2.3. Digital signature schemes

Here, we give some required preliminaries about digital signature schemes
and also security of these schemes. In the remainder of the paper, we fix some

notation in order to simplify the explanation: We write x
$← X , if x is chosen

randomly from the set X . We also write log for log2.

Definition 2. Considering a message space M, a digital signature scheme
Dss can be defined using the probabilistic polynomial time (PPT) algorithms
(Kg, Sign,Vf):

1. Key generation algorithm Kg(1n) takes n as the security parameter and
outputs a private signing key sk and a public verification key pk.

2. Signature algorithm Sign(sk,M) takes as input a message M and also the
private signing key sk. Then, if M ∈M, the algorithm outputs a signature
σ for M under sk.

3. Verification algorithm Vf(pk, σ,M) takes as input the message M , the
signature σ and the public verification key pk. The algorithm outputs 1 iff
σ is a valid signature on M under pk.
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In a Dss = (Kg, Sign,Vf), for every sk, pk which are outputs of Kg(1n) and
every M ∈M, the following correctness condition must be satisfied:

Vf(M, Sign(sk,M), pk) = 1

.

2.3.1. EU-CMA security

We now define “existential unforgeability under adaptive chosen message
attacks (EU-CMA)” which is the standard security notion for any digital signa-
ture scheme Dss = (Kg, Sign,Vf). EU-CMA security can be defined using the
following experiment between a challenger C and an adversary A. In the fol-
lowing, we use the notation Dss(1n) for a Dss = (Kg, Sign,Vf) with the security
parameter n.

Experiment ExpEU-CMA
Dss(1n) (A):

1. C runs the key generation algorithm Kg(1n) to generate a key pair (sk, pk)
and sends the public verification key pk to A.

2. Suppose that Sign(sk, ·) be an oracle which for every message M ∈ M,
returns the signature Sign(sk,M). Here, we denote by ASign(sk,·) the oracle
access to Sign(sk, ·) for A. Let also that {(Mi, σi)}qi=1 be the query-answer
pairs of Sign(sk, ·).

3. The adversary then outputs (M⋆, σ⋆).

4. The output of ExpEU-CMA
Dss(1n) (A) is defined to be 1 iff Vf(M⋆, σ⋆, pk) = 1 and

M⋆ /∈ {Mi}qi=1.

We define the success probability of A in the experiment ExpEU-CMA
Dss(1n) (A) as

SuccEU-CMA
Dss(1n) (A) = Pr

[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

Now, we give the definition of EU-CMA security as follows.

Definition 3. Let n, t, q ∈ N and t, q = Poly(n). We say that a signature
scheme Dss = (Kg, Sign,Vf) is EU-CMA-secure, if for all PPT adversaries
ASign(sk,·) running in time at most t and making at most q queries, the max-
imum success probability InSecEU-CMA(Dss(1n); t, q) is a negligible function of
n:

InSecEU-CMA(Dss(1n); t, q) := max
A
{SuccEU-CMA

Dss(1n) (A)} = negl(n). (3)

Note that for any one-time signature (OTS) scheme, the number of oracle
queries of A in the above experiment is restricted to one, i.e. q = 1.
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3. Description of the generic WOTS

Here, we give description of the generic WOTS scheme. Before defining
WOTS, we first recall the definition of function chain.

Definition 4. Let n ∈ N , D and K be the security parameter, domain and key
space, respectively such that the length of every X ∈ D and ck ∈ K be polynomial
in n. A function chain C = (I, E) consists of the following PPT algorithms:

• The initialization algorithm I(1n, λ) takes as input a chain length param-
eter λ ∈ N and also the security parameter n and outputs a public value
ck ∈ K which is called “chain key”.

• The evaluation algorithm E i,jck (X) takes as input a public chain key ck, an
interval i, j ∈ N, 0 ≤ i < j ≤ λ, and a value X ∈ D which is the ith value
of the chain and outputs Y ∈ D, the jth value of the chain.

For every n, λ ∈ N, every ck ∈ K which is output of I(1n, λ), every i, j,m ∈
N such that 0 ≤ i ≤ j ≤ m ≤ λ and every X ∈ D, it must hold that

Ej,mck (E i,jck (X)) = E i,mck (X)

.

We now describe the generic W-OTS using a function chain C = (I, E). This
digital signature is parameterized by

• m : the binary message length.

• n : the security parameter.

• w > 1 : the Winternitz parameter. This parameter determines the time-
memory trade-off.

• l: the number of elements in a W-OTS signature, public verification key
and private signing key, which is computed as

l1 = ⌈ m

log(w)
⌉, l2 = ⌊ log(l1(̇w − 1))

log(w)
⌋+ 1, l = l1 + l2.

Key Generation Algorithm (Kg(1n)): On input of the the security parameter

n, this algorithm chooses the private signing key sk = (sk1, . . . , skl)
$← Dl. Next,

a public chain key ck is obtained using the initialization algorithm I(1n, λ) of
the function chain. Finally, the public verification key pk can be computed as

pk = (pk0, pk1, . . . , pkl) = (ck, E0,w−1
ck (sk1), . . . , E0,w−1

ck (skl)).
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Signature Algorithm (Sign(sk,M)): This algorithm takes as input a message
M ∈ {0, 1}n and the private signing key sk. Firstly, the base w representation
of M is computed, i.e. M = (b1, . . . , bl1) such that bi ∈ {0, . . . , w − 1}. Next,
the checksum

C =

l1∑
i=1

(w − 1− bi)

and also its base w representation C = (bl1+1, . . . , bl) such that bi ∈ {0, . . . , w−
1}, is computed (Note that C ≤ l1(w − 1)). Now, the signature is computed as

σ = (σ1, . . . , σl) = (E0,b1ck (sk1), . . . , E0,blck (skl)).

Verification Algorithm (Vf(pk, σ,M)): This algorithm takes as input the
message M , the signature σ and also the public verification key pk. Firstly, the
bi, 1 ≤ i ≤ l are computed as above. Next, if the following comparison holds,
the verification algorithm returns true and false otherwise:

(pk1, . . . , pkl)
?
= (Eb1,w−1

ck (σ1), . . . , Ebl,w−1
ck (σl)).

4. W-OTSGES

Here, we propose our digital signature scheme W-OTSGES(k,m) based on
a k-graded encoding scheme GES(R,S). As mentioned before, this signature
scheme is a new variant of WOTS scheme. Like other versions of WOTS,
W-OTSGES(k,m) is parameterized by

• m : the binary message length.

• w > 1 : the Winternitz parameter. Here we suppose that w − 1 is equal
to the multilinearity parameter k of the k-graded encoding scheme, i.e.
w − 1 = k.

• l: This parameter is calculated using the parametersm and w, as described
in the previous section.

Please note that according to the Remark 3, we can consider that there is a

level 1 encoding of 1, i.e. 11 ∈ S
(1)
1 . It is assumed that in the pre-computation

phase, the encoding procedure Enc(params, i, 11) is run to obtain the level-i

encoding 1i ∈ S
(1)
i , where 2 ≤ i ≤ k.
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Key Generation Algorithm (Kg(GES)): This algorithm takes as input the
description of the k-graded encoding scheme GES(R,S). Then, the randomized
ring sampler procedure Samp(params) is run to obtain l level-zero encodings

aj ∈ S
(αj)
0 , where α1, . . . , αl ∈ R are random and nearly uniform elements and

1 ≤ j ≤ l. The private signing key sk = (a1, . . . , al) consists of this level-zero
encodings.

Next for 1 ≤ j ≤ l, the key generation algorithm runs the encoding pro-

cedure Enc(params, k, aj) to get l level-k encodings ujk ∈ S
(αj)
k . Finally, the

extraction procedure is run to obtain pkj = Ext(params, Pzt, ujk). Now, the
public verification key pk is defined as pk = (pk1, . . . , pkl).

Signature Algorithm (Sign(sk,M)): This algorithm takes as input a message
M ∈ {0, 1}n and also the private signing key sk = (a1, . . . , al). Firstly, the
base w representation of M is computed, i.e. M = (b1, . . . , bl1) such that bi ∈
{0, . . . , w − 1}. Next, the checksum

C =

l1∑
i=1

(w − 1− bi)

and also its base w representation C = (bl1+1, . . . , bl) such that bi ∈ {0, . . . , w−
1}, is computed. Afterwards for 1 ≤ j ≤ l, the signature algorithm runs the

encoding procedure Enc(params, bj , aj) to get the level-bj encodings ujbj ∈ S
(αj)
bj

.
Now, the signature σ is defined as

σ = (σ1, . . . , σl) = (u1b1 , . . . , ulbl).

Let B = M∥C, then we can conclude from the checksum that if M ′ ̸= M be
any other message, the corresponding B′ consists of at least one b′j < bj , where
1 ≤ j ≤ l.

Verification Algorithm (Vf(pk, σ,M)): This algorithm takes as input the
message M , the signature σ and also the public verification key pk. In this
algorithm for 1 ≤ j ≤ l:

1. Firstly, the bjs are computed as described above.

2. Then, the verification algorithm runs the multiplication procedureMul(params, bj , ujbj , k−
bj , 1k−bj ) to compute the level-k encoding u′jk ∈ S

(αj)
k .

3. Finally, the extraction procedure is run to obtain pk′j = Ext(params, Pzt, u
′
jk).

Now, if the following comparison holds, the verification algorithm returns
true and false otherwise:

(pk1, . . . , pkl)
?
= (pk′1, . . . , pk

′
l).
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5. Security of W-OTSGES

Here, we prove the security of W-OTSGES. We explain how an adversary
for W-OTSGES can be used to define an adversary that is a solver for the
GDL problem. More precisely, we reduce the hardness of GDL problem to the
EU-CMA security of W-OTSGES.

Lemma 1. Let k,m ∈ N. Then, if there is any PPT adversary A who can
break the proposed digital signature scheme W-OTSGES(k,m), then there exists
a PPT adversary B that is a solver for the GDL problem such that

SuccEU-CMA
Dss(1n) (A) ≤ kl · SuccGDL

GES(B, λ). (4)

Proof. Consider a PPT adversary A which acts according to the Exper-
iment ExpEU-CMA

Dss(1n) (A) against the security of W-OTSGES(k,m), such that his

success probability SuccEU-CMA
Dss(1n) (A) = εA is non-negligible. In the rest of the

proof, we will construct an adversary B which acts according to the Experiment
ExpGDL

GES(B, λ) to solve the GDL problem in polynomial time with a non-negligible
success probability SuccGDL

GES(B, λ) = εB and uses A as a sub-routine:

1. Based on the multilinearity parameter k and the security parameter λ, the
challenger of the Experiment ExpGDL

GES(B, λ) (that is C) runs (params, Pzt)←
InstGen(1λ, k) to get an explanation of a k-graded encoding scheme GES(R,S).
Now, the challenger C firstly runs a← Samp(params) to obtain a level-zero

encoding a ∈ S
(α)
0 , where α ∈ R is a random and nearly uniform element.

Then, C runs u ← Enc(params, i, a) to get a level-i encoding ui ∈ S
(α)
i .

Next, C sends (params, Pzt, ui) to the adversary B.
2. Now, B is used as a challenger for A in the Experiment ExpEU-CMA

Dss(1n) (A).
So, B executes the W-OTSGES key generation algorithm Kg(1n) to obtain

a private signing key sk = (a1, . . . , al), where aj ∈ S
(αj)
0 are l level-zero

encodings and α1, . . . , αl ∈ R are random and nearly uniform elements and
also a public verification key pk = (pk1, . . . , pkl). Suppose that (M,σ)
be the query-answer pair of Sign(sk, ·) in the step 2 of the experiment
ExpEU-CMA

Dss(1n) (A) and B = M∥C = (b1, . . . , bl). Let also that (M⋆, σ⋆) be
the output of the adversary A in the step 3 of this experiment and B⋆ =
M⋆∥C⋆ = (b⋆1, . . . , b

⋆
l ). Because of the checksum, the corresponding B⋆ of

the successful forgery (M⋆, σ⋆) must contain at least one b⋆γ < bγ , where
1 ≤ γ ≤ l. More precisely, the γ-th components of σ = (σ1, . . . , σl) and

σ⋆ = (σ⋆
1 , . . . , σ

⋆
l ) i.e. σγ and σ⋆

γ are a level-bγ encoding σγ ∈ S
(αγ)
bγ

and

a level-b⋆γ encoding σ⋆
γ ∈ S

(αγ)
b⋆γ

, respectively, where 1 ≤ γ ≤ l. In the

following, the adversary B tries to conjecture the location of σγ and place

the level-i encoding ui ∈ S
(α)
i there. Hence, he will reply the signature

query and finally extract a level-j encoding uj ∈ S
(α)
j using the successful

forgery σ⋆, where 0 ≤ j < i:
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(a) The adversary B selects the position of a component of the private
signing key sk = (a1, . . . , al) choosing the index 1 ≤ γ′ ≤ l uniformly
at random.

(b) B considers the level-i encoding ui ∈ S
(α)
i challenge as the level-

i encoding of an unknown level-zero encoding a′γ′ . Next, B runs
the multiplication procedure Mul(params, i, ui, k − i, 1k−i) to com-

pute the level-k encoding uk ∈ S
(α)
k . Afterwards, B runs the ex-

traction procedure to compute pk′γ′ = Ext(params, Pzt, u
′
k) Conse-

quently, the manipulated public verification key pk′ is obtained as
pk′ = (pk1, . . . , pk

′
γ′ , . . . , pkl). Note that the private signing key is

also changed as sk = (a1, . . . , a
′
γ′ , . . . , al), where a

′
γ′ is unknown. Now,

B sends the manipulated public verification key pk′ to A (the start
of the Experiment ExpEU-CMA

Dss(1n) (A)).
(c) Note that B only knows the level-j′ encodings uj′ ∈ S

(α)
j′ , where i ≤

j′ ≤ k as he can run the multiplication procedureMul(params, i, ui, j
′−

i, 1j′−i) to compute the level-j′ encoding uj′ ∈ S
(α)
j′ . So, B can only

answer the A’s query M , if i ≤ bγ′ .
(d) Also, the successful forgery (M⋆, σ⋆) is only helpful if b⋆γ′ < i. In this

case, the adversary B announces the level-b⋆γ′ encoding ub⋆
γ′ ∈ S

(α)
b⋆
γ′

as its output (step 3 of the Experiment ExpGDL
GES(B, λ)).

In the following, the success probability of the adversary B is calculated: As
we saw in line 2c, B can only answer the A’s query M , if i ≤ bγ′ . To make
computation of the success probability easier, we only consider a certain success
case, i.e. i = bγ′ . As i was selected randomly with uniform distribution from
the interval [1, k], the case happens with probability k−1.

We also pointed out that the corresponding B⋆ of the successful forgery
(M⋆, σ⋆) must contain at least one b⋆γ < bγ , where 1 ≤ γ ≤ l. This happens for
γ = γ′ with probability l−1 . Thus we have b⋆γ′ < bγ′ .

Consequently, we conclude that b⋆γ′ < i with probability (kl)−1 and there-
fore the condition in line 2d is fulfilled. Hence, the success probability of the
adversary A can be bounded as follows:

εA ≤ kl · εB.

Note that because of the equation 1 of the extraction procedure, changing
the public verification key generation method to place our challenge, does not
change the public verification key. More precisely, if we choose either the key
generation algorithm of W-OTSGES(k,m) or the method which is used in the
proof to produce public verification key, we obtain an equal value for this key.
Thus, the proof is completed.

We now conclude the following theorem using lemma 1:

Theorem 1. Suppose that k,m ∈ N. Then, we can bound the insecurity of
W-OTSGES against an EU-CMA attack by
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InSecEU-CMA(W-OTSGES(k,m); t, 1) ≤ kl · InSecGDL(GES; t′, λ). (5)

with t′ = t+ 5l.
Proof. Firstly note that the equation 5 can be simply derived from equation

4 and also from definitions 2 and 3. The time t′ = t + 5l is also the maximum
runtime required by the adversary A (which behaves according to the definition
3) plus the time required to execute the three algorithms of W-OTSGES once
(follow the proof of lemma 1).

6. Instantiation using GGH13

To use W-OTSGES, graded encoding scheme GES(R,S) must be instan-
tiated. In this section, we discuss how GES(R,S) can be instantiated using
GGH13.

The graded encoding scheme GGH13 is parameterized by λ and also multilin-
earity parameter k ≤ poly(λ). Using these parameters, consider the cyclotomic
ring R = Z

<Xn+1> , in which n = Õ(kλ2) is a power of 2. Also, let that the mod-

ulus q = 2kλ defines the quotient ring Rq = R
qR . Finally, consider the quotient

ring QR = R
I in which I =< g > is a principal prime ideal and g is a secret

short vector drawn from the discrete Gaussian distribution g ← DZn,σ in which

σ = Õ(
√
n). There is also another secret vector z ∈ Rq, that selected uniformly

at random.
In the graded encoding scheme GGH13, the quotient ring QR = R

I plays
the role of ring R in definition 1. More precisely, elements of QR are what are
encoded.

A level-zero encoding of an arbitrary cost r + I ∈ QR is a short vector of
r + I. It can be proved that the size of level-zero encodings is bounded by
λn2 (with high probability) [13]. On the other hand, the private signing key
sk = (a1, . . . , al) of the signature scheme W-OTSGES consists of l level-zero
encodings. Consequently, the size of private signing key sk is bounded by lλn2.

Also, a level-i encoding of a cost r+ I ∈ QR, where 1 ≤ i ≤ k, is a vector of
the form c

zi ∈ Rq in which c ∈ r+ I and ∥c∥ < q
1
8 . Thus, the size of c

zi ∈ Rq is
bounded by qn. On the other hand, we know that the signature σ = (σ1, . . . , σl)
of a given message M using W-OTSGES, consists of l level-i encodings, where
0 ≤ i ≤ k. Therefore, signature σ consists of l level-i encodings which size of
each is at most either λn2 or qn.

Finally, as described in definition 1, the output of the extraction procedure is
a λ bit string. On the other hand, the public verification key pk = (pk1, . . . , pkl)
is made up of l extraction procedure outputs. Thus, the size of the public
verification key is lλ bits.

In [26], GGHLite, an efficient version of GGH13 is presented in which the
size of some parameters has been improved. Thus, instantiating the used graded
encoding scheme of W-OTSGES using GGHLite can improve the efficiency of
W-OTSGES.
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7. Conclusion

Here, we provide a comparison for the number of operations required by the
key generation, signature and verification algorithms of W-OTSGES scheme and
other WOTS scheme variants in the literature [29, 18, 12, 7, 20, 24]. We have
summarized the results in Table 1.

Table 1: Comparison of the computational complexities

Step WOTS schemes [29, 18, 12, 7, 20, 24] proposed scheme

Public verification key generation lk · Tfc l · (Tenc + Text)

Signature algorithm (
∑l

i=1 bi) · Tfc l · Tenc

Verification algorithm (
∑l

i=1(k − bi)) · Tfc l · (Tenc + Text)

In this table, we have assumed that the Winternitz parameter minus one is
equal to the multilinearity parameter k of the used k-graded encoding scheme,
i.e. w − 1 = k. We have also used the following notations to analyze the
complexities of the proposed scheme:

• Tfc: The time required to execute one iteration of the used function chain.

• Tenc: The time required to execute the encoding procedure of the used
k-graded encoding scheme.

• Text: The time required to execute the extraction procedure of the used
k-graded encoding scheme.

From the comparison in the table, we can see that the number of operations
required by the three algorithms of W-OTSGES is less than that of other WOTS
scheme variants in the literature [29, 18, 12, 7, 20, 24].

In [2], the first practical implementation of graded encoding schemes is pre-
sented in which the efficiency of GGHLite has also been improved. Using the
results of this paper, along with the practical implementations of graded encod-
ing schemes, we can obtain an efficient one-time digital signature scheme for
various applications [17, 28, 8].
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