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Abstract

We continue the study of statistical/computational tradeoffs in learning robust classifiers,
following the recent work of Bubeck, Lee, Price and Razenshteyn who showed examples of
classification tasks where (a) an efficient robust classifier exists, in the small-perturbation regime;
(b) a non-robust classifier can be learned efficiently; but (c) it is computationally hard to learn
a robust classifier, assuming the hardness of factoring large numbers. Indeed, the question of
whether a robust classifier for their task exists in the large perturbation regime seems related
to important open questions in computational number theory.

In this work, we extend their work in three directions.
First, we demonstrate classification tasks where computationally efficient robust classification

is impossible, even when computationally unbounded robust classifiers exist. We rely on the
hardness of decoding problems with preprocessing on codes & lattices.

Second, we show hard-to-robustly-learn classification tasks in the large-perturbation regime.
Namely, we show that even though an efficient classifier that is very robust (namely, tolerant to
large perturbations) exists, it is computationally hard to learn any non-trivial robust classifier.
Our first task relies on the existence of one-way functions, a minimal assumption in cryptography,
and the second on the hardness of the learning parity with noise problem. In the latter setting,
not only does a non-robust classifier exist, but also an efficient algorithm that generates fresh
new labeled samples given access to polynomially many training examples (termed as generation
by Kearns et. al. (1994)).

Third, we show that any such counterexample implies the existence of cryptographic prim-
itives such as one-way functions or even forms of public-key encryption. This leads us to a
win-win scenario: either we can quickly learn an efficient robust classifier, or we can construct
new instances of popular and useful cryptographic primitives.
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1 Introduction

The basic task in learning theory is to learn a classifier given a dataset. Namely, given a labeled
dataset {(Xi, f(Xi))}i∈[n] where f is the unknown ground-truth and Xi are drawn i.i.d. from a
distribution D, learn a classifier h so as to (approximately) minimize

δ := P
X∼D

[h(X) 6= f(X)]

Adversarial machine learning is harder in that the learned classifier is required to be robust. Namely,
it has to produce the right answer even under bounded perturbations (under some distance measure)
of the sample X ∼ D. That is, the goal is to learn a classifier h so as to (approximately) minimize

δ := P
X∼D

[∃Y ∈ B(X, ε) s.t. h(Y ) 6= f(Y )]

where B(X, ε) = {Y : d(X,Y ) ≤ ε} and d is the distance measure in question.
Learning robust classifiers is an important question given a large number of attacks against

practical machine learning systems that show how to minimally perturb a sample X so that clas-
sifiers output the wrong prediction with high probability. Such attacks were first discovered in the
context of spam filtering and malware classification [DDS+04, LM05, BR18] and more recently,
following [GSS, SZS+13], in image classification, voice recognition and many other domains.

This state of affairs raises a slew of questions in learning theory. Fix a concept class F and a
distribution D for which efficient (non-robust) learning is possible. Do there exist robust classifiers
for F? Do there exist efficiently computable robust classifiers for F? Pushing the envelope further,
can such classifiers be learned with small sample-complexity? and finally, is the learning algorithm
computationally efficient? The answer to these questions give rise to five possible worlds of robust
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learning, first postulated in two recent works [BPR18] and [BLPR18], henceforth referred to as
BPR and BLPR respectively.1 This is the starting point of our work.

World 1. No robust classifiers exist, regardless of computational or sample-efficiency considera-
tions. [FFF18] show a learning task in this world, namely one where computationally efficient
non-robust classification is possible, no robust classifiers exist. On the other hand, for natural
learning tasks, humans seem to be robust classifiers that tolerate non-zero error rate ε, indeed
even efficient robust classifiers; see [BPR18] for a more detailed discussion.

World 2. Robust classifiers exist, but they are computationally inefficient. We are not aware of
learning tasks that live in this world; indeed, our first result is to demonstrate such a task.

World 3. Computationally efficient robust classifiers exist, but learning them incurs large sample
complexity. [SST+18] show a learning task where a computationally efficient robust classifier
exists, but learning it requires polynomially more samples than non-robust learning. On the
other hand, [BPR18] show that this gap cannot be more than linear in the dimension; see
[BPR18] for a more detailed discussion.

World 4. Computationally efficient robust classifiers exist, and can be learned sample-efficiently,
but training is computationally inefficient. [BLPR18] show a learning task in this world.
However, as we observe below, their computationally efficient robust classifier only recovers
from a very small number (indeed, a constant number) of perturbations. Whether there
exists an efficient robust classifier for their task that recovers from large perturbations seems
related to long-standing open questions in computational number theory [Hen19] [Gre13]. As
our second result, we show two examples of learning tasks that live in this world; more details
in Section 2.

World 5. The best world of all, in which there exist efficient algorithms both for classification and
training, and the sample complexity is small (but it could be that we haven’t discovered the
right algorithm just yet.)

We want to understand – are we likely to find learning tasks such as the ones [BLPR18] and
we demonstrate in the wild? To that end, our third result is a win-win statement: namely,
any such learning task gives rise to a cryptographic object– either a simple one like a one-way
function or a complex one like public-key encryption.

We proceed to describe the three results in more detail.
But before we do so, a word of warning. We and [BLPR18] define these five worlds in a coarse

way using polynomial-time as a proxy for computational efficiency, and a large constant accuracy
as a proxy for successful classification. (We should also mention that [BPR18] use SQ-learning as
a different proxy for computationally efficient learning.) One could be more careful and speak of
running-time/accuracy tradeoffs in the different worlds, but since our goal here is to show broad
counterexamples, we do not attempt to do such a fine-grained distinction.

2 Our Results

We explore the relationship of computational constraints and efficient robust classification. The
setting we consider consists of two distributions D0, D1 and the classifier has to correctly classify

1To be precise, [BPR18] postulated four worlds, namely worlds 1 and 3–5. Subsequent work of [BLPR18] added
the second world.
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inputs from both. We consider the two facets to efficient robust classification: (1) existence: do
efficient robust classifiers exist? (corresponds to World 2) and (2) learnbility: can we learn robust
classifiers efficiently? We show three sets results on which we elaborate below.

2.1 Existence (World 2)

In terms of feasibility, we show that there are learning tasks where while inefficient robust clas-
sification is possible, no efficient robust classifiers exist. That is, we demonstrate learning tasks
in world 2. These results draw from connections between the complexity of decoding linear codes
with preprocessing, where an algorithm given infinite computational resources has to preprocess an
error correcting code to derive a small trapdoor that allows for efficient decoding of the codeword
supplied later. Such problems are known to be NP-hard in the worst case ([BN90]). We assume
hardness of average-case variants of these problems. We can show the following:

Theorem 2.1 (Informal). Assuming the hardness of Learning Parity with Noise with Preprocessing
(or Learning with Errors with Preprocessing) in the “private-key” regime of parameters, there exist
classification tasks where (1) it is easy to learn a non-robust classifier. (2) no efficient robust
classifier exists, even though inefficient robust classifiers exist.

More details are given in Sections 3.3, 5 and 6. We briefly describe the notion of preprocessing
here. The learning parity with noise problem (decisional version) asks to distinguish (A, sTA + e)
from random (A, r) where A ∈ Zn×m2 is a random matrix describing a code and sTA+e is a vector
close to the code. In the preprocessing version of the problem, first in the preprocessing stage, an
inefficient algorithm gets the matrix A to compute any polynomial-sized advice/“trapdoor” that
in the second stage should enable efficiently distinguishing sTA + e from a random vector r in the
space.

2.2 Learnability (World 4)

We want to understand the hardness of learning an efficient robust classifier when it exists. The
starting point of this work was the BLPR work [BLPR18]. They showed that under cryptographic
assumptions, there exists a learning task which admits efficient robust classifiers, but it is com-
putationally infeasible to train such a classifier. More precisely, they showed that there exists a
classification task (over {0, 1}n) where (a) learning any non-trivial robust classifier is computation-
ally infeasible while (b) an efficient robust classifier exists.

Unfortunately, we observe that their robust classifier is efficient only when correcting a constant
number of errors. Indeed, as we explain in Section 3.1, the question of whether there exists a
computationally efficient robust classifier for their task correcting even ω(1) bits of error is an
important open question in computational number theory that has received some attention in the
cryptanalysis community [Gre13, Hen19].

The BPLR construction can be rescued using error correcting codes to enable efficient robust
classifiers robust to large (constant fraction) perturbations. Our results strengthen theirs in two
ways: we can weaken the required cryptographic assumption to that one-way functions exist and
demonstrate tasks where the gap between learning and robust classification is more: in that efficient
learning algorithms can learn to not only classify, but also to generate fresh samples from the
distributions.

Theorem 2.2 (Informal). Under the minimal cryptographic assumption that one-way functions,
there exist classification tasks over {0, 1}m where (1) it is easy to learn a non-robust classifier (2) an
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efficient robust classifier that tolerates m/8-sized perturbations exists, and (3) it is computationally
hard to learn any non-trivial robust classifier.

Theorem 2.3 (Informal). Assuming Learning Parity with Noise (or Learning with Errors) in the
“public-key” regime of parameters, there exist classification tasks on {0, 1}m where (1) it is easy to
learn a non-robust classifier. (2) an efficient robust classifier tolerating O(

√
m)-errors exists, and

(3) it is computationally hard to learn any non-trivial robust classifier.
Furthermore, it is easy to learn generators/evaluators for the non-robust distributions.2

We elaborate on the differences between the two theorems in the techniques section. Briefly,
there are three key differences: Theorem 2.3 requires a stronger assumption, but gives a more
“natural” example where the resulting distributions are “more easier” to learn non-robustly. In
particular, it is easy to learn how to generate fresh samples from the two distributions, something
that the one-way function based example cannot support. This is important because we want
to separate the complexity of learning the distribution from that of robust classification. And
here, these distributions can be learned in a stronger sense while still being hard to classify under
adversarial perturbations.

2.3 A Win-Win Result

Finally, we want to understand – Are we likely to find such learning tasks in the wild? To that
end, we show a converse to our results. Namely,

Theorem 2.4 (Informal). Any computational task where an efficient robust classifier exists, but is
hard to learn one in polynomial time implies one-way functions, and hence symmetric key cryptog-
raphy.

Furthermore, if the learning task satisfies certain natural properties, it gives us (a certain weaker
form of) public-key cryptography as well!

It would be very surprising to us if public-key cryptography (and even one-way functions)
arise out of natural classification tasks on, say, images. Thus, perhaps uncharacteristically for
cryptographers, we offer a possible (optimistic) interpretation of this state of affairs: namely, that
for natural learning tasks where there exists a robust classifer, it can also be efficiently found, we
just haven’t figured out the right algorithm yet.

An important caveat is due here: our definition of hardness of learning a robust classifier
is a strong one: it requires that the perturbing adversary be constructive and universal. Our
classification tasks do satisfy this definition, and that only makes them stronger. On the other
hand, it does make our converse weaker. More details are given in Section 3.

2.4 Related Work.

The works closest to ours are [BPR18, BLPR18]. We discuss them last.

Adversarial Examples. The problem of adversarial classification ws first considered by
[DDS+04]. Starting with [SZS+13], there is a large body of work demonstrating the existence
of small adversarial perturbations in neural networks that cause them to misclassify examples with
high confidence. There have been various approaches proposed against such perturbations and
many of them have been broken (see [CW17, ACW18] and references therein).

2Generators and Evaluators [KMR+94], are algorithms that can sample from the distribution and output the pdf
of the distribution respectively.
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A line of work which [GMF+18, FFF18, MM18] shows that for certain learning tasks and dis-
tributions (eg spheres in Rn or product distributions), due to concentration of measure adversarial
examples exist close to points in the distribution and can at times be found efficiently for classifiers
that are not perfectly correct, pointing to the challenges of robust classification in this setting.
These works show evidence for World 1: that for certain specific models and training algorithms,
robust classifiers don’t exist. In our learning tasks, robust classification is possible, albeit compu-
tationally inefficient.

[SST+18] demonstrate simple classification tasks (distinguishing between high dimensional gaus-
sians) where the sample complexity of robust learning is higher than that of classical learning by
a polynomial factor. Hence they show evidence for world 3. [BPR18] show that this gap is es-
sentially tight. This work is similar in spirit to ours, with the resource being sample complexity
instead of computational complexity in our case. In the case of computational complexity, we can
essentially show exponential gap between the running time required for learning non-robustly vs
learning robust classifiers.

BPR/BLPR [BPR18, BLPR18]. In BPR, they showed two results. First, that in the
world of polynomial sample complexity with no bounds on running time, learning a non-robust
classifier and learning a robust classifer have the comparable sample complexity, if such a robust
classifier exists. Second, they exhibit a learning task where while learning a robust classifier was
information-theoretically easy with polynomial sample complexity, but doing so was difficult in the
SQ model and it required exponentially many queries. This gives rise to a task where learning a
robust classifier in a computationally efficient manner (in the SQ model) was a lot harder than
doing so inefficiently.

In a followup work, BLPR they considered strengthening the second BPR result to show that
under cryptographic assumptions, there exists a learning task which admitted efficient robust classi-
fiers, but it was computationally infeasible to do so. They showed that there exists a classification
task (over {0, 1}n) where learning any non-trivial robust classifier is computationally infeasible
while an efficient robust classifier exists that can correct O(1)-bit error. A description of their
construction is given in Section 3.1 and Appendix A.

3 Our Techniques

In this section, we give a high level description of our techniques. We begin by describing the BLPR
classification task and its limitations. Then we describe two recipes for constructing tasks where
robust classification is computationally intractable. The first recipe assuming the existence of one-
way functions proves Theorem 2.2. sThe second is based on hardness assumptions on decoding
noisy codewords / lattices, namely Learning Parity with Noise (LPN) and Learning with Errors
(LWE) and proves Theorems 2.1 and 2.3 in different parameter regimes.

3.1 The BLPR Classification Task

We sketch the [BLPR18] classification task where it is difficult to learn a robust classifier. A more
detailed description of their construction is given in Appendix A.

The key object in their construction is a “trapdoor pseudorandom generator”. A pseudorandom
generator PRG : {0, 1}n → {0, 1}2n is an expanding function whose outputs are indistinguishable
from truly random strings. That is, {PRG(x) : x← {0, 1}n} ≈c

{
y : y ← {0, 1}2n

}
.3 A trapdoor

3We say that two families of distributions {Xn}n∈N an {Yn}n∈N are computationally indistinguishable (denoted by
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pseudorandom generator has a hard-to-find trapdoor trap that allows distinguishing the output of
the PRG from random outputs. That is, there exists a distinguisher D such that (say),

P
x←{0,1}n

[D(trap,TrapPRG(x)) = 1]− P
y←{0,1}2n

[D(trap, y) = 1] > 0.99

They show that the Blum-Blum-Shub Pseudorandom generator [BBS86] has such a trapdoor. Given
a trapdoor PRG, their learning task D0, D1 is the following:

D0 = {(0,TrapPRG(x)) : x← {0, 1}n} and, D1 =
{

(1, y) : y ← {0, 1}2n
}
.

The first bit enables easy non-robust classification. The fact that there exists an inefficient robust
classifier follows from a volume argument – that the there are a few PRG outputs in a large domain.
This implies that there is an inefficient robust classifier that tolerates O(

√
n)-sized perturbations.

That a robust classifier is hard to learn follows from the perturbing adversary that sets the first
bit to 0. A robust classifier has to distinguish between outputs of the PRG from random strings,
without the trapdoor. This is infeasible by the security guarantee of the PRG.

Finally, what needs to be proved is that the trapdoor enables robust classification. The trapdoor
indeed does enable a robust classifier that tolerates constant-sized pertubations (i.e., if any constant
number of bits are altered) simply by exhaustive search among the polynomially many possible sets
of perturbed bits. For a constant c, the robust classifier given input y goes over all nc words in the
Hamming ball y′ ∈ B(y, c) and checks if the distinguisher D(trap, y′) = 1. If yes, output D0 else
output D1. But this approach does not give a classifier beyond constant-sized errors because the
running time is exponential in the number of errors corrected.

The primary limitation of trapdoor PRGs is that the trapdoor does not enable decoding the
PRG output from the perturbed samples, only distinguishes PRG outputs from random strings.
Indeed, for the Blum-Blum-Shub trapdoor PRG (and related constructions such as the one of
Micali and Schnorr [MS91]) considered in BLPR, the question of whether there is any trapdoor
that permits robust inversion is an open question in computational number theory. We refer the
reader to Appendix A for discussions regarding related questions. To enable efficient decoding,
their construction can be modified by using an error correcting code to make it robust to larger
pertubations.

3.2 From Pseudorandom Functions and Error Correcting Codes

We start by describing the notion of robust classification and hardness of robust classification used.

Definitions. When we state that a robust classifier exists (for given ε), we show the strongest
notion: that there exists a classifier R (efficient or inefficient, as specified) that classifies all input
close to a random sample correctly:

For b ∈ {0, 1}, P
x←Db

[
R(x′) = b for all x′ ∈ B(x, ε)

]
> 0.99 .

When we describe the non-existence (or unlearnability) of robust classification, we satisfy the
strongest notion: that there exists a poly-time perturbation adversary P whose perturbed examples
cannot be classified better than chance by any efficient (or efficiently learned) classifier. That is,
for any efficient R (or R← learnD0,D1(1n)),

P
x←Db

[
R(PD0,D1(x)) = b

]
< 0.5 + negl(n) .

{Xn} ≈c {Yn} or X ≈c Y for brevity) if for every polynomial time distinguisher D, |Px←Xn [D(x)]− Py←Yn [D(y)]| ≤
negl(n).
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See Definition 4.5 for a formal definition. This definition has two key properties: it is constructive
(adversarial perturbations are found) and universal (the same adversary works for all algorithms).

The negation of the robust classification definition suggests the following definition: for effi-
ciently learned classifiers R, Px←Db

[
B(x, ε) 6⊆ R−1(b)

]
< 0.99. This definition is unsatisfying be-

cause it says nothing about the hardness of finding such misclassified examples. In particular, if
such adversarial perturbations existed but were computationally hard to find, then the existence of
adversarial examples is not an issue. Hence, we choose a constructive definition that requires such
examples to be efficiently found. The fact that the adversary is universal only makes the counter
examples stronger.

Classification Task. We construct a learning task where classification is easy, robust classifier
exits, but is hard to learn. The primary ingredients of this construction are pseudorandom functions
and error correcting codes. We introduce both the primitives and build the construction in stages. A
pseudorandom function family (PRF) [GGM86] is a family of keyed functions Fk : {0, 1}n → {0, 1}
where the key k ← {0, 1}n, that are indistinguishable from uniformly random functions to any
polynomial time algorithm. That is, for every poly time algorithm A,

P
k←{0,1}n

[
AFk(1n)

]
≈ P

Un

[
AUn(1n)

]
where Un : {0, 1}n → {0, 1} is a uniformly random function. PRFs can be constructed from one-
way fucntions. Kearns and Valiant [KV94] constructed a hard to learn classification task using
pseudorandom functions as follows:

D0 = (x, Fk(x)) and, D1 = (x, 1− Fk(x))

The task essentially asks to efficiently learn a predictor for the pseudorandom function which is
difficult. To transform this task to one that is hard to learn robustly, while an efficient robust
classifier exists, we use error correcting codes. Recall that an error correcting code has two al-
gorithms (Encode,Decode) where Encode returns a redundant encoding of the message that the
Decode algorithm can efficiently recovers the encoded message even when the encoded codeword is
tampered adversarially to some degree. So, consider the following classification task: distinguish
between error-corrected versions of the PRF:

D0 = Encode(x, Fk(x)) and, D1 = Encode(x, 1− Fk(x)) .

Note that this task has the following properties: (1) A robust classifier exits and, (2) a robust
classifier is hard to learn. For the first property, consider the following robust classifier: the
classifier given the secret key, first decodes the perturbed sample using the Decode algorithm and
then checks if is of the form (x, Fk(x)) or (x, 1−Fk(x)) and outputs which case it is. The robustness
follows from the error correcting code. The fact that no classifier is learnable follows from the fact
that the PRF is hard to predict, and thats exactly what the classifier has to do. Finally, we want
the task to be easy to classify non-robustly. Here we use the “BPR trick” ([BPR18]). That is, we
additionally append to each sample a bit indicating which distribution it was sampled from. That
is,

D0 = (0,Encode(x, Fk(x))) and, D1 = (1,Encode(x, 1− Fk(x))) .

Now the samples are easy to classify non-robustly, simply output the first bit. Learning a robust
classifier is hard, for that, consider the perturbing adversary that erases the first bit. For these
samples, robust classification is identical to predicting the output of the PRF. This is difficult for
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any efficiently learned classifier. Hence, this gives us a task that that is easy to classify, has an
efficient robust classifer and yet, any non-trivial robust classifier is hard to learn.

Note that because we have excellent error correcting codes, this recipe is maximally robust. We
can pick a code that tolerates a constant fraction (14 − ε) errors and still enable correct decryption
[GI01]. This can be further boosted to (12 − ε) by using list decoding instead of unique decoding
and increasing the output size of the PRF to n-bits to make the functions evasive. In this case, the
robust classifier would decode the perturbed sample to generate a list of possible codewords. Out
of these only one would be a legitimate codeword because the output has to be a valid (x, Fk(x))
pair and this is very evasive because of the long PRF outputs. We do not formally write this
construction.

3.3 From Hardness of Decoding under Noise.

This section describes a proof sketch for Theorems 2.1 and 2.3. The problems Learning Parity with
Noise (LPN) and Learning with Errors (LWE) have the following flavor: In both the problems a
random code C (over Z2 in LPN, Zq for a large prime in LWE) is specified by a matrix A:

C = {sTA} or, the dual form C = {y : Ay = 0} .

Then the computaional task is to distinguish a point close to the code from a uniformly random
point in the space. The conjectured hardness of these problems can be used to construct a variety
of cryptographic primitives. In the overview, we will describe the construction with the LPN
assumption. The LWE construction is conceptually identical.

The Classification Task. We begin by describing the classification task and then the rationale.
The task consists of two distributions on samples D0, D1 picked as follows: Pick a random linear
code over Z2, C : {0, 1}n → {0, 1}8n, (described by the generator matrix A or the parity check
matrix H). Then,

D0 = {y : y ← C} and, D1 = {y + 1 : y ← C} .
So, the task is to distinguish codewords of C from their affine shift (1 represents the all-ones
vector). The distributions are easy to classify non-robustly. There exists an inefficient robust
classifier because the distance between the two codes C and C + 1 is large.

To show that a robust classifier is hard to learn, consider the perturbation adversary that adds
random noise of varying size to the two distributions. Learning a robust classifier for this adversary
is equivalent to distinguishing LPN samples from random. Hence any computationally efficient
adversary cannot classify these examples better than chance.

Finally, we need to show that for a certain perturbation regime, no efficient robust classifier
exists while for a different perturbation regime, an efficient robust classifier does exist. The latter
is accomplished by the notion of “trapdoor sampling” where the code is sampled with a trapdoor
that enables decoding noisy codewords (and hence robust classification too).

Below we describe the example in more detail and give a sketch of the arguments needed.
Formal proofs are given in Sections 5 and 6.

LPN Assumption. The LPN hardness assumption states that: for m = poly(n),

(A, sTA + eT ) mod 2 ≈c (A, r) mod 2

where A ← Zn×m2 describes a random code, the secret s ← Zn2 is drawn unifomly at random and
each coordinate of error e ← Ber(r)m drawn from a Bernoulli distribution with error rate r, i.e.,
probability of drawing 1 is r.
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Hardness Regimes and Trapdoors. The key parameter which controls the hardness of LPN
is the distance of the close point from the code in the appropriate norm.4 As the distance increases,
the problem becomes harder. In the case of LPN, this distance is approximately m ·r where r is the
error rate. For most non-trivial parameter settings of the distance parameter, these two problems
are believed to be computationally intractable. That is, an efficient algorithm given a description of
the random code cannot distinguish random points close to the code from random points in the
space.

Along with their conjectured computational hardness, we are interested in another property
of these problems, the existence of a trapdoor : that is, can we sample the code along with some
polynomial-size side information that lets us distinguish efficiently random points from points close
to the code. This information usually is a “short basis” for the dual code. The trapdoor property
has two important regimes: the “public-key” regime and the “private-key” regime. In the case of
LPN, the public-key regime corresponds to error rate r = O(1/

√
n) while the private-key regime

translates to constant error rates, e.g., r = 0.1. The public key regime of parameters enables
construction of advanced cryptographic primitives, including public key encryption. On the other
hand, in the private-key regime, we know constructions of one-way functions and symmetric key
cryptography, but not much more.

Importantly for us, in “public-key” parameter regime, such a trapdoors exists and can be
sampled efficiently. On the other hand, in the private-key regime, it is conjectured that no such
trapdoor exists. Traditionally this problem is studied as the problem of decoding linear codes with
preprocessing (for LPN) and closest vector problem with preprocessing (for LWE). In the problem
of decoding linear codes with preprocessing, an inefficient algorithm Preprocess performs arbitrary
preprocessing on the given linear code (described by the matrix A) and has to come up with a
short polynomial-sized trapdoor for the code. Later the Decode algorithm has to use this trapdoor
to efficiently find the codeword close to a given input. This problem and the closest vector problem
(is the same problem, on lattices instead of codes) are NP-hard to approximate in the worst-case
[BN90, Mic01, Reg04].

We require an average-case variant of the problem termed as the hardness of LPN with Prepro-
cessing. That is, no pair of algorithms (Preprocess,D) exist, where Preprocess can be inefficient but
D is efficient, such that Preprocess(A) outputs a trapdoor trap that enables D to distinguish LPN
samples from random. That is,

P
[
D(trap, sTA + e) = 1

]
− P[D(trap, r) = 1] >

1

p(n)

for some polynomial p where e ← Ber(rhigh)m where rhigh corresponds to constant error rate
(private-key regime). The assumption is stated more formally in Assumption 5.4.

Task Where No Efficient Robust Classifier Exists. With this in mind, we describe our
classification task. It consists of distinguishing between codewords (D0 = {sA}) from an affine
shift of the codewords (D1 = {sA + 1} where 1 is the all-ones vector). That is, for a random
matrix A ∈ Zn×m2 where m = 8n (say),

D0 = {sTA : s ∈ {0, 1}n} and, D1 = {sTA + 1 : s ∈ {0, 1}n}

This classification task is easy without any adversarial perturbations. Given enough samples, a
learning algorithm can recover some basis and use Gaussian elimination to classify. Furthermore,

4The specific norm is not crucial for the discussion below. Hamming is used for LPN while for LWE, the norm is
obtained by embedding Zq in Z as {−bq/2c, . . . 0, 1, . . . bq/2c} and take the `∞ norm on Z.
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these distributions can be learned in a stronger sense: the learning algorithm can learn to generate
fresh samples from the two distributions, an ability termed as “generation” by [KMR+94].

We want to show that efficient robust classification is impossible in the following sense: Consider
the perturbing adversary P that picks a noise vector in {0, 1}m of Hamming weight t and adds it
to the sample.5

P(y) : Output ỹ = y + e where e← Zm2,Ham=0.1m

where Zm2,Ham=t is set of all vectors with hamming weight t. Note that ‖ỹ − y‖ ≤ 0.1m in the
Hamming norm. We want to show that for this perturbing adversary, no efficient robust classifier
exists. We are in the private-key/high error regime with error rate r = 0.1. Observe that the
existence of a robust classifier for P is equivalent to the existence of an efficient distinguisher
between the two distributions D′0 = {P(y) : y ← D0} and D′1 = {P(y) : y ← D1}. This exactly
corresponds to solving LPN with preprocessing: Can the preprocessing algorithm given A output
a trapdoor trap such that the distinguisher D(trap, ·) distinguish between samples from D0 from
random. By the LPN with preprocessing assumption, such a distinguisher does not exist. Hence,
for every efficient distinguisher,

D′0 ≈c {r : r ← {0, 1}m} ≡ {r + 1 : r ← {0, 1}m} ≈c D′1

where the ≈c follows from the LPN with preprocessing assumptions and the ≡ follows from the
definition of the uniform distribution. This implies that no efficient distinguisher can distinguish
between the two perturbed distributions giving us the required task.

Task with an Hard-to-Learn Efficient Robust Classifier. We now turn to the problem of
constructing learning tasks where an efficient robust classifier exists, but is hard to learn. This task
is also similar to the previous task: distinguish codewords from affine shifts.

D0 = {sTA : s ∈ {0, 1}n} and, D1 = {sTA + 1 : s ∈ {0, 1}n}

We want to show that this task exhibits an efficient robust classifier. For that, we need access to a
trapdoor. In the case of LWE, such algorithms are known [GPV08] and proven to be exremely fruit-
ful (see [Pei16] and references therein). This LWE trapdoor is a zero-one matrix T ⊆ {0, 1}m×m−n
over Zq such that AT = 0 (mod q). Because T is a zero-one matrix, given any adversarially per-
turbed sample ỹ = sTA + eT , multiplying by T results in ỹT = eTT which is a vector with small
entries in each coordinate. And this can be checked to distinguish LWE samples from random.

In the case of LPN, we don’t know how to perform such trapdoor sampling: where a uniformly
random matrix A is sampled along with such a trapdoor. Instead we rely on a computational
variant of this. We can sample a matrix H ∈ Zn×8n2 that is indistinguishable from a random matrix
along with such a “short” trapdoor: a matrix E where each row and colum of E has hamming
weight O(

√
m). See Lemma 5.5 for more details. This then allows for a similar construction. The

perturbing adversary P again adds random noise, this time of a lower magnitude though.

P(y) : Output ỹ = y + e where e← Zm2,Ham=0.1
√
m .

Note that earlier, we added 0.1m bits of noise, instead here we are adding 0.1
√
m bits. This

level of noise places the problem in the “public-key” regime of parameters. Furthermore, given

5Note that here we are adding noise of exact Hamming weight 0.1m. This variant of the problem is equivalent to
the standard one with independent Bernoulli error with error rate t/m (see [JKPT12]). The example can easily be
modified to work with the conventional definition of LPN.
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the trapdoor, in this case, we can recover which distribution the unperturbed sample was sampled
from, giving us the required robust classifier. See Section 5 for more details.

Again, it is clear that learning a non-robust classifier is easy. The hardness of LPN assumption
implies that it is hard to learn a robust classifier. This is in contrast to the previous construction
where no efficient robust existed. Here, the trapdoor gives us an efficient robust classifier, but
the hardness of LPN implies that such a classifier is hard to learn. In fact, any efficiently learned
classifier cannot do better than chance.

One thing to note is that this efficient robust classifier is not “maximally robust”, meaning
that while an inefficient robust classifier can tolerate 0.1m bits of noise and still classify correctly,
the efficient classifier can tolerate 0.1

√
m bits of noise. This is similar in the case of LWE as well,

where there is a gap between noise the trapdoor can support (about q/m in the `∞ norm) against
the maximally robust limit (Ω(q)). This is not surprising because decoding random linear codes is
harder than decoding specifically designed codes and hence the trapdoors do not achieve optimal
decoding.

A feature of this construction is that an efficient algorithm can learn to not only distinguish
the samples from distributions D0 and D1, it can easily learn to generate samples from the two
distributions as well.

Comparing Recipes. There are three key differences between the two recipes. The first differ-
ence is in the underlying cryptographic assumption. The second construction can be based on a
weaker assumption: the general assumption that one-way functions exist rather than the specific
assumptions of LWE and LPN.

The second difference is that the distributions based on LWE/LPN facilitate learning in a
stronger sense, that it is possible to sample from the non-robust distributions after seeing polyno-
mially many samples. On the other hand, in the one-way function recipe, we do not learn either
D0 or D1 in that strong sense. In fact, after seeing polynomially many samples, efficient sampling
alorithms have no non-trivial advantage with the one-way function recipe.

The third difference is that of naturalness: we feel that the LWE/LPN recipe gives a more
natural learning task. This is obviously a subjective notion. This learning task of ditinguishing
noisy codewords from random has existed indepdent of the notion of robust classification and
arises naturally in other contexts. Secondly, in the one-way function based example, the hardness
of robust classification is really the hardness of classification because non-robust classification is
made possible by outputting the answer. Such phenomenon do not seem to arise naturally.

3.4 Converse: Cryptography from Hardness of Robust Classification.

In this section, we describe how Theorem 2.4 is proved. The key result we rely on here is that we
can construct one-way functions from any pair of samplable distributions that are statistically far
and computationally indistinguishable.

Theorem 3.1. Given a pair of distributions (X0, X1) ← F over X that are statistically far,
i.e., dTV (X0, X1) > 0.9 and computationally indistinguishable. That is for every polynomial time
adversary A that gets sample access to the distributions,

E
x←X0

A(X0,X1)(x)− E
x←X1

A(X0,X1)(x) < 0.1

Then one-way functions exist.6

6The constants in the equations are fairly arbitrary. We can replace them by any constants α, β where α2 > β
and the result holds.
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In order to construct such distributions, we rely on the learning task (given by (D0, D1)) and
the perturbation adversary P. The distributions we consider are

X0 = {P(x) : x← D0} and, X1 = {P(x) : x← D1} .

Note that because efficient robust classifiers are hard to learn, no efficient algorithm A (that knows
P and gets access to the distributions D0, D1) can distinguish between the two distributions . On
the other hand, because a robust classifier exists, these two distributions are statistically far from
each other. This implies that one-way functions exist.

“Public Key Encryption” Flavor. Furthermore, if the two distributions D0, D1 also support
learning generators, then we can construct the following public key encryption scheme: to encrypt
a bit b, output a sample from Xb. To decrypt, use the efficient robust classifier. This scheme is
secure because the two distrbutions X0, X1 are indistinguishable hence given the encryption, the
bit encrypted is hidden.

Note that while the tasks constructed from LWE and LPN do have the generation property,
the task constructed from one-way functions does not.

4 Definitions

We use lowercase letters for values, uppercase for random variables, uppercase calligraphic letters
(e.g., U) to denote sets, boldface for vectors (e.g., x), and uppercase sans-serif (e.g., A) for algo-
rithms (i.e., Turing Machines). We let poly denote the set all polynomials. A function ν : N→ [0, 1]
is negligible, denoted ν(n) = negl(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n. Given
a random variable X, we write x ← X to indicate that x is selected according to X. Similarly,
given a finite set S, we let s ← S denote that s is selected according to the uniform distribution
on S. For an algorithm A, we denote by x ← A the experiment where x is sampled by feeding
a uniformly random input to A from its input domain. We say that two families of distributions
{Xn}n∈N an {Yn}n∈N are computationally indistinguishable (denoted by {Xn} ≈c {Yn} or X ≈c Y
for brevity) if for every polynomial time distinguisher D,

| P
x←Xn

[D(x)]− P
y←Yn

[D(y)]| ≤ negl(n)

4.1 Learning & Classification

Definition 4.1 (Classification). For a family of classification tasks F over X is easy to classify
if there exists a learning algorithm that given poly(n) i.i.d. samples from a pair of distributions
(D0, D1) ∈ F supported on X , outputs an efficiently computable classifier A : X → {0, 1} such that,

P
X←Db

[A(x) = b] ≥ 0.99

We want to consider other notions of learning distributions as well, in order to make more refined
distinctions between learning distributions. The following definition for learnability of discrete
distributions is from [KMR+94].

Definition 4.2. For a distribution D over a discrete domain X ,

1. Generator. A circuit G : {0, 1}m → X is an ε-good generator for D if

KL(D‖G(U)) ≤ ε

where G(U) denotes the distribution obtained by evaluating G on a uniformly random input.
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2. Evaluator. A circuit E : X → R≥0 is an ε-good evaluator for D if

KL(D‖E) ≤ ε

where E denotes the distribution obtained by sampling with probability density function E.

Definition 4.3. A class of distributions F = {Fn} over a discrete domain X = {Xn} is (ε, δ)-
efficiently learnable with a generator (or evaluator resp.) if there exists a polynomial time algorithm
Gen that given oracle access to any Dn ∈ Fn runs in time poly(n, 1/δ, 1/ε) and outputs G (or E
resp.) such that with probability ≥ 1 − δ over the randomness of Gen and samples, G (E resp.) is
an ε-good generator (evaluator resp.) of D.

In our examples, we seek to find distributions where the gap between ease of learning the actual
distributions and that of the adversarially perturbed distributions is maximized.

4.2 Hardness of Efficient Robust Classification

We start by recalling the notion of robust classification. Then, we consider two ways of formalizing
the difficulty of efficient robust classification: (1) no efficiently computable robust classifier exists,
(2) an efficient robust classifer exists, but it is hard to learn one efficiently.

Definition 4.4. Consider a classification task given by two distributions D0, D1 over X n. Let ‖ · ‖
be a norm over the space X n and ε > 0. Let R : X n → {0, 1} be a classifier. The classifier R is
ε-robust if

P
X←Db

[R(x̃) = b for all x̃ ∈ B(x, ε)] ≥ 0.99

In the definition above, B(x, ε) is all points that are ε distance from x in the given norm. Here,
we will generally be concerned with Hamming distance and the `1 norm.

Definition 4.5 (Hardness of Robust Classification). Consider a family of classification tasks,
defined by two distributions D0, D1 over X n sampled from a distribution over learning tasks Samp.
Let ‖ · ‖ be a norm over the space X n and ε > 0. We consider the following notions of difficulty of
robust classification:

1. No efficient ε-robust classifier exists. There exists a polynomial-sized perturbation al-
gorithm P, such that for every polynomial sized classifier R, the perturbed samples are hard
to classify. That is,

P
[
RD0,D1(x̃) = b

]
≤ 1

2
+ negl(n)

where the perturbed sample x̃ is generated by sampling x← Db for a random b← {0, 1} and
is then perturbing x̃← PD0,D1(x).

2. Efficient ε-robust classifier is hard to learn. There exists a polynomial-sized pertur-
bation algorithm P, such that every polynomial-time learning algorithm learn that outputs a
polynomial sized classifier R, the perturbed samples are hard to classify for R. That is, for
a learning task D0, D1 sampled by Samp and robust classifer R ← learnD0,D1(1n) output by
learn,

P[R(x̃) = b] ≤ 1

2
+ negl(n)

where the perturbed sample x̃ is generated by sampling x← Db for a random b← {0, 1} and
is then perturbing x̃← PD0,D1(x). The probability is over the entire experiment from sampling
the learning tasks to the randomness of the perturbation algorithm and the classifier.
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Discussion. An alternate definition of hard to classify robustly would be the negation of robust
classification. That definition takes a following form:

P
x←Db

[∃x̃ ∈ B(x, ε) such that, R(x̃) 6= b] ≥ 0.5

This definition is unsatisfactory because it does not say anything about how difficult it is to find
such perturbations. In the event when such examples are not efficiently discoverable, we do not
have to worry about these.

In the definitions used, the perturbing adversary is both efficient and universal. Efficiency is a
very natural property to have, in that if the adversarial examples are computationally hard to find,
then they are less of a concern. The universality property says that there is a single perturbation
adversary that succeeds against all efficient classifiers. This is a strong requirement. This makes
our robustly hard to learn tasks better: that they have a unique perturbation adversary that is
independent of which classification algorithm is used. On the other hand, it makes our converse
results constructing one-way functions from hard to learn robust tasks weaker, because they only
hold for such robustly hard to learn tasks, with universal perturbation adversaries.

It is possible to have a perturbation adversary P that is efficient but not universal. The pertur-
bation adversary gets oracle access to the classifier and has to then output a misclassified example.
This is a weaker requirement than Definition 4.5. We do not know if such a definition also implies
cryptography.

5 Learning Parity with Noise

5.1 Assumption Definition and Discussion

Let Zm2,Ham=t denote vectors in Zm2 with Hamming weight exactly t. We will consider Hamming
weight as our norm in this setting.

Definition 5.1 (Learning Parity with Noise Problem (LPN)). For n,m, t ∈ N, an LPN sample is
obtained by sampling a matrix A← Zn×m2 , a secret s← Zn2 , and an error vector ε ∈ Zm2,Ham=t and

outputting (A, sTA + eT ).
We say that an algorithm solves LPNn,m,t if it distinguishes an LPN sample from a random

sample distributed as Zn×m2 × Z1×m
2 .

Assumption 5.2 (Learning Parity with Noise Assumption). The Learning Parity with Noise
(LPN) assumption assumes that for m = poly(n) and t = θ(m/

√
n), the LPN samples are in-

distinguishable from random. That is, for every efficient distinguisher D,∣∣ P
s←Zn2

e←Zm2,Ham=t

[
D(A, sTA + eT ) = 1

]
− P

r←Zm2
[D(A, r) = 1]

∣∣ < negl(n)

This regime of parameters m = poly(n) and t = θ(m/
√
n) is what is traditionally used to

construct public key encryption from the LPN assumption. Next, we consider the LPN problem
with preprocessing: in this variant of the problem, an inefficient algorithm Preprocess is allowed
to process the matrix A arbitrarily to construct a “trapdoor”. Then the distinguisher is asked to
distinguish LPN sample (A, sTA + e) from random. The assumption states that this is difficult
for higher error rates.

Definition 5.3 (LPN with Preprocessing Problem (LPNP)). We say that a pair of algorithms
(Preprocess,D) where Preprocess is possibly inefficient and D is efficient, solves LPNn,m,t if D can
distinguish an LPN sample from a random sample given the trapdoor trap generated by Preprocess(A).
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The Learning Parity with Noise problem is hard even with preprocessing in the constant noise
regime.

Assumption 5.4 (LPN with Preprocessing (LPNP)). Let m = poly(n) and t = r ·m for any con-
stant r. For every pair of algorithms (Preprocess,D) with a possibly inefficient algorithm Preprocess
and efficient D, the following experiment is performed: Sample A ← Zn×m2 and get trap ←
Preprocess(A). Then, the distinguisher D given trap cannot distinguish the LPN samples from
random. That is for large enough n,∣∣∣ P

s←Zn2
e←Zm2,Ham=t

[
D(trap,A, sTA + eT ) = 1

]
− P

r←Zm2
[D(trap,A, r) = 1]

∣∣∣ < negl(n)

where the probability is over the code A, s, e, r and the randomness of the distinguisher D.

Discussion. The most important parameter of the LPN problem is its error rate, that is r = t/m.
The higher the error rate, the more difficult the problem. There are two important regimes of the
error rate: r is a constant and r = o( 1√

n
). When the error rate is a constant, the hardness of LPN in

this regime implies one-way functions and hence symmetric key cryptography. We do not know how
to base public key encryption on error rates in this regime. When the error rate decreases below
O( 1√

n
), we can construct public key encryption from this problem. For error rates below log n/n,

the problem becomes easy. The best known algorithms for solving LPN are due to Blum Kalai
and Wasserman [BKW03] which solves LPN in time 2O(n/ logn) requiring 2O(n/ logn) samples; and
Lyubashevsky [Lyu05] which solves LPN in time 2O(n/ log logn) with polynomially many samples.
For structured LPN samples, more efficient algorithms are known [AG11]. Our error distributions
are not structured.

Note that the lesser used variant of LPN is used here, in that we insist that the Hamming weight
of the error vector is exactly t instead of a random variable. This is equivalent to the standard
formulation [JKPT12].7 This is done for convenience and the example can be translated to the
definition of LPN where the error vector is drawn from a product distribution.

We also consider a the preprocessing variant of Learning Parity with Noise. In this variant, the
adversary is allowed to preprocess the code and generate a small “trapdoor” to the code. Then an
efficient adversary is tasked with distinguishing the LPN samples from random. The preprocessing
variant of LPN assumption states that even this is hard in the constant error regime, that is when
t/m is a constant. It is known that decoding linear codes is NP-hard in the worst case [BN90].
The search analog of LPN is precisely the average-case variant of this question and is conjectured
to be hard in the regime of constant noise rate.

Trapdoor for Efficient Decoding. In the public key regime, we want to show that trapdoors
exist that enable effient distinguishing of LPN samples. We state the result next: that there is a
way to sample a random matrix H that is indistinguishable from a random matrix such that it has
a trapdoor that enables efficient distinguishing.

Lemma 5.5 (Computational Trapdoor Sampling). Consider the following algorithm LPNTrapSamp
such that, LPNTrapSamp on input (n, t) with t = θ(

√
n) does the following:

7In the search version of the problem where the adversary has to find s given A, sTA + eT , these two versions
are equivalent as t takes polynomially many values, hence we can go over all polynomially-many and try solving each
exact version).
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LPNTrapSamp(n, t):

1. Sample A← Zn×m2 , S← Zn×n2 and E ∈ Zn×m2 where e(i,·) ← Zm2,Ham=t.

2. Output H =

[
A

SA + E

]
,E

The algorithm has the following properties:

1. rowspan(E) ⊂ rowspan(H) where rowspan(T) = {sT : s ∈ Zn2}.
2. The matrix H is computationally indistinguishable from uniformly random matries. That is,

{H← LPNTrapSamp(n, t)} ≈c
{
U← Z2n×8n

2

}
3. With overwhelming probability over the randomness of the algorithm, it outputs E such that

every column of E has Hamming weight at most t and every row of E has Hamming weight
exactly t.

The notion of Trapdoor sampling is very widely used in the context of learning with errors
assumption. A trapdoor sampling algorithm samples along with the public matrix A which is
statistically close to a random matrix (representing the code/lattice), a secret “trapdoor”. This
trapdoor enables solving the bounded distance decoding problem, that is given a point close to a
codeword in the code, finds the close codeword. As we know, without this trapdoor, this problem
is conjectured to be hard. But the trapdoor enables solving this problem.

We have a computational analog of that property for LPN in the “public-key” regime of param-
eters. We construct that below. Because E is a sparse matrix, it can be used to solve the problem
of distinguishing LPN samples from random and decoding noisy codewords.

Proof. By definition, rowspan(E) ⊂ rowspan(H) and that each row of E has Hamming weight
exactly t. We need to show that H is indistinguishable from random and that every column of
E has at most t ones. The former follows from the Learning Parity with Noise combined with a
hybrid argument and the latter from a Chernoff bound.

Claim 5.5.1. The output distribution of H is computationally indistinguishable from uniform.
That is,

{H← LPNTrapSamp(n, t)} ≈c
{
U← Z2n×8n

2

}
Proof. Observe that the LPN assumption can be restated as, The LPN assumption assumes that
the following two distributions are indistinguishable:[

A
sTA + eT

]
≈c
{

U : U← Z(n+1)×m
2

}
where s ← Zn2 , A ← Zn×m2 , e ∈ Zm2 is a random vector of Hamming weight t. The claim then
follows by applying a hybrid argument to each of the rows of SA+E and replacing them by random
vectors, by viewing them as s(i,·)A + e(i,·) where s(i,·), e(i,·) denote the i-th row of matrix S and E
and using the LPN assumption.

Claim 5.5.2. Let e(·,j) denote the j-th column of matrix E. Then,

P
E←LPNTrapSamp(n,t)

[
∃j, such that, ‖e(·,j)‖Ham > t

]
< 8n · e−

7t
24 .
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Proof. The proof follows from Chernoff bound and a union bound. For any fixed column j, each
coordinate ei,j = 1 independently with probability t/8n where the probability is over i. Hence, for
any column j, the expected Hamming weight is t

8n · n = t
8 . By a Chernoff bound, we can observe

the following:

P
E←LPNTrapSamp(n,t)

[∑
i

ei,j > t

]
= P

E←LPNTrapSamp(n,t)

[∑
i

ei,j > (1 + 7) · E(
∑
i

ei,j)

]
≤ e−7·

t
8
· 1
3

where the inequality follows from the Chernoff bound in the following form: Let X1, X2, . . . Xn be
independent random variables taking values in {0, 1}. Let X be their sum and µ = EX. For any
δ ≥ 1,

P[X ≥ (1 + δ)µ] ≤ e−
δµ
3 .

A union bound over all j gives us the required bound.

Because t =
√
n, the failure probability is negligible.

5.2 No Efficient Robust Classifier Exists

Next, we describe a learning task where while it is possible to inefficiently perform robust classifi-
cation, no efficient robust classifier exists.

Theorem 5.6. For an n, let m = 8n, t = 2n− 1, ε = 2n. Consider the following learning task. Let
A← Zm×n2 . Define D0, D1 as:

D
(A)
0 =

{
sTA : s← {0, 1}n

}
and, D

(A)
1 =

{
sTA + 1 : s← {0, 1}n

}
.

The learning task has the following properties.

1. (Learnability) A classifier to distinguish D0 from D1 can be learned from the samples effi-
ciently. Furthermore, it is easy to learn a generator/ evaluator for these distributions.

2. (No Efficient Robust Classifier Exists) There exists a perturbation algorithm P such that there
exists no efficient robust classifier R such that,

P
[
R(ỹ) ∈ R−1(b)

]
≥ 0.5 + negl(n)

where the perturbed sample ỹ is generated by sampling y ← Db for a random b and is then
perturbing ỹ ← PD0,D1(y) such that ‖y − ỹ‖ ≤ ε.

Proof. Learnability of this task is trivial. Given enough samples, the entire subspace spanned by
A is learned and can be sampled from.

In order to show that no efficient robust classifier exists for ε = 2n, we rely on the difficulty of
LPN with Preprocessing (Assumption 5.4). Consider the following perturbing adversary P:

P(y) : Output ỹ = y + e where e← Zm2,Ham=t

Consider the following pair of algorithms Preprocess,D: Preprocess(A) inefficiently finds the best
possible efficient robust classifier R and returns that as the trapdoor trap = R. The distinguisher
D simply runs the robust classifier R and returns the answer. It can do this in polynomial time
because R is also polynomial time computable.
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The LPNP assumption implies that for this pair of algorithms (Preprocess,D), LPN is hard to
solve. That is, for A← Zn×m2 ,R← Preprocess(A),∣∣∣ P

s←Zn2
e←Zm2,Ham=t

[
R(A, sTA + eT ) = 1

]
− P

r←Zm2
[R(A, r) = 1]

∣∣∣ < negl(n) (1)

Now a hybrid argument finishes the proof as the following distributions are computationally indis-
tinguishable for R:

(A, sTA + eT ) ≈c (A, r) ≡ (A, r + 1) ≈c (A, sTA + eT + 1)

where the two ≈c statements follow from Eq. (1) and the ≡ follows from the fact that adding any
fixed vector to the uniform distribution still remains uniform.

This completes the argument.

5.3 Efficient Robust Classifier Exists but is Hard to Learn

In this section, we describe a learning task where a robust classifier exists, but it is hard to learn.
Consider the following classification task : Given a matrix H ∈ Z2n×8n

2 , define D0, D1 as:

D
(H)
0 =

{
y ∈ Z8n

2 : Hy = 0 mod 2
}

and, D
(H)
1 =

{
y + 1 ∈ Z8n

2 : Hy = 0 mod 2
}

where both are uniform distributions on the sets and 1 is the all ones vector on 8n dimensions.

Theorem 5.7. For an n, let t = 2b
√
n/6c − 1, such that t is odd. Consider the following learning

task. Let (H,E)← LPNTrapSamp(n, t). Given a matrix H ∈ Z2n×8n
2 , define D0, D1 as:

D
(H)
0 =

{
y ∈ Z8n

2 : Hy = 0 mod 2
}

and, D
(H)
1 =

{
y + 1 ∈ Z8n

2 : Hy = 0 mod 2
}

The learning task has the following properties.

1. (Learnability) A classifier to distinguish D0 from D1 can be learned from the samples effi-
ciently. Furthermore, it is easy to learn a generator/ evaluator for these distributions.

2. (Existence of an Efficient Robust Classifier) There exists an efficient robust classifier R such
that,

P
y←Db

[
B(y, ε) ∈ R−1(b)

]
≥ 0.99

where ε = b
√
nc and B(y, ε) = {y′ : ‖y − y′‖Ham ≤ ε}.

3. (Unlearnability of Robust Classifier) There exists a perturbation algorithm such that no effi-
ciently learned classifier can classify better than chance.

We drop H from the notation to avoid clutter and denote the distributions as D0, D1. Here H
functions as the parity check matrix of the code D0 and D1 is a shift of the code. Observe that
Part (1): distinguishing between D0 and D1 is easily done by Gaussian elimination.

We want to show that (2) a robust classifier exists, and, (3) it is difficult to find any robust
classifier efficiently. We argue this in the subsequent claims.
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Lemma 5.8 (Existence of Robust Classifier). Consider the following robust classifier:

Robust Classifer RE(ỹ):
1. Compute z = Eỹ mod 2.
2. If ‖z‖Ham ≤ n output 0 otherwise, output 1.

Then, the following holds:

P
y←Db

[R(ỹ) = b for all ỹ ∈ B(y, ε)] ≥ 0.99

for ε = b
√
nc and B(y, ε) = {y : ‖ỹ − y‖Ham ≤ ε}.

Proof. The correctness of the robust classifier follows from the fact that E is a sparse matrix where
each column has Hamming weight at most t. Consider the case when y ← D0, the other case is
analogous. Observe that,

ỹ = y + ε mod 2

where ‖ε‖Ham ≤ ε ≤
√
n. Hence,

Eỹ mod 2 = E(y + ε) = Eε (mod 2)

where the second equality follows from the fact that Hy = 0 mod 2 and that rowspan(E) ⊆
rowspan(H). Observe that each column of E has at most t ones and that the Hamming weight of
ε is at most ε. As, Eε =

∑
j:εj=1 e(·,j), we can bound the Hamming weight ‖Eε‖Ham ≤ t‖ε‖Ham ≤

t · ε ≤ n/3. Hence the classifier would always correctly classify adversarially perturbed samples
from D0.

In the other case when b = 1 observe that E ·1 = 1 because each row of E has Hamming weight
t which is odd. Hence the Hamming weight of z is at least 2n− n/3 > n in this case and would be
classified correctly. This proves that a robust classifier exists.

Lemma 5.9 (Hardness of Learning a Robust Classifier). There exists a perturbation algorithm
P such that for every polynomial time learner L, the learner L has no advantage over chance in
classifying examples perturbed by P. That is,

P


H,E← LPNTrapSamp(n, t);

y ← D
(H)
b where b← {0, 1}

ỹ ← PD0,D1(y);
b′ ← LD0,D1(ỹ)

: b = b′

 ≤ 1

2
+ negl(n)

Proof. This proof is identical to the proof of security of Aleknovich’s public key encryption scheme
[Ale03].

Observe that D0, D1 are completely specified by the matrix H. So, the learner gets H instead
of sample access. Consider the following random perturbation algorithm P:

P(y) : Output ỹ = x+ ε, where ε← Zm2,Ham=t

where Zm2,Ham=t is the distribution on vectors of Hamming weight t. This adversary is adding

allowable amount of error as t < ε =
√
n.

Suppose an efficient learner L exists that can succeed in this game with high probability, we can
break the learning parity with noise assumption. This is done in two steps. In the first step, we
replace the parity check matrix H with a uniformly random matrix H′ this should not noticeably
change the success probability because the two distributions are indistinguishable. In the second
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step, now observe that H′ is a uniformly random parity check matrix hence gives rise to a random
code. Now we can apply the LPN assumption again, this time to replace the error ε by a uniformly
random vector and not noticably change the success probability. This is a contradiction.

6 Learning with Errors

6.1 Preliminaries

In this section, we define the learning with errors problem and describe the notion of trapdoor
sampling that it supports. In this section, the norm used is the `∞ norm obtained by embedding
Zq in Z. That is, for vectors x,y ∈ Znq , ‖x − y‖ = maxi |xi − yi| where |z| for z ∈ Zq is obtained
by embedding z ∈ {−bq/2c, . . . ,−1, 0, 1, . . . bq/2c} and taking the absolute value.

Definition 6.1 (Learning with Errors Problem). For n,m ∈ N and modulus q ≥ 1, distribution
for error vectors χ ⊂ Zq, a Learning with Errors (LWE) sample is obtained by sampling s ← Znq ,

A← Zn×mq , e← χm and outputting (A, sTA + eT mod q).
We say that an algorithm solves LWEn,m,q,χ if it distinguishes LWE sample from a random

sample distributed as Zn×mq × Z1×m
q .

Assumption 6.2 (Learning with Errors Assumption). The Learning with Errors (LWE) assump-
tion assumes that for m = poly(n), q = Ω(n3) and χ is truncated discrete gaussian over Zq with
standard deviation q/n2 truncated to q/2n, the LWE samples are indistinguishable from random.
That is, for every efficient distinguisher D,∣∣ P

s←Zn2
e←Zm2,Ham=t

[
D(A, sTA + eT ) = 1

]
− P

r←Zm2
[D(A, r) = 1]

∣∣ < negl(n)

We have written specific versions of the LWE assumption. LWE is conjectured to be hard for
a large setting of parameters. For a discussion on parameters, see [Pei16].

Definition 6.3 (LWE with Preprocessing Problem (LWEP)). We say that a pair of algorithms
(Preprocess,D) where Preprocess is possibly inefficient and D is efficient, solves LWEn,m,t if D can
distinguish an LWE sample from a random sample given the trapdoor trap generated by Preprocess(A).

The Learning Parity with Noise problem is hard even with preprocessing in the constant noise
regime. We state the assumption below formally.

Assumption 6.4 (LWE with Preprocessing (LWEP)). Let m = n log q + 2n, q = n3 and χ is a
discrete Gaussian with standard deviation q/100 truncated to q/10. For every pair of algorithms
(Preprocess,D) with a possibly inefficient algorithm Preprocess and polynomial time D, the following
experiment is performed: Sample A← Zn×m2 and get trap← Preprocess(A). Then, the distinguisher
D given trap cannot distinguish the LPN samples from random. That is,∣∣∣ P

s←Zn2
e←Zm2,Ham=t

[
D(trap,A, sTA + eT ) = 1

]
− P

r←Zm2
[D(trap,A, r) = 1]

∣∣∣ < negl(n)

Definition 6.5 (Lattice Trapdoor). For a matrix A ∈ Zn×mq , we denote by L⊥ the dual lattice of
A composed of all vectors in the kernel of A:

L⊥ = {x ∈ Zm : Ax = 0 mod q}

A trapdoor for A is a short basis for the lattice L⊥(A).
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In the case of LWE, it is known that we can sample matrices A from a distribution statistically
close to uniformly random along with a trapdoor which allows for efficient distinguishing and
recovering the lattice point from a noisy one, for close distances (this is referred to as bounded
distance decoding).

Theorem 6.6 (Trapdoor Sampling [GPV08]). There exists an algorithm TrapSamp such that,
TrapSamp on input (q,m, n) where m ≥ n log q + 2n outputs a pair of matrices (A,T) where

A ∈ Zn×mq , T ∈ Zm×n log q
q , with the following properties:

• AT = 0 mod q.
• The output distribution of A is statistically close to uniform (total variation distance <

2−O(n)).
• T has only zero-one entries.

6.2 No Efficient Robust Classifier Exists

In this section we describe a learning task based on LWE that has no robust classifier. This is
identical to the LPN based task except the noise distribution is set differently.

Theorem 6.7. For any q = n3 and m = n log q + 2n, and χ is a discrete Gaussian with standard
deviation q/100 truncated to q/10. Consider the following learning task. Let A ← Zm×nq . Define
D0, D1 as:

D
(A)
0 =

{
sTA : s← {0, 1}n

}
and, D

(A)
1 =

{
sTA +

q

2
: s← {0, 1}n

}
.

The learning task has the following properties.

1. (Learnability) A classifier to distinguish D0 from D1 can be learned from the samples effi-
ciently. Furthermore, it is easy to learn a generator/ evaluator for these distributions.

2. (No Efficient Robust Classifier Exists) There exists a perturbation algorithm P such that there
exists no efficient robust classifier R such that,

P
[
R(ỹ) ∈ R−1(b)

]
≥ 0.5 + negl(n)

where the perturbed sample ỹ is generated by sampling x ← Db for a random b and is then
perturbing x̃← PD0,D1(x) such that ‖y − ỹ‖ ≤ q/10.

The proof is identical to the LPN case, with the perturbation adversary P instead adding noise
distributed according to χm.

6.3 An Efficient Robust Classifier Exists but is Hard to Learn

We define the classification task (D0, D1) as follows: Given a matrix A ∈ Zn×mq consider distribu-
tions D0 and D1 defined as:

D
(A)
0 =

{
sTA : s ∈ Znq

}
and, D

(A)
1 =

{
sTA +

q

2
· 1T : s ∈ Znq

}
.

where both are uniform distributions on the sets and 1 is the all ones vector on m dimensions. We
drop A from the notation to avoid clutter and denote the distributions as D0, D1.

22



Hence, the task consists of distinguishing lattice vectors from an affine shift of the lattice.
That is, given a vector x ∈ (D0 ∪ D1), classify weather x ∈ D0 or x ∈ D1. Gaussian elimination
accomplishes this task easily. We want to show that (a) a robust classifier exists, and, (b) it is
difficult to find any robust classifier efficiently. We argue this based on the learning with errors
assumption.

At the heart of the construction is the idea of lattice trapdoors. For a matrix A ∈ Zn×mq ,
the trapdoor is a “short” matrix T such that AT = 0 mod q. There are two key properties of
these trapdoors that we leverage: (1) This short matrix allows us to solve the “bounded distance
decoding (BDD)” problem : that is, given a vector close to the lattice, find the closest lattice vector
efficiently. Hence, the trapdoor functions as a robust classifier. Also, we can efficiently sample a
random matrix A together with such a trapdoor. (2) It is hard to find such a trapdoor given the
matrix A, even when it exists, because these trapdoors allow us to solve the Learning with Errors
problem. This allows us to show that the robust classifier is hard to learn.

Theorem 6.8. For any q = n3 and m = n log q + 2n, consider the following learning task. Let
(A,T)← TrapSamp(n,m, q). Given a matrix A ∈ Zn×mq , define D0, D1 as:

D
(A)
0 =

{
sTA : s ∈ Znq

}
and, D

(A)
1 =

{
sTA +

q

2
· 1T : s ∈ Znq

}
.

The learning task has the following properties.

1. (Learnability) A classifier to distinguish D0 from D1 can be learned efficiently.

2. (Existence of Robust Classifier) There exists a robust classifier R such that,

P
y←Db

[
B(y, q/4m) ∈ R−1(b)

]
≥ 0.99

where B(y, ε) = {y′ ∈ Zmq : ‖y − y′‖∞ ≤ ε}.

3. (Unlearnability of Robust Classifier) There exists a perturbation algorithm such that no effi-
ciently learned classifier can classify better than chance.

Lemma 6.9 (Existence of a Robust Classifier). Consider the following robust classifier R:

Robust Classifer RT(ỹ):

1. Compute z = ỹTT mod q.
2. If z ∈

{−q
4 , . . . ,

q
4

}n
output 0 otherwise, output 1.

Then,
P

x←Db
[R(x̃) = b for all x̃ ∈ B(x, q/4m)] ≥ 0.99

Proof. The correctness of the robust classifier follows from the fact that T is a zero-one matrix and
that the errors are bounded in size. Consider the case when y ← D0, the other case is analogous.
Observe that,

ỹ = y + e mod q = sTA + eT mod q

where ‖e‖∞ ≤ q
4m . Hence,

ỹTT mod q = (sTA + eT )T mod q = eTT mod q

As T has only zero-one entries, eTT is bounded over integers with the absolute value of each
coordinate being at most m · ‖e‖∞ ≤ q

4 . This implies that the robust classifier would correctly
output 0 when given perturbed samples from D0.
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In order to show that it is difficult to recover the robust classifier, we rely on the learning with
errors assumption. We consider a perturbation adversary that simply adds random noise to the
sample it receives.

Lemma 6.10 (Hardness of Learning a Robust Classifier). There exists a perturbation algorithm
P such that for every polynomial time learner L, the learner L has no advantage over chance in
classifying examples perturbed by P. That is,

P


A,T← TrapSamp(n,m, p);

x← D
(A)
b where b← {0, 1}

x̃← PD0,D1(x);
b′ ← LD0,D1(x̃)

: b = b′

 ≤ 1

2
+ negl(n)

Proof. Observe that D0, D1 are completely specified by the matrix A and given A can be sampled
efficiently. So, it suffices to give the learner A instead of sample access. Consider the following
random perturbation algorithm P:

P(x) : Output x̃ = x+ e, where e← χm.

So, the experiment above is equivalent to the following:

P

A,T← TrapSamp(n,m, p);
s← Znq , e← χm, b← {0, 1}
b′ ← L(A, sTA + eT + b q2 · 1

T )
: b = b′

 ≤ 1

2
+ negl(n)

The cruical observation is that the learner’s job is to distinguish LWE samples (A, sTA+eT ) from
shifted LWE samples (A, sTA + eT + q

21T ). The LWE assumption implies that this is difficult
because the two distributions are indistinguishable. That is,

(A, sTA + eT ) ≈c (A, rT ) ≈c (A, sTA + eT +
q

2
· 1T )

and hence no efficient adversary L can distinguish between the distribution when b = 0 from when
b = 1. And hence for any efficient adversary, the success probability of classifying these perturbed
instances is negligibly close to a half, as desired.

Hence, we have described a learning task that is learnable, has a robust classifier, but robust
classifiers are computationally hard to learn.

7 Using Pseudorandom Functions and Error Correcting Codes

In this section, we formally describe the hard-to-robustly learn task based on one-way functions.
There are two main ingredients that we use to construct the learning task: Error Correcting Codes
(ECCs) and Pseudorandom Functions (PRFs).

An uniquely decodable binary error correcting code allows encoding messages to redundant
codewords such that from any codeword perturbed to some degree, we can recover the encoded
message.

Definition 7.1 (Uniquely Decodable Error Correcting Code). An uniquely decodable binary error
correcting code, C : {0, 1}n → {0, 1}m consists of two efficient algorithms Encode,Decode. The
code tolerates error fraction e if for all messages x ∈ {0, 1}n,

Decode(ỹ) = x for all ỹ ∈ B(Encode(x), em)

where B(Encode(x), em) denotes the Hamming ball of radius em.
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We know very good error correcting codes.

Theorem 7.2 ([GI01]). For any constant γ > 0, there exists a binary error correcting code C :
{0, 1}n → {0, 1}m where m = O(n/γ3) with a decoding radius of (14 − γ)m with polynomial time
encoding and decoding.

We will use this coding scheme with γ = 1/8 giving us an error correcting code C : {0, 1}n →
{0, 1}m where m = θ(n) and tolerates m/8 errors for unique decoding.

A pseudorandom function is a keyed function Fk : {0, 1}n−1 → {0, 1} where the secret key is
picked uniformly random such that, for every efficient adversary, the output of the function is
indistinguishable from the output of a random function. A more formal definition is given below.
It is known that pseudorandom functions can be constructed from one-way functions.

Definition 7.3 ([GGM86]). A family of polynomial-time computable functions F = {Fn} where
Fn = {Fk : {0, 1}n → {0, 1}} where k ∈ {0, 1}n and n ∈ N is pseudorandom if every polynomial
time computable adversary A cannot distinguish between F and uniformly random function. That
is, ∣∣∣∣ P

k←{0,1}n

[
AFk(1n) = 1

]
− P
Un←Un

[
AUn(1n) = 1

]∣∣∣∣ < negl(n)

where Un is the uniform distribution over all functions from {0, 1}n to {0, 1}.

Theorem 7.4 ([GGM86]). Pseudorandom functions exist if one-way functions exist.

Next, we informally describe the learning task. Consider the following learning task: The two
distributions D0, D1 are parameterized by the PRF key k and defined as follows:

D0 = (0,Encode(x, Fk(x))) and, D1 = (1,Encode(x, 1− Fk(x))) .

So, the two distributions are tuples where the first half is which distribution the sample was taken
from and the second an error correcting code applied to the tuple (x, Fk(x) + b), that is, either the
PRF evaluation at the location x or its complement. Note that without the first bit, classifying
the original distributions is computationally infeasible. The pseudorandom function looks random
at every new location. Including the bit in the sample itself makes the unperturbed classification
task easy. The error correcting code ensures that we have a robust classifier.

Theorem 7.5. Let {Fk} for Fk : {0, 1}n−1 → {0, 1} be a pseudorandom function family and
C : {0, 1}n → {0, 1}m where m = θ(n) be an efficiently decodable error correcting code with decoding
algorithm Decode that tolerates m/8 errors.

Consider the following learning task. For a random pseudorandom function key k, define:

D
(k)
0 =

{
(b, C(x, Fk(x))) : x← {0, 1}n−1

}
and, D

(k)
1 =

{
(b, C(x, 1− Fk(x))) : x← {0, 1}n−1

}
supported on {0, 1}m. The learning task has the following properties.

1. (Easy to Learn) A classifier to distinguish D0 from D1 can be learned from the samples
efficiently.

2. (Robust Classifier Exists) There exists a robust classifier R such that,

P
y←Db

[
B(y,m/8) ∈ R−1(b)

]
≥ 0.99

where m/8 is the decoding radius and B(y, d) = {y′ : ‖y − y′‖Ham ≤ d}.
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3. (A Robust Classifier is hard-to-learn) There exists a perturbation algorithm such that no
efficiently learned classifier can classify perturbed adversarial examples better than chance.

Proof. To prove Part (1) consider the classifier that outputs the first bit. It works correctly on
instances from the distributions. To prove Part (2), we rely on the decoding algorithm. After
d = m/8 edits to the sample, we can recover the underlying message by ignoring the first bit of the
tuple and decoding the rest to get the underlying message of the form (x, c) and then use the PRF
to classify. More formally, consider the following robust classifer:

Robust Classifer Rk(ỹ) where ỹ ∈ {0, 1}m+1:
1. Let (x, c) = Decode(ỹ2:m+1) where ỹ2:m+1 are all of ỹ but the first bit.
2. Output 0 if c = Fk(x) else output 1.

Observe that error correcting code ensures that from every perturbed sample, we efficiently
recover the encoded message. And then because the message is of the form (x, Fk(x) + b) for class
b, this allows for correct classification.

To show Part (3), we rely on the unlearnability of the PRF. Consider a perturbing adversary
that replaces the first bit of the sample by 0. Classification is now equivalent to predicting Fk(x)
given x. Because predicting Fk(x) is computationally infeasible to learn, so is a robust classifier.

Note that, compared to the previous counter-examples, this example does not rely on public
key assumptions. The reason for that is that the samples here are “evasive”. In that there is no
way to generate fresh samples from the two distributions. So, we cannot translate this to a public
key encryption scheme because to encrypt, we need a samples from the distributions D0, D1 along
with the perturbing adversary and we do not have access to these samples.

The hardness of this task comes from the hardness of learning the PRF and not from the
perturbations. This is different from the schemes based on LPN and LWE.

8 Cryptography from Robustly Hard Tasks

In this section, we show that the existence of tasks with a provable gap in classification and robust
classification implies one-way functions and hence a variety of cryptographic primitives that include
pseudorandom functions, symmetric key encryption among others.

Theorem 8.1. Provably hard-to-learn robust classifiers imply one-way functions. Given a learning
task D0, D1 such that,

1. (Robust Classifier Exists) There exists a robust classifier R such that,

P
y←Db

[
B(y, d) ∈ R−1(b)

]
≥ 0.90

where d is the decoding radius and B(y, d) = {y′ : ‖y − y′‖Ham ≤ d}.

2. (A Robust Classifier is hard-to-learn) There exists an efficient perturbing adversary P such
that every efficiently learned classifier L is not a robust classifier. That is, for a learning task
D0, D1 ← Samp(n) and classifier L,

P
[
LD0,D1(x̃) = b

]
≤ 1

2
+ 0.1 .

where the perturbed sample x̃ ∈ B(x, d) is generated by sampling x ← Db for a random b ←
{0, 1} and is then perturbing x̃ ← PD0,D1(x). The probability is over the entire experiment
from sampling the learning tasks to the randomness of the perturbation algorithm and the
classifier.
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Then one-way functions exist.

The proof of this theorem relies on fact that we can construct one-way functions from any two
distributions that are staistically far and computationally close. The two distributions considered
are the perturbed distributions. That is,

D′0 = {P(x) : x← D0} and, D′1 = {P(x) : x← D1}

We show that these two distributions are statistically far and yet computationally indistinguishable
giving one-way functions. They are statistically far because the robust classfier can distinguish
between them. Hence, the total variation distance between the two has to be large. And that they
are computationally close because no efficient algorithm can distinguish between the two. Hence
one way functions exist.

Proof. We formally state the theorem used below.

Theorem 8.2 (Folklore, see e.g., Chap. 3, Ex. 11 [Gol01]). Given a pair of distributions (X0, X1)←
F over X that are statistically far,

dTV (X0, X1) = max
A:X→[0,1]

E
x←X0

A(x)− E
x←X1

A(x) > 0.8

and computationally indistinguishable. That is for every polynomial time adversary A that gets
sample access to the distributions,

E
x←X0

A(X0,X1)(x)− E
x←X1

A(X0,X1)(x) < 0.4

Then one-way functions exist.8

We want to show that these two distributions are statiscally far and computationally close.
This relies on the existence of the robust classifier and the difficultly of learning one respectively.

We start by showing that, dTV (D′0, D
′
1) ≥ 0.8. To observe this, consider the robust classifier as

the distinguisher. This implies that,

dTV ≥ E
x←D′1

[R(x)]− E
x←D′0

[R(x)] ≥ 0.9− 0.1 ≥ 0.8

On the other hand, any efficient distinguisher cannot distinguish between the samples by the
assumption. Hence we are done.

Another reasonable definition, from which we don’t know one-way functions is the following:
there exists a perturbation adversary P that given oracle access to the underlying classifier finds
counter examples. That is, Px←Db

[
R(PR,D0,D1(x)) 6= b

]
≥ 0.4. For this definition, using standard

min-max arguments [Imp95, FS+99, VZ13], we can construct “time-bounded” universal adversaries.
That is, for time T , there exists a perturbation adversary PT running in time poly(T ) that finds
adversarial examples for all adversaries running in time T or less. This is insufficient to imply
one-way functions though.

8The constants in the equations are fairly arbitrary. We can replace them by any constants α, β where α2 > β
and the result holds.
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Public Key Encryption. The two distributions described above have the following public-key
encryption flavor: the robust classifier can serve as the decryption algorithm to distinguish between
samples from the perturbed distributions D′0, D

′
1. If after seeing enough samples, the learning

algorithm can generate fresh samples from the two unperturbed distributions D0, D1 then we also
have an encryption algorithm: to encrypt a bit b, first sample from the distribution Db and run
the perturbation adversary P to generate the encryption of the bit. To decrypt, use the robust
classifier.

There are two key ingredients missing: (1) The encryption algorithm P needs access to fresh
samples from the two distributions to encrypt. There are learning tasks where we do not have access
to these. (2) The ability to sample the robust classifier along with descriptions of the learning tasks.
This might not be feasible, especially when the tasks are not chosen, but supplied by nature.

Acknowledgments. We would like to thank Shafi Goldwasser and Nadia Heninger for discussions
regarding inversion of the (noisy) BBS PRG.
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A A Description of BLPR Example and the Blum-Blum-Shub
PRG.

In this section, we describe the BLPR counter-example and the Blum-Blum-Shub pseudorandom
generator.

We start by defining the notion of a trapdoor pseudorandom generator. A trapdoor pseudoran-
dom generator TrapPRG : {0, 1}n → {0, 1}2n is an expanding function whose outputs are indistin-
guishable from truly random strings. That is, {TrapPRG(x) : x← {0, 1}n} ≈c

{
y : y ← {0, 1}2n

}
.

Furthermore, the function has a trapdoor trap that allows distinguishing the output of the PRG
from random outputs. That is, there exists a distinguisher D that given the trapdoor,

P
x←{0,1}n

[D(trap,TrapPRG(x)) = 1]− P
y←{0,1}2n

[D(trap, y) = 1] > 0.99

Given a trapdoor PRG, the BLPR learning task D0, D1 is the following:

D0 = {(0,TrapPRG(x)) : x← {0, 1}n} and, D1 =
{

(1, y) : y ← {0, 1}2n
}
.

We describe the BBS PRG and its trapdoor property next. The Blum-Blum-Shub pseudoran-
dom generator is defined as follows:
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Consider a number N = pq where p, q are primes congruent to 3 (mod 4). The seed to the
PRG is a random element x0 ∈ ZN . Let hcb be a hardcore bit9 of the function x → x2 (mod N)
(eg parity or the most significant bit).

BBSPRG(x0,m):
1. For i ∈ [1 : m],

(a) Set xi = x2i−1 (mod N).
(b) Set yi = hcb(xi)

2. Output y1, y2, . . . , ym−1, xm.
The trapdoor property BLPR refer to construct the robust classifier is the following one: In

the construction of the PRG, the security does not rely on outputting the last entry (xm) in its
entireity. Though doing so enables the following “trapdoor” property:

Lemma A.1. There exists a distinguisher D that given the factorization of N can distinguish
between the output of the BBSPRG from random strings. That is,

P
x0←ZN

[Dp,q(BBSPRG(x0))]− P
y←{0,1}m

[Dp,q(y)] > 0.99

Proof Sketch. The proof relies on the fact that Rabin’s one way function f(x) = x2 mod N is a
trapdoor function that can be efficiently inverted given the factorization of N . Furthermore, the
inverse returned is the only square root of x2 that is a square itself. Hence the distinguisher does
the following:

D(z):
1. Interpret the input as y1, y2, . . . ym−1, xm.
2. If xm is not a square mod N , output 0.
3. Compute x1, x2, . . . xm−1 as xi = f−1(xi+1).
4. If yi = hcb(xi) for all i, return 1, else return 0.

Observe that the distinguisher always outputs 1 on outputs of the PRG. On the other hand,
when fed a random string, xm is not a square with probability 3/4 and even when it is a square,
the probability of each yi = hcb(xi) is exactly 1/2 independently. Hence the probability that the
distinguisher outputs 1 on a random string is 1

4 · (
1
2)m−1 which is tiny.

Based on this, the BLPR counterexample is the following:

BLPR Counter-Example. Let N = pq where p, q are random n-bit primes of the form 3 (mod 4).
Let m = n2. Define D0, D1 as:

D0 = {(0,BBSPRG(x0)) : x0 ← ZN} and, D1 :
{

(1, z) : z ← {0, 1}m+logN
}

Then, the learning task has the following properties: (1) The distributions are easy to classify non-
robustly. (2) There exists an inefficient robust classifier for ε = θ(

√
n). (3) No efficiently learned

classifier can classify better than chance. (4) Given the factorization of N , there exists an efficient
robust classifier for ε = θ(

√
n).

Properties 1, 2, 3 are true. To the best of our knowledge, 4 is not known to be true. As we
described earlier, we know of robust classifiers for ε = O(1). This leaves us with the following open
questions.

9A function hcb is a hardcore bit of a one-way function f has the following property, that if given y = f(x) for a
random x, hcb(x) is pseudorandom. That is, given any algorithm that given y = f(x) can predict hcb(x), then we
can use this algorithm to invert f with non-negligible probability.
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Open Questions.

1. Given factorization of N , prove that there exists an efficient robust classifier for ε = ω(1)-bits.

2. (Perturbation Adversary 1) Consider the perturbation adversary that erases the first bit and
adds random noise to each bit of the PRG with prob 1/

√
n. Given the factorization a N ,

does there exists an efficient robust classifier for this adversary.

3. (Perturbation Adversary 2) The adversary deletes the last complete entry output by the PRG
(i.e., xm). Given the factorization of N , can we distinguish this PRG from random, when no
other error is added.

Although BBS is a trapdoor PRG, it crucially relies on the fact that xm, the last value is
available completely intact. Without access to this value, BBS is still a PRG but it is not
clear how to do the trapdoor decoding.

As we described earlier, Open Question 3 is a long-standing open question in the computational
number theory community [Hen19, Gre13]. And Open Question 1 is a harder variant of that
question. Finally, Question 2 asks a error correction or decoding question – given the output of a
PRG with random errors, can you recover the original PRG string (even given some trapdoor). We
are not aware of any way in which this factorization actually helps decoding under random noise.
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