
Securing Update Propagation with Homomorphic Hashing

Kevin Lewi, Wonho Kim, Ilya Maykov, Stephen Weis

Facebook

Abstract

In database replication, ensuring consistency when propagating updates is a challenging and
extensively studied problem. However, the problem of securing update propagation against
malicious adversaries has received less attention in the literature. This consideration becomes
especially relevant when sending updates across a large network of untrusted peers.

In this paper we formalize the problem of secure update propagation and propose a system
that allows a centralized distributor to propagate signed updates across a network while adding
minimal overhead to each transaction. We show that our system is secure (in the random
oracle model) against an attacker who can maliciously modify any update and its signature.
Our approach relies on the use of a cryptographic primitive known as homomorphic hashing,
introduced by Bellare, Goldreich, and Goldwasser.

We make our study of secure update propagation concrete with an instantiation of the
lattice-based homomorphic hash LtHash of Bellare and Miccancio. We provide a detailed security
analysis of the collision resistance of LtHash, and we implement LtHash using a selection of
parameters that gives at least 200 bits of security. Our implementation has been deployed to
secure update propagation in production at Facebook, and is included in the Folly open-source
library.

1 Introduction

In the context of distributed systems, database replication refers to the process of copying and
synchronizing data across multiple locations to improve availability and read latency. Database
modifications must be propagated to each location in order to maintain the consistency of the
replicated objects with the master database.

Propagating updates efficiently. In this work, we consider the model in which database writes
are published by a central distributor that manages the master database. This distributor is
responsible for propagating updates to a set of subscribers in a reliable and efficient manner. The
simplest method for publishing updates is for the distributor to be in charge of directly sending the
updates to each subscribed client. In practice, this method does not scale well as the number of
subscribed clients and the rate of updates increases. Handling frequent updates with a centralized
distributor can saturate the distributor’s network interface controller, leaving it unable to fully
distribute an update before a subsequent update is ready to be published.

To efficiently offload the responsibilities of propagating the changes from the distributor to every
subscriber, the system can delegate the update propagation through its clients, so that subscribers
can also participate in forwarding the distributor’s original updates to other subscribers. This

1

approach effectively reduces the number of connections the distributor must manage, without
incurring an unnecessary bandwidth overhead. But now, to ensure consistency, every downstream
subscriber needs to trust a set of intermediate subscribers to have correctly propagated the original
updates from the distributor. The challenge of maintaining the integrity of the distributor’s updates
across a network of untrusted subscribers is what we refer to as the secure update propagation
problem.

1.1 Secure Update Propagation

To address the secure update propagation problem, the distributor can use digital signatures to
assert the authenticity and integrity of the messages it distributes. Concretely, the distributor
generates a public and private key pair, publishes the public key to every subscriber upon joining the
network, and keeps the private key secret. The per-update signatures can then be constructed over
either the contents of the update or the contents of the updated database. These two approaches
offer various efficiency tradeoffs, outlined below.

Approach 1: Signing each update. The most straightforward approach to securely handling
update propagation is for the distributor to directly sign the contents of each update, and send
the update along with its signature to its subscribers. Subscribers can then use the signature to
verify the new content before applying the update to their database replica. While this approach
successfully prevents an attacker from modifying updates maliciously, it also adds complications to
the handling of batch updates and offline database validation:

• Batch updates. When a subscriber needs to update another subscriber with a sequence of
updates, the signatures for each of these updates must be sent and verified individually by the
recipient. This situation can arise after a subscriber has been disconnected from the network
for some period of time and then attempts to rejoin and receive the latest updates. Having
signatures on each update means that if the subscriber missed m updates, it must now verify
m signatures in order to catch up.

• Offline database validation. In offline validation, a subscriber wishes to validate its
database replica against the original copy held by the distributor, without having to reach out
to the distributor. The subscriber performs this validation by scanning the entire database to
perform an integrity check. With an approach in which each update is signed, the subscriber
must validate a signature for every update it received since the original version of the database.

To illustrate the wastefulness of this approach, consider the case in which the first row of the
database holds an integer counter, and each update simply increments this integer by 1. If there are
m such updates, then the batch update and offline database validation operations could involve
m signature validations, even though the complete sequence of transformations trivially updates a
single row of the database.

Typically in these scenarios, it may be more efficient for the subscriber to directly ask the
distributor to re-sign and send an updated database. But in a network where failures are the norm,
this approach quickly devolves to a setup where a large number of subscribers are frequently reaching
out to the distributor for updates, defeating the original purpose of delegating the propagation
responsibilities to subscribers.

2

Approach 2: Signing the database. Instead of relying on a signature which covers the update
contents, an alternative approach is to rely on database signatures. Here, the signature algorithm is
computed over the database contents after each update, rather than on the update itself. When each
subscriber receives the update along with the database signature, they can first apply the update to
the database, and then use the database signature to verify that the updated database is still valid.

Now, when handling batch updates and offline database validation, the subscribers can apply
updates to their database replicas without having to worry about integrity. Once they reach the
final result, they can then perform a single integrity check to verify that their end state matches
the distributor’s end state. In this scenario, each batch operation only requires a single signature
validation as opposed to one for each update. However, the main drawback to directly signing the
database in this manner is that for each update published, the distributor must iterate over the
entire database to produce the signature. Similarly, each subscriber must load the entire database
into memory in order to verify the database signature.

Approach 3: Efficiently updatable hashing. Ideally, we want to take an approach that
provides integrity of updates using a computation that does not depend on the size of the database
or the total number of updates. To address these issues, the distributor can use an efficiently
updatable collision resistant hash function to hash the entire database into a small digest. The
resulting digest would be directly signed, as opposed to having the distributor sign the database
itself. On each update, the “efficiently updatable” property of the hash function guarantees that
the distributor can compute the hash of the updated database using only the hash of the previous
database version and the update. The “collision resistant” property of the hash function, along with
the unforgeability of the signature algorithm, ensures integrity through the sequence of updates.

Merkle trees [Mer87] provide a partial solution to this problem. By associating each database
row with a leaf node of the tree and signing the root hash using the distributor’s signing key, the
distributor can update the database signature in time proportional to the depth of the Merkle
tree (i.e., logarithmic in the database size). However, this improved update and verification
performance can only be attained by subscribers who keep a representation of the entire Merkle
tree in memory—thus requiring memory overhead linear in the number of database rows.

A truly efficient solution would allow the distributor and its subscribers to update the database
hash entirely independently of the size of the database. These requirements are satisfiable through
the use of a cryptographic primitive called homomorphic hashing.

Homomorphic hashing. Bellare, Goldreich, and Goldwasser [BGG94] introduced the concept
of an “incremental” (homomorphic1) hash function to solve the following problem: Given the hash
of an input, along with a small update to the input, how can we compute the hash of the new input
with its update applied, without having to recompute the entire hash from scratch? In a follow-up
work, the authors proposed an application of homomorphic hashing to the use of authentication tags
in virus protection [BGG95]. Subsequently, Bellare and Micciancio introduced a general paradigm
for designing homomorphic hash functions whose collision resistance is based on the hardness of a
certain computational problem in groups [BM97]. Under this paradigm, they instantiated three
constructions: AdHash, MuHash, and LtHash.

1The original name for the property is “incremental” [BGG94, BM97], but subsequent works adopted the term
“homomorphic” [KFM04, MTA17].

3

AdHash initially received the most attention by several works which aimed to implement the con-
struction [SY98, CL99, GSC01], each using a 128-bit or 256-bit modulus. However, Wagner [Wag02]
later showed an attack on the generalized birthday problem which could be used to find collisions
for AdHash on an n-bit modulus in time O(22

√
n), and that the AdHash modulus needs to be greater

than 1600 bits long to provide 80-bit security. Lyubashevsky [Lyu05] and Shallue [Sha08] showed
how to solve the Random Modular Subset Sum problem (essentially equivalent to finding collisions
in AdHash) in time O(2n

ε
) for any ε < 1, which indicates that AdHash requires several more orders

of magnitude larger of a modulus just to provide 80-bit security.
MuHash was also implemented in later works [Bro08, MTA17] using binary elliptic curves.

Although MuHash on binary elliptic curves is quite performant, it requires the use of a special
encoding function and hence the implementation is not straightforward.

1.2 Our Contributions

In this work, we conduct an end-to-end study of the secure update propagation problem, from
theory to practice. In doing so, we make the following contributions:

• We solidify the theoretical foundations of Bellare and Micciancio’s lattice-based homomorphic
hash known as LtHash, giving us stronger confidence in its security, especially in a concrete
setting.

• We define a security model for update propagation and provide a construction based on
homomorphic hash functions.

• We implement LtHash, benchmark it on test hardware, and discuss lessons learned when using
it to secure update propagation in production at Facebook.

Revisiting lattice hashing. Bellare and Micciancio originally defined LtHash on inputs that
could be split up into individually indexed blocks, so that the underlying hash takes as input the
unique index along with the block contents to produce the hash output. This definition was later
generalized to one that takes sets and multisets of bitstrings as input to LtHash [CDvD+03].

In Section 2, we define the set homomorphism and collision resistance properties of a homomorphic
hash function, and in Appendix A we show that LtHash is collision resistant in the random oracle
model through a direct reduction to the hardness of the Short Integer Solutions (SIS) problem.
Prior works have either presented this proof on a specialization of LtHash with indexed blocks as
inputs [BM97], or have indirectly proved collision resistance to a variant of a weighted knapsack
problem with polynomially-large set multiplicities [CDvD+03]. Given the history of AdHash and the
various implementations that instantiated it without fully understanding the security implications,
we believe it is valuable to robustly prove the collision resistance property of LtHash with well-defined
security models. Having these concrete models also helps to facilitate future works that aim to
improve or apply homomorphic hashing to other protocols. For example, in our work, we use
homomorphic hashing to achieve secure update propagation, and the direct proof enables us to
concretely analyze its security.

Update propagation. In Section 3, we introduce a definition and security model for update
propagation, represented by a tuple of five algorithms: Setup, Publish, GetUpdates, ApplyUpdates,

4

and Validate. We show how to apply homomorphic hashing to secure update propagation efficiently,
reducing the total number of signatures which need to be verified in the ApplyUpdates and Validate
procedures without incurring an extra memory overhead (as is the case with Merkle trees). As an
example, consider a database D consisting of three indexed rows:

Row Data

1 “apple”

2 “orange”

3 “banana”

Using || as the string concatenation operation, and + as a special combining operation specific
to LtHash2 (with − being its inverse), we define the hash of D as

LtHash(D) := LtHash(1 || “apple”) + LtHash(2 || “orange”) + LtHash(3 || “banana”).

Now, suppose an update comes along which changes row 2 from “orange” to “peach”, and let D∗
represent the updated database. Instead of having to recompute LtHash(D∗) from scratch, we can
use the existing hash LtHash(D) to get

LtHash(D∗) = LtHash(D) + LtHash(2 || “peach”)− LtHash(2 || “orange”).

By the set homomorphism property of LtHash, the output is guaranteed to be consistent with the
result of directly computing LtHash on D∗. This technique allows us to update the database hash
in time linear in the size of the update, as opposed to linear in the size of the database. Our
construction is also not specific to LtHash, and we expect that further developments or optimizations
to homomorphic hashing will translate to performance improvements for update propagation. In
Section 3.2, we formally define and prove the security of this homomorphic hashing construction for
update propagation.

Our framework is closely modeled after a real-world distributed system at Facebook known
as Location Aware Distribution [Zav18]. Given the ubiquity of database replication in modern
distributed systems, we anticipate that our formal treatment of update propagation will benefit
future implementations that have similar system requirements.

Concrete instantiation. Finally, we instantiated LtHash with a concrete parameter setting (16-
bit modulus with 1024 vector components), which we refer to as lthash16. Borrowing an analysis of
the concrete hardness of the Short Integer Solutions problem [BGLS19], we estimate that lthash16
provides at least 200 bits of security for collision resistance.

We have also included an implementation of LtHash in the Folly open-source library.3 In Section 4,
we discuss several optimizations that help to speed up the modular vector addition operations over
16-bit elements, and show our benchmarks for its performance in terms of wall time.

We deployed lthash16 to secure update propagation within production at Facebook. Although
we have yet to encounter instances of malicious actors attempting to compromise subscribers to
forge updates, the homomorphic hash checks have so far been used to detect bugs, unconsidered
edge cases, and logical inconsistencies which were promptly addressed and fixed. We found that a
slow rollout of lthash16 in a fail-open mode with logging acted as a safe way to prototype these
integrity checks before switching over to a fail-closed and production-ready mode of operation.

2This combining operation is simply component-wise modular vector addition, and is defined formally in Section 2.3.
3This library can be found at https://github.com/facebook/folly

5

1.3 Related Work

The concept of homomorphic hashing originated from the seminal works that founded incremental
cryptography [BGG94, BGG95, BM97] and the constructions known as AdHash, MuHash, and LtHash.
Since then, there have been numerous follow-up works that propose alternative homomorphic hash
functions.

Homomorphic hashing for multiset inputs. Clarke et al. [CDvD+03] extended homomorphic
hashing to handle multiset inputs. They proposed several constructions, some of which require a
secret key to evaluate the hash (and are not relevant in our model or its application to update
propagation). They define the hash function MSet-VAdd-Hash to be a multiset homomorphic collision
resistant hash function. Their construction is the natural extension of LtHash to handling multiset
inputs (by introducing the multiplicity as a linear component to the hash of each unique set element),
and collision resistance is also based on the hardness of the worst-case shortest vector problem.

However, Clarke et al. implicitly require that the modulus of their vector components is of the
same order as the security parameter. In particular, if the multiplicity of any set elements were
allowed to exceed the modulus, this would immediately result in easy-to-find collisions. In our work,
we are mainly focused on set homomorphic hashing as it applies to update propagation (which does
not use multiset inputs), and so we set our modulus for lthash16 to be 216 for efficiency reasons
despite not being able to handle multisets with multiplicities that exceed the modulus. It remains
an open problem to support multiset inputs for small moduli implementations of LtHash.

Elliptic curve multiset hash. Recently, Maitin-Shepard, Tibouchi, and Aranha [MTA17] demon-
strated how to construct a homomorphic (multiset) hash known as Elliptic Curve Multiset Hash
(ECMH). This hash is an instantiation of MuHash with a binary elliptic curve as the output group,
and the collision resistance of ECMH is dependent on the computational complexity of solving
the discrete logarithm problem for binary elliptic curves. The reliance on characteristic 2 in their
construction eliminates the need for expensive field operations that would otherwise dominate
computation time for the hash.

The instantiation of ECMH uses a binary curve variant of Shallue and van de Woestijne’s
encoding function [SvdW06], which involves implementation techniques that are significantly more
sophisticated than those involved in the implementation of LtHash, and seemingly less standardized.
Also, the use of characteristic 2 comes with a potential downside—somewhat recently, new techniques
for computing discrete logarithms in binary elliptic curves have been proposed [Sem15, Kar15, KY15].
Although the attacks remain mostly theoretical, they could potentially affect the parameter settings
and output size of ECMH. Nevertheless, we believe that ECMH could be an attractive option for
other applications that use homomorphic hashing.

SL2 homomorphic hashing. Mullan and Tsaban [MT16] describe a homomorphic hash function
(originally proposed by Tillich and Zémore [TZ94]) with outputs in SL2(q), the group of 2 × 2
matrices of determinant 1 with entries in the finite field Fq. Their construction is a departure from
the randomize-then-combine paradigm, and unlike previous works, the input homomorphism is over
the concatenation of bitstrings in {0, 1}∗, rather than sets of bitstrings. They analyze the collision
resistance property for sufficiently large q through a worst case to average case reduction for their
hash construction, but since their cryptographic assumption remains nonstandard (especially given

6

the context of [CP94, PQTZ09]), the construction is incomparable to the hash algorithms described
above.

LtHash with small parameters. Mihajloska et al. [MGS15] also revisit the use of LtHash for
incremental hashing. However, their recommendations are to use a 64-bit modulus and a total of
2500 to 16000 bits of output from their underlying hash function, with benchmarks for settings of
2688 and 6528 bits of output from the hash. Under a 64-bit modulus, these constraints imply at
most 102 vector components, which we believe is unlikely to yield the purported 128 or 256 bits
of security against collision attacks. Although these numbers may have been suitable if Wagner’s
generalized birthday attack [Wag02] had remained the best attack on LtHash, advances in lattice
reduction techniques (including the BKZ [SE94, CN11] algorithm) suggest that solving the Short
Integer Solutions problem in a dimension-102 lattice may now be well within the range of feasibility.

Other applications. Homomorphic hashing has found applications in several other fields: most
prominently, in efficient file distribution [KFM04, GR06], practical Byzantine fault tolerance [CL99],
and memory integrity checking [CDvD+03]. These applications typically have a space requirement
that renders the use of Merkle trees as a suboptimal solution. However, when space is less of a
concern, using Merkle trees can be advantageous because they offer inclusion and exclusion proofs.

Specifically, it is possible to offer a short witness of inclusion (or exclusion) of an element
as being part of (or not part of) a Merkle tree hash, to which an owner of the root tree hash
can efficiently verify. This property is not present in any of the existing homomorphic hash
constructions, and makes Merkle trees an attractive option for blockchains, verifiable logs like
Certificate Transparency [LLK13, Lau14], and Apache Cassandra’s incremental repair feature [Dej].

1.4 Notation

For n ∈ N, we write [n] to represent the set {1, . . . , n}. We use P(S) to represent the powerset of
a set S. We use {0, 1}∗ to represent the set of all bitstrings of arbitrary length. For a set S, we

write x
r←− S to represent a uniformly random sampling of an element x in S. We use λ to denote

the security parameter. We say that a function is negligible in λ if f = o(1/λc) for all c ∈ N. An
algorithm or adversary is efficient if it runs in time polynomial in the security parameter λ.

2 Set Homomorphic Hashing

A hash function produces a fixed-length output from an arbitrary-length input, and is said to be
collision resistant if it is computationally infeasible to find two distinct inputs which hash to the
same output. Collision resistant hash functions have served as not only a fundamental building block
of cryptographic primitives, but are also ubiquitous among applications in the handling of large
amounts of data efficiently. In this section, we provide the formal definition of a set homomorphic
collision resistant hash function, which is a generalization of incremental hashing as defined by
Bellare, Goldreich, and Goldwasser [BGG94]. We then discuss the collision resistance of LtHash and
analyze its concrete security for a specific set of parameters.

7

2.1 Definition

A set homomorphic hash function H : P({0, 1}∗)→ G is defined as transforming a set of input bit-
strings in {0, 1}∗ to elements of a commutative group (G, ◦) with two properties: set homomorphism
and collision resistance.

Set Homomorphism. We say that the function H is set homomorphic for a commutative group
(G, ◦) if for any two disjoint sets S, T ∈ P({0, 1}∗), we have that

H(S ∪ T) = H(S) ◦ H(T).

Collision Resistance. We say that H is collision resistant if a computationally bounded adversary
A cannot produce two input sets S, T ∈ P({0, 1}∗) such that S 6= T and H(S) = H(T) with non-
negligible probability. Note that this is simply the standard definition of collision resistance applied
to the function H.

We also define the collision resistance property within the random oracle model, as we will
be modeling our underlying hash function as a random oracle. We write H(O) to represent the
algorithm H having access to the random oracle O. This notation will only appear when formally
defining and proving the collision resistance property within the random oracle model.

Definition 2.1 (ExptROcr). For a security parameter λ and an efficient adversary A, we define the
experiment ExptROcr (H,A) for H, in the presence of a random oracle O controlled by the challenger,
as follows:

1. The adversary A first submits to the challenger an integer m representing the maximum
number of unique random oracle queries that A will make.

2. Then, A can adaptively make up to m unique random oracle queries to the challenger. For
each i ∈ [m], when the adversary submits the input xi ∈ {0, 1}∗, the challenger responds with
O(xi).

3. Eventually, A must output two distinct sets S, T ∈ P({0, 1}∗). The output of the experiment
is 1 if H(O)(S) = H(O)(T). Otherwise, the output of the experiment is 0.

The advantage of an adversary A for H in ExptROcr is defined as

AdvROcr (H,A) := Pr[ExptROcr (A) = 1].

We say that H is collision resistant in the random oracle model if for all efficient adversaries A,
AdvROcr (H,A) is negligible in λ.

Multisets. In this work, we define homomorphic hashing with respect to sets of unique elements
and not multisets, since the application to update propagation does not need to support multisets.
Applications which rely on supporting collision resistance for multiset inputs can attempt to pre-
index the input elements with distinct integers in order to ensure uniqueness. However, in general,
collision resistance for multiset inputs is a strictly stronger requirement than collision resistance for
set inputs.

8

2.2 Generalizing Set Homomorphic Hash Constructions

Bellare and Micciancio [BM97] introduced the “randomize-then-combine” paradigm for constructing
a set homomorphic (a.k.a. “incremental”) hash function. For an input set S = {x1, . . . , xn} ∈
P({0, 1}∗), a commutative group G with operation ◦, and an underlying hash function h : {0, 1}∗ → G
modeled as a random oracle, the set homomorphic hash H is defined as

H(S) = h(x1) ◦ h(x2) ◦ · · · ◦ h(xn).

Set homomorphism of H follows immediately from this construction, and all known set homomorphic
hash functions in previous works follow this paradigm. Bellare and Micciancio show that the collision
resistance of H follows from the hardness of a computational problem in G known as the balance
problem: given a sequence of n group elements a1, . . . , an ∈ G, to find weights w1, . . . , wn ∈ {−1, 0, 1}
such that

aw1
1 ◦ · · · ◦ a

wn
n = e,

where e represents the identity element of G. Using this paradigm, they also describe three
instantiations of H: AdHash, MuHash, and LtHash.

In AdHash, the group (G, ◦) is addition over Zq for some sufficiently large modulus q. The
collision resistance of AdHash is based on the difficulty of solving the Random Modular Subset Sum
problem (which reduces to the aforementioned balance problem). MuHash is an instantiation of the
randomize-then-combine paradigm for any group (G, ◦) for which the discrete logarithm problem
is conjectured to be computationally hard (say, Z∗q for sufficiently large and prime q). Finally,
LtHash is instantiated over the group (Znq ,+), where collision resistance relies on the hardness of
approximating the shortest vector in a lattice. Note that AdHash is equivalent to LtHash with n = 1.

We will restrict our attention to LtHash for the remainder of this section, and we refer the reader
to Section 1.3 for further background on set homomorphic hash constructions explored in prior
works.

2.3 Set Homomorphic Hashing from Lattices

Let n, d > 0 be positive integers, and fix an extensible output function (XOF) [Nat15] h : {0, 1}∗ →
{0, 1}nd, where the output can be represented as a vector of n components each consisting of d
bits, written as ~h(x) = 〈[h(x)]1, . . . , [h(x)]n〉 for an input x ∈ {0, 1}∗. Using q = 2d, we define
LtHashn,d : P({0, 1}∗)→ Znq as follows:

LtHashn,d ({x1, · · · , xk}) =
k∑
i=1

~h(xi) (mod q),

where the summation is taken by applying component-wise vector addition mod q.

Set homomorphism. As is the case with all constructions which follow the randomize-then-
combine paradigm, the set homomorphism of LtHash follows directly from the associativity and
commutativity of the group (Znq ,+).

9

Constructing collisions with multiset inputs. We note that LtHash is not collision resis-
tant among multiset inputs: for any two elements x, y ∈ {0, 1}∗, we have LtHashn,d({x}) =
LtHashn,d({x, y(q)}), where q = 2d represents both the multiplicity of y and the modulus used in the
component-wise vector operation. Clarke et al. [CDvD+03] handle this issue in their hash construc-
tion that supports multiset inputs (called MSet-VAdd-Hash) by using a sufficiently large modulus q
so that constructing these multiset inputs is infeasible (with respect to the security parameter λ),
under the implicit assumption that an input multiset with super-polynomial multiplicities cannot be
represented succinctly. For our purposes, this solution is problematic because the required increase
in the modulus q to avoid this type of collision results in an order of magnitude increase in the length
of the LtHash output, which is unnecessary given that our main application to update propagation
does not benefit at all from support for multiset inputs.

Collision resistance. Bellare and Micciancio showed how to reduce the security of LtHash to the
matrix kernel problem, which is also known as the Short Integer Solutions (SIS) problem, defined as
follows.

Definition 2.2 (Short integer solutions (SIS)). Let n,m, q,B be positive integers with q prime.
For an adversary A, consider the following experiment ExptSIS(A):

1. The challenger samples A
r←− Zn×mq and sends A to the adversary A.

2. The adversary outputs a non-zero vector x ∈ Zm with ‖x‖∞ ≤ B, and the output of the
experiment is 1 if and only if A · x = 0 (mod q).

We define the advantage of A in ExptSIS as

Adv
(n,m,q,B)
SIS (A) := Pr[ExptSIS(A) = 1].

We say that SIS(n,m, q,B) is hard if for every adversary A, it is the case that Adv
(n,m,q,B)
SIS (A) is

negligible in the security parameter λ.

Bellare and Micciancio proved the following theorem which links the collision resistance of
LtHash with the computational complexity of the SIS problem:

Theorem 2.3 ([BM97], Theorem 6.1). For integers n, d,Q > 0, if SIS(n,Q, 2d, 1) is hard, then the
function LtHashn,d is collision resistant for Q queries in the random oracle model.

However, their reduction did not explicitly cover the generalization of LtHash to using sets as
inputs, since they defined the input of LtHash to be a data string which could be indexed into blocks.
Later works considered the generalization of LtHash to input sets, but did not provide a proof of
security for the generalization.4 For completeness, we reproduce the proof of collision resistance of
LtHash in Appendix A, with minor alterations to encapsulate the generalization and ensure that it
still applies in our setting.

By demonstrating a direct reduction from the collision resistance of LtHash to SIS, we can then
establish a bound on the concrete security for a specific setting of LtHash parameters by analyzing
and bounding the performance of the best attacks on SIS.

4[CDvD+03] attempts to reprove the collision resistance of LtHash, but do so with multiset inputs, and reduce from
weighted knapsack as opposed to SIS, which is incompatible with, our setting.

10

2.4 Concrete Security of Short Integer Solutions

The SIS problem for a matrix A ∈ Zn×mq can also be formulated as the problem of finding a

sufficiently short vector in the lattice Λ⊥q (A) defined as

Λ⊥q (A) := {x ∈ Zm : Ax = 0 ∈ Znq }.

There are two lines of work that can be applied to solve SIS: lattice reduction algorithms and
combinatorial algorithms. Following the lead of Micciancio [Mic11], we find that the combinatorial
algorithms are more relevant for the cryptanalysis of SIS in our setting, since they are able to fully
take advantage of the large dimension m. Indeed, in the context of LtHash, m can be adversarially
selected to be as large as possible, so we must analyze settings with m� n.

Lattice reduction algorithms. The Blockwise Korkine-Zolotarev (BKZ) [SE94, CN11] algo-
rithm is a lattice reduction technique that aims to find a short basis for an input lattice, and hence,
a solution to SVP. However, applying BKZ to SIS directly is somewhat problematic, especially for
our setting of parameters. First, we note that the lattice Λ⊥q (A) has dimension m, and the number

of elements that belong to Λ⊥q (A) is approximately qn/m. Experiments have shown that BKZ does
not perform very well when the dimension of the lattice is m ≥ n ≥ 1000 [CN11]. Even if BKZ
were to be feasible for such high dimension lattices, there is another problem: the solutions to SIS
that we require must be in {−1, 0, 1}m, whereas existing BKZ experiments attain vectors with short
`2-norm. In other words, the short vectors output by BKZ could be unsuitable as solutions to SIS.

In general, it appears that the lattice reduction techniques are not optimal for solving SIS with
our setting, especially since they are unable to take advantage of settings where m� n.

Combinatorial algorithms. There is a wealth of literature on the study of solving hard instances
of knapsack problems and the application of these combinatorial techniques to solving SIS [SS79,
HJ10, BCJ11, CP91, Wag02, MS09, Lyu05, Sha08, LMPR08, BGLS19] (see [BGLS19] for an in-
depth survey).

Since m� n, we are interested in algorithms which solve high-density SIS over Znq . We briefly
describe the Camion-Patarin-Wagner (CPW) algorithm [CP91, Wag02] below. Our analysis is
guided by the work of Bai, Galbraith, Li, and Sheffield [BGLS19] (BGLS), which gives a complete
description and also performs a more rigorous survey of the CPW algorithm and its subsequent
improvements.

Camion-Patarin-Wagner algorithm. For some number t, the algorithm proceeds in t rounds,
where by the end of the last round, it is expected to output a linear combination of the m vectors
that sums to 0.

The first round begins by splitting the m vectors into k = 2t lists, each containing m/k vectors.
For each list, the algorithm builds a list of all linear combinations of the vectors with coefficients in
{−1, 0, 1}. This results in 3m/k elements per list. These lists are then paired up, and for each pair
of lists L1 and L2, for each (z1, z2) ∈ L1×L2, the algorithm constructs a new list L3 containing the
sum z1 + z2 if the first ` coordinates are all zeros (for some appropriately chosen integer `). This
concludes the first round.

At this point, we have k/2 lists of elements, each containing m/k vectors on expectation. These
lists are input to the second round, which repeats the same process of the previous round (with the

11

CPW MS

n q m t λ m t λ

lthash16 1024 216 2167 162 263 2133 127 255
lthash20 1008 220 2204 199 300 2147 141 282
lthash32 1024 232 2168 162 364 2186 180 361

Table 1: Camion-Patarin-Wagner (CPW) and Minder-Sinclair (MS) algorithm statistics for selected LtHash
parameters. We use n for the length of vector outputs of LtHash, q for the modulus, m for the dimension
of SIS, t for number of rounds of the combinatorial attacks, and λ for the security parameter, equal to the
base-2 log of the expected runtime of each algorithm.

second batch of ` coordinates matching all zeros). After t rounds, the CPW algorithm is able to
find a solution with reasonable probability for any setting of t that satisfies:

2t−1

t
<
m log2(3)

n log2(q)
<

2t

t+ 1
.

The complexity of the CPW algorithm can be measured by the size of the lists in the first round,
multiplied by the total number of such lists. BGLS estimates that the complexity is

CPW(m) = 2t · 3m/2t−1
,

but also note that this can improved to 2t · qn/t.

Minder-Sinclair algorithm. BGLS note that the Minder-Sinclair (MS) algorithm [MS09] yields
a slightly better bound by taking advantage of the fact that the number of zeroed coordinates `
need not be the same on every level, and use a sequence of numbers `1, . . . , `t to express this extra
flexibilty. As analyzed by BGLS, the MS algorithm achieves a complexity of O(2t · qn−`1 · t−1), with
0 < `1 < n/(t+ 1). We define

MS(m) := 2t · qn−n/(t+1) · t−1

to represent a lower bound on the complexity of the MS algorithm.
The BGLS analysis provides a method to analyze the complexity of SIS for a fixed setting of m.

We are interested in understanding the complexity of these combinatorial algorithms for extremely
large m, which means that we can bound the security parameter λ with:

λ = min
m>0

(max{m,MS(m)}) .

Instantiation. We define lthash16 = LtHash1024,16, lthash20 = LtHash1008,20, and lthash32 =
LtHash1024,32, and our results are summarized in Table 1. For each setting, we computed the
minimum m and corresponding t that results in the smallest complexity for the CPW and MS
algorithms. These values are set as the security parameter λ, with MS being more efficient.

12

Conservative estimation. Since we aim to obtain a comfortable lower bound on the security
parameter, we chose to not factor in the success probability for each algorithm in our analysis, and
to just assume that each run of the algorithm always successfully solves the SIS problem.

Also, we note that Bai et al. also present an improvement to the MS algorithm using the Hermite
normal form (HNF) of the matrix A. This variant results in a n× (m− n) matrix of random q-ary
elements as opposed to n ×m, and they show how to take advantage of this to further improve
upon the best attacks for SIS. We note however that since m� n in our setting, it seems unlikely
that the BGLS technique will result in a substantially improved attack on LtHash.

Nevertheless, we caution the reader to note that the BGLS refinement (and further improve-
ments) upon the MS algorithm could result in having to lower the security estimates for LtHash.
For lthash16 in particular, although we calculated that the MS algorithm takes time 2255, we
conservatively estimate that it yields at least 200 bits of security.

3 Update Propagation

The update propagation problem focuses on how to handle distributed database replication in an
efficient and secure manner. The central challenge we aim to address in this section is on how to
maintain a large number of replicas of a database D yet still preserve performance and security while
updating these replicas. Every entity that holds a replica of the database D is either a distributor or
subscriber. For the sake of simplicity, we can assume that there only exists a single distributor,5 and
all other entities are subscribers. Typically, the distributor would be responsible for handling writes
to the database, whereas each of the subscribers would provide a read interface to their clients. The
writes to the database can be modeled as a constantly streaming log that the distributor has access
to, and it is the sole job of the distributor to propagate these writes (database updates) to each of
its subscribers.

So far, what we have described is encapsulated by the leader-follower framework that is popular
among distributed database architectures, and is well-studied. However, in our model, we are
interested in what happens when the number of subscribers is very large (say, millions), and are all
untrusted.

We first note that, for supporting a small set of subscribers, the distributor can usually afford
to maintain the connections to each of its subscribers directly. The per-subscriber upkeep for the
distributor typically includes: storing internal subscriber state, pushing missing updates to each
subscriber, and managing retries. As the number of subscribers grows, this upkeep becomes more
challenging to maintain.

Scaling issues with Apache Zookeeper. Zookeeper is an example of a coordination service
that enables its client nodes (subscribers) to connect directly to members of a centralized ensemble
(the distributor). Since these ensembles consist of only a very limited set of servers, Zookeeper has
trouble with scaling to a large number of client nodes.

To resolve this issue, Zookeeper introduced a new type of node, called an “observer”, which is
similar to a participant of the ensemble, with the exception that it does not participate in establishing
consensus, and is used to scale out read traffic. In the context of update propagation, these observers
can be used as proxies between clients and ensemble nodes to reduce the number of clients that

5The coordinating of multiple distributors can be delegated to a consensus mechanism which equally trusts every
leader.

13

Distributor

Setup

sk pp pp

Parent
Subscriber

Child
Subscriber

GetUpdates
Publish

Validate

ApplyUpdates

Figure 1: Organization of the update propagation algorithms. Note that the child subscriber may itself
have other child subscribers, so that in general, subscribers may be multiple hops away from the distributor.

ensemble nodes must manage connections to. However, this is a highly bandwidth-inefficient
approach to scaling writes to a large set of subscriber nodes.

In general, to avoid the inherent scaling and reliability issues associated with having a central set
of machines which must directly publish updates to a large number of clients, the central distributor
can instead defer the publishing of updates to its clients, who are then responsible for propagating
updates to one another in the fashion of a peer-to-peer network.

Untrusted subscribers. In our model, the distributor aims to maintain the integrity of its
updates, even if the subscribers that propagate its updates are untrustworthy. If each subscriber
were to directly receive its updates from the distributor, then it would suffice for the distributor to
use a secure and authenticated communication protocol (such as TLS with X.509 certificates) to
transmit updates its subscribers, so that the subscribers could verify that all updates are coming
directly from the distributor before applying them. However, when subscribers are receiving updates
from other subscribers, we need to consider alternative approaches to ensuring update integrity.

Update propagation setting. To formally describe the various approaches we consider in this
section, we first define the properties of an update propagation scheme, including correctness
and security. To motivate our definition, we consider the roles of three entities in the system: a
distributor, a parent subscriber, and a child subscriber, organized in Figure 1. The distributor is
responsible for initializing the system and publishing updates as they are encountered (Setup). The
published updates are received by the parent subscriber, who validates the updates before sending
them to the child subscriber (Publish).

In a separate setting, the child subscriber may ask for a sequence of updates from the parent
subscriber (GetUpdates), which the parent subscriber executes to produce a response to the child
subscriber. Then, the child subscriber performs a validation on the response (ApplyUpdates) to
verify that the updates it is receiving match those of the distributor. In an offline phase, any
subscriber (parent or child) can periodically run a procedure that verifies the consistency and
integrity of their replica database against the distributor’s master database (Validate). These
procedures are defined formally in Section 3.1.

Constructions. After presenting the definitions, we consider three different instantiations of a
secure update propagation scheme. The first construction (Πupdate, described in Appendix B.3)
essentially amounts to having the distributor directly sign the contents of each update it publishes

14

to its subscriber. In the second construction (Πdb, described in Appendix B.4), the distributor
produces a signature over the database after each update, as opposed to signing the contents of the
update itself. And finally, in our third construction (Πhash, presented in Section 3.2) the distributor
first generates a hash of the database before signing it, and keeps this database hash around to
produce signatures for future updates. We show that if the hash is set homomorphic, then this
process is efficient. In Section 3.3 we present a full comparision of the tradeoffs between the three
approaches.

3.1 Definitions

An update propagation scheme UP = (Setup,Publish,GetUpdates,ApplyUpdates,Validate) consists
of a tuple of algorithms defined as follows.

• Setup(1λ)→ (pp, sk). The Setup algorithm takes as input the security parameter λ and outputs
public parameters pp and a secret key sk. The parameters pp are initially distributed to every
subscriber in the network, and are also given to subscribers who later join the network. The
secret key sk is given to the distributor. The internal state of all entities is set to ⊥ (empty
when initialized).

• Publish(sk,u, st∗in)→ (σ, st∗out). The Publish algorithm takes as parameters a secret key sk, an
update u, and the input state st∗in, and outputs a digest σ, and an updated state st∗out. The
distributor runs the publish algorithm to distribute an update u to the database, with the
output σ being sent to its neighboring subscribers alongside the update contents u. The
distributor also updates its internal state from st∗in to st∗out.

6

• GetUpdates(pp, v,w, st) → (~u, µ). The GetUpdates algorithm takes as input the public pa-
rameters pp, two sequence numbers v,w ∈ Z, and an internal state st, and outputs a list of
updates ~u along with digest µ. A client subscriber that wishes to receive updates will send
the sequence number v to a neighboring peer, who then computes the difference in updates
associated with the most recent sequence number w and the client’s sequence number v. This
difference is represented by u, which is returned to the client subscriber along with the digest
µ.

• ApplyUpdates(pp, v,w, ~u, µ, stin)→ (b, stout). The algorithm ApplyUpdates takes as input the
public parameters, two sequence numbers v,w ∈ Z, a list of updates ~u, a digest µ, and the
input state stin, to output a bit b ∈ {0, 1} along with an updated internal state stout. This
is run by a client subscriber upon receiving a series of updates ~u from a peer, and used to
verify the authenticity of these updates before applying them to its replica of the database.
Afterwards, the client subscriber also updates its internal state from stin to stout.

• Validate(pp,D, v, st) → b. The Validate algorithm takes as input the public parameters, the
database replica D, a sequence number v ∈ Z, and an internal state st, and outputs a bit
b ∈ {0, 1}. This is used by the subscriber as an integrity check of its own replica of the
database against the distributor’s copy.

6For ease of exposition, we use the asterisk for st∗ to denote the distributor’s state, as opposed to the subscribers’
states which will be denoted without the asterisk.

15

Note that the distributor and each subscriber are stateful entities, with st∗in representing the
distributor’s state, and stin representing a subscriber state. The distributor state is updated on calls
to Publish, whereas each subscriber’s state is only updated on calls to ApplyUpdates. Furthermore,
we note that only the distributor has access to sk, and hence is the only entity that can run Publish.
The remaining algorithms only rely on the public parameters pp, and are run by the subscribers.

Multiple distributors. We present the update propagation model in the presence of a single
distributor. In practice, there can be multiple distributors, each of whom hold the same secret signing
key sk, and our formulation of update propagation extends naturally to the multiple-distributor
scenario.

Resolving missing updates. When a client subscriber reaches out to a peer to obtain updates
from a version v to a target version w, the peer is expected to be able to respond by using its
internal state (which would store the sequence of updates necessary to respond correctly). However,
if the peer does not have the necessary state to form the response, in practice, this peer will reach
out with another GetUpdates call to a different peer in order to receive the necessary updates. This
process could theoretically continue until the chain of requests reaches the distributor (who will
have the appropriate update information to respond). In our model, we assume that this network
behavior has a resolution, and that the peer eventually obtains the necessary state to respond to
GetUpdates.7

Semantics. We use D′ = D + u to denote the operation of “applying” a set of updates u to a
database D, to result in an updated database D′. Similarly, from the associativity of the + operator,
we write u = u1 + u2 to denote the operation of combining two updates u1 and u2 to result in
a batched update u. For a list of updates ~u = 〈u1, . . . ,u`〉, we write Sum(~u) = u1 + · · ·+ u`. In
the definitions below, we fix a sequence of n updates u1, . . . ,un, and for each i ∈ [1, n], we define
Di = Di−1 + ui with D0 = ⊥ (the empty database).

A delta to a database can be either an addition or removal of a row in the database8, and an
update is simply a set of deltas. We refer to a valid state as a state which would arise from a normal
(non-adversarial) execution of the Publish, GetUpdates, and ApplyUpdates algorithms. We formally
define these terms, along with the notion of a valid update, in Appendix B.1.

Correctness. Fix a sequence of updates u1, . . . ,un, and let Di = u1 + · · ·+ ui for each i ∈ [1, n].
Let (pp, sk)← Setup(1λ), and for each i ∈ [1, n], let (σi, st

∗
i)← Publish(sk,ui−1, st

∗
i−1). An update

propagation scheme UP is correct if for every i ∈ [1, n], we have that:

1. With sti as a valid state, and (~u, µ) ← GetUpdates(pp, i, n, sti), it is the case that Dn =
Di + Sum(~u),

2. With st′i as a valid state, ApplyUpdates(pp, i, n, ~u, µ, st′i)→ (b, st′n), we have that b = 1, and

3. Validate(pp,Di, i, sti) = 1.

7The mechanism with which the system guarantees this eventuality is certainly an important consideration, but it is
not relevant to the correctness or security of the update propagation problem, and hence we do not specify this in
our model.

8In the context of defining deltas, a mutation to a database row can be modeled as a removal followed by an addition,
executed atomically.

16

In other words, the update propagation scheme is correct if a client executing the ApplyUpdates
algorithm on the output of a GetUpdates call from a peer in the network is successful whenever
the received updates can be applied to the client’s replica to match the expected database version
originally reported by the distributor, and the Validate algorithm on the client’s replica of the
database also outputs success, so long as the replica matches the distributor’s version.

Security. We define the notion of security for an update propagation scheme through an experiment
between a challenger and an adversary A that can choose the database updates and can make
Publish queries. We use λ as the security parameter.

Definition 3.1 (Exptup(A)). The experiment Exptup takes as input an adversary A. The challenger
starts the experiment by computing (pp, sk)← Setup(1λ) and sending pp to the adversary A. The
challenger maintains an index n← 0 which will represent the number of times the Publish oracle
has been called. It keeps track of the sequence u∗1, . . . ,u

∗
n of updates from calls to the Publish oracle,

with u∗i representing the ith update to the database. It also keeps track of each database version by
setting D∗0 = ⊥ and defines D∗i = D∗i−1 + u∗i .

The challenger also maintains two global states: st∗ for the Publish oracle, and ŝt for the
ApplyUpdates and Validate oracles, both initialized to ⊥. Then, the challenger responds to each
oracle query type made by A in the following manner:

• Publish oracle. This oracle is a stateful oracle that maintains the database with updates
applied, along with an internal state. On input an update u, the challenger updates n∗ ← n∗+1,
computes (σ, st∗out) ← Publish(sk,u, st∗), storing the updated database with T ∗[n] ← u, and
updating the state st∗ ← st∗out. The oracle responds with the output (σ, st∗).

• ApplyUpdates oracle. This oracle is a stateful oracle that takes as input v, w, ~u, and µ.
Then, the challenger computes (b, stout)← ApplyUpdates(pp, v,w, ~u, µ, ŝt). If b = 1, then the
challenger first stores ŝt ← stout, and then checks if Sum(~u) 6= u∗v+1 + · · · + u∗w, outputting
Success if so. Otherwise, the challenger returns (b, st).

• Validate oracle. This oracle takes as input a database D and state stin, which the challenger
uses to compute b ← Validate(pp,D, n, stin). If b = 1, the challenger checks if D 6= D∗n,
outputting Success if so. Otherwise, the challenger returns b.

Note that the experiment either outputs nothing, or outputs Success from an ApplyUpdates or
Validate oracle query. We define the advantage of A in Exptup for an update propagation scheme Π
as

Advup(Π,A) := Pr[Exptup(A) = Success].

We say that Π is secure if for all efficient adversaries A, Advup(Π,A) is negligible in the security
parameter λ.

Intuitively, the experiment Exptup models an adversary that can choose any sequence of updates,
maliciously simulate the GetUpdates algorithm, and alter the database or state input to the Validate
algorithm. The adversary’s queries to the Publish oracle are used along with the challenger’s secret
key to mark the database updates submitted by the adversary as valid. The aim of this adversary is
to force the challenger (acting as an honest subscriber) into accepting a list of updates which is
actually invalid, or validating a database state which is actually invalid. When the adversary is
successful in doing so, the challenger outputs Success, which is also the output of the experiment.

17

In other words, our model accounts for an adversary that unable to access the secret key sk
and unable to modify the distributor’s internal state st∗, but is able to choose the updates, modify
the internal state of any subscriber and the communication between peers, with the goal of fooling
an uncompromised subscriber into applying an update which is invalid, or validating a database
which is invalid. Note that our security model also includes adversaries which can corrupt multiple
subscribers—still, the adversary wins the experiment if it is able to produce invalid behavior on a
subscriber that the adversary does not control.

3.2 Signing with Homomorphic Hashing

In this section we describe our construction of secure update propagation based on homomorphic
hashing, which we denote as Πhash.

Recall from Section 2 that a set homomorphic hash H : {0, 1}∗ → G for a commutative group
(G, ◦) is collision resistant and satisfies the property that for any two disjoint sets S, T ∈ P({0, 1}∗),
it is the case that H(S ∪ T) = H(S) ◦ H(T).

Homomorphically hashing updates. We define H acting on a delta δ as follows:

• Row addition: If δ corresponds to a row addition (i,⊥ → x), we define H(δ) as H({(i, x)}).

• Row deletion: If δ corresponds to a row deletion (i, x→ ⊥) we define H(δ) as H({(i, x)})−1 .

(Further details can be found in Appendix B.1.) For an update u represented by a sequence of
deltas δ1, . . . , δm, we define H(u) = H(δ1) ◦ · · · ◦ H(δm), and Set(u) = {δ1, . . . , δm}. For a database
D that can be expressed as a sequence of row addition deltas, we define H(D) in the same manner,
and Set(D) to be the set of row addition deltas.

Description of Πhash. The distributor maintains an internal state st∗ = (Tupdate,Thash,Tsig, n
∗),

corresponding to: a table Tupdate of updates, a table Thash where each index i consists of a hash of a
sum of updates, a table Tsig where each index i will be the signature of Thash[i], and a sequence
number n∗. The subscribers each maintain an internal state st = (Tupdate,Thash,Tsig) consisting of a
list of sums of updates Tupdate, a list of hashes Thash, and a list of signatures Tsig (defined similar to
as in st∗), all initialized to ⊥. We define Πhash = (Setup,Publish,GetUpdates,ApplyUpdates,Validate)
as follows:

• Setup(1λ)→ (pp, sk). The Setup algorithm sets (pp, sk)← Sig.Setup(1λ) and sets n∗ ← 0.

• Publish(sk,u, st∗in = (Tupdate,Thash,Tsig, n
∗))→ (σ, st∗out). The Publish algorithm sets

n∗ ← n∗ + 1, h← Thash[n∗ − 1] ◦ H(u), σ ← Sig.Sign(sk, (h, n∗)),
Thash[n∗]← h, Tsig[n∗]← σ, st∗out ← (Tupdate,Thash,Tsig, n

∗),

and outputs (σ, st∗out).

• GetUpdates(pp, v,w, st = (Tupdate,Thash,Tsig))→ (~u, µ). The GetUpdates algorithm outputs

(~u, µ)← (〈Tupdate[v], . . . ,Tupdate[w]〉,Tsig[w]).

18

• ApplyUpdates(pp, v,w, ~u = 〈uv+1, . . . ,uw〉, µ, stin = (Tupdate,Thash,Tsig)) → (b, stout). The
ApplyUpdates algorithm checks that v < w, sets s = Thash[v] ◦ (H(uv+1) ◦ · · · ◦ H(uw)), and
checks

Sig.Verify(pp, (s,w), µ) = 1.

If so, it sets b = 1, for each j ∈ [v+1,w] it sets Tupdate[j]← uj , sets (Thash[w],Tsig[w])← (s, µ),
and updates stout = (Tupdate,Thash,Tsig). Otherwise, it sets b = 0 (without updating stout). In
both cases, it outputs (b, stout).

• Validate(pp,D, v, st = (Tupdate,Thash,Tsig))→ b. The Validate algorithm checks that Thash[v] =
H(D), and then checks that Sig.Verify(pp, (Thash[v], v),Tsig[v]) = 1. If so, it outputs b = 1, and
outputs b = 0 otherwise.

Correctness. To prove correctness of Πhash, we note that the internal state tables Tupdate, Thash

and Tsig kept by each subscriber maintain the invariant that every entry in Thash has a corresponding
signature over its contents in Tsig, and for each i ∈ [1, n], Thash[i] = H(Tupdate[1]) ◦ · · · ◦ H(Tupdate[i]).
Fix a sequence of updates u1, . . . ,un, and let Di = u1 + · · · + ui for each i ∈ [1, n]. Hence, for
(pp, sk)← Setup(1λ), with (σi, st

∗
i)← Publish(sk,ui, st

∗
i−1), for each i ∈ [1, n], we note that:

1. Using (~u, µ)← GetUpdates(pp, i, n, sti) we have that

~u = 〈Tupdate[i], . . . ,Tupdate[n]〉,

which by the definition of Publish means that ~u = 〈ui, . . . ,un〉, which by definition are exactly
the updates for which Di + Sum(~u) = Dn.

2. We have that Thash[v] ◦ H(uv+1) ◦ · · · ◦ H(un) = Thash[n] from the definition of the Publish
algorithm and the set homomorphism of H. Therefore, ApplyUpdates runs Sig.Verify(pp,
(Thash[n], n),Tsig[n]) = 1, by the correctness of the signature scheme. Thus, the ApplyUpdates
call outputs with b = 1 as desired.

3. By the set homomorphism of H, Thash[i] = H(u1)◦ · · · ◦H(ui) = H(Di), and we established that
Sig.Verify(pp, (Thash[i], i),Tsig[i]) = 1 by the correctness of the signature scheme. Therefore,
we conclude that Validate(pp,Di, i, sti) = 1.

Security. We show that Πhash is a secure update propagation scheme by defining an intermediate
experiment and constructing two simulators which can act as adversaries to find collisions in H or
forge signatures for ΠSig, given an adversary for breaking the security of Πhash.

Theorem 3.2. If ΠSig is a signature scheme which is existentially unforgeable under a chosen
message attack, and H is a homomorphic hash function, then Πhash is a secure update propagation
scheme.

Proof. To prove security, we define a new experiment Ẽxpt which is very similar to Exptup, except
that it can output the event Bad if a collision is found as the first step of the ApplyUpdates and
Validate oracle.

The experiment Ẽxpt takes as input an adversary A. The challenger starts the experiment
identically to Exptup(A), by computing (pp, sk) ← Setup(1λ) and sending pp to the adversary A.

19

The challenger maintains an index n ← 0 which will represent the number of times the Publish
oracle has been called. It keeps track of the sequence u∗1, . . . ,u

∗
n of updates from calls to the Publish

oracle, with u∗i representing the ith update to the database. It also keeps track of each database
version by setting D∗0 = ⊥ and defines D∗i = D∗i−1 + u∗i .

The challenger also maintains two global states: st∗ for the Publish oracle, and ŝt for the
ApplyUpdates and Validate oracles, both initialized to ⊥. Then, the challenger responds to each
oracle query type made by A in the following manner:

• Publish oracle. This oracle behaves identically as the Publish oracle of Exptup(A).

• ApplyUpdates oracle. This oracle is a stateful oracle that takes as input v, w, ~u, and µ. It
checks if Sum(~u) 6= u∗v+1 + · · ·+ u∗w and H(Sum(~u)) = H(u∗v+1) ◦ · · · ◦ H(u∗w), outputting Bad if
so. Otherwise, the challenger simulates the ApplyUpdates oracle of Exptup(A).

• Validate oracle. This oracle takes as input a database D and state stin. It checks if D 6= D∗n
and H(D) = H(D∗n), outputting Bad if so. Otherwise, the challenger simulates the Validate
oracle of Exptup(A).

For an efficient adversary A, we define the advantage of A in Ẽxpt for an update propagation
scheme Π as

AdvSim(Π,A) := Pr[Ẽxpt(A) = Success].

We define a simulator Sim1 that can participate as a challenger in Ẽxpt and an adversary in
ExptROcr . Intuitively, Sim1 behaves identically to Ẽxpt, with two differences:

• Instead of computing H(·) on its own, Sim1 submits oracle queries to the challenger of ExptROcr .

• Instead of outputting the Bad event in Ẽxpt, Sim1 submits the sets S = Set(Sum(u)) and
T = u∗v+1 + · · ·+u∗w (in the case of the ApplyUpdates oracle), or S = Set(D) and T = Set(D∗n)
(in the case of the Validate oracle).

Lemma 3.3. For all efficient adversaries A, we have that

|Advup(Πhash,A)− AdvSim(Πhash,A)| ≤ ExptROcr (H,Sim1).

Proof. By construction, note that Sim1 perfectly simulates Exptup when A never triggers the Bad
event, and it perfectly simulates Ẽxpt when A is able to trigger the Bad event. When the Bad
event is triggered, the pair of input sets submitted to the challenger for ExptROcr result in collisions,
by definition. Hence, we have that the probability that Bad is triggered is precisely equal to
ExptROcr (H, Sim), and the former quantity is bounded by the difference in advantage between Exptup

and Ẽxpt.

For the next step of the proof, we define a simulator Sim2 which acts as a challenger in Ẽxpt
and an adversary in ExptSig. For a sequence of n updates, the simulator Sim2 first receives the
verification key vk from the challenger of ExptSig, which it forwards to A as the public parameters
pp. Sim2 also initializes an empty database D∗ = ⊥. Then, for each type of oracle query that the
adversary makes, Sim2 responds as follows:

20

• Publish oracle. The simulator Sim2, on input an update u, first checks if the update u has
been submitted before, returning the same signature response if it is a repeat. Otherwise, it
simply forwards Thash[n− 1] ◦ H(u) to the challenger of ExptSig to receive a signature σ. This

is returned as the digest σ, and the internal state st∗ is updated appropriately. For the ith call
to the Publish oracle, the input u is labeled as u∗i , and we define D∗i = D∗i−1 + u∗i .

• ApplyUpdates oracle. This oracle can be completely simulated by Sim2 since it does not
require access to sk. If Sim2 outputs Success, then Sim2 sets m = (Thash[v] ◦H(Sum(~u)),w) and
submits the message-signature pair (m, µ) to the challenger for ExptSig, ending the experiment.

• Validate oracle. Again, this oracle can be simulated by Sim2 using pp. If Sim2 outputs
success, then the simulator submits the message-signature pair ((H(D), n),Tsig[n]) to the
challenger for ExptSig, ending the experiment.

Lemma 3.4. For all efficient adversaries A, AdvSim(Πhash,A) = AdvSig(ΠSig, Sim2).

Proof. Note that the only signature oracle queries that Sim2 makes to its challenger are on the
hashes H(·) of the databases D∗1, . . . ,D∗n that the Publish oracle computes. There are two cases in
which the experiment outputs Success:

• ApplyUpdates oracle. In the event of Success from ApplyUpdates, Sim submits the message-
signature pair (m, µ) to the challenger. Since the Bad event did not occur, it must be the
case that H(D∗v) ◦ H(Sum(u)) 6= H(D∗v) ◦ H(u∗v+1 + · · ·+ u∗w) = H(D∗w), for every v,w ∈ [1, n].
Therefore, we can conclude that m is distinct from all previous signature oracle queries sent to
the challenger. Also, Sim outputting Success means that Sig.Verify(vk,m, µ) = 1 by definition.

• Validate oracle. In the event of Success from Validate, Sim submits the message-signature
pair ((H(D), n),Tsig[n]) to the challenger. Again, since the Bad event did not occur, then
we have that H(D) 6= H(u∗1) ◦ · · · ◦ H(u∗n) = H(D∗n) is distinct from previous signature oracle
queries sent to the challenger, and since Sim is outputting Success, this already means that
Sig.Verify(vk, (H(D), n),Tsig[n]) = 1 by definition.

In both cases, the pair submitted by Sim to the challenger matches the criteria for which ExptSig(Sim)
outputs 1.

Putting Lemmas 3.3 and 3.4 together, we see that

Advup(Πhash,A) ≤ ExptROcr (H,Sim1) + ExptSig(ΠSig,Sim2),

which concludes the proof of Theorem 3.2.

3.3 Performance Comparison

In this section, we compare the efficiency of four different secure update propagation schemes:

• Πupdate, signing each update directly (Appendix B.3),

• Πdb, signing the whole database (Appendix B.4),

• Πhash, using homomorphic hashing (Section 3.2), and

• Πmerkle, based on Merkle trees and described below.

21

Limiting subscriber updates. In our definition of an update propagation scheme, we represented
the state held by subscribers which is passed as input to GetUpdates to generate a list of updates,
and also passed into ApplyUpdates, which mutates the state and allows the subscriber to retain the
updates passed into it. Similarly, the internal subscriber state is an input to the Validate algorithm,
allowing the subscriber to verify the integrity of its database replica.

In order to answer arbitrary GetUpdates requests, a subscriber must keep the entire list of all
updates u1, . . . ,un, by the correctness requirements of the scheme. However, in practice subscribers
rarely get requests for updates far in the past. Indeed, it is much more efficient for each subscriber
to manage a fixed-size queue of the most recent updates it has received. We can therefore enforce an
integer cap c on the number of updates held by each subscriber, and when a subscriber is unable to
answer a GetUpdates query with its update queue, it can simply forward the client to the distributor
to obtain the necessary updates.

The appropriate setting of c depends on network behavior. If c is too small, then arbitrary
network outages could cause a “thundering herd” effect where many subscribers are frequently
needing to connect to the distributor to receive updates, which puts stress on the distributor’s
bandwidth. If c is too large, then each subscriber ends up having a longer-than-necessary list of
updates in memory.

Table 2 shows a comparison of these constructions, considering three variables: n to represent
the size of the database (total number of database rows), m to represent the total number of updates
to the database, and c to represent the maximum number of updates that each subscriber can hold
without overwhelming the distributor with failover traffic.

Discussion. We measure the overall performance of Publish and ApplyUpdates, the space require-
ments on the distributor and subscriber, and the number of signature validations performed in
ApplyUpdates and Validate (since the CPU overhead of public-key cryptographic operations tends
to be orders of magnitude more than the other operations, including hashing). We find that Πupdate

is unsurprisingly efficient for publishing updates, but is inefficient in terms of space overhead
and executing the Validate procedure. The Πdb construction does not require storing per-update
signatures and hence is more space efficient and involves fewer signature validations, but since the
signatures involve iterating over the entire database just to sign or verify, it is quite suboptimal in
performance.

In this comparison, we also describe a scheme Πmerkle which we do not define formally, but we
can think of as being similar to Πdb, except that instead of recomputing the database signature from
scratch on each update, we keep an in-memory Merkle tree representation of hashes, where each
database row corresponds to a leaf node in this tree. The main advantage to this tree construction
is that now both the distributor and the subscriber can use the intermediate hashes to modify the
root hash for an update in time logarithmic in the size of the database. The drawback is that both
parties must now keep these intermediate hashes in memory, which takes space linear in the total
number of database rows.

Finally, we note that Πhash is able to avoid all of the aforementioned pitfalls, with only a
dependence on c for the space overhead on each subscriber (necessary as the subscriber must keep c
updates in memory to respond to GetUpdates queries). The main benefit of using homomorphic
hashing is that we can obtain all of the performance benefits of Πdb without having to scan the
entire database to compute or validate signatures, thereby removing the dependence on the database

22

Parameter Πupdate Πdb Πmerkle Πhash

Publish Time O(1) O(n) O(log n) O(1)
ApplyUpdates Time O(c) O(n) O(c log n) O(1)

Distributor Space O(m) O(1) O(n) O(1)
Subscriber Space O(m) O(c) O(n) O(c)

Sigs in ApplyUpdates c 1 1 1
Sigs in Validate m 1 1 1

Table 2: Comparison of the performance of our update propagation schemes. We use n for the number
of database rows, m for the total number of updates, and c for the total number of “recent” updates each
subscriber keeps in memory.

size for the Publish and ApplyUpdates running times.

4 Implementation and Performance

In this section, we discuss our open-source implementation of LtHash including our performance
optimizations, benchmarking results, and deployment considerations.

Implementation. To implement LtHash, we instantiate the underlying hash function with
Blake2xb [ANWOW16], which is an extendable-output function (XOF) [Nat15]. Our Blake2xb
implementation is built on top of the Blake2b primitives provided by Libsodium [BLS12] and is
available in the Folly open-source library. Note that Libsodium is an optional dependency for Folly,
and our implementations of Blake2xb and LtHash will be compiled only if the configure script finds
a Libsodium installation at compile time. We also use the IOBuf and ByteRange classes from Folly
to simplify the passing of input parameters and the memory management of buffers.

Recall that in our description of LtHash from Section 2, we use two parameters d and n to
represent the base-2 log (number of bits) of the modulus and the number of vector components per
hash output. An LtHash object contains an IOBuf of sufficient length to store n components, each
consisting of d bits, as a contiguous buffer. We refer to this buffer as the checksum. LtHash defines
the following methods:

• hashObject (private): This method takes a ByteRange input and a MutableByteRange output.
It evaluates Blake2xb on the input and writes the resulting hash to the output.

• addObject: Calls hashObject on the input, then interprets the result as n components, each
consisting of d bits, performs a component-wise vector addition of the result and checksum,
and writes the result to checksum.

• removeObject: Calls hashObject on the input, then interprets the result as n components,
each consisting of d bits, performs a component-wise vector subtraction of the result from the
checksum, and writes the result to checksum.

We also define the plus, minus, assignment, and equality operators over LtHash objects, which
function exactly as one would expect. Plus and minus perform component-wise vector addition

23

or subtraction of the checksum values of the two LtHash operands. Assignment sets the checksum
value of the destination LtHash to the checksum value of the source LtHash. Equality tests if the
checksum values of the two LtHash operands are equal in a data-independent way to avoid leaking
information through timing side channels.

Parameterizing word sizes. Our main implementation uses (d, n) = (16, 1024), and our concrete
security analysis from Section 2.4 shows that this parameter choice yields at least 200 bits of security.
As a precaution, we also implemented support for larger settings of d for applications that prefer to
use an even more conservative setting of parameters. Recall that in Section 2.4, we use lthash16

to refer to the setting of (d, n) = (16, 1024), lthash20 for (d, n) = (20, 1008), and lthash32 for
(d, n) = (32, 1024).

SIMD implementations. We implemented three different execution engines to perform the
vector additions and subractions. The SIMPLE engine uses standard C++ code and is the least
efficient, but is portable and should work on any CPU which supports 64-bit integer math (however,
we have only tested it on Intel x86-64 and 64-bit ARM CPUs). The SSE2 engine uses Intel’s SSE2
instructions to add or subtract 128 bits at a time, and the AVX2 engine uses Intel’s AVX2 instructions
to add or subtract 256 bits at a time. Both SSE2 and AVX2 are types of SIMD (”Single Instruction
Multiple Data”) instruction sets and are commonly used to accelerate algorithms which need to
perform the same operation repeatedly on many independent data elements. While we did not
implement any SIMD engines for non-Intel CPUs, the code is structured in a way that makes it
easy to add additional execution engines in the future. Adding SIMD support for ARM or other
non-Intel CPUs is a possible future area of work.

Optimizations. We found that aligning data buffers along cache line boundaries improves the
performance of the vector operations used in addObject and removeObject by approximately 10%,
and hence we make a best effort to allocate the buffers which store the Blake2xb hash outputs on
a cache line boundary. In our implementation, we have hard-coded the cache line size to be 64
bytes, the correct value for modern Intel CPUs. Dynamically detecting the cache line size could be
implemented in the future to better support other architectures.

To further optimize the hashing computation, we aimed to minimize the length of the Blake2xb
output while still supporting enough bits for each of lthash16, lthash20, and lthash32. Our
parameter choices were selected to work well with processors that support a 64-bit word size, in a
way that allows us to pack as many vector components into each word as possible. For lthash16 this
was simple, since we could pack 4 components into each 64-bit word, relying on mod 16 addition and
subtraction SIMD instructions to perform the component-wise arithmetic operations efficiently. The
case for lthash32 is analogous, except that we only pack 2 components into each 64-bit word and
use SIMD instructions that perform mod 32 addition/subtraction. The implementation of lthash20
is somewhat different because 64 does not evenly divide by 20. We implement lthash20 efficiently
by adding padding bits between the vector elements so for any 64-bit word in the checksum, there
are three 20-bit data elements, separated by padding bits which are always set to 0. A 64-bit word is
laid out as follows: 00[20 bits of data]0[20 bits of data]0[20 bits of data]. This allows
us to perform the addition and subtraction operations on 64 / 128 / 256 bits of data at a time
and then perform another quick operation to zero out the padding bits in case any of the 20-bit
elements overflowed and resulted in a carry that set the adjacent padding bit to 1.

24

Simple SSE* AVX2

lthash16.hashObject 7214 6786 6187
lthash16.add / remove 452 125 81
lthash20.hashObject 9382 8260 7949

lthash20.add / remove 372 177 91
lthash32.hashObject 14145 13253 11053

lthash32.add / remove 906 230 137

Table 3: Our experimental benchmarks (measured in nanoseconds of wall time) for the performance of
our LtHash implementations. For SSE*, the hashObject implementation used the SSSE3 instruction set for
computing Blake2xb, while the vector addition and subtraction operations were done with SSE2.

4.1 Benchmarking Results

We ran our benchmarks on a 2.4GHz Intel Skylake CPU with 16MiB L3 cache. The test CPU
had hardware and OS support for all three of our execution engines, so we used compile-time flags
to disable SSE2 and AVX2 support, which allowed us to force a particular execution engine to be
used. We also forced Libsodium to disable AVX2 or SSSE3 support for its Blake2b implementation
to accurately simulate the performance on a CPU which does not support those SIMD instructions.
Our benchmarks are presented in Table 3. We measured the performance of lthash16, lthash20,
and lthash32, in nanoseconds of wall time, for each of the operations hashObject, add, and remove.
Note that when measuring add and remove, we isolated the running time of the vector addition
and subtraction operations, so it does not include the time of running hashObject (unlike the
addObject and removeObject operations defined above). All benchmarks used a random 150-byte
array as the hash input. Folly’s high-quality benchmarking functions were used to reduce noise and
provide more accurate performance numbers. However, a more controlled benchmark that turns off
CPU frequency scaling and measures CPU cycles rather than wall time could provide even more
precise results.

Vector operations. The running time of adding two hashes (corresponding to a set union of the
hash inputs) was an order of magnitude less than the running time of computing the Blake2xb hashes.
We found that for a given combination of (d, n) parameters, AVX2 was always faster than SSE2
which was faster than SIMPLE, as expected. We also found that the running times of hashObject,
add, and remove scaled approximately linearly with the length of the Blake2xb hash, which is also
expected. We observed that subtraction (corresponding to a set difference of the hash inputs)
exhibited similar behavior with essentially the same performance as addition.

4.2 Deployment

Our implementation of lthash16 has been deployed in production at Facebook to secure update
propagation across the network.

Handling multiple execution engines. As we rolled out the implementation, we had to account
for a diverse set of newer and older CPUs across the fleet. In particular, our initial implementations

25

triggered illegal instruction crashes that were a result of the implementation attempting to perform
vector operations on the hash values using AVX2 instructions that were unavailable on certain
older CPUs. We addressed this issue by adding support for an array of execution engines and
auto-detecting the fastest supported engine at runtime when the LtHash library was initialized.

Fail-open rollout. As the homomorphic hash construction was introduced into the update
propagation mechanism, the rollout was initially left in a “fail-open” mode, which meant that
the propagation of an update would still occur despite a hash discrepancy or signature validation
failure. This not only gave us the opportunity to increase confidence in the correctness of the
implementation of lthash16, but it also helped to detect and fix logical inconsistencies within the
update propagation mechanism itself.

After addressing these system bugs and monitoring the rate of these inconsistencies for a
sufficiently long period of time, the integrity checks were then switched to a “fail-closed” mode,
preventing the propagation of updates and triggering system alarms if the hashes or signatures were
invalid. We believe such a two-phase approach would lead to a safe and incident-free rollout of
secure update propagation in other systems as well.

5 Conclusion

We presented a formal definition of the update propagation problem and showed how homomorphic
hashing can be applied to achieve a secure, efficient update propagation scheme. We then focused on
the security of LtHash and its collision resistance in the random oracle model, based on the hardness
of the Short Integer Solutions problem in lattice-based cryptography. Along with a concrete security
analysis, we instantiated LtHash with parameters that produce a 2KB output hash, and produced
benchmarks measuring its performance. Our implementation has been deployed in production
at Facebook, and is also available in the Folly open-source library. We conclude by offering the
following questions for future study:

• Can we construct a lattice-based homomorphic hash function which has shorter outputs
(significantly less than 2KB) without compromising on security?

• Is it possible to extend LtHash to support multiset inputs for arbitrarily large multiplicities,
without increasing the total output size?

Acknowledgments

We thank David Freeman for the technical discussions and helpful edits that went into this work. We
thank Soner Terek and Ali Zaveri in helping to formalize the problem and reviewing our candidate
constructions using homomorphic hashing.

References

[ABSS93] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of
approximate optima in lattices, codes, and systems of linear equations. In 34th
Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA,
3-5 November 1993, pages 724–733, 1993.

26

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108, 1996.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP -hard for randomized reductions
(extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 10–19, 1998.

[ANWOW16] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2X. https://blake2.net/blake2x.pdf, 2016.

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms
for hard knapsacks. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 364–385, 2011.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The
case of hashing and signing. In Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings, pages 216–233, 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography and
application to virus protection. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA,
pages 45–56, 1995.

[BGLS19] Shi Bai, Steven D. Galbraith, Liangze Li, and Daniel Sheffield. Improved combinatorial
algorithms for the inhomogeneous short integer solution problem. J. Cryptology,
32(1):35–83, 2019.

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a
new cryptographic library. In Progress in Cryptology - LATINCRYPT 2012 - 2nd
International Conference on Cryptology and Information Security in Latin America,
Santiago, Chile, October 7-10, 2012. Proceedings, pages 159–176, 2012.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, pages 163–192, 1997.

[Bro08] Daniel R. L. Brown. The encrypted elliptic curve hash. IACR Cryptology ePrint
Archive, 2008:12, 2008.

[CDvD+03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G. Ed-
ward Suh. Incremental multiset hash functions and their application to memory
integrity checking. In Advances in Cryptology - ASIACRYPT 2003, 9th International
Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, November 30 - December 4, 2003, Proceedings, pages 188–207, 2003.

27

https://blake2.net/blake2x.pdf

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186, 1999.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings, pages 1–20, 2011.

[CP91] Paul Camion and Jacques Patarin. The knapsack hash function proposed at crypto’89
can be broken. In Advances in Cryptology - EUROCRYPT ’91, Workshop on the
Theory and Application of of Cryptographic Techniques, Brighton, UK, April 8-11,
1991, Proceedings, pages 39–53, 1991.

[CP94] Chris Charnes and Josef Pieprzyk. Attacking the SL2 hashing scheme. In Advances
in Cryptology - ASIACRYPT ’94, 4th International Conference on the Theory and
Applications of Cryptology, Wollongong, Australia, November 28 - December 1, 1994,
Proceedings, pages 322–330, 1994.

[Dej] Alex Dejanovski. Should you use incremental repair? http://thelastpickle.com/

blog/2017/12/14/should-you-use-incremental-repair.html. Accessed: 2019-
01-15.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice
problems. Electronic Colloquium on Computational Complexity (ECCC), 3(42), 1996.

[GR06] Christos Gkantsidis and Pablo Rodriguez. Cooperative security for network coding file
distribution. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Communications
Societies, 23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

[GSC01] Bok-Min Goi, M. U. Siddiqi, and Hean-Teik Chuah. Incremental hash function
based on pair chaining & modular arithmetic combining. In Progress in Cryptology -
INDOCRYPT 2001, Second International Conference on Cryptology in India, Chennai,
India, December 16-20, 2001, Proceedings, pages 50–61, 2001.

[HJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knap-
sacks. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, pages 235–256, 2010.

[Kar15] Koray Karabina. Point decomposition problem in binary elliptic curves. In Information
Security and Cryptology - ICISC 2015 - 18th International Conference, Seoul, South
Korea, November 25-27, 2015, Revised Selected Papers, pages 155–168, 2015.

[KFM04] Maxwell N. Krohn, Michael J. Freedman, and David Mazières. On-the-fly verification
of rateless erasure codes for efficient content distribution. In 2004 IEEE Symposium
on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA, pages
226–240, 2004.

28

http://thelastpickle.com/blog/2017/12/14/should-you-use-incremental-repair.html
http://thelastpickle.com/blog/2017/12/14/should-you-use-incremental-repair.html

[Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 126–135, 2004.

[KY15] Michiel Kosters and Sze Ling Yeo. Notes on summation polynomials. arXiv e-prints,
page arXiv:1503.08001, March 2015.

[Lau14] Ben Laurie. Certificate transparency. Communications of the ACM, 57(10):40–46,
2014.

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. Certificate transparency. RFC,
6962:1–27, 2013.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT:
A modest proposal for FFT hashing. In Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected
Papers, pages 54–72, 2008.

[Lyu05] Vadim Lyubashevsky. On random high density subset sums. Electronic Colloquium
on Computational Complexity (ECCC), (007), 2005.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, pages 369–378, 1987.

[MGS15] Hristina Mihajloska, Danilo Gligoroski, and Simona Samardjiska. Reviving the idea of
incremental cryptography for the zettabyte era use case: Incremental hash functions
based on SHA-3. In Open Problems in Network Security - IFIP WG, pages 97–111,
2015.

[Mic98a] Daniele Micciancio. On the hardness of the shortest vector problem. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1998.

[Mic98b] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. In 39th Annual Symposium on Foundations of Computer Science,
FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages 92–98, 1998.

[Mic11] Daniele Micciancio. Lattice-based cryptography. In Encyclopedia of Cryptography
and Security, 2nd Ed., pages 713–715. 2011.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 21–39,
2013.

[MS09] Lorenz Minder and Alistair Sinclair. The extended k -tree algorithm. In Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, January 4-6, 2009, pages 586–595, 2009.

29

[MT16] Ciaran Mullan and Boaz Tsaban. Sl2 homomorphic hash functions: worst case
to average case reduction and short collision search. Des. Codes Cryptography,
81(1):83–107, 2016.

[MTA17] Jeremy Maitin-Shepard, Mehdi Tibouchi, and Diego F. Aranha. Elliptic curve multiset
hash. Comput. J., 60(4):476–490, 2017.

[Nat15] National Institute of Standards and Technology. FIPS 202: SHA-3 standard:
Permutation-based hash and extendable-output functions. 2015.

[PQTZ09] Christophe Petit, Jean-Jacques Quisquater, Jean-Pierre Tillich, and Gilles Zémor.
Hard and easy components of collision search in the zémor-tillich hash function: New
attacks and reduced variants with equivalent security. In Topics in Cryptology - CT-
RSA 2009, The Cryptographers’ Track at the RSA Conference 2009, San Francisco,
CA, USA, April 20-24, 2009. Proceedings, pages 182–194, 2009.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.

[Sem15] Igor A. Semaev. New algorithm for the discrete logarithm problem on elliptic curves.
IACR Cryptology ePrint Archive, 2015:310, 2015.

[Sha08] Andrew Shallue. An improved multi-set algorithm for the dense subset sum problem.
In Algorithmic Number Theory, 8th International Symposium, ANTS-VIII, Banff,
Canada, May 17-22, 2008, Proceedings, pages 416–429, 2008.

[SS79] Richard Schroeppel and Adi Shamir. A T sˆ2 = o(2ˆn) time/space tradeoff for certain
np-complete problems. In 20th Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 29-31 October 1979, pages 328–336, 1979.

[SvdW06] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In Algorithmic Number Theory, 7th International
Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings, pages
510–524, 2006.

[SY98] Liuba Shrira and Ben Yoder. Trust but check: Mutable objects in untrusted coop-
erative caches. In Advances in Persistent Object Systems, Proceedings of the 8th
International Workshop on Persistent Object Systems (POS8) and Proceedings of the
3rd International Workshop on Persistence and Java (PJW3), Tiburon, California,
USA, 1998, pages 29–36, 1998.

[TZ94] Jean-Pierre Tillich and Gilles Zémor. Hashing with SL2. In Advances in Cryptology
- CRYPTO ’94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings, pages 40–49, 1994.

[van81] Peter van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical Report 81-04, athematische Instituut, Universiry
of Amsterdam, 1981.

30

[Wag02] David A. Wagner. A generalized birthday problem. In Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, pages 288–303, 2002.

[Zav18] Ali Haider Zaveri. Location-Aware Distribution: Configuring
servers at scale. https://code.fb.com/data-infrastructure/

location-aware-distribution-configuring-servers-at-scale/, 2018.

A Proof of Collision Resistance of LtHash

In this section, we first review some background behind lattice-based assumptions in cryptography,
and then we provide a proof of Theorem 2.3.

Lattice-based cryptography. Lattices are a well-studied source of hardness conjectures with
useful cryptographic applications. Some of the earliest applications of lattices in cryptography were
in the design of one-way, collision resistant hash functions [Ajt96, GGH96]. Both the Closest Vector
Problem [van81, ABSS93] and the Shortest Vector Problem [Ajt98, Mic98a, Mic98b, Kho04] are
NP-hard to approximate. The SIS problem was introduced by Ajtai [Ajt96] and shown to be hard
in the average case if the SVP is hard in the worst case.

Matrix kernel problem. Note that in Section 6.1 of [BM97], the matrix kernel problem with
respect to parameters k, n, s is defined as equivalent to our formulation of the short integer solutions
problem, with

(k, n, s)-matrix-kernel = SIS(k, n, log2(q), 1).

Ajtai [Ajt96] showed that the an efficient algorithm to solve random instances of SIS(n,m, q,B)
can be used to approximate the shortest vector of a lattice An×m

q to within a factor of B
√
n in the

worst case. [MP13] showed an amplification result with the modulus q, yielding that SIS can still
retain its hardness for much smaller moduli. In particular, so long as q ≥ β · nδ for any constant
δ > 0, where β is defined as the Euclidean norm of the integer solution x. In fact, q can be composite,
so long as its prime factorization consists exclusively of small primes (for our application we use q
as a power of 2).9

Proof of collision resistance. The remainder of this section covers the proof of Theorem 2.3.

Proof. For an adversary A, we consider the experiment ExptROcr for LtHashn,d, modeling its underlying
hash function after a random oracle. In order to prove the collision resistance property within the
random oracle model from SIS, we describe an efficient simulator Sim which acts as a challenger in
ExptROcr and an adversary in ExptSIS. In this simulation, Sim will respond to random oracle queries
made by A, while keeping track of its responses with a key-value store M containing mappings
(initially empty) from inputs to random oracle outputs.

9[MP13] also state that q ≤ β is trivial to solve—however this is not known to be true with the extra restriction that
the `∞-norm must be at most 1, since this requirement rules out the trivial solution.

31

https://code.fb.com/data-infrastructure/location-aware-distribution-configuring-servers-at-scale/
https://code.fb.com/data-infrastructure/location-aware-distribution-configuring-servers-at-scale/

Description of simulator Sim. To begin, A submits an integer Q to Sim which represents the
maximum number of random oracle queries it will make. Then, Sim begins the experiment ExptSIS
with parameters (n,Q, 2d, 1), so that the C samples A

r←− Zn×Qq and sends A to Sim. The simulator
Sim maintains an index for A by its columns a1, . . . ,aQ. When A submits the ith unique random
oracle query yi ∈ {0, 1}∗, Sim responds with ai and adds the mapping (yi 7→ ai) to its key-value
store M. Eventually, A outputs two distinct sets S = {s1, . . . , sJ} and T = {t1, . . . , tK} of sizes
J,K > 0, respectively. Next, the simulator Sim checks if any elements of S ∪ T have no matching
key entries in M. If this is the case, then Sim immediately aborts the experiment by outputting the
all-ones vector x = 1Q ∈ ZQ to C. Otherwise, Sim constructs the vector x ∈ ZQ as follows, for each
i ∈ [Q]:

xi =

1, if ∃y ∈ S \ T such that (y 7→ ai) is stored in M
−1, if ∃y ∈ T \ S such that (y 7→ ai) is stored in M
0, otherwise

This vector x is then sent to the challenger C, concluding the simulation.

We first show that Sim is indeed a faithful simulation of the challenger in collision resistance
experiment and also a faithful simulation of the adversary in the SIS experiment.

Lemma A.1. The simulation Sim is correct.

Proof. We first show that Sim is correct as a challenger for ExptROcr . Note that the random oracle
responses that Sim sends to A match the columns of the matrix A obtained from the challenger of
ExptSIS, which by definition is selected uniformly at random. Hence, the distribution of random
oracle query responses made by Sim identically match that of a uniformly random output distribution
to unique inputs.

To see that the simulation Sim is correct as an adversary for ExptSIS, we show that the output
vector x is non-zero (since by definition it clearly satisfies ‖x‖∞ ≤ 1). When Sim aborts the
experiment, it outputs the all-ones vector, which is indeed non-zero. If Sim did not abort the
experiment, then this means that there is a mapping in M associated with every element in S ∪ T ,
and that S 6= T . The first condition implies that the entry xi is 0 only if there exists a y ∈ ScT
with (y 7→ ai) in M. However, we know that this cannot be true for every i ∈ [Q], for otherwise
S = T , contradicting the second condition. This means that the vector x is always non-zero, which
concludes the proof of correctness for the simulation.

Lemma A.2. For all efficient adversaries A that make Q oracle queries, we have that

AdvROcr (LtHashn,d,A) ≤ Adv
(n,Q,2d,1)
SIS (Sim) +

1

2nd
.

Proof. We first examine the abort condition for Sim. The simulator aborts if A outputs two distinct
sets S and T where at least one element of S ∪ T has not been submitted as an input to a random
oracle query. Hence, the output is independent and uniformly random from the input, and any fixed
target sum that would be required to satisfy LtHashn,d(S) = LtHashn,d(T). Since the output space
consists of nd bits, the probability of the simulator aborting when ExptROcr (A) = 1 is exactly 1/2nd.

Now, assuming that the abort event does not happen, we note that each element in S ∪ T
corresponds to an entry stored in M. If ExptROcr (A) = 1, then LtHashn,d(S) = LtHashn,d(T), which

32

means that
J∑
i=1

M(si)−
K∑
j=1

M(tj) = 0 (mod 2d)

Note that this is simply a rewriting of the equality Ax = 0 (mod 2d), with x as defined in Sim.

Thus, we have shown that Expt
(n,Q,2d,1)
SIS (Sim) = 1, which concludes the proof.

Putting Lemmas A.1 and A.2 together, we have shown that breaking the collision resistance of
LtHash is at least as hard as solving the SIS problem for matching parameters, concluding the proof
of the theorem.

B Update Propagation Constructions

B.1 Valid States and Update Semantics

In this section, we provide a formal definition of a valid state, and also the semantics of an “update”
as used when discussing update propagation schemes.

Definition B.1 (Valid State). Both the distributor and each subscriber hold internal state values
denoted by sti (for subscribers) and st∗i (for the distributor), for some integer i ∈ [0, n]. We
(recursively) define a state sti or st∗i to be valid if any of the following hold:

• The state is ⊥ (as when initialized).

• The state st∗ belongs to the output of Publish(sk,ui, st
∗
i−1) for some i ∈ [1, n], and st∗i−1 is also

valid.

• The state st belongs to the output of ApplyUpdates(pp, i, j, ~u, µ, stj−1), where i ∈ [0, j − 1],
and (~u, µ)← GetUpdates(pp, i, j, st′), with both st′ and stj−1 also being valid.

Intuitively, we can think of the set of all valid states as those which would arise from a normal
execution of the Publish, GetUpdates, and ApplyUpdates algorithms between the distributor and the
subscribers. In addition to the validity of states, we also define the validity of updates.

Definition B.2 (Valid Update). We can think of a database D as consisting of a set of indexed
rows, where the index is an integer i ∈ Z and a row’s contents is an arbitrary bitstring in {0, 1}∗. A
delta to a database can be either an addition or a removal of a row in the database. The two types
of deltas are denoted as:

• Row addition. For an index i ∈ Z and bitstring x ∈ {0, 1}∗, we write (i,⊥ → x) to represent
adding the value x to the ith row of the database.

• Row deletion. For an index i ∈ Z and bitstring x ∈ {0, 1}∗, we write (i, x→ ⊥) to represent
the deletion of the ith row from the database.

A delta is valid for a database D if the delta does not add a row which already exists in D, and
does not remove a row which does not already exist in D. An update u is an ordered sequence of
deltas, and the update is valid for a database D if each delta is valid upon being applied to D.10

10Note that while we do not define a row mutation delta, one can be modeled as an update consisting of a valid row
removal followed by a valid row addition.

33

Note that we can express a database D as a single update, consisting of the deltas which are just
the row additions of each row of the database.

B.2 Secure Signatures

We review the definition of a secure signature scheme. A signature scheme consists of three algorithms
ΠSig = (Sig.Setup, Sig.Sign, Sig.Verify), where Sig.Setup(1λ)→ (vk, sk) outputs a verification key vk
and a signing key sk, Sig.Sign(sk,m)→ σ takes as input the signing key sk and input message m
to produce a signature σ, and Sig.Verify(vk,m, σ)→ b ∈ {0, 1} takes as input the verification key
vk, a message m, a signature σ, and outputs a bit. The signature scheme ΠSig is correct if for
(vk, sk)← Sig.Setup(1λ), for every message m, Sig.Verify(vk,m,Sig.Sign(sk,m)) = 1.

To define security, we define an experiment ExptSig(1
λ,A) between an adversary A and a

challenger as follows:

1. The challenger runs (vk, sk)← Sig.Setup(1λ) and returns vk to A.

2. A can adaptively query a signature oracle managed by the challenger. A can submit an input
message m, and the signature oracle returns σ = Sig.Sign(sk,m).

3. Eventually, A outputs a final message-signature pair (m∗, σ∗). The output of the experiment
is 1 if Sig.Verify(vk,m∗, σ∗) = 1 and m∗ was not previously submitted as input to the signature
oracle.

We define the advantage of A in ExptSig for a scheme ΠSig as

AdvSig(ΠSig,A) := Pr[ExptSig(A) = 1].

We say that ΠSig is existentially unforgeable under a chosen message attack if for all efficient
adversaries A, AdvSig(ΠSig,A) is negligible in the security parameter λ.

B.3 Signing Each Update Directly

The following construction involves creating a signature over the update contents on each update.
This is efficient from the distributor’s perspective when publishing updates, but the handling of
batch update operations in ApplyUpdates and calls to Validate require verifying lists of signatures.

Description of Πupdate. The distributor maintains an internal state st∗ = (Tupdate,Tsig, n
∗),

corresponding to table Tupdate of all updates submitted to the Publish algorithm, a table Tsig of all
signature digests output by it, and a sequence number n∗ ← 0. The subscribers each maintain an
internal state st = (Tupdate,Tsig) consisting of the two tables Tupdate and Tsig (analogous to the tables
in the distributor’s state), with Tupdate consisting of every update u that it has received as input to
ApplyUpdates, and Tsig consisting of every signature corresponding to each update in Tupdate from
the inputs to ApplyUpdates. We define Πupdate = (Setup,Publish,GetUpdates,ApplyUpdates,Validate)
as follows:

• Setup(1λ)→ (pp, sk). The setup algorithm sets (pp, sk) = (vk, sk)← Sig.Setup(1λ).

• Publish(sk,u, st∗in = (Tupdate,Tsig, n
∗)) → (σ, st∗out). The publish algorithm sets n∗ ← n∗ + 1,

computes σ ← Sig.Sign(sk, (u, n∗)), setting Tupdate[n
∗] ← u, Tsig[n

∗] ← σ and updating
st∗out ← (Tupdate,Tsig, n

∗) with these new parameters, outputting (σ, st∗out).

34

• GetUpdates(pp, v,w, st = (Tupdate,Tsig)) → (~u, µ). The GetUpdates algorithm constructs
~u = 〈Tupdate[v + 1], . . . ,Tupdate[w]〉, and then sets µ = 〈Tsig[v + 1], . . . ,Tsig[w]〉, outputting
(~u, µ)..

• ApplyUpdates(pp, v,w, ~u = 〈uv+1, . . . ,uw〉, ~µ = 〈µv+1, . . . , µw〉, stin = (Tupdate,Tsig))→ (b, stout).
The ApplyUpdates algorithm checks that v < w and Sig.Verify(pp, (ui, i), µi) = 1 for all
i ∈ [v+1,w]. If so, it sets b = 1, and for each j ∈ [v+1,w], adds the entries (Tupdate[j],Tsig[j])←
(uj , µj) and sets stout ← (Tupdate,Tsig). Otherwise, it sets b = 0 and sets stout ← stin. In both
cases, it outputs (b, stout).

• Validate(pp,D, v, st = (Tupdate,Tsig))→ b. The Validate algorithm first checks that Tupdate[0] +
· · · + Tupdate[v] = D, and then checks that Sig.Verify(pp, (Tupdate[i], i),Tsig[i]) = 1 for all
i ∈ [0, v]. If so, it outputs b = 1, and outputs b = 0 otherwise.

Correctness. To prove correctness of Πupdate, we note that the internal states Tupdate and Tsig

kept by each subscriber maintain the invariant that every update in Tupdate has a corresponding
signature over its contents in Tsig. Fix a sequence of updates u1, . . . ,un, and let Di = u1 + · · ·+ ui
for each i ∈ [1, n]. Hence, for (pp, sk) ← Setup(1λ), with (σi, st

∗
i) ← Publish(sk,ui, st

∗
i−1), for each

i ∈ [1, n], we note that:

1. Using (~u, µ)← GetUpdates(pp, i, n, sti) we have that

~u = 〈Tupdate[i], . . . ,Tupdate[n]〉.

By the definition of Publish, we have that ~u = 〈ui, . . . ,un〉, which by definition are exactly
the updates for which Di + Sum(~u) = Dn.

2. Note that, for each j ∈ [i, n], Tupdate[j] and Tsig[j] are constructed from Publish so that
Sig.Verify(pp, (Tupdate[j], j),Tsig[j]) = 1, by the correctness of the signature scheme. Thus, the
ApplyUpdates call outputs with b = 1 as desired.

3. By definition, Tupdate[1]+· · ·+Tupdate[i] = Di, and we established that Sig.Verify(pp, (Tupdate[i], i),
Tsig[i]) = 1 by the correctness of the signature scheme. Therefore, we conclude that
Validate(pp,Di, i, sti) = 1.

Security. To prove security, we construct a simulator Sim which acts as a challenger in Exptup and
an adversary in ExptSig. For a sequence of n updates, the simulator Sim first receives the verification
key vk from the challenger of ExptSig, which it forwards to A as the public parameters pp. Then, for
each type of oracle query that the adversary makes, Sim responds as follows:

• Publish oracle. The simulator Sim, on an input update u, first checks if the update u has
been submitted before, returning the same signature response if it is a repeat. Otherwise, it
simply forwards u to the challenger of ExptSig to receive a signature σ. This is returned as the

digest σ, and the internal state st∗ is updated appropriately. For the ith call to the Publish
oracle, the input u is labeled as u∗i .

• ApplyUpdates oracle. This oracle can be completely simulated by Sim since it does not
require access to sk. If Sim outputs Success, then let x be the first index in [v + 1,w] for which
ux 6= u∗x. Sim submits the message-signature pair (ux, µx) to the challenger for ExptSig, ending
the experiment.

35

• Validate oracle. Again, this oracle can be simulated by Sim using pp. If Sim outputs success,
then let k be the smallest index of a row in which D and u∗1 + · · ·+ u∗n differ. Let x ∈ [1, n] be
the largest index which adds the row k. The simulator submits the message-signature pair
(Tupdate[x],Tsig[x]) to the challenger for ExptSig, ending the experiment.

Lemma B.3. For all efficient adversaries A, Advup(Πupdate,A) = AdvSig(ΠSig, Sim).

Proof. Note that the only signature oracle queries that Sim makes to its challenger are on the
(unique) input message updates u∗1, . . . ,u

∗
n that A submits to the Publish oracle. There are two

cases in which the experiment outputs Success:

• ApplyUpdates oracle. In the event of Success from ApplyUpdates, Sim submits the message-
signature pair (ux, µx) to the challenger, and we have by definition that ux is distinct from
previous signature oracle queries sent to the challenger. Also, since Sim is outputting Success,
this means that Sig.Verify(vk, (ux, x), µx) = 1 again by definition.

• Validate oracle. In the event of Success from Validate, Sim submits the message-signature
pair (ux,Tsig[x]) to the challenger. The index x was chosen carefully to ensure that Tupdate[x]
is distinct from previous signature oracle queries sent to the challenger, based on the fact that
the existing updates could not have introduced the row k which is mismatched in D. Since Sim
is outputting Success, this already means that Sig.Verify(vk, (Tupdate[x], x),Tsig[x]) = 1 again
by definition.

In both cases, the pair submitted by Sim to the challenger matches the criteria for which ExptSig(Sim)
outputs 1, which concludes the proof.

B.4 Signing the Database

The next construction creates a signature over the database contents instead of the update contents.
This is less efficient from the distributor’s perspective when publishing updates, but the handling of
batch update operations in ApplyUpdates and calls to Validate is now much simpler, involving only
a single signature operation in each procedure.

Description of Πdb. The distributor maintains an internal state st∗ = (Tupdate,Tdb,Tsig, n
∗),

corresponding to: a table Tupdate of each update, a table Tdb, where each index i will consist of
an update constructed as Sum(Tupdate[1], . . . ,Tupdate[i]), a table Tsig, where each index i will be the
signature of Tdb[i], and a sequence number n∗ ← 0. The subscribers each maintain an internal state
st = (Tupdate,Tdb,Tsig) consisting of a list of updates Tupdate, a list of sums of updates Tdb, along
with a list of signatures Tsig (defined similar to st∗). We define Πdb = (Setup,Publish,GetUpdates,
ApplyUpdates,Validate) as follows:

• Setup(1λ)→ (pp, sk). The setup algorithm sets (pp, sk)← Sig.Setup(1λ).

• Publish(sk,u, st∗in = (Tupdate,Tdb,Tsig, n
∗))→ (σ, st∗out). The publish algorithm sets n∗ ← n∗+1,

s = Tdb[n∗ − 1] + u, σ ← Sig.Sign(sk, (s, n∗)), sets Tdb[n∗] ← s, Tsig[n
∗] ← σ, updates

stout = (Tupdate,Tdb,Tsig, n
∗), and outputs (σ, st∗out).

• GetUpdates(pp, v,w, st = (Tupdate,Tdb,Tsig)) → (~u, µ). The GetUpdates algorithm outputs
(~u, µ)← (〈Tupdate[v + 1], . . . ,Tupdate[w]〉,Tsig[w]).

36

• ApplyUpdates(pp, v,w, ~u = 〈uv+1, . . . ,uw〉, µ, stin = (Tupdate,Tdb,Tsig)) → (b, stout). The Ap-
plyUpdates algorithm checks that v < w and Sig.Verify(pp, (Tdb[v] + Sum(~u),w), µ) = 1. If
so, it sets b = 1, updates Tupdate[j] ← uj for each j ∈ [v + 1,w], and (Tdb[w],Tsig[w]) ←
(Tdb[v] + Sum(~u), µ), and updates stout = (Tupdate,Tdb,Tsig). Otherwise, it sets b = 0 (without
changing stout). In both cases, it outputs (b, stout).

• Validate(pp,D, v, st = (Tupdate,Tdb,Tsig))→ b. The Validate algorithm checks that Tdb[v] = D,
and then checks that Sig.Verify(pp, (Tdb[v], v),Tsig[v]) = 1. If so, it outputs b = 1, and outputs
b = 0 otherwise.

Correctness. To prove correctness of Πdb, we note that the internal state tables Tupdate, Tdb and
Tsig kept by each subscriber maintain the invariant that every entry in Tdb has a corresponding
signature over its contents in Tsig, and for each i ∈ [1, n], Tdb[i] = Tupdate[1] + · · · + Tupdate[i].
Fix a sequence of updates u1, . . . ,un, and let Di = u1 + · · · + ui for each i ∈ [1, n]. Hence, for
(pp, sk)← Setup(1λ), with (σi, st

∗
i)← Publish(sk,ui, st

∗
i−1), for each i ∈ [1, n], we note that:

1. Using (~u, µ)← GetUpdates(pp, i, n, sti) we have that

~u = 〈Tupdate[i], . . . ,Tupdate[n]〉,

which by the definition of Publish means that ~u = 〈ui, . . . ,un〉, which by definition are exactly
the updates for which Di + Sum(~u) = Dn.

2. We have that Tdb[v] + uv+1 + · · ·+ un = Tdb[n] from the definition of the Publish algorithm.
Therefore, ApplyUpdates runs Sig.Verify(pp, (Tdb[n], n),Tsig[n]) = 1, by the correctness of the
signature scheme. Thus, the ApplyUpdates call outputs with b = 1 as desired.

3. By definition, Tdb[i] = u1+· · ·+ui = Di, and we established that Sig.Verify(pp, (Tdb[i], i),Tsig[i]) =
1 by the correctness of the signature scheme. Therefore, we conclude that Validate(pp,Di, i, sti) =
1.

Security. To prove security, we construct a simulator Sim which acts as a challenger in Exptup and
an adversary in ExptSig. For a sequence of n updates, the simulator Sim first receives the verification
key vk from the challenger of ExptSig, which it forwards to A as the public parameters pp. Sim
also initialized an empty database D∗ = ⊥. Then, for each type of oracle query that the adversary
makes, Sim responds as follows:

• Publish oracle. The simulator Sim, on an input update u, first checks if the update u has
been submitted before, returning the same signature response if it is a repeat. Otherwise, it
simply forwards Tdb[n− 1] + u to the challenger of ExptSig to receive a signature σ. This is

returned as the digest σ, and the internal state st∗ is updated appropriately. For the ith call
to the Publish oracle, the input u is labeled as u∗i , and we define D∗i = D∗i−1 + u.

• ApplyUpdates oracle. This oracle can be completely simulated by Sim since it does not
require access to sk. If Sim outputs Success, then Sim sets m = (Tdb[v] + Sum(~u),w) and
submits the message-signature pair (m, µ) to the challenger for ExptSig, ending the experiment.

37

• Validate oracle. Again, this oracle can be simulated by Sim using pp. If Sim outputs success,
then the simulator submits the message-signature pair (D,Tsig[n]) to the challenger for ExptSig,
ending the experiment.

Lemma B.4. For all efficient adversaries A, Advup(Πdb,A) = AdvSig(ΠSig,Sim).

Proof. Note that the only signature oracle queries that Sim makes to its challenger are on the
databases D∗1, . . . ,D∗n that the Publish oracle computes. There are two cases in which the experiment
outputs Success:

• ApplyUpdates oracle. In the event of Success from ApplyUpdates, Sim submits the
message-signature pair (m, µ) to the challenger. It must be the case that m = D∗v + Sum(u) 6=
D∗v + u∗v+1 + · · · + u∗w = D∗w, for every v,w ∈ [1, n]. Therefore, we can conclude that m is
distinct from all previous signature oracle queries sent to the challenger. Also, since Sim is
outputting Success, this means that Sig.Verify(vk,m, µ) = 1 again by definition.

• Validate oracle. In the event of Success from Validate, Sim submits the message-signature
pair ((D, n),Tsig[n]) to the challenger. Since D 6= D∗n is distinct from previous signature oracle
queries sent to the challenger, and since Sim is outputting Success, this already means that
Sig.Verify(vk, (D, n),Tsig[n]) = 1 again by definition.

In both cases, the pair submitted by Sim to the challenger matches the criteria for which ExptSig(Sim)
outputs 1, which concludes the proof.

38

	Introduction
	Secure Update Propagation
	Our Contributions
	Related Work
	Notation

	Set Homomorphic Hashing
	Definition
	Generalizing Set Homomorphic Hash Constructions
	Set Homomorphic Hashing from Lattices
	Concrete Security of Short Integer Solutions

	Update Propagation
	Definitions
	Signing with Homomorphic Hashing
	Performance Comparison

	Implementation and Performance
	Benchmarking Results
	Deployment

	Conclusion
	Proof of Collision Resistance of LtHash
	Update Propagation Constructions
	Valid States and Update Semantics
	Secure Signatures
	Signing Each Update Directly
	Signing the Database

