
Preimage Attacks on Round-reduced
Keccak -224/256 via an Allocating Approach?

Ting Li and Yao Sun(�)

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China.

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
sunyao@iie.ac.cn

Abstract. We present new preimage attacks on standard Keccak -224
and Keccak -256 that are reduced to 3 and 4 rounds. An allocating
approach is used in the attacks, and the whole complexity is allocated to
two stages, such that fewer constraints are considered and the complexity
is lowered in each stage. Specifically, we are trying to find a 2-block
preimage, instead of a 1-block one, for a given hash value, and the first
and second message blocks are found in two stages, respectively. Both
the message blocks are constrained by a set of newly proposed conditions
on the middle state, which are weaker than those brought by the initial
values and the hash values. Thus, the complexities in the two stages are
both lower than that of finding a 1-block preimage directly. Together with
the basic allocating approach, an improved method is given to balance
the complexities of two stages, and hence, obtains the optimal attacks. As
a result, we present the best theoretical preimage attacks on Keccak -
224 and Keccak -256 that are reduced to 3 and 4 rounds. Moreover, we
practically found a (second) preimage for 3-round Keccak -224 with a
complexity of 239.39.

Keywords: Cryptanalysis · Keccak · SHA-3 · Preimage attack.

1 Introduction

The Keccak sponge function family [3], which was designed by Bertoni et al.,
became a candidate for the SHA-3 competition in 2008 [20]. It won this com-
petition in 2012, and the U.S. National Institute of Standards and Technology
(NIST) standardized Keccak as Secure Hash Algorithm-3 (SHA-3) in 2015 [26].
Keccak has received numerous security analysis since it was publicly available
in 2008.

On practical collision attacks, Dinur et al. presented the first actual collision
attack on 3-round Keccak -384 based on a generalized internal differential at-
tack [8]. Besides, they obtained practical complexities up to 4 out of 24 rounds

? This work was supported by National Natural Science Foundation of China under
Grant No. 61877058, and Strategy Cooperation Project AQ-1701. (Corresponding
author: Yao Sun)

2 Ting Li and Yao Sun

of Keccak -224/256 [7] [9]. Then, Qiao et al. extended Dinur et al.’s framework
and achieved the first practical collision attack against 5-round SHAKE128 [22].
By improving Qiao et al.’s method, Song et al. proposed a practical collision
attack on Keccak -224 reduced to 5 rounds in 2017 [23]. Most of these collision
attacks depend on the differential trails. Daemen et al. analyzed the differential
propagation of Keccak in 2012 [6]. After that, Kölbl et al. went a step further
to study the differential properties of Keccak -f [800] and Keccak -f [1600],
and presented collision attacks with practical complexity on Keccakwhen the
permutation is reduced to 4 rounds [14].

For preimage attacks, Naya-Plasencia et al. [19] and Morawiecki et al. [18]
presented practical attacks up to 2 rounds. Guo et al. developed the technique of
linear structures, and presented a practical attack on 3-round SHAKE128 [12].
Besides, the analysis of theoretical preimage attacking results on 3-round and
4-round instances of Keccak are also given in their paper. Li et al. constructed
a new kind of structures, called cross-linear structures, and improved the theo-
retical preimage complexities on 3-round Keccak -256/SHA3-256/SHAKE256
[15]. Theoretical preimage attacks up to 7/8/9 rounds on Keccak -224/256/512
are considered in [2] [5] [17]. In addition, Aumasson and Meier presented a new
type of distinguisher and applied it to reduced versions of the Keccak -f per-
mutation in 2009 [1].

The Keccak permutation is also used for authenticated encryption, and
many researches have been made in this field. In 2014, Dinur et al. gave the
first cube attacks on round-reduced Keccak sponge function and applied it to
attack MAC and stream cipher mode [11]. Then they analyzed the problems
of key recovery, MAC forgery and other types of attacks on the keyed mode of
Keccak as well as the security margin of Keyak — a Keccak -based authenti-
cated encryption scheme [10]. After that, Huang et al. developed the conditional
cube tester to analyze Keccak in keyed modes and improved the previous dis-
tinguishing attacks in 2017 [13]. Since then, the keyed modes of Keccak have
attracted more intensive cryptanalysis [4] [16] [24].

In this paper, we present an allocating approach to make preimage attacks on
Keccak -224 and Keccak -256 that are reduced to 3 and 4 rounds. Generally,
to find a 1-block preimage for a given hash value, a system is constructed by this
hash value and hash algorithm. This system contains two kinds of constraints.
The first kind comes from the initial value. For example, the last 224× 2 = 448
bits in the initial state of Keccak -224 must be 0’s and these bits will not
XOR messages. Constraints of the second kind are produced by the hash value.
That is, the first l output bits of the hash algorithm must equal the given l-
bit hash value. The unknowns of the system are usually the bit values of the
messages. Constrained by these two kinds of constraints, the system is often
with high nonlinearity and hard to be solved. The motivation of the allocating
approach is to allocate these two kinds of constraints to two different sets of
unknowns. Specifically, we prefer to find a 2-block preimage instead of a 1-block
one. The unknowns from the first message block are constrained by the first
kind of constraints, while those from the second message block should make

Preimage Attacks on Round-reduced Keccak -224/256 3

the second kind of constraints hold. Thus, the whole attacking complexity is
allocated to two stages, and we expect the complexity of each stage to be lower
than that of finding a 1-block preimage. Our motivation is shown in Figure 1.

C
1C 2C

Fig. 1. The motivation of the allocating approach. The volume of water in a flask
stands for the complexity of solving a system. Let C̄ be the complexity of finding a 1-
block preimage, C1 and C2 be the complexities of the two stages used to find a 2-block
preimage by the allocating approach. We expect C̄ > C1 + C2.

The key step of applying this allocating approach is to find suitable con-
straints on the middle state, i.e. the output state of the first block as well as the
initial state of the second block. Since more constraints usually cost more oper-
ations for solving the systems, to make the complexities of the two stages both
lower than that of finding a 1-block preimage, the constraints on the middle state
must be weaker than both kinds of constraints mentioned in the last paragraph.
We improve the structure proposed by Li et al. [15], and obtain a set of suitable
constraints on the middle state. For example, the number of constraints on the
middle state of Keccak -224 is 129, which is smaller than 448 (the number of
constraints from the initial value) and 224 (the number of constraints from the
hash value). For Keccak -256, the number of constraints on the middle state is
193, which is also good enough to improve the preimage attacks on Keccak -256.

The contributions of this paper are summarized in three aspects.

1. We present an allocating approach for preimage attacks on round-reduced
Keccak. This approach allocates the whole attack complexity to two stages,
called Precomputation Stage and Online Stage for convenience. The complex-
ity of each stage is lower than that of finding a 1-block preimage directly.
To the best of our knowledge, this is the first two-block attack on standard
Keccak, although multi-block methods have been successfully applied to
MD5 [27] and SHA-1 [25].

2. We propose a new set of constraints on the middle state by improving Li
et al.’s structure [15]. The improved structure could linearize the generated
system at a low cost, such that we obtain more degrees of freedom to solve
for the second message block.

4 Ting Li and Yao Sun

Rounds Capacity Instances Complexity Reference

3

224
Keccak -224 297 [12]

238 Sec. 4.2

SHA3-224 241 Sec. 4.2

256

Keccak -256
2192 [12]

2150 [15]

281 Sec. 4.2

SHA3-256 2151 [15]

284 Sec. 4.2

SHAKE256 2153 [15]

286 Sec. 4.2

4

224
Keccak -224 2213 [12]

2207 Sec. 4.3

SHA3-224 2207 Sec. 4.3

256
Keccak -256 2251 [12]

2239 Sec. 4.3

SHA3-256 2239 Sec. 4.3

SHAKE256 2239 Sec. 4.3

Table 1. Summary of preimage attacks on 3/4-round Keccak -224/256

3. We improve theoretical complexities of preimage attacks on 3/4-round Kec-
cak -224 and Keccak -256, as well as SHA3-224/256 and SHAKE256. Par-
ticularly, we give the first practical preimage attack on 3-round Keccak -224
with about 239.39 operations. The theoretical results of preimage attacks in
this paper, as well as the previous best ones, are summarized in Table 1.
Detailed theoretical complexities of the two stages of attacking 3/4-round
Keccak -224/256 are given in Table 2.

This paper is organized as follows. Some preliminaries and notations are
given in Section 2. The allocating approach is proposed in Section 3. Theoretical
analyses are presented in Section 4, and a practical preimage attack on 3-round
Keccak -224 comes in Section 5. At last, we conclude this paper in Section 6.

Preimage Attacks on Round-reduced Keccak -224/256 5

Rounds Instances C1 (Pre. Stage) C2 (Onl. Stage) Overall Complexity Reference

3
Keccak -224 266 231 266 Sec. 4.1

235.62 238 238 Sec. 4.2

Keccak -256 2162 262 2162 Sec. 4.1

280.06 281 281 Sec. 4.2

4
Keccak -224 2129 2207 2207 Sec. 4.3

Keccak -256 2193 2239 2239 Sec. 4.3

Table 2. Detailed theoretical complexities of the two stages. C1 and C2 represent the
complexities of Precomputation Stage and Online Stage. Basic and improved allocating
approaches are used in Section 4.1 and Section 4.2, respectively.

2 Preliminaries

2.1 The sponge construction

The sponge construction is used in Keccak algorithm. As shown in Figure 2, it
processes messages in two phases—absorbing phase and squeezing phase. With
these two phases, a sponge construction receives an input stream of any length
and produces an output bit stream of any desired length.

2. Definitions Cryptographic sponge functions

Squeezing phase The outer part of the state is iteratively returned as output blocks, inter-
leaved with applications of the function f . The number of iterations is determined by
the requested number of bits ℓ.

Finally the output is truncated to its first ℓ bits. The c-bit inner state is never directly affected
by the input blocks and never output during the squeezing phase. The capacity c actually
determines the aĴainable security level of the construction, as proven in Chapters 5 and 6.
We use the term random sponge to denote a sponge function with f a random transformation
or permutation.

The term generic aĴack is oĞen used. For sponge functions we define it as follows:

Definition 7. An aĴack on a sponge function is a generic aĴack if it does not exploit specific prop-
erties of f .

The sponge construction is illustrated in Figure 2.1, and Algorithm 1 provides a formal
definition.

In our original paper on sponge function [11] we treated a more general case with the
outer part and message blocks being elements of an arbitrary group and the inner part ele-
ments of an arbitrary set. Because of its practical relevance, we abandon this generic repre-
sentation to the more specific case where the state is a binary string of a given length b and
the message blocks are r-bit strings.

Figure 2.1: The sponge construction Z = Ѡѝќћєђ[f , pad, r](M, ℓ)

2.3 The duplex construction

Like the sponge construction, the duplex construction ёѢѝљђѥ[f , pad, r] uses a fixed-length
transformation or permutation f , a padding rule pad and a parameter bitrate r to build a
cryptographic scheme [14]. Unlike a sponge function that is stateless in between calls, the
duplex construction results in an object that accepts calls that take an input string and return
an output string that depends on all inputs received so far. We call an instance of the duplex
construction a duplex object, which we denote D in our descriptions. We prefix the calls made
to a specific duplex object D by its name D and a dot.

13 / 93

Fig. 2. The sponge construction.

At the beginning, the internal state of b-bits is initialized to be all 0’s, which
is the initial value (IV). The message is padded and split into blocks of r-
bits. In the absorbing phase, the first r bits of b-bits state are XORed with the
message block, followed by the application of permutation f . This procedure is
repeated until all the message blocks are processed. Then in the squeezing phase,

6 Ting Li and Yao Sun

the first l bits are output. With an additional application of f , another l output
bits are obtained. The algorithm iterates this step until the required length of a
digest is reached.

1. Kђѐѐюј specifications The Kђѐѐюј reference

Figure 1.1: Naming conventions for parts of the Kђѐѐюј- f state

11 / 69

Fig. 3. The Keccak state.

2.2 The Keccak -f permutations

According to the Keccak reference [3], there are 7 Keccak -f permutations,
indicated by Keccak -f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600}. We call b
the width of the permutation. In this paper, we only focus on the case b = 1600,
since Keccak -f [1600] is used widely in practice, which can be described as a
5× 5 64-bits lanes as depicted in Figure 3. In this paper, we use L to denote
the number of bits in a lane. In Keccak -f [1600], we have L = 64. Each bit is
denoted as Ax,y,z. The integer triples (x, y, z) are the indices of bits, where x, y
come from the set {0, 1, 2, 3, 4} and 0 ≤ z ≤ L − 1. The values of x and y are
taken modulo 5 and we take z’s values modulo L in the rest of this paper. The
axis z is omitted sometimes for simplification.

The function Keccak -f [1600] consists of 24 rounds permutation R. Each
round R consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ,

where

θ : Ax,y,z = Ax,y,z ⊕
4⊕

j=0

(Ax−1,j,z ⊕Ax+1,j,z−1),

ρ : Ax,y,z = Ax,y,(z+rx,y),

π : Ay,2x+3y,z = Ax,y,z,

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z,

ι : A0,0,z = A0,0,z ⊕RCz.

Preimage Attacks on Round-reduced Keccak -224/256 7

In the above definitions, bit-wise XOR is denoted by “⊕” and bit-wise logic
AND by “ · ”. Besides, “rx,y” refers to a lane-dependent rotation constant which
equals the corresponding value in Table 3 taken modulo the lane length L. And
“RCz” is a round-dependent constant. The details about RC are omitted since
they do not affect our attacks. For further details about Keccak, please refer
to [3].

x=3 x=4 x=0 x=1 x=2

y=2 153 231 3 10 171
y=1 55 276 36 300 6
y=0 28 91 0 1 190
y=4 120 78 210 66 253
y=3 21 136 105 45 15

Table 3. The offsets of ρ.

2.3 Instances of Keccak

The hash function Keccak [r, c, l] means an instance of Keccak sponge func-
tion family with capacity c, bitrate r, and output length l. The official ver-
sions of Keccak -l have r = 1600−c and c = 2·l, where l ∈ {128, 224, 256, 384, 512}.
Their padding rules are identical. The message is padded by appending a bit
string of “10*1”, where “0*” means the shortest string of 0’s such that the
padded message is of multiple of r bits.

The digests of the standard SHA-3 have lengths of 224, 256, 384, and 512
bits. SHA-3 is similar to Keccak except for the padding rule. SHA-3 pads the
message with another two bits “01” before applying the Keccak padding rule,
i.e., the padded string becomes “0110*1”.

The SHA-3 family also includes two SHAKE instances (SHAKE128 and
SHAKE256), which are called extendable-output functions (XOF’s). Specifically,
SHAKE128(M, l) and SHAKE256(M, l) are defined as Keccak [r = 1344, c =
256] and Keccak [r = 1088, c = 512]. And the message M is padded with a
suffix “1111”.

In this paper, our attacks on instances of Keccak, SHA-3 and SHAKE use
the same parameters, and we focus on the instances with l = 224/256.

2.4 Notations

To find preimages for given hash values, we need to construct algebraic systems
during the attacks. Some bits of the internal state will be set as unknowns
and some are set as constants, where the unknowns are the bits that we need to
solve. When some bits are set as unknowns in some state, bits in the consequent
states can be represented as polynomials of these unknowns. For convenience,
if a bit is represented as a linear polynomial of unknowns, we say this bit is

8 Ting Li and Yao Sun

linear; similarly, we say a bit is quadratic if it is represented as a quadratic
polynomial. Please note that the polynomial representation of a bit is unique in
our attacks. Similarly, each column of a specific state contains 5 bits. We say a
column is linear if all bits in this column are linear bits or constants.

We also give names to some states for sake of convenience. As the message is
split into several message blocks, there are many hash blocks in the absorbing
phase. We call the starting state of each hash block the initial state of this
block, while the ending state of each block is called the output state or out-
puts of this block. Note that bits in the initial state of the first block are all 0’s,
and the output state of the i-th block is just the initial state of the (i + 1)-th
block. Particularly, the output state of the first block is also called the middle
state in our attacks, since there are only two blocks in consideration. We call
the state after XORing the initial state with the message the messaged state,
and the state after the operation θ is called the θ-diffused state.

For notations, x, y, z refer to the axises of bits in states, and ax,y,z, dx,y,z,
and ex,y,z are always used to represent bits in the messaged state, θ-diffused
state, and output state of a hash block, respectively. We use ij and oj to denote
input and output bits of the operation χ. The notation sx,y is used to represent
the sum of a column in some state.

3 The allocating approach

With the motivation introduced in Section 1, we present the constraints on the
middle state firstly by improving Li et al.’s structure [15]. Next, we show the
details of the allocating approach.

3.1 Constraints on the middle state

In [15], Li et al. proposed a structure by setting some bits of the messaged
state as unknowns and constants, such that the output bits after 2 forward
rounds are almost all linear. However, there are still some nonlinear bits due
to the constraints brought by the initial value. In this section, we improve this
structure, and make all output bits linear after 2 forward rounds.

We start by studying the properties of the only nonlinear operator χ of each
forward permutation. The operator χ can be regarded as a small S-box with 5
input and output bits, and the algebraic normal form of χ is

oj = ij ⊕ (ij+1 ⊕ 1) · ij+2, j = 0, 1, 2, 3, 4,

where ij and oj are the j-th input and output bits. When building the algebraic
systems, the input and output bits of χ are all represented as polynomials of
unknowns and constants. Our goal is to find an input pattern such that: (1) the
inputs contain as many linear bits as possible, i.e. the degrees of freedom need
to be high; (2) the outputs contain as few non-constant bits as possible, i.e. the
unknowns are not diffused much; (3) the outputs do not contain nonlinear bits.

Preimage Attacks on Round-reduced Keccak -224/256 9

By the requirement (1) and (3), we known that there are at most 2 linear bits in
the inputs and these two linear bits must not be consecutive as well. Let x and c
stand for the linear bit and constant bit, respectively. Then the input pattern is
‘xcxcc’, while other patterns satisfying (1) and (3) are all rotations of this one.
Since each constant c could be 1 or 0, there are 8 possible cases of this input
pattern. We list them and their corresponding outputs in Table 4.

inputs x0x01 x0x00 x0x11 x1x01 x0x10 x1x00 x1x11 x1x10

outputs x0x01 x0xx0 xxx11 x1x0x xxxx0 x1xxx xxx1x xxxxx

#(linear output bits) 2 3 3 3 4 4 4 5

Table 4. Input and output bits of χ for the ‘xcxcc’ input pattern.

As shown in Table 4, only the input pattern ‘x0x01’ meets the requirement (2).
Based on the above study, we improve Li et al.’s structure in Lemma 1.

(a) (b) (c) (d)

(a) (b) (c) (d)
Row 0
Row 1

Row 2

3,0,za 4,0,za1,0,za 2,0,za0,0,za

3 2 za 4 2 za1 2 za 2 2 za0 2 za

Row 3

Row 2

Row 4

3,2,z 4,2,z1,2,z 2,2,z0,2,z

= 0 = const

= linear= 1

(e) (f) (g)

Fig. 4. The improved linear structure. Only one slice is shown, while the structures of
other slices are the same.

Lemma 1. Let the messaged state be (a) in Figure 4, i.e. bits in Row 0, 2
are unknowns, bits in Row 1, 3 are 0’s, and bits in Row 4 are 1’s. Then the
Keccak -f [1600] permutation can be linearized up to 2 rounds with 194 degrees
of freedom left.

Proof. To avoid the propagation of unknowns after the θ operation, we assume
that the bitewise sum of two columns is 0, i.e.,

⊕4
j=0Ax−1,j,z +

⊕4
j=0Ax+1,j,z−1

=0 in state (a). In this way, after the operation θ, constant bits in state (a) are
unchanged in state (b), but the linear bits in state (b) may be different from those

10 Ting Li and Yao Sun

in state (a) by some constants. Initially, there are 10× 64 = 640 unknowns, say
ax,0,z and ax,2,z. The sum assumption generates 5× 64 = 320 linear constraints:

ax−1,0,z⊕ax−1,2,z⊕ax+1,0,z−1⊕ax+1,2,z−1 = 0, where 0 ≤ x < 5, and 0 ≤ z < 64.

And there is 1 constraint linear dependent on the other 320−1 = 319 constraints.
To show the linear dependence, we denote px,z := ax−1,0,z⊕ax−1,2,z⊕ax+1,0,z−1⊕
ax+1,2,z−1. Then we have⊕

x,z

px,z =
⊕
x,z

ax−1,0,z ⊕
⊕
x,z

ax−1,2,z ⊕
⊕
x,z

ax+1,0,z−1 ⊕
⊕
x,z

ax+1,2,z−1.

Since
⊕

x,z ax−1,0,z =
⊕

x,z ax+1,0,z−1 and
⊕

x,z ax−1,2,z =
⊕

x,z ax+1,2,z−1, we
have

⊕
x,z px,z = 0, which means each px,z equals the sum of the others. So after

θ, there are 640− 319 = 321 degrees of freedom left. After ρ and π, each row of
the state (c) has the pattern ‘x0x01’, and it is just the optimal case we studied
above. So nonlinear bits are not generated and the unknowns are not diffused
after the χ operation.

To keep the outputs of the second forward round linear, we also need to
assume the sums of bits in Column 0 and 2 are constants in state (d), which
produces 2 × 64 = 128 linear constraints and 1 of them is linear dependent
on the other 128 − 1 = 127 as well, while the proof is similar. Then there are
321−127 = 194 degrees of freedom left. The consequent operations will not cost
degrees of freedom, and all the bits in state (g) are linear.

In general, the layout of state (a) in Figure 4 is hard to meet, as it has rigid
requirements on the values of constants. So we consider a more general case in
Theorem 1.

(a) (a’) (b)

 = 0 or = const

(a) (a) (b)

0,1,za
Row 0
Row 1

Row 2

= linear= 1
0,4,za
0,3,zaRow 3

Row 2

Row 4

Slice z

Fig. 5. Transforming state (a) to a more general case (a’).

Theorem 1. Let the messaged state be (a’) in Figure 5, i.e. bits in Row 0, 2
are unknowns, and bits in Row 1, 3, 4 are constants such that

(i) ax,1,z = ax,3,z = ax,4,z ⊕ 1, and
(ii)

⊕
x,z ax,4,z = 0,

where ax,y,z stands for the linear or constant bit at the position (x, y, z), 0 ≤
x, y < 5, and 0 ≤ z < 64. Then there exist constants sx,z’s with 0 ≤ x < 5

Preimage Attacks on Round-reduced Keccak -224/256 11

and 0 ≤ z < 64, such that if assuming
⊕4

j=0 ax,j,z = sx,z, then the state (b) in
Figure 5 can be obtained by operating θ on (a’). And hence, the Keccak -f [1600]
permutation can be linearized up to 2 rounds with 194 degrees of freedom left.

Proof. As introduced in Section 2.2, the operation θ is defined as:

θ : dx,y,z = ax,y,z⊕
4⊕

j=0

(ax−1,j,z⊕ax+1,j,z−1) = ax,y,z⊕
4⊕

j=0

ax−1,j,z⊕
4⊕

j=0

ax+1,j,z−1,

where dx,y,z is a bit in the state (b) that is diffused from ax,y,z’s. Let sx,z :=⊕4
j=0 ax,j,z. Then we have

dx,y,z = ax,y,z ⊕ sx−1,z ⊕ sx+1,z−1. (1)

To ensure that the state (b) can be obtained after the operation θ, i.e. dx,0,z
and dx,2,z are linear, dx,1,z = dx,3,z = 0, and dx,4,z = 1, we only need to make
the following equations hold by the condition ax,1,z = ax,3,z = ax,4,z ⊕ 1:

ax,4,z ⊕ sx−1,z ⊕ sx+1,z−1 = 1, where 0 ≤ x < 5, 0 ≤ z < 64. (2)

There are 5× 64 = 320 equations in (2). All ax,4,z are constants. Regarding
sx,z as symbols, the reduced Gröbner basis of the ideal 〈ax,4,z⊕sx−1,z⊕sx+1,z−1⊕
1 | 0 ≤ x < 5, 0 ≤ z < 64〉 over (GF (2)[ax,4,z])[sx,z] w.r.t. some lexicographic
ordering on {sx,z} contains 320 polynomials. Among these polynomials, the only
one that does not involve {sx,z} is

⊕
x,z ax,4,z. By the properties of Gröbner

bases, Equation (2) have solutions for {sx,z}, if and only if
⊕

x,z ax,4,z = 0. This
is just the condition (ii), and the theorem is proved.

In fact, the above proof implies that the condition (i) and (ii) in Theorem 1
are also necessary conditions for the existence of sx,z’s, if the messaged state is
set as (a’).

3.2 Preimage attacks with the allocating approach

For an instance of Keccak -f [1600], the number of bits in its internal state is
1600, which consists of two parts with r and c bits respectively. All 1600 bits are
set as 0 initially. The first r bits need to XOR the message, and the last c bits
remain 0’s. The number c is the capacity of this instance.

By Theorem 1, if the capacity c of an instance of Keccak -f [1600] is smaller
than 5×64 = 320, e.g. SHAKE128 whose capacity is 256, we can set the messaged
state like (a’) in Figure 5 by choosing the message carefully. Unfortunately, the
capacities of most Keccak instances are bigger than 320. This means the results
in Section 3.1 cannot be used directly, because the number of 0’s in the tail of
the messaged state is more than 320 and the condition (i) does not hold.

Fortunately, the state (a’) could serve as a good internal state in the allocating
approach, where 2-block messages are considered. The outputs of the first block
are not all 0’s generally. We can adjust the values of the first r bits by choosing

12 Ting Li and Yao Sun

the second message block carefully. To make the messaged state of the second
block meet the conditions in Theorem 1, we also need some constraints on the
last c bits in the output state of the first block.

Specifically, as shown in Figure 6, we consider the initial state (A) and mes-
saged state (B) of the second block. The state (A) is the middle state in our
attack, and it is also the output state of the first block.

The 2nd
message block

0 'c 1 'c 2 'c 3 'c 4 'c
00x 01x 02x 03x 04x

20x 21x 22x 23x 24x

2c 3c 4c
2 'c 3 'c 4 'c

0c 1c 2c 3c 4c
0 'c 1 'c 2 'c 3 'c 4 'c
20 21 22 23 24

() (b)(a) (b)

The 2nd The 2nd

message block

3,0o 4,0o1,0o 2,0o0,0o

message block

3,3a 4,3a1,3a 2,3a0,3a

3,1a 4,1a1,1a 2,1a0,1a

3,2o 4,2o1,2o 2,3o0,2o
3,1o 4,1o1,1o 2,1o0,1o

3,3a 4,3a1,3o 2,3o0,3o 3,3a 4,3a1,3a 2,3a0,3a

3,1a 4,1a1,1a 2,1a0,1a

3,3e 4,3e1,3e 2,3e

3,4a 4,4a

(1) (2)

3,4a 4,4a1,4a 2,4a0,4a1,4a 2,4a0,4a 3,4e 4,4e

(A) (B)

1,4e 2,4e0,4e

t li

3,4a 4,4a1,4a 2,4a0,4a

or = const = linear

Fig. 6. The initial and messaged states of the second block of Keccak -224/256. The
axis z is omitted for simplification.

For Keccak -224, its capacity is 448, which means the last 7 lanes of bits
can not be changed after the second message block being XORed. So the last 7
lanes in the state (A) and (B) are identical. Since the values of the first 18 lanes
in state (B) can be adjusted by the second message block1, to make bits in the
state (B) meet condition (i) and (ii) in Theorem 1, it suffices to ensure

e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z, and
⊕
x,z

ex,4,z = 0, (3)

which consists of 64 + 64 + 1 = 129 equations.
The case for Keccak -256 is similar, except that the last 8 lanes in the state

(A) and (B) are identical. To make bits in the state (B) meet conditions in
Theorem 1, we need the following 64 + 64 + 64 + 1 = 193 equations hold:

e2,3,z ⊕ 1 = e2,4,z, e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z, and
⊕
x,z

ex,4,z = 0. (4)

So in all, attacks on Keccak -224/256 via the allocating approach consist of
two stages:

1. Precomputation Stage: Find a first message block, such that Equation (3)
or (4) hold for the output bits of the first block. Let C1 be the complexity
of finding this message block.

1 The paddings will be dealt with sooner.

Preimage Attacks on Round-reduced Keccak -224/256 13

2. Online Stage: Construct an algebraic system using the structure in Theorem
1 for a given hash value, and solve this system for a second message block.
The complexity of this stage is denoted as C2.

We call the first stage “Precomputation Stage”, because it does not need to
be re-executed for different hash values, if a good first message block has been
found.

Consequently, the complexity of the whole preimage attack is C1 +C2. Let C̄
denote the complexity of finding a 1-block preimage, then we have max{C1, C2} <
C̄. On one hand, since the numbers of equations in Equation (3) and (4) are 129
and 193, they are smaller than 224 and 256, which are the lengths of the hash
values, respectively. Thus, we have C1 < C̄. On the other hand, if the last c bits
in the initial state are set 0’s, there is no way to linearize the first two rounds
of Keccak -f [1600] permutation of with 194 degrees of freedom left. So we can
expect C2 < C̄.

The basic preimage attack via the allocating approach will be described in
Section 4.1. Particularly, for the case C1 > C2, the complexity of the whole
preimage attack can be made even lower. Because finding a first message block
such that all equations in Equation (3) or (4) hold is usually harder than that
if we allow some equations in Equation (3) or (4) not to hold. This means we
can decrease the complexity of Precomputation Stage at the cost of increasing
the complexity of Online Stage. Thus, the balanced complexity will be smaller
than max{C1, C2}. This balanced method will be given in Section 4.2, and it
also leads to a practical preimage attack on 3-round Keccak -224 in Section 5.

4 Theoretical results on round-reduced Keccak -224/256

In this section, we use the allocating approach to attack Keccak -224/256 that
are reduced to 3 and 4 rounds. Theoretical complexities of these instances, as well
as instances of SHA-3 and SHAKE, are given. The complexity is measured by
the number of times for solving systems of linear equations, i.e., the complexity
of solving a linear system is assumed to be a constant, which is the same as done
in [12].

4.1 Attacks on 3-round Keccak -224/256

In this section, we give detailed preimage attacks on 3-round Keccak -224. At-
tacks on 3-round Keccak -256 and instances of SHA-3 and SHAKE are similar.

Attacks on 3-round Keccak -224 The attack consists of three parts. First,
we find a first message block such that Equation (3) holds in Precomputation
Stage. Second, we find a second message block such that the state (B) meets
conditions in Theorem 1 and the outputs of the second block equal the given
hash value in Online Stage. At last, we show how to deal with the paddings.

14 Ting Li and Yao Sun

Part 1: finding a first message block
To find the first message block satisfying Equation (3), we use the structure

presented by Guo et al. [12] in Figure 7, which keeps 2.5 rounds linear with 128
degrees of freedom left.

1st round

2nd round

3rd round0 4p 1 4p 2 4p 3 4p 4 4p
0,3p 1,3p 2,3p 3,3p 4,3p

3,3e 4,3e

0,4e 1,4e 2,4e 3,4e 4,4e

(a) (b) (c) (d)

= quadratic= 0 = 1 = linear

0,4p 1,4p 2,4p 3,4p 4,4p

=const quadratic 0 1 linear=const

Fig. 7. The 3 forward rounds of the first block of Keccak -224. The axis z is omitted
for simplification.

In the messaged state of the first round, bits of 8 lanes are set as unknowns
(shown in yellow boxes), which means there are 8× 64 = 512 unknowns. White
boxes and dark gray boxes in this state mean constant 0’s and 1’s. In the state
(c) of the 3rd round, all bits are linear, and all of them become quadratic after
the operation χ. During this procedure, to avoid the propagation by θ in the
first and second rounds, 2×64+4×64 = 384 linear constraints are added to the
system by assuming sums of linear columns as constants. Here, a linear column
refers to a column whose bits are linear or constant. By Equation (3), we obtain
another 2× 64 + 1 = 129 quadratic equations.

In all, we construct a system with 384 + 129 = 513 equations in 512 un-
knowns. Although 384 equations are linear, this system is still not easy to solve
in general. Fortunately, after noticing that there is only one quadratic term
in each polynomial representation of ei,j , we can enumerate 2 values of linear
polynomials and obtain 4 linear equations like done in [15].

Specifically, let pi,j be the (linear) polynomial representation of bits in the
state (c) of the 3rd round in Figure 7. By the χ operation, we have:

e3,4 = p3,4 ⊕ (p4,4 ⊕ 1) · p0,4, e4,4 = p4,4 ⊕ (p0,4 ⊕ 1) · p1,4,

e3,3 = p3,3 ⊕ (p4,3 ⊕ 1) · p0,3, e4,3 = p4,3 ⊕ (p0,3 ⊕ 1) · p1,3,

Preimage Attacks on Round-reduced Keccak -224/256 15

where the axis z is omitted for simplification. By Equation (3), we have the
following equations:

p3,4 ⊕ (p4,4 ⊕ 1) · p0,4 ⊕ p3,3 ⊕ (p4,3 ⊕ 1) · p0,3 = 1, (5)

p4,4 ⊕ (p0,4 ⊕ 1) · p1,4 ⊕ p4,3 ⊕ (p0,3 ⊕ 1) · p1,3 = 1. (6)

If the values of the pair (p0,3, p0,4) are enumerated, then both Equation (5) and
(6) are linearized in each slice. Together with equations from the enumeration,
we obtain 4 linear equations totally.

Consequently, we enumerate the values of the pair (p0,3, p0,4) in 32 slices, and
obtain 128 linear equations. The system consists of 384+(129−2×32)+128 = 577
equations in 512 unknowns, and 384 + 128 = 512 of them are linear. With the
same assumptions in [12], a solution to this system can be found in constant
time.

Note that the original system consists of 513 equations in 512 unknowns, so
the probability of the existence of a solution is regarded as 1/2. In case there is
no solution to this system, we can vary the values of column sums in the state
(a) of the 2nd round, and construct new systems. Besides, through the above
procedure, we need to enumerate the values of 2 × 32 = 64 linear polynomials
to solve the system. Therefore, the whole complexity of finding the first message
block consists of two parts, the complexity 21 of ensuring the system has a
solution, and the complexity 264 of solving the system. The whole complexity of
is 21+64 = 265.

Part 2: finding a second message block
By part 1, we obtain an initial state of the second block satisfying Equation

(3). After setting bits in the second message block carefully, the messaged state,
depicted in (a) of the 1st round in Figure 8, meets the conditions in Theorem 1.
So there are 194 degrees of freedom left in the end of the 2nd round.

Bits in the initial state of the 3rd round are all linear, and after the linear
operation θ, π, and ρ, bits in the state (c) of the 3rd round remain linear. On
the other hand, Keccak -224 generates a 224-bit hash value, which is supposed
to be known for preimage attacks. Next, we construct relations between the bits
before and after the operation χ. The relations are first studied in [12], and the
operation ι is omitted here for simplification.

Let ij and oj be the input and output bit of χ. We have

oj = ij ⊕ (ij+1 ⊕ 1) · ij+2, j = 0, 1, 2, 3, 4,

by definition. Next, we can deduce

oj = ij ⊕ ((oj+1 ⊕ (ij+2 ⊕ 1) · ij+3)⊕ 1) · ij+2

= ij ⊕ (oj+1 ⊕ 1) · ij+2 ⊕ (ij+2 ⊕ 1) · ij+3 · ij+2

= ij ⊕ (oj+1 ⊕ 1) · ij+2. (7)

16 Ting Li and Yao Sun

1st round

2nd round

 1 1

3rd d

(a) (b) (c) (d)

3rd round

and = const = 0 = 1 = linear = known

Fig. 8. The forward 3 rounds of the second block of Keccak -224. The axis z is omitted
for simplification.

Assume the ij ’s are linear. If the values of 4 consecutive output bits are known,
e. g. o0, . . . , o3 are constants, then we have 3 linear equations

o0 = i0 ⊕ (o1 ⊕ 1) · i2, o1 = i1 ⊕ (o2 ⊕ 1) · i3, o2 = i2 ⊕ (o3 ⊕ 1) · i4,

and 1 quadratic equation

o3 = i3 ⊕ (i4 ⊕ 1) · i0. (8)

Fortunately, Equation (8) can be simplified to linear as below.

i0 = o0 ⊕ (o1 ⊕ 1) · i2 = o0 ⊕ (o1 ⊕ 1) · (o2 ⊕ (o3 ⊕ 1) · i4) = A⊕B · i4,

where A = o0 ⊕ (o1 ⊕ 1) · o2 and B = (o1 ⊕ 1) · (o3 ⊕ 1). Thus,

o3 = i3 ⊕ (i4 ⊕ 1) · i0 = i3 ⊕ (i4 ⊕ 1) · (A⊕B · i4) = i3 ⊕ (i4 ⊕ 1) ·A.

Similarly, if the values of 3 consecutive output bits are known, say o0, o1, o2, then
we get 2 linear equations o0 = i0 ⊕ (o1 ⊕ 1) · i2, o1 = i1 ⊕ (o2 ⊕ 1) · i3, and a
quadratic one

o2 = i2 ⊕ (i3 ⊕ 1) · i4. (9)

But this quadratic equation cannot be simplified.
In a digest of Keccak -224, we have 4 consecutive bits in 32 slices, and 3

consecutive bits in the other 32 slices. Since the bits in the state (c) of the 3rd

Preimage Attacks on Round-reduced Keccak -224/256 17

round are linear, we can set up (4+2)×32 = 192 linear equations, and 1×32 = 32
quadratic ones.

To sum up, bits of 10 lanes in the messaged state are unknowns. The number
of unknowns is 10 × 64 = 640. To avoid the propagation by θ in the first and
second rounds, 5×64+2×64 = 448 linear constraints are added to the system by
assuming that the bitewise sums of two linear columns are constants. Please note
that there are 2 linear equations linear dependent on others, and the reason is
shown in the proof of Lemma 1. We should also pay attention to that the values
of these bitewise sums in the state (a) of the 1st round in Figure 8 must equal
the values of sx,z’s which are obtained from the proof of Theorem 1. But the
sums of linear columns in the state (a) of the 2nd round could be set randomly.

Together with equations constructed by the hash value, the system has 448−
2 + 192 + 32 = 670 equations in 640 unknowns, and among these equations,
448− 2 + 192 = 638 are linear and linear independent on each other. To ensure
this system has a solution, we need to enumerate 2670−640 = 230 sum values of
linear columns in the state (a) of the 2nd round. To solve the system, we only
need to enumerate the values of a single bit i3 in Equation (9), such that we
can obtain 2 linear equations i3 = c and o2 = i2 ⊕ (c ⊕ 1) · i4, where c is the
enumerated value of i3. Then we get 638 + 2 = 640 linear equations and the
system can be solved within constant time. In all, the complexity that ensures
the system has a solution is 230, and the complexity of solving the system is 21.
The overall complexity is 230+1 = 231.

Part 3: dealing with paddings
For Keccak -224, the last bit of the second message block must be 1 due to

the padding rule. So to ensure that the messaged state of the second block meets
the conditions in Theorem 1, we require e2,3,63 ⊕ 1 = e2,4,63 ⊕ 1, or equivalently

e2,3,63 = e2,4,63. (10)

This equation should be included in the system for finding the first message
block. That is, we have 514 equations in 512 unknowns, and the probability of
the existence of a solution is 1/4. The complexity for solving the first message
block becomes 266.

The overall complexities of attacking 3-round Keccak -224/SHA3-224
Summing up the analyses in the above three parts, the theoretical preim-

age attack on 3-round Keccak -224 costs about 266 operations. With similar
analyses, the complexity of attacking 3-round SHA3-224 is 269.

Attacks on 3-round Keccak -256 To find a first message block for 3-round
Keccak -256, the messaged state is set as (a) in Figure 9. And Equation (4) are
considered. Following a similar procedure, bits in the output of the 2nd round
have algebraic degree 1 at most.

To solve a first message block, we set 2× 64 + 3× 64 = 320 linear equations
by assuming the sums of linear columns in the state (a) and (d) are constants.
Besides, there are 3 × 64 + 1 = 193 quadratic equations in Equation (4). The

18 Ting Li and Yao Sun

(a) (b) (c) (d)

(a) (b) (c) (d)

= 0 = const

= linear= 1 (e) (f) (g)

Fig. 9. The first message block of 3-round Keccak -256. The axis z is omitted for
simplification.

number of unknowns is 6× 64 = 384. So this system consists of 320 + 193 = 513
equations in 384 unknowns, and the probability of the existence of a solution is
1/2513−384 = 1/2129. That is, we need to enumerate 2129 sum values of linear
columns in the state (d) to ensure the system has a solution. To solve this
system, similar to the case of Keccak -224, we need to enumerate the values
of the pair (p0,3, p0,4) in 16 slices, and obtain 64 linear equations. Then we
obtain 320 + 64 = 384 linear equations, and the system can be solved with a
constant time complexity. Thus, the complexity of finding a first message block
is 2129+32 = 2161.

To solve a second message block, the procedure is the same as that of Kec-
cak -224, except that we obtain 4 × 64 = 256 linear equations from the hash
value. The system of this stage consists of 5× 64 + 2× 64− 2 + 256 = 702 linear
equations in 640 knowns. We need to try 2702−640 = 262 sum values of the linear
columns in the state (a) of the 2nd round, to ensure there is a solution to this
system. So the complexity of this stage is 262.

The overall complexities of attacking 3-round Keccak -256/SHA3-
256/SHAKE256

After dealing with paddings for the instances of Keccak -256, SHA3-256,
and SHAKE256, their attack complexities are 2162, 2165, and 2167, respectively.
Note that these results are not as good as those in [15].

4.2 Improved attacks on 3-round Keccak -224/256

In the attacks of Section 4.1, the complexity of Precomputation Stage is much
higher than that of Online stage. One reason is that we require the state (B) in
Figure 6 meets all conditions in Theorem 1. In fact, to obtain better attacks on

Preimage Attacks on Round-reduced Keccak -224/256 19

Keccak -224/256, we can give up some constraints in Equation (3) or (4). In
such a way, the complexity of finding the first message block will decrease at the
cost of increasing the difficulty of finding the second message block. Then the
complexities of the two stages will be balanced, and hence, the overall complex-
ities of attacks will be improved.

Improved attacks on 3-round Keccak -224 The improved attack contains
two parts.

Part 1: finding a first message block
As discussed in Section 4.1, it costs 266 operations to find a first message

block such that all the 129 + 1 equations in (3) and (10) hold. Consequently,
the messaged state (B) in Figure 6 meets all conditions in Theorem 1, and
hence, we can obtain the best complexity 231 for the second block. Note that
the complexity in the second stage is much lower than that in the first one. To
improve the overall complexity of attacking Keccak -224, we can balance the
complexities of the two stages by allowing the messaged state (B) to not meet
all conditions in Theorem 1. This means, not all equations in (3) and (10) must
hold, which leads to a more efficient way of finding the first message block.

Since the 130 equations in (3) and (10) reflect the linear relations of the
output bits of the first block, and the outputs of the first block can be regarded
as random values, this means each of the 130 equations holds at the probability
1/2 in general. Thus, our strategy is that, we only include some of the equations
in the system for solving, and expect the others to hold as many as possible.

Specifically, we divide the 130 equations into three sets. Set 1 contains the
equations {e3,3,z ⊕ 1 = e3,4,z, e4,3,z ⊕ 1 = e4,4,z} for 32 slices, and the equations
that come from the other 32 slices together with Equation (10) are contained in
Set 2. The equation {

⊕
x,z ex,4,z = 0} is regarded as Set 3. Then the 2×32 = 64

equations in Set 1 are included in the system for solving the first message block.
We expect the 2 × 32 + 1 = 65 equations in Set 2 to hold as many as possible.
And we do not care about whether the equation in Set 3 holds or not, because
it does not affect the complexity of Online Stage.

Next, we estimate the complexity of finding a first message block. First, we
have 2 × 64 + 4 × 64 = 384 linear constraints by assigning the values of sums
of linear columns. Second, we have 2 × 32 = 64 quadratic equations from Set
1. So there are 384 + 64 = 448 equations in 8 × 64 = 512 unknowns. We have
512 − 448 = 64 degrees of freedom left to solve this system. For the equations
from Set 1, they are selected from 32 slices. Similar as discussed in Section 4.1,
we can obtain 32 linear equations by guessing the values of 16 pairs (p0,3, p0,4),
and get another 32 linear equations after the linearization of Equation (5) and
(6). Then we get 384 + 64 + 64 = 512 linear equations in 512 unknowns, which
means we can obtain a solution to this system with a constant complexity. Note
that when the values of p0,3 and p0,4 varies, solutions to the system change as
well.

At last, we estimate how many operations are necessary to make as many
equations in Set 2 hold as possible. In theoretical aspects, since each equation

20 Ting Li and Yao Sun

holds with a probability 1/2, for any first message block, it makes n of the 65

equations hold with probability
Cn

65

265 . So the theoretical complexity of making n

equations hold is 265

Cn
65

, and the complexities for different n’s are shown in Table

5. In experimental aspects, we can obtain a lot of solutions of the systems by
varying the values of p0,3 and p0,4. Then the number of messages that make n
equations hold can be counted, and the practical probabilities are obtained as
well. Complexities of practical attacks are reported in Section 5.1.

Part 2: finding a second message block
From Part 1, equations in Set 1 always hold, but some in Set 2 are not.

Besides, we do not care about whether
⊕

x,z ex,4,z = 0 holds or not. In this
section, we deal with the troubles brought by these unsatisfied equations.

There are two types of unsatisfied equations for the first message block found
in Part 1:

I. e2,3,63 = e2,4,63, ex,3,z ⊕ 1 = ex,4,z where x = 3 or 4 for some z,
II.

⊕
x,z ex,4,z = 0.

Our strategy is as follows. First, we construct an adjusted state by flipping the
values of some bits in the unsatisfied equations and keeping others unchanged,
such that all equations hold for the bits in the adjusted state. Second, like what
we have done in the proof of Theorem 1, we can solve for the values of sx,z’s
such that the adjusted state transforms to the state (b) in Figure 5 after the
operation θ. At last, we apply θ to the real outputs of the first block by assuming
that the sums of columns are sx,z’s. The obtained state will be different from
the state (b) in Figure 5 only in a few bits, and hence, we only need to deal with
these different bits afterwards.

Constructing the adjusted state and solving for sx,z’s Assume there are nI un-
satisfied equations of Type I and nII ∈ {0, 1} unsatisfied one of Type II. We
do not consider the case nI = 0 since it does not happen in general cases. Our
adjusting method only needs to flip nI values of bits from the unsatisfied equa-
tions of Type I. Note that in each equation of Type I, there is one bit in Row
3 and one in Row 4. We totally flip nII bit in Row 4 to ensure the sum of all
bits in Row 4 of the adjusted state is 0, and flip the other nI − nII bits in Row
3. Specifically, let e′x,4,z := ex,4,z ⊕ 1 for nII equation out of the nI unsatisfied
Type I equations, and let e′x,3,z := ex,3,z ⊕ 1 from the other nI − nII unsatisfied
equations of Type I. Other bits are unchanged.

We illustrate the above method using a toy example with nI = 3 and nII = 1.
Let ex,y,z’s be the bits output by the first block for a given first message block,
and we assume the 3 unsatisfied equations of Type I and the unsatisfied one of
Type II are

e2,3,63 = e2,4,63 ⊕ 1, e3,3,0 = e3,4,0, e4,3,1 = e4,4,1, and
⊕
x,z

ex,4,z = 1.

Since nII = 1, we let e′3,4,0 := e3,4,0 ⊕ 1. For the other nI − nII = 2 bits,
we set e′2,3,63 := e2,3,63 ⊕ 1, e′4,3,1 := e4,3,1 ⊕ 1. For the rest of bits, we have

Preimage Attacks on Round-reduced Keccak -224/256 21

e′x,y,z := ex,y,z. In this way, the bits e′x,y,z’s construct the adjusted state and the
equations in (3) and (10) all hold for e′x,y,z’s. Then Equation (2) has solutions
to sx,z’s by the proof of Theorem 1. Thus, we find the desired values of sx,z’s.

Dealing with the different bits in the θ-defused states For the original state
consisting of ex,y,z’s, let us see what happens to the state after the operation
θ by assuming that the sums of columns equal the precomputed sx,z’s. Let
dx,y,z’s be the bits in the state after the operation θ. By Equation (1), we have
dx,y,z = ex,y,z ⊕ sx−1,z ⊕ sx+1,z−1. Since sx,z’s are precomputed constants, the
value of dx,y,z is determined by ex,y,z. Note that there are only nI ex,y,z’s dif-
ferent from e′x,y,z’s, so only nI bits of the θ-defused states of the original and
adjusted states are not identical, and the differences only lie in Row 3 or Row 4.
Based on the row that the different bit appears, we consider two cases as shown
in Figure 10.

Slice z Slice z Slice z’ Slice z’

'e

e'd d

Slice z Slice z

4,4e
4,3e

Slice z’ Slice z’

3,4'e
3,3e

4,4d
4,3d

3,4'd
3,3d

4,4e
4,3e

3,4e
3,3e

4,4d
4,3d

3,4d
3,3d

(i) (ii)(i) (ii)

= const = 0 = 1 = linear

Fig. 10. The top row shows the adjusted states before and after the operation θ, and
the bottom row shows the original states before and after θ. The state (i) and (ii) show
two types of troubles.

Figure 11 shows how the trouble generated by the state (i) in Figure 10
is handled. The bit at (Row 3, Column 4, Slice z) of the θ-diffused state is 1
instead of 0, and it will produce two quadratic bits after two rounds. The method
of eliminating this effect is that, we can enumerate the values of the bit in the
orange box in the end of the first round, such that this bit becomes a constant
and no quadratic bits are generated after two forward rounds. This enumeration
costs 1 degree of freedom. Similarly, we can also handle the state (ii) at the cost
of 1 degree of freedom in Figure 12.

To sum up, if nI equations of Type I do not hold, the complexity of finding
a second message block is 231+nI .

22 Ting Li and Yao Sun

Slice z Slice z Slice [z+8] Slice [z+8]

Sli [8] Sli [8] Sli [8]Slice [z+8]

Slice [z+8] Slice [z+8]= 0

= 1

= linear

= const

= linear produced by 1

= quadratic

Fig. 11. The effects caused by the state (i) of Figure 10.

Slice z Slice z Slice [z+55] Slice [z+55]

Sli [55] Sli [55] Sli [55]Slice [z+55]

Slice [z+55] Slice [z+55]= 0

= 1

= linear

= const

= linear produced by 0

= quadratic

Fig. 12. The effects caused by the state (ii) of Figure 10.

The overall complexity of the improved preimage attacks on Keccak -
224/SHA3-224

With the improved attacks, we estimate the theoretical complexities in Table
5 for the cases that n = 56, . . . , 60 equations from Set 2 hold. In this table, nI =
65−n is the number of equations that do not hold. C1 and C2 are the complexities
of finding the first and second message blocks. The overall complexity is C =
C1+C2. Please note that C1 is estimated by probability, so its values are rounded.
In Online Stage, the complexity C2 is obtained by calculating degrees of freedom,
so the values of C2 are accurate integers.

Table 5 shows that we can obtain the best theoretical attack on 3-round
Keccak -224 with complexity 238 when n = 58. Since this complexity is low
enough, we perform a practical attack on 3-round Keccak -224 in Section 5.

Similarly, the complexity of attacking SHA3-224 is at most 241 considering
padding bits.

Preimage Attacks on Round-reduced Keccak -224/256 23

n nI C1 C2 C = C1 + C2

56 9 230.10 240 240

57 8 232.77 239 239

58 7 235.62 238 238

59 6 238.70 237 238.70

60 5 242.02 236 242.02

Table 5. Theoretical complexities of preimage attacks with n = 56, . . . , 60, where n is
the number of holding equations in Set 2.

Improved attacks on 3-round Keccak -256 The improved preimage attack
works on 3-round Keccak -256 as well. There are 193 equations in Equation
(4). The last 1 equation is in Set 3 and is not considered, so we hope 192 of these
equations to hold, and we also need to consider 1 equation from the padding.
Based on the theoretical probability, we can expect a first block message satis-
fying 174 out of 193 equations with complexity 280.06. Note that among these
174 equations, 32 of them are included in the system for solving, i.e. in Set 1,
and the other 142 equations hold with the probability 2−80.06. The complexity
of Online Stage also increases to 262+19 = 281 in order to eliminate the impact
of 193−174 = 19 unsatisfied equations. Thus, the overall theoretical complexity
of the preimage attack on 3-round Keccak -256 is 281, while the previous best
result is 2150 [15].

For SHA3-256 and SHAKE256, the differences lie in the padding rules. So
extra computations are needed to find first message blocks. Using the same ap-
proach, the complexities of attacking 3-round SHA3-256/SHAKE256 are 284/286.

4.3 Attacks on 4-round Keccak -224/256

Attacks on 4-round Keccak -224 The first message block for Keccak -224
can be found by probability. Since a hash function outputs bits in a ‘random’
manner, the probability of finding a preimage by the random preimage attack is
1/2l, where l is the number of bits in digests [21]. The reason is that each output
bit could be 0 or 1 with probability 1/2. The first message block are constrained
by Equation (3). For the pair (e3,3,z, e3,4,z) in each slice, it has four possible
values, and two of them make the equation e3,3,z ⊕ e3,4,z ⊕ 1 = 0 hold, which
means this equation holds with a probability 1/2. The case is similar for the pair
(e4,3,z, e4,4,z). As the value of ex,4,z is supposed to be random, the probability
that

⊕
x,z ex,4,z = 0 holds is also 1/2. Thus, the complexity of finding the desired

first message block by random preimage attack is 264+64+1 = 2129.
For the second block, as the messaged state meets conditions in Theorem 1,

there are (5 + 2) × 64 − 2 = 446 linear constraints in 10 × 64 = 640 unknowns
after two forward rounds. The bits in the output state of the 3rd round are
all quadratic and remain quadratic before the χ operation in the 4th round.
Similarly to the analysis in Section 4.1, 224-bit digest leads to 192 quadratic
equations and 32 quartic equations. Note that 160 out of the 192 quadratic
equations are constructed by Equation (7). That is, oj = ij ⊕ (oj+1 ⊕ 1) · ij+2.

24 Ting Li and Yao Sun

So if one bit oj+1 of the hash value is 1, then the quadratic equation becomes
oj = ij which has at most 11 quadratic terms as well. These equations are hard
to solve, so the following analysis follows from the attacks on 4-round Keccak -
224 in [12]. By Guo et al.’s study, this quadratic equation can be linearized by
guessing 10 values of linear polynomials. Figure 13 illustrates how to linearize
this quadratic equation.

θ
χ

Slice z

Slice z Slice z

Slice z-1 Slice z-1

1,1Q

0,0q

0,1q

0,2q

0,3q

0,4q

1,1q

2,0q

2,1q

2,2q

2,3q

2,4q

4,0l

4,1l

4,2l

4,3l

4,4l

1,0l

1,1l

1,2l

1,3l

1,4l

2,2l

and = linear = quadratic

(a) (b)

(c)

3,0l

3,1l

3,2l

3,3l

3,4l

2,0l

2,1l

2,3l

2,4l

2,2l

Fig. 13. Linearizing a quadratic bit by guessing the values of 10 linear polynomials.

For any quadratic bit in the state before the χ operation, it corresponds to
a bit in the θ-defused state of the same round, since ρ and π are both per-
mutations. Next, taking one quadratic bit Q1,1,z in the θ-defused state in the
4th round for example, we explain how to linearize Q1,1,z by guessing the val-
ues of 10 linear polynomials. By the definition of θ, we have Q1,1,z = q1,1,z ⊕⊕4

j=0(q0,j,z ⊕ q2,j,z−1), where qx,y,z represents the output bit of the 3rd round
and it is quadratic. Next, let us study how qx,y,z is generated by linear bits. From
the states in Figure 8, the bits in the state before χ in the 3rd round are all linear,
and we donate them as lx,y,z’s. So we have qx,y,z = lx,y,z⊕ (lx+1,y,z⊕1) · lx+2,y,z.
Note that qx,y,z consists of only 1 quadratic term which is produced by two linear
polynomials, lx+1,y,z and lx+2,y,z. By guessing the values of either one, qx,y,z can
be linearized. Another observation in Figure 13 is that, q0,1,z and q1,1,z share
a common linear factor l2,1,z. Thus, we can guess the values of 10 bits in the
state (a), i.e. the light green bits, to linearize 11 blue quadratic bits in the state
(b). Since Q1,1,z is represented by these blue bits, Q1,1,z is linearized as well.
Consequently, we obtain 11 linear equations by enumerating the values of 10
linear polynomials.

As the values of bits in the digest can be regarded as random values, half of
the 224 bits are supposed to be 1’s. This means, we can expect 80 out of the 160
quadratic equations to have at most 11 quadratic terms. Next, we only consider

Preimage Attacks on Round-reduced Keccak -224/256 25

b 640−44611 c = 17 quadratic equations from the above 80 ones, and leave the other
224 − 17 = 207 equations hold by probabilities. By enumerating the values of
17×10 = 170 linear polynomials, we obtain 17× (10+1) = 187 linear equations.
To solve the system, we guess the values of another 640 − 446 − 187 = 7 linear
polynomials. Thus, the system consists of 446 + 187 + 7 = 640 linear equations
with 640 unknowns, so it has a solution and we can find it within constant time.
Such a solution makes all the other 224−17 = 207 equations hold at a probability
2−207. So the complexity of the second block is 2207.

Compared to Guo et al.’s attacks on 4-round Keccak -224, our improvement
is that, we obtain 640−446 = 194 degrees of freedom after two forward rounds by
using the allocating approach, while Guo et al. only get 127 degrees of freedom
after the same rounds. So they only match b 12711 c = 11 hash bits, and they need
2224−11 = 2213 operations to ensure all the other 224− 11 = 213 equations hold.

The paddings of Keccak -224 and SHA3-224 only affect the complexity of
the first block. So the complexities of attacking 4-round Keccak -224 and SHA3-
224 are both 2207.

Attacks on 4-round Keccak -256 The attacks on 4-round Keccak -256 are
quite similar. For the first message block, constraints become Equation (4). With
the random preimage attack, the complexity of finding a first message block is

23×64+1 = 2193. And we need 2256−b
640−446

11 c = 2239 operations to find a second
message block. So the complexities of attacking 4-round Keccak -256, SHA3-
256 and SHAKE256 are all 2239.

5 Experiments

In this section, we give a practical preimage attack on 3-round Keccak -224.
Related codes, including those for verifying the found messages and for solving
the systems on GPU, are available at https://github.com/ysun0102/keccak224.

5.1 Results of Precomputation Stage

We found about 243.41 solutions with more than 10 NVIDIA GTX 1080 Ti cards
in weeks. The numbers of solutions #(sol.) that make n = 50, . . . , 60 equations
hold are reported in Table 6, together with the practical and theoretical proba-
bilities.

From the table, we can see that the theoretical and practical probabilities
match very well when the number of solutions is large enough, and there is only a
bit of difference between the theoretical and practical probabilities of n = 58, 60.
This is mainly because the samples are not adequate. The results in hexadecimal
format are given below.

First message block with n = 58 :
|3867ED3B88A48506|FFFFFFFFFFFFFFFF|DD2D9BE5549AE517|FFFFFFFFFFFFFFFF|

|0000000000000000|97CBA3B4524267F6|0000000000000000|F607605E0D17724B|

26 Ting Li and Yao Sun

n #(sol.) Practical probability Theoretical probability

50 65 469 825 2−17.44 2−17.44

51 19 262 179 2−19.21 2−19.21

52 5 185 994 2−21.10 2−21.10

53 1 271 108 2−23.13 2−23.13

54 281 252 2−25.30 2−25.30

55 56 771 2−27.61 2−27.62

56 9 986 2−30.12 2−30.10

57 1 591 2−32.77 2−32.77

58 227 2−35.58 2−35.63

59 26 2−38.70 2−38.70

60 2 2−42.41 2−42.02

Table 6. Comparisons of practical and theoretical probabilities

|0000000000000000|0000000000000000|59E591785BB04788|0000000000000000|

|87A44FB877A61A6E|0000000000000000|0000000000000000|F649DFF78156A578|

|0000000000000000|AC8EB4032E2B8D32|

First message block with n = 59 :

|35EF68DC35F1E5EB|FFFFFFFFFFFFFFFF|A1D249A40996BB5F|FFFFFFFFFFFFFFFF|

|0000000000000000|42F30B16705F6ECA|0000000000000000|26A9E432AE324F66|

|0000000000000000|0000000000000000|BBB37F56A6F28967|0000000000000000|

|A9590D7698444C80|0000000000000000|0000000000000000|CCAF1C9CE35C0246|

|0000000000000000|2E22A0E03FE0B8B9|

First message block with n = 60 :

|CBB53657E0A66871|FFFFFFFFFFFFFFFF|7537C0597B751AA7|FFFFFFFFFFFFFFFF|

|0000000000000000|A27C4639BB60DFF0|0000000000000000|561C6D11D6A8DE58|

|0000000000000000|0000000000000000|22DF18C837CF65DB|0000000000000000|

|37C8309A24DD20E7|0000000000000000|0000000000000000|4B1668A66C09D25A|

|0000000000000000|14E39DD28900E418|

5.2 Results of preimage attacks on 3-round Keccak -224

Example 1. Let the hash algorithm be 3-round Keccak -224. Find a second
preimage for the message ‘1’ with length = 1.

The padded message M and its digest H are given below.

M(length = 1152):

|0000000000000003|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|0000000000000000|0000000000000000|0000000000000000|

|0000000000000000|8000000000000000|

H(length = 224):

|F4FE7CCEA5D8B144|60F6C316572983A8|A2564CA289E5F897| CA30DB85|

Preimage Attacks on Round-reduced Keccak -224/256 27

Using the methods in Section 4.2, we find three second preimages M58, M59,
M60 of H based on the first message blocks computed in the last subsection.
When n = 58, finding the second message block takes a week on 6 GPU cards
with approximate 239.39 operations, while the second message block of M59 costs
3 days on 6 GPU cards by solving about 238.20 linear systems. The second
message block of M60 is obtained in 2 days using 4 GPU cards. Note that these
practical complexities of Online Stage are all larger than those estimated in
Table 5. We think this is because we only calculate one second message block for
each of them. Interested readers can generate more preimages with the published
codes, and we believe the complexities will be reasonable then.

From Table 6, the averaged complexities of Precomputation Stage for finding
the first message blocks of n = 58, 59, 60 are 235.58, 238.70, and 242.41, respectively.
So the overall practical complexities of finding M58, M59, and M60, are 239.39,
239.47, and 242.41. However, since the first message blocks need to be computed
only once, we suggest using the first message block of n = 60, if we want to
produce more preimages of H or other digests. The values of M58, M59, M60 are
listed below.

– M58(length = 2301) :
|3867ED3B88A48506|FFFFFFFFFFFFFFFF|DD2D9BE5549AE517|FFFFFFFFFFFFFFFF|

|0000000000000000|97CBA3B4524267F6|0000000000000000|F607605E0D17724B|

|0000000000000000|0000000000000000|59E591785BB04788|0000000000000000|

|87A44FB877A61A6E|0000000000000000|0000000000000000|F649DFF78156A578|

|0000000000000000|AC8EB4032E2B8D32|

|C84C8045515BF0C7|61FD4B2BBE00140E|00B252887E479E1D|4CA8454ECB4032EC|

|0980778FEAFC137D|1B4109C0E732BD96|820D1264F56CED03|E3A15B12575B72A2|

|1A068D85C2B37FE0|5DCA726A8F294970|D41129BE08A68BD4|301DD29F5E9BE657|

|98A7904810694A48|B3E8566CE50EA6AA|48C3E4DEB3ADD02B|853EF9C96DC6F02D|

|A72B40AD1F31A630|AAD47114F4750BFC|

– M59(length = 2302) :
|35EF68DC35F1E5EB|FFFFFFFFFFFFFFFF|A1D249A40996BB5F|FFFFFFFFFFFFFFFF|

|0000000000000000|42F30B16705F6ECA|0000000000000000|26A9E432AE324F66|

|0000000000000000|0000000000000000|BBB37F56A6F28967|0000000000000000|

|A9590D7698444C80|0000000000000000|0000000000000000|CCAF1C9CE35C0246|

|0000000000000000|2E22A0E03FE0B8B9|

|CCADB05484618913|CB72585A10CF1D24|5142B6082D69F648|55FF802052E9AFA7|

|5002434225118309|4673F9FF53CF4651|422091CBEE6ED26C|2CED676FB523B95D|

|AF5FD173FA98BE32|1BB7489625D2A58A|1B58D9FB91AD563D|D2F304B902CD182E|

|9F519823A0C16E4D|A54F438AFE22755C|8C39E80475FCDBB0|B908F9B8CD448A94|

|63EF7F66EA21A245|D0A64F63C7333027|

– M60(length = 2302) :
|CBB53657E0A66871|FFFFFFFFFFFFFFFF|7537C0597B751AA7|FFFFFFFFFFFFFFFF|

|0000000000000000|A27C4639BB60DFF0|0000000000000000|561C6D11D6A8DE58|

|0000000000000000|0000000000000000|22DF18C837CF65DB|0000000000000000|

|37C8309A24DD20E7|0000000000000000|0000000000000000|4B1668A66C09D25A|

|0000000000000000|14E39DD28900E418|

28 Ting Li and Yao Sun

|B5B27127B16157CE|1D9CDF75F80E635D|D2024BC09980F06E|43E0D61A974E2162|

|D3E8E4C133283C19|291ADC10C38952D3|0D79C02584D59EB5|5B6EDBF95FBBD637|

|FDF01822DC1C43A3|516EB953B657C03F|8C83A4CFE46AFA61|8EF91ECCAD2D5731|

|3510F4267D8A4D55|13A2BACDCE43348D|0A22C2B955093C72|8836257614188A4E|

|AFBB582F7829B0EB|6CF33EA53BEC3299|

6 Conclusion

In this paper, we propose preimage attacks with an allocating approach. We
improved the attacks on Keccak -224/SHA3-224 and Keccak -256/SHA3-256
/SHAKE256 that are reduced to 3 and 4 rounds. The main idea is to divide the
attacking procedure into two stages and to find a 2-block preimage, such that the
complexity of each stage is lower than that of finding a 1-block preimage directly.
The key step is that, the conditions in Theorem 1 have fewer constraints on the
middle state, such that we obtain more degrees of freedom to solve for the first
and second message blocks. This is why we obtain better results, compared with
previous attacks.

References

1. Aumasson, J., Meier, W.: Zero-sum distinguishers for reduced keccak-f and for
the core functions of luffa and hamsi. https://131002.net/data/papers/AM09.pdf
(2009)

2. Bernstein, D.: Second preimages for 6(7?(8??)) rounds of keccak. In: NIST mailing
list (2010)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak reference, version
3.0. In: https://keccak.team/keccak.html (2011)

4. Chaigneau, C., Fuhr, T., Gilbert, H., Guo, J., Jean, J., Reinhard, J.R.,
Song, L.: Key-recovery attacks on full kravatte. IACR Trans. Symmetric
Cryptol. 2018, 5–28 (2018). https://doi.org/10.13154/tosc.v2018.i1.5-28, http-
s://tosc.iacr.org/index.php/ToSC/article/view/842

5. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.: 1st and 2nd preimage attacks
on 7, 8 and 9 rounds of keccak-224,256,384,512. In: SHA-3 Workshop (2014)

6. Daemen, J., Van Assche, G.: Differential propagation analysis of keccak. In: Can-
teaut, A. (ed.) Fast Software Encryption. pp. 422–441. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

7. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-256.
In: Fast Software Encryption: 19th International Workshop, FSE 2012, Washing-
ton, DC, USA, March 19-21, 2012. Revised Selected Papers. pp. 442–461 (2012)

8. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of
sha-3 using generalized internal differentials. In: Fast Software Encryption: 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers. pp. 219–240 (2013)

9. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
keccak. J. Cryptol. 27(2), 183–209 (Apr 2014)

Preimage Attacks on Round-reduced Keccak -224/256 29

10. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced keccak sponge function. In:
Advances in Cryptology – EUROCRYPT 2015: 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. pp. 733–761. Springer Berlin Heidelberg,
Berlin, Heidelberg (2015)

11. Dinur, I., Morawiecki, P.L., Pieprzyk, J., Srebrny, M., Straus, M.L.: Practical com-
plexity cube attacks on round-reduced keccak sponge function. IACR Cryptology
ePrint Archive 2014, 259 (2014)

12. Guo, J., Liu, M., Song, L.: Linear structures: Applications to cryptanalysis of
round-reduced keccak. In: Advances in Cryptology – ASIACRYPT 2016: 22nd
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. pp.
249–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

13. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Coron, J.S., Nielsen, J.B. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2017. pp. 259–288. Springer International
Publishing, Cham (2017)

14. Kölbl, S., Mendel, F., Nad, T., Schläffer, M.: Differential cryptanalysis of keccak
variants. In: Cryptography and Coding - 14th IMA International Conference, I-
MACC 2013, Oxford, UK, December 17-19, 2013. Proceedings. pp. 141–157 (2013).
https://doi.org/10.1007/978-3-642-45239-0 9, https://doi.org/10.1007/978-3-642-
45239-0 9

15. Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced keccak
with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017, 39–57 (2017)

16. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on keccak
keyed modes with milp method. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology – ASIACRYPT 2017. pp. 99–127. Springer International Publishing,
Cham (2017)

17. Morawiecki, P., Pieprzyk, J., M. Srebrny, M.: Rotational cryptanalysis of round-
reduced keccak. In: Fast Software Encryption: 20th International Workshop, FSE
2013, Singapore, March 11-13, 2013. Revised Selected Papers. pp. 241–262 (2013)

18. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash
functions. Inf. Process. Lett. 113(10-11), 392–397 (2013)

19. Naya-Plasencia, M., Rck, A., Meier, W.: Practical analysis of reduced-round kec-
cak. In: International Conference on Cryptology in India. pp. 236–254 (2011)

20. NIST: Sha-3 competition. In: http://csrc.nist.gov/groups/ST/hash/sha-
3/index.html (2007-2012)

21. Preneel, B.: The state of cryptographic hash functions. Lecture Notes in Computer
Science 1561, 158–182 (1999)

22. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced kec-
cak. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III. pp. 216–243 (2017).
https://doi.org/10.1007/978-3-319-56617-7 8, https://doi.org/10.1007/978-3-319-
56617-7 8

23. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: Applications to collision at-
tacks on round-reduced keccak. In: Advances in Cryptology – CRYPTO 2017: 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20–24, 2017, Proceedings, Part II. pp. 428–451. Springer International Publishing,
Cham (2017)

30 Ting Li and Yao Sun

24. Song, L., Guo, J., Shi, D.: New milp modeling: Improved conditional cube attacks
to keccak-based constructions. IACR Cryptology ePrint Archive 2017, 1030 (2017)

25. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full sha-1. In: Advances in Cryptology – CRYPTO 2017: 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20–24,
2017. pp. 570–596. Springer International Publishing, Cham (2017)

26. The U.S. National Institute of Standards and Technology Technology:
Sha-3 standard: Permutation-based hash and extendable-output func-
tions. In: Federal Information Processing Standard, FIPS 202 (2015),
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

27. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer, R.
(ed.) Advances in Cryptology – EUROCRYPT 2005. pp. 19–35. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

