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Abstract. Outsourcing costly computations to an untrusted server is
common in cloud computing. A basic requirement for a client is the ability
to efficiently verify the computation’s result. When sensitive data are
involved, verification should be possible without the server learning about
the computation’s inputs, or its result. Homomorphic authenticators,
the dominant approach to this problem, support efficient verification
but usually leak information about the processed data. A recently in-
troduced primitive, function-dependent commitments (FDCs), enables
both types of privacy and fast correctness verification. However, the rela-
tion between FDCs and homomorphic authenticators was unclear until
now. In this paper, we show that every FDC scheme can be transformed
into a homomorphic authenticator scheme, showing that FDCs are at
least as powerful as homomorphic authenticators. We then present a
generic transformation turning any structure-preserving homomorphic
authenticator scheme into an FDC scheme. The resulting schemes enjoy
information-theoretic input and output privacy. Finally, we introduce a
new structure-preserving, linearly homomorphic authenticator scheme
suitable for our transformation. It is the first both context hiding and
structure-preserving homomorphic authenticator scheme. Our scheme is
also the first structure-preserving homomorphic authenticator scheme to
achieve efficient verification.

1 Introduction

Time-consuming computations are commonly outsourced to the cloud. Such
infrastructures attractively offer cost savings and dynamic computing resource
allocation. In such a situation, it is desirable to be able to verify the outsourced
computation. The verification must be efficient, by which we mean that the verifi-
cation procedure is significantly faster than verified computation itself. Otherwise,
the verifier could as well carry out the computation by himself, negating the
advantage of outsourcing. Often, not only the data owner is interested in the cor-
rectness of a computation; but also third parties, like insurance companies in the
case of medical data. In addition, there are scenarios in which computations are
performed over sensitive data. For instance, a cloud server may collect health data
of individuals and compute aggregated data. Hence the requirement for efficient
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verification procedures for outsourced computing that are privacy-preserving,
both for computation inputs and for computation results.

Growing amounts of data are sensitive enough to require long-term protection.
Electronic health records, voting records, or tax data require protection periods
exceeding the lifetime of an individual. Over such a long time, complexity-
based confidentiality protection is unsuitable because algorithmic progress is
unpredictable. In contrast, information-theoretic confidentiality protection is not
threatened by algorithmic progress and supports long-term security.

Existing approaches address verifiability and confidentiality to various degrees.

– Homomorphic authenticators [5] sometimes allow for efficient verification,
keeping the computational effort of the verifier low. They do, however, not
provide information-theoretic confidentiality. Some schemes offer so-called
context hiding security, a form of input privacy. However, stronger privacy
notions are not achieved.

– Homomorphic commitments [8,23,27] can be used in audit schemes. In partic-
ular, Pedersen commitments [23] provide information-theoretic confidentiality.
Homomorphic commitments however, lead to costly verification procedures.

– Function-dependent commitments [26] (FDCs) are a generic construction
for authentified delegated computing. Their core idea is as follows. First,
commit to input values and to a function. Then, authenticate all inputs. Next,
compute an authenticated commitment to the computation’s result using
homomorphic properties. FDCs combine the advantages of homomorphic
authenticators and homomorphic commitments. They allow for information-
theoretic input and output privacy as well as efficient verification. Compared
to homomorphic authenticators they achieve a hiding property. The context
hiding property of homomorphic authenticators guarantees that authentica-
tors to the output of a computation do not leak information about the input of
the computation (beyond what can be inferred from the result). The authen-
ticator to the input, however, leaks information about the authenticated data.
The hiding property of FDCs ensures that not even this is possible. In [26]
an information-theoretically hiding FDC was combined with secret sharing
for efficiently verifiable multi-party computation. Combining homomorphic
authenticators with secret sharing can be instantiated by a straightforward
composition, or by authenticating individual shares. The former leads to a
loss of information-theoretic privacy, the latter requires all storage servers
to perform computations on audit data. By contrast, FDC-based verifiable
multi-party computation can be instantiated so that auditing only requires
a single storage server. FDC-based verifiable multi-party computation thus
provides not only privacy gains, but also efficiency improvements with respect
to the classical variant using homomorphic authenticators.

For a detailed comparison to related work, see Sec. 6. There are various
homomorphic authenticator schemes fine-tailored to specific scenarios. For FDCs,
so far only one construction is known [26]. Adding the privacy properties of FDCs
to known homomorphic authenticator schemes makes them suitable even when
sensitive data are processed. In this paper, we show how to achieve this.
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Contribution Overview In this paper, we investigate the relation between homo-
morphic authenticators and FDCs. Our contribution is threefold.

First, we show how every FDC can be transformed into a homomorphic
authenticator scheme, showing that FDCs are at least as powerful schemes as
homomorphic authenticators. To this end, we explicitly construct the algorithms
making up a homomorphic authenticator scheme, using only the algorithms from
the input FDC. We then derive both authentication correctness and evaluation
correctness for the homomorphic authenticator scheme output by our trans-
formation. The proof relies on the correctness of the input FDC scheme. For
security, we derive the unforgeability of the resulting homomorphic authenticator
scheme from two conditions on the underlying FDC: its own unforgeability, and
its bindingness. Regarding bandwidth, we prove that the output homomorphic
authenticator scheme is succinct if the input FDC scheme is succinct.

Then, we show how an FDC can be generically constructed from a structure-
preserving homomorphic authenticator scheme, assuming the additional existence
of a homomorphic commitment scheme and of a separate classical commitment
scheme. We require the commitment space of the homomorphic commitment
scheme to be a subset of the structure preserved by the homomorphic authen-
ticator scheme. The message space of the classical commitment scheme allows
labeled programs as admissible inputs, unlike the homomorphic commitment
scheme. We show that if the two underlying commitment schemes are binding,
then the resulting FDC inherits this bindingness. Furthermore, we prove that the
output FDC inherits the unconditional hiding from the underlying homomorphic
commitment scheme. The correctness of the output FDC is shown to follow from
three assumptions on the input homomorphic authenticator scheme: authenti-
cation correctness, evaluation correctness and efficient verification. Regarding
security, we prove that unforgeability is also inherited. This is done by showing
that a simulator can forward adversary queries in the FDC security experiment
to queries in the homomorphic authenticator experiment. The resulting forgery
can be used to compute a forgery in the other experiment. For performance,
we show that if the input scheme is succinct, respectively efficiently verifiable,
then the output FDC is also succinct, respectively has amortized efficiency. Our
transformation enables the use of certain existing homomorphic authenticator
schemes in particularly privacy-sensitive settings. Applying this transformation
enables information-theoretic output privacy. This allows third parties to verify
the correct computation of a function without even needing to learn the result.

Finally, we introduce a structure-preserving, linearly homomorphic authen-
ticator scheme suitable for our transformation. All known structure-preserving
homomorphic authenticator schemes are limited to linear functions. Our scheme is
the first such construction to achieve constant-time verification (after a one-time
pre-processing). It is also the first structure-preserving homomorphic authentica-
tor scheme to be context hiding. This property ensures that a third-party verifier
does not learn anything about the inputs to a computation beyond what it knows
from the output of the computation. For simplicity, our scheme is limited to a
single dataset. However, it can be extended to a multi-dataset scheme following
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a result by Fiore et al. [14]. Furthermore, our scheme is succinct. Authenticators
consist of two elements of a cyclic group of prime order. The security of our
construction relies on the hardness of the Double Pairing Assumption [1], which
implies the Decisional Diffie–Hellman assumption with a tight security reduction.

The remainder of this paper is organized as follows. We first provide the
necessary background on FDCs and homomorphic authenticators (Sec. 2). We
show how to transform FDCs into homomorphic signatures (Sec. 3). We then show
how to construct FDCs from homomorphic commitments and structure-preserving
homomorphic authenticators (Sec. 4). Next, we present a new instantiation for
a context hiding, structure-preserving linearly homomorphic signature scheme
(Sec. 5). Finally, we compare our work to the state of the art (Sec. 6) and conclude
(Sec. 7).

2 Preliminaries

In this section, we provide the necessary background for our contributions. We
formalize the notion of homomorphic commitments. Afterwards we provide the
terminology of labeled programs, on which the notions of unforgeability in this
paper are based. We then describe FDCs and their properties. These include the
classical hiding and binding properties of commitments, as well as further FDC-
specific properties such as correctness, unforgeability, succinctness and amortized
efficiency. Likewise, we recall definitions for homomorphic authenticators and
their properties. Finally, we define structure-preserving signatures.

Commitment Schemes Commitment schemes, particularly homomorphic com-
mitment schemes, are a basic building block in cryptography. We provide the
formalizations used in this work.

Definition 1 (Commitment Scheme). A commitment scheme Com is a tuple
of the following algorithms (CSetup, Commit, Decommit):
CSetup(1λ) : On input a security parameter λ, this algorithm outputs a commit-

ment key CK. We implicitly assume that every algorithm uses this commitment
key, leaving it out of the notation.

Commit(m, r) : On input a message m ∈M and randomness r ∈ R, it outputs
the commitment C and the decommitment d.

Decommit(m, d,C) : On input a message m ∈M, decommitment d, and a com-
mitment C it outputs 1 or 0.

Definition 2. Let F be a class of functions. A commitment scheme Com =
(CSetup,Commit,Decommit) is F-homomorphic if there exists an algorithm CEval
with the following properties:

CEval(f, C1, . . . , Cn) : On input a function f ∈ F and a tuple of commitments
Ci for i ∈ [n], the algorithm outputs C∗.

Correctness: For every mi ∈M, ri ∈ R, i ∈ [n] with (Ci, di)← Commit(mi, ri)
and C∗ ← CEval(f, C1, . . . , Cn), there exists a unique function f̂ ∈ F , such
that Decommit(f(m1, . . . , mn), f̂(m1, . . . ,mn, r1, . . . rn), C∗) = 1.
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Labeled Programs To accurately describe both correct and legitimate operations
for homomorphic authenticators, we use multi-labeled programs similarly to
Backes, Fiore, and Reischuk [7]. The basic idea is to append a function by
several identifiers, in our case input identifiers and dataset identifiers. Input
identifiers label in which order the input values are to be used. Dataset identifiers
determine which authenticators can be homomorphically combined. The idea
is that only authenticators created under the same dataset identifier can be
combined. Intuitively, we need input identifiers to distinguish between messages.
This allows restricting homomorphic evaluation to authenticators related to the
same set of messages, leading to a stronger unforgeability notion.

Formally, a labeled program P consists of a tuple (f, τ1, . . . , τn), where f :
Mn →M is a function with n inputs and τi ∈ T with i ∈ [n] is a label for the
ith input of f from some set T . Given a set of labeled programs P1, . . . ,PN and
a function g :MN →M, they can be composed by evaluating g over the labeled
programs, i.e. P∗ = g(P1, . . . ,PN ). This is an abuse of notation analogous to
function composition. The identity program with label τ is given by Iτ = (fid, τ),
where fid : M →M is the identity function. The program P = (f, τ1, . . . , τn)
can be expressed as the composition of n identity programs P = f(Iτ1 , . . . , Iτn).

A multi-labeled program P∆ is a pair (P, ∆) of the labeled program P and a
dataset identifier ∆. Given a set of N multi-labeled programs with same dataset
identifier ∆, i.e. (P1, ∆), . . . , (PN , ∆), and a function g :MN →M, a composed
multi-labeled program P∗∆ can be computed, consisting of the pair (P∗, ∆), where
P∗ = g(P1, . . . ,PN ). Analogously to the identity program for labeled programs,
we refer to a multi-labeled identity program by I(τ,∆) = ((fid, τ), ∆).

Definition 3 (Well Defined Program). A labeled program P = (f, τ1, . . . , τn)
is well defined with respect to a list L ⊂ T ×M if exactly one of the two following
cases holds: First, there are messages m1, . . . ,mn such that (τi,mi) ∈ L ∀i ∈ [n].
Second, there is an i ∈ {1, . . . , n} such that (τi, ·) /∈ L and f({mj}(τj ,mj)∈L ∪
{m′k}(τk,·)/∈L) is constant over all possible choices of m′k ∈M.

If f is a linear function, P = (f, τ1, . . . , τn), with f(m1, . . . ,mn) =
∑n
i=1 fimi

fulfills the second condition if and only if fk = 0 for all (τk, ·) /∈ L.

FDCs Going beyond the basic functionalities of homomorphic commitments,
the idea of FDCs was introduced by Schabhüser et al. [26]. In particular, this
framework allows for a notion of unforgeability.

Definition 4 ([26]). An FDC scheme for a class F of functions is a tuple of
algorithms (Setup, KeyGen, PublicCommit, PrivateCommit, FunctionCommit, Eval,
FunctionVerify, PublicDecommit):

Setup(1λ) takes as input the security parameter λ and outputs public parameters
pp. We implicitly assume that every algorithm uses these public parameters,
leaving them out of the notation (except for KeyGen).

KeyGen(pp) takes the public parameters pp as input and outputs a secret-public
key pair (sk, pk).
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PublicCommit(m, r) takes as input a message m and randomness r and outputs
commitment C.

PrivateCommit(sk,m, r,∆, τ) takes as input the secret key sk, a message m,
randomness r, a dataset ∆, and an identifier τ and outputs an authenticator
A for the tuple (m, r,∆, τ).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program
P and outputs a function commitment F to P.

Eval(f,A1, . . . An) takes as input a function f ∈ F and a set of authenticators
A1, . . . , An, where Ai is an authenticator for (mi, ri, ∆, τi), for i = 1, . . . , n.
It computes an authenticator A∗ using the Ai and outputs A∗.

FunctionVerify(pk, A,C, F,∆) takes as input a public key pk, an authenticator A,
a commitment C, a function commitment F , as well as a dataset identifier
∆. It outputs either 1 (accept) or 0 (reject).

PublicDecommit(m, r, C) takes as input message m, randomness r, and commit-
ment C. It outputs either 1 (accept) or 0 (reject).

The intuition behind FDC algorithms is as follows. FDCs allow for two
different ways of committing to messages. One is just a standard commitment.
This enables output privacy with respect to the verifier. The other way commits
to a message under a secret key to produce an authenticator. These authenticators
allow for homomorphic evaluation. Given authenticators to the input of a function,
one can derive an authenticator to the output of a function. Additionally, one
can commit to a function under a public verification key. This results in a
function commitment. One can then check if a public commitment C matches
an authenticator A (derived from a secret key) and a function commitment F
(derived from a public key). As long as a cryptographic hardness assumption
holds, such a match is only possible if A was obtained by running the evaluation
on the exact function committed to via F .

As for classical commitments, we want our schemes to be binding. That is,
after committing to a message, it should be infeasible to open the commitment
to a different message. We describe the following security experiment between a
challenger C and an adversary A.

Definition 5 (Bindingness experiments EXPBindA,Com(λ)).
Challenger C runs (sk, pk)← KeyGen(pp) and gives pk to the adversary A. A
outputs the pairs (m, r) and (m′, r′), with m 6= m′. If PublicCommit(m′, r′) =
PublicCommit(m, r) the experiment outputs 1, else it returns 0.

Definition 6 (Binding).
Using the formalism of Def. 5, an FDC is called binding if for any probabilistic

polynomial-time (PPT) adversary A, Pr[EXPBindA,Com(λ) = 1] = negl(λ), where
negl(λ) denotes any function negligible in the security parameter λ.

The binding property for FunctionCommit is defined analogously.
Another important notion, targeting privacy, is the hiding property. Commit-

ments are intended not to leak information about the messages they commit to.
This is not to be confused with the context hiding property, where homomorphic
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authenticators to the output of a computation do not leak information about
the inputs to the computation. Context hiding homomorphic authenticators do
however leak information about the output.

Definition 7 (Hiding). An FDC is called computationally hiding if the sets of
commitments {PublicCommit(m, r) | r $← R} and {PublicCommit(m′, r′) | r′ $←
R} as well as {PrivateCommit(sk,m, r,∆, τ) | r $← R} and {PrivateCommit(sk,
m′, r′, ∆, τ) | r′ $← R} have distributions that are indistinguishable for any PPT
adversary A for all m 6= m′ ∈ M. An FDC is called unconditionally hiding if
these sets have the same distribution respectively for all m 6= m′ ∈M.

An obvious requirement for an FDC is to be correct, i.e. if messages are authen-
ticated properly and evaluation is performed honestly, the resulting commitment
should be accepted. This is formalized in the following definition.

Definition 8 (Correctness). An FDC achieves correctness if for any security
parameter λ, any public parameters pp ← Setup(1λ), any key pair (sk, pk) ←
KeyGen(pp), and any dataset identifier ∆ ∈ {0, 1}∗, the following properties hold:

For any message m ∈ M, randomness r ∈ R, label τ ∈ T , authenticator
A ← PrivateCommit(sk,m, r,∆, τ), commitment C ← PublicCommit(m, r),
and function commitment FI ← FunctionCommit(pk, Iτ ), where Iτ is the
labeled identity program, we have both PublicDecommit(m, r, C) = 1 and
FunctionVerify(pk, A,C, FI , ∆) = 1.

For any tuple {(Ai,mi, ri,Pi)}i∈[N ] such that for Ci ← PublicCommit(mi, ri),
Fi ← FunctionCommit(pk,Pi), FunctionVerify(pk, Ai, Ci, Fi, ∆) = 1, and any
function g ∈ F the following holds: There exists a function ĝ ∈ F , that
is efficiently computable from g, such that for m∗ = g(m1, . . . ,mN ), r∗ =
ĝ(m1, . . . ,mN , r1, . . . rN ), C∗ ← PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN ),
F ∗ ← FunctionCommit(pk,P∗), A∗ ← Eval(g,A1, . . . , AN ),

FunctionVerify(pk, A∗, C∗, F ∗, ∆) = 1.

The security notion of FDCs is also based on well defined programs (see
Def. 3). We introduce an experiment the attacker can run in order to generate a
successful forgery and present a definition for unforgeability based on it.

Definition 9 (Forgery). A forgery is a tuple (P∗∆∗ , A∗, C∗) such that

FunctionVerify(pk, A∗, C∗,FunctionCommit(pk,P∗), ∆∗) = 1

holds and exactly one of the following conditions is met:

Type 1: No message was ever committed under the data set identifier ∆∗, i.e. the
list L∆∗ of tuples (τ,m, r) was not initialized during the security experiment.
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Type 2: P∗∆∗ is well defined with respect to list L∆∗ and

C∗ 6= PublicCommit(f({mj}(τj ,mj ,rj)∈L∆∗ ), f̂({(mj , rj)}(τj ,mj ,rj)∈L∆∗ )),

where f is taken from P∗, that is, C∗ is not a commitment to the correct
output of the computation.

Type 3: P∗∆∗ is not well defined with respect to L∆∗ .

To define unforgeability, we first describe the experiment EXPUF−CMA
A,FDC (λ)

between an adversary A and a challenger C.

Definition 10 (EXPUF−CMA
A,FDC (λ) [26]).

Setup C calls pp $← Setup(1λ) and gives pp to A.
Key Generation C calls (sk, pk) $← KeyGen(pp) and gives pk to A.
Queries A adaptively submits queries for (∆, τ,m, r) where ∆ is a dataset, τ is

an identifier, m is a message, and r is a random value. C proceeds as follows:
If (∆, τ,m, r) is the first query with dataset identifier ∆, it initializes an

empty list L∆ = ∅ for ∆.
If L∆ does not contain a tuple (τ, ·, ·), that is, A never queried (∆, τ, ·, ·),
C calls A ← PrivateCommit(sk,m, r,∆, τ), updates the list L∆ = L∆ ∪
(τ,m, r), and gives A to A.

If (τ,m, r) ∈ L∆, then C returns the same authenticator A as before.
If L∆∗ already contains a tuple (τ,m′, r′) for (m, r) 6= (m′, r′), C returns ⊥.

Forgery A outputs a tuple (P∗∆∗ , A∗, C∗).

EXPUF−CMA
A,FDC (λ) outputs 1 if the tuple returned by A is a forgery (Def. 9).

Definition 11 (Unforgeability). An FDC is unforgeable if for any PPT ad-
versary A, Pr[EXPUF−CMA

A,FDC (λ) = 1] = negl(λ).

Regarding performance, we consider additional properties. Succinctness spec-
ifies a limit on the size of the FDCs, thus keeping the required bandwidth low
when using FDCs to verify the correctness of an outsourced computation.

Definition 12 (Succinctness). An FDC is succinct if, for fixed λ, the size of
the authenticators depends at most logarithmically on the dataset size n.

Amortized efficiency specifies a bound on the computational effort required
to perform verifications.

Definition 13 (Amortized Efficiency). Let P∆ = (P, ∆) be a multi-labeled
program, m1, . . . ,mn ∈ M a set of messages, r1, . . . rn ∈ R a set of random-
ness, f ∈ F be an arbitrary function, and t(n) be the time required to compute
f(m1, . . . ,mn). An FDC achieves amortized efficiency if, for any public parame-
ters pp and any (sk, pk) $← KeyGen(pp), any authenticator A, any commitment C,
and function commitment F , the time required to compute FunctionVerify(pk, A,C,
F,∆) is t′ = o(t(n)). Note that A and F may depend on f and n.

8



Homomorphic Authenticators The high-level idea behind homomorphic authen-
ticators is to provide verifiability for outsourced computations. Inputs to a
computation are authenticated by the data owner before sending the authen-
ticated data to a server. The server performs a computation and follows the
computation on the authenticators due to their homomorphic property. A (pos-
sibly third party) verifier can then use the result of the computation and the
derived authenticator to check whether the computation was done correctly. We
provide the necessary definitions for our work.

Definition 14 (Homomorphic Authenticator ([14]). A homomorphic au-
thenticator scheme HAuth is a tuple of the following PPT algorithms:

HSetup(1λ) : On input a security parameter λ, the algorithm returns a set of
public parameter pp, consisting of (at least) the description of an identifier
space T , a message spaceM, and a set of admissible functions F . The public
parameters pp are inputs to all following algorithms, even if not explicitly
specified.

HKeyGen(pp) : On input the public parameters pp, the algorithm returns a key
triple (sk, ek, vk), where sk is the secret key authentication key, ek is a public
evaluation key, and vk is a verification key that can be either private or public.

Auth(sk, ∆, τ,m) : On input a secret key sk, a dataset identifier ∆, a label τ , and
a message m, the algorithm returns an authenticator σ.

HEval(f, {σi}i∈[n], ek) : On input a function f : Mn → M, a set {σi}i∈[n] of
authenticators, and an evaluation key ek, it returns an authenticator σ.

Ver(P∆, vk,m, σ) : On input a multi-labeled program P∆, a verification key vk,
a message m ∈M, and an authenticator σ , the algorithm returns either 1
(accept), or 0 (reject).

If vk is private, we call HAuth a homomorphic MAC, while for a public vk we
call it a homomorphic signature.

We now define properties relevant for the analysis of homomorphic authenti-
cator schemes: authentication correctness, evaluation correctness, succinctness,
efficient verification, unforgeability and context hiding.

Correctness naturally comes in two forms. We require both authenticators
created directly with a secret signing key as well as those derived by the homo-
morphic property to verify correctly.

Definition 15 (Authentication Correctness [14]). A homomorphic authen-
ticator scheme (HSetup,HKeyGen,Auth,HEval,Ver) satisfies authentication cor-
rectness if, for any security parameter λ, any public parameters pp← HSetup(1λ),
any key triple (sk, ek, vk)← HKeyGen(pp), any label τ ∈ T , any dataset identifier
∆ ∈ {0, 1}∗, any message m ∈M, and any authenticator σ ← Auth(sk, ∆, τ,m)
we have Ver(I(τ,∆), vk,m, σ) = 1, where Iτ,∆ is the multi-labeled identity program.

Definition 16 (Evaluation Correctness [14]). A homomorphic authenticator
scheme (HSetup,HKeyGen,Auth,HEval,Ver) satisfies authentication correctness
if, for any security parameter λ, any public parameters pp ← HSetup(1λ), any
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key triple (sk, ek, vk)← HKeyGen(pp), for any dataset identifier ∆ ∈ {0, 1}∗, and
any set of program/message/authenticator triples {(Pi,mi, σi)}i∈[N ], such that
Ver(Pi,∆, vk, mi, σi) = 1 the following holds: Let m∗ = g(m1, . . . ,mN ),P∗ =
g(P1, . . . ,PN ), and σ∗ = HEval(g, {σi}i∈[N ], ek). Then Ver(P∗∆, vk,m∗, σ∗) = 1.

We now consider two properties impacting the practicality of homomorphic
authenticator schemes. Succinctness on a high level guarantees that bandwidth
requirements for deploying such a scheme are low. Efficient verification allows for
low computational effort on behalf of the verifier.

Definition 17 (Succinctness [14]). A homomorphic authenticator scheme
(HSetup, HKeyGen,Auth,HEval,Ver) is said to be succinct if the size of every
authenticator depends only logarithmically on the size of a dataset. More formally,
let pp← HSetup(1λ), P = (f, τ1, . . . , τn), (sk, ek, vk)← HKeyGen(pp), and σi ←
Auth(sk, ∆, τi,mi) for all i ∈ [n]. A homomorphic authenticator is said to be
succinct if there exists a fixed polynomial p such that |σ| = p(λ, logn), where
σ = HEval(f, {σi}i∈[n], ek).

Like Libert and Yung [21], we call a key concise if its size is independent of
the input size n.

Definition 18 (Efficient Verification [10]). A homomorphic authenticator
scheme for multi-labeled programs allows for efficient verification if there exist
two additional algorithms (VerPrep,EffVer) such that:

VerPrep(P, vk) : Given a labeled program P = (f, τ1, . . . , τn), and verification key
vk, this algorithm generates a concise verification key vkP . This does not
depend on a dataset identifier ∆.

EffVer(vkP ,m, σ,∆): Given a concise verification key vkP , a message m, an
authenticator σ, and a dataset ∆, it outputs 1 or 0.

The above algorithms are required to satisfy the following two properties:

Correctness: Let (sk, ek, vk) be an honestly generated key triple and (P∆,m, σ)
be a tuple. Then, for every vkP ← VerPrep(P, vk), we have Pr[EffVer(vkP ,m,
σ,∆) 6= Ver(P∆, vk,m, σ)] = negl(λ).

Amortized Efficiency: Let P = (f, τ1, . . . , τn) be a program, let m1, . . . ,mn ∈
M and let t(n) be the time required to compute f(m1, . . . ,mn) with output m.
Then, for any vkP ← VerPrep(P, vk), and any ∆ ∈ {0, 1}∗ the time required to
compute EffVer(vkP ,m, σ,∆) is t′ = o(t(n)), where σi ← Auth(sk, ∆, τi,mi)
for i ∈ [n], and σ ← HEval(f, {σi}i∈[n], ek).

Here, efficiency is used in an amortized sense. There is a function-dependent
pre-processing phase, so that verification cost amortizes over multiple datasets.

For the notion of unforgeability of a homomorphic authenticator scheme
(HSetup,HKeyGen,Auth,HEval,Ver), we define the following experiment between
an adversary A and a challenger C. During the experiment, the adversary A can
adaptively query the challenger C for authenticators on messages of his choice
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under labels of his choice. He can also make verification queries. Intuitively, the
homomorphic property allows anyone (with access to the evaluation keys) to
derive new authenticators. This can be checked by the use of the corresponding
program in the verification algorithm. An adversary should however not be able
to derive authenticators beyond that.

Definition 19 (HomUF− CMAA,HAuth(λ) [14]).

Setup: C runs HSetup(1λ) to obtain the public parameters pp that are sent to
A, runs (sk, ek, vk)← HKeyGen(pp) and gives ek to A.

Authentication Queries: A can adaptively submit queries of the form (∆, τ,
m) where ∆ is a dataset identifier, τ ∈ T is a label, and m ∈M is a message
of its choice. C answers as follows:
If (∆, τ,m) is the first query for the dataset ∆, C initializes an empty list
L∆ = ∅ and proceeds as follows.

If (∆, τ,m) is such that (τ, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, τ,m′), then C ignores the query.

If (∆, τ,m) is such that (τ,m) /∈ L∆, C computes στ ← Auth(sk, ∆, τ,m) ,
returns στ to A and updates the list L∆ ← L∆ ∪ (τ,m).

Verification Queries: A is also given access to a verification oracle. Namely
the adversary can submit a query (P∆,m, σ) and C replies with the output of
Ver(P∆, vk,m, σ).

Forgery: In the end, A outputs a tuple (P∗∆∗ ,m∗, σ∗). The experiment outputs
1 if the tuple returned by A is a forgery as defined below (see Def. 20), and 0
otherwise.

This describes the case of privately verifiable homomorphic authenticators.
For homomorphic signatures, vk is given to the adversary.

Definition 20 (Forgery [14]). Consider a run of HomUF− CMAA,HAuth(λ)
where (P∗∆∗ ,m∗, σ∗) is the tuple returned by the adversary in the end of the
experiment, with P∗ = (f∗, τ∗1 , . . . , τ∗n). This is a forgery if Ver(P∗∆∗ , vk,m∗,
σ∗) = 1, and at least one of the following properties is satisfied:

Type 1: The list L∆∗ was not initialized during the security experiment, i.e. no
message was ever committed under the dataset identifier ∆∗.

Type 2: P∗∆∗ is well defined with respect to list L∆∗ and m∗ is not the correct
output of the computation, i.e. m∗ 6= f∗(m1, . . . , mn), where the mi are taken
fromL∆∗ .

Type 3: P∗∆∗ is not well defined with respect to L∆∗ (see Def. 3).

Definition 21 (Unforgeability [14]). A homomorphic authenticator scheme
HAuth is unforgeable if for any PPT adversary A,

Pr[HomUF− CMAA,HAuth(λ) = 1] = negl(λ).

Definition 22 (Context Hiding [10]). A homomorphic authenticator scheme
for multi-labeled programs is context hiding if there exist two additional PPT
procedures σ̃ ← Hide(vk,m, σ) and HideVer(vk,P∆,m, σ̃) such that:
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Correctness: For any pp← Setup(1λ), (sk, ek, vk)← KeyGen(pp) and any tuple
(P∆,m, σ), such that Ver(P∆, vk,m, σ) = 1, and σ̃ ← Hide(vk,m, σ), it holds
that HideVer(vk,P∆,m, σ̃) = 1.

Unforgeability: The scheme is unforgeable (Def. 21) when replacing the algo-
rithm Ver with HideVer in the security experiment.

Context Hiding Security: There exists a simulator Sim such that, for any
fixed (worst-case) choice of (sk, ek, vk) ← KeyGen(pp), any multi-labeled
program P∆ = (f, τ1, . . . , τn, ∆), messages m1, . . . ,mn, and distinguisher D
there exists a function ε(λ) = negl(λ) such that |Pr[D(I,Hide(vk,m, σ)) =
1] − Pr[D(I,Sim(sk,P∆,m)) = 1]| = ε(λ), where I = (sk, (m1, . . . ,mn)),
σi ← Auth(sk, ∆, τi,mi), m ← f(m1, . . . ,mn), σ ← Eval(f, {σi}i∈[n]),and
the probabilities are taken over the randomness of Auth,Hide and Sim.

If ε(λ) = negl(λ), we call the homomorphic authenticator scheme statistically
context hiding. If ε(λ) = 0, we call it perfectly context hiding.

Pairings and Structure-Preserving Signatures We formalize the definitions and
assumptions related to pairings. These will be the main building block for our
construction in Sec. 5. Structure-preserving signatures are also defined.

Definition 23 (Double Pairing Assumption in G2 (DBP2, e.g. [1])). Let
bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ) and R,Z $← G2. Any PPT adversary A
can produce (GR, GZ) ∈ G2

1\{(1, 1)} such that 1 = e (GR, R) · e (GZ , Z) only with
a probability negligible in λ.

DBP2 implies the DDH assumption in G2, and the reduction is tight [3].

Definition 24 (Structure-Preserving Signature [18]).
A structure-preserving signature scheme is a triple of PPT algorithms SPS =
(Gen,Sign,Verify):

The probabilistic key generation algorithm Gen(1λ) returns the secret/public key
pair (sk, pk), where pk ∈ Gnpk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message spaceM = Gn for some n ∈ poly(λ).

The probabilistic signing algorithm Sign(sk,M) returns a signature σ ∈ Gnσ for
some nσ ∈ poly(λ).

The deterministic verification algorithm Verify(pk,M, σ) only consists of pairing
product equations and returns 1 or 0.

(Perfect correctness.) for all (sk, pk) $← Gen(1λ) and all messages M ∈ M and
all σ $← Sign(sk,M), we have Verify(pk,M, σ) = 1.

Libert et al. [19] adapted this to the scenario of homomorphic signatures.
There, a signature scheme is structure-preserving if messages, signature compo-
nents and public keys are elements of the group bgp.
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3 Homomorphic Authenticators from FDCs

In this section, we begin to investigate the relation between FDCs and homo-
morphic authenticators. In particular we show how any correct FDC can be
transformed into a homomorphic signature scheme and show how it inherits
properties from the underlying FDC.

We begin by describing a transformation that constructs the algorithms of a
homomorphic authenticator scheme from the algorithms of an FDC.

Theorem 1. Every correct FDC scheme can be transformed into a homomorphic
authenticator scheme.

Proof. We describe a transformation Φ that on input an FDC scheme
FDC = (Setup, KeyGen, PublicCommit, PrivateCommit, FunctionCommit, Eval,
FunctionVerify, PublicDecommit) outputs a homomorphic authenticator scheme
HAuth = (HSetup, HKeyGen, Auth, HEval, Ver).

HSetup(1λ) : On input a security parameter λ, it runs pp← Setup(1λ). It outputs
the public parameters pp.

HKeyGen(pp) : On input the public parameters pp it runs (sk, pk)← KeyGen(pp).
It outputs the secret key sk, the evaluation key ek = 0 as well as the
verification key vk = pk.

Auth(sk, ∆, τ,m) : On input a secret key sk, a dataset identifier ∆, an input
identifier τ , and a message m, it chooses randomness r $← R uniformly
at random. It runs A ← PrivateCommit(sk,m, r,∆, τ). It sets M = m and
outputs the authenticator σ = (M, r,A).

HEval(f, {σi}i∈[n], ek) : On input an function f : Mn → M, a set {σi}i∈[n] of
authenticators, and an evaluation key ek (in our construction, no evalua-
tion key is needed), the algorithm parses σi = (Mi, ri, Ai). It runs A∗ ←
Eval(f,A1, . . . , An), and setsM∗ = f(M1, . . . ,Mn) as well as r∗ = f̂(m1, . . . ,

mn, r1, . . . , rn), where f̂ ∈ F can be derived from f since the FDC scheme is
correct in the sense of Def. 8. It sets σ = (M∗, r∗, A∗) and outputs σ.

Ver(P∆, vk,m, σ) : On input a multi-labeled program P∆, a verification key vk, a
message m ∈M, and an authenticator σ , the algorithm parses σ = (M, r,A)
and P∆ = (P, ∆). It checks if m = M . If not it outputs 0, else it runs
C ← PublicCommit(m, r) as well as F ← FunctionCommit(vk,P). It runs
b← FunctionVerify(vk, A,C, F,∆). It outputs b.

For homomorphic authenticators, correctness comes in two flavors. Both
authenticators created directly with a secret signing key as well as those derived
by the homomorphic property should verify correctly. Both properties are derived
from the FDC’s correctness.

Lemma 1. If FDC satisfies correctness (see Def. 8), and HAuth = Φ(FDC),
then HAuth achieves authentication correctness (see Def. 15) and evaluation
correctness (see Def. 16).

13



Proof. Let τ ∈ T be an arbitrary label and ∆ ∈ {0, 1}∗ be an arbitrary dataset
identifier. We consider the multi-labeled identity program P∆ = Iτ,∆. Let m ∈
M be an arbitrary message, and σ ← Auth(sk, ∆, τ,m). By construction, we
know that σ = (M, r,A),with M = m, where A← PrivateCommit(sk,m, r,∆, τ).
By correctness of the FDC, we know that FunctionVerify(pk, A,C, F,∆) = 1
for C ← PublicCommit(m, r) and F ← FunctionCommit(pk, Iτ ). Now we have
Ver(Iτ,∆, vk,m, σ) = 1, and HAuth achieves authentication correctness.

Let λ be an arbitrary security parameter, pp ← HSetup(1λ), (sk, ek, vk) ←
HKeyGen(pp), ∆ ∈ {0, 1}∗ an arbitrary dataset identifier and {(Pi,mi, σi)}i∈[N ]
any set of program/message/authenticator triples such that Ver(Pi,∆, vk,mi, σi)
= 1 for all i ∈ [N ]. Let m∗ = g(m1, . . . ,mN ),P∗ = g(P1, . . . ,PN ), and σ∗ =
HEval(g, {σi}i∈[N ], ek). We parse σi = (Mi, ri, Ai) and σ∗ = (M∗, r∗, A∗). We
set Ci ← PublicCommit(mi, ri) and Fi ← FunctionCommit(pk,Pi). By construc-
tion, we know that FunctionVerify(pk, Ai, Ci, Fi, ∆) = 1, as well as M∗ =
f(M1, . . . ,MN ), r∗ = ĝ(m1, . . . ,mN , r1, . . . , rN ), where ĝ ∈ F can be derived
from g since the FDC scheme is correct in the sense of Def. 8. We set C∗ ←
PublicCommit(m∗, r∗) and F ∗ ← FunctionCommit(pk,P∗). By assumption, mi =
Mi hence M∗ = m∗. Since FDC satisfies correctness, FunctionVerify(pk, A∗, C∗,
F ∗, ∆) = 1 and thus Ver(P∗∆, vk,m∗, σ∗) = 1.

Next, we investigate the relation between the unforgeability notions of FDCs
and homomorphic authenticators. We can show that an FDC that is both
unforgeable and binding can be transformed into an unforgeable homomorphic
authenticator.

Lemma 2. If FDC is unforgeable (see Def. 11) and binding (see Def. 6), and
HAuth = Φ(FDC), then HAuth is unforgeable (see Def. 21).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment HomUF− CMAA,HAuth (see Def. 19), we then show
how a simulator S can use A to win the security experiment EXPUF−CMA

A,FDC (see
Def. 10).

Setup S receives pp from the challenger of the experiment EXPUF−CMA
A,FDC . It

gives pp to the adversary A.
Key Generation Simulator S receives pk from the challenger of the experiment

EXPUF−CMA
A,FDC . It sets ek = 0, vk = pk, and outputs (ek, vk) to A.

Queries When A asks queries (∆, τ,m) S chooses r ∈ R uniformly at random
and queries (∆, τ,m, r) to receive an authenticator A. It sends the authenti-
cator σ = (m, r,A) to A. Note that σ is perfectly indistinguishable from a
response to a query (∆, τ,m) during HomUF− CMAA,HAuth.

Forgery A returns a forgery (P∗∆∗ ,m∗, σ∗). S parses σ∗ = (M∗, r∗, A∗). It then
computes the correct results m̂ = f∗(m1, . . . ,mn), r̂ = f̂∗(m1, . . . ,mn, r1,
. . . , rn). It computes C∗ ← PublicCommit(m∗, r∗) and checks whether C∗ =
PublicCommit(m̂, r̂). If not, it returns (P∗∆∗ , A∗, C∗)
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We either find a collision (m∗, r∗) and (m̂, r̂) for the bindingness, or produce
a forgery since a type 1, 2, 3 forgery in experiment HomUF− CMAA,HAuth corre-
sponds exactly to a forgery in experiment EXPUF−CMA

A,FDC . Thus
Pr[HomUF− CMAA,HAuth(λ) = 1] = Pr[EXPUF−CMA

A,FDC (λ) = 1]+
Pr[EXPBindA,Com(λ) = 1].

We now analyze this transformation with respect to its efficiency. A trivial
construction of a homomorphic authenticator scheme is to (conventionally) sign
every input, and during HEval to simply concatenate all authenticators along with
the corresponding values. Verification then consists of checking every input value,
and then redoing the computation. This naive solution is obviously undesirable
in terms of bandwidth, efficiency and fails to provide privacy guarantees.

Succinctness guarantees that a homomorphically derived authenticator is still
small, thus keeping bandwidth requirements low.

We show that the homomorphic authenticators derived by our transformation
inherits this property from the underlying FDC.

Lemma 3. If FDC is succinct (see Def. 12) and HAuth = Φ(FDC), then HAuth
is succinct (see Def. 17).

Proof. By assumption, the size of the output of PrivateCommit and Eval depends
at most logarithmically on n. By construction, the size of authenticators thus
depends at most logarithmically on n.

4 FDCs from Homomorphic Authenticators

In this section, we discuss how to construct an FDC from (homomorphic) com-
mitment schemes and structure-preserving homomorphic signatures schemes over
the commitment space. We show how the properties of the resulting FDC depend
on the underlying homomorphic signature scheme and commitment scheme.

Assume the homomorphic authenticator scheme HAuth = (HSetup, HKeyGen,
Auth, HEval, Ver) is structure-preserving over some structure X . Let Com be
a homomorphic commitment scheme Com = (CSetup,Commit,Decommit,CEval)
with message spaceM and commitment space C ⊂ X . We also assume the exis-
tence of an ordinary commitment scheme Com′ = (CSetup′,Commit′,Decommit′)
with message space F × T n, so labeled programs are admissible inputs. One can
always split up Ver into (VerPrep, EffVer) as follows.

VerPrep(P, vk) : On input a labeled program P and a verification key vk, the
algorithm sets vkP = (P, vk). It returns vkP .

EffVer(vkP , C, σ,∆): On input a concise verification key vkP , a message C, an
authenticator σ, and a dataset identifier ∆ ∈ {0, 1}∗, the algorithm parses
vkP = (P, vk). It runs b← Ver(P, vk, C, σ,∆) and returns b.

We now show how to construct an FDC.
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Setup(1λ) takes the security parameter λ as input. It runs CK ← CSetup(1λ),
CK′ ← CSetup′(1λ) as well as pp′ ← HSetup(1λ). It sets pp = (CK,CK′, pp′)
and outputs pp. We implicitly assume that every algorithm uses these public
parameters pp, leaving them out of the notation.

KeyGen(pp) takes the public parameters pp and runs (sk′, ek, vk)← HKeyGen(pp).
It sets sk = (sk′, ek), pk = (ek, vk) and outputs the key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and runs
(C, d)← Commit(m, r). It outputs the commitment C.

PrivateCommit(sk,m, r,∆, τ) takes as input the secret key sk, a message m,
randomness r, an identifier τ and a dataset identifier ∆. It runs (C, d) ←
Commit(m, r), A′ ← Auth(sk, τ,∆,C) and outputs A = (A′, ek).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program P .
It parses pk = (ek, vk) and runs vkP ← VerPrep(P, vk). It chooses randomness
rP

$← R uniformly at random and runs (CP , dP) ← Commit′(P, rP). It
outputs the function commitment F = (vkP , CP).

Eval(f,A1, . . . An) takes as input a function f and a set of authenticators
A1, . . . , An. It parses Ai = (A′i, eki) for all i ∈ [n], and runs Â ← HEval(f,
{A′i}i∈[n], ek1). It outputs A∗ = (Â, ek1).

FunctionVerify(pk, A,C, F,∆) takes as input a public key pk, an FDC containing
an authenticator A and a commitment C, a function commitment F as well
as a dataset identifier ∆. It parses F = (vkP , CP), and A = (A′, ek). It runs
b← EffVer(vkP , C,A′, ∆) and outputs b.

PublicDecommit(m, r, C) takes as input message m, randomness r, and commit-
ment C. It runs (C, d) ← Commit(m, r) as well as b ← Decommit(m, d,C)
and outputs b.

We first look at the commitment properties — hiding and binding. In our
transformation, these are inherited from the underlying commitment schemes.

Lemma 4. The construction FDC is binding in the sense of Def. 6 if Com and
Com′ used in the construction are binding commitment schemes.

Proof. Obviously, if Com is binding then PublicCommit is binding. We parse a
function commitment as F = (vkP , CP). Note that CP is by assumption a binding
commitment, thus FunctionCommit is also binding.

The hiding property of FDCs (Def. 7) is different from the context hiding
property of homomorphic authenticators [10]. Context hiding guarantees that
authenticators to the output of a computation do not leak information about the
inputs to the computation. By contrast, the hiding property of FDCs guarantees
that even authenticators to the inputs do not leak information about inputs
to the computation. In [26], this property was used to combine an FDC with
secret sharing to construct an efficient verifiable multi-party computation scheme.
This privacy gain is one of the major benefits of FDCs over homomorphic
authenticators when sensitive data are used as computation inputs.

Lemma 5. If Com is (unconditionally) hiding, then FDC is unconditionally
hiding in the sense of Def. 7.
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Proof. If Com is (unconditionally) hiding, then the probabilistic distributions over
the sets {Commit(m, r) | r $← R} and {Commit(m′, r′) | r′ $← R} are perfectly in-
distinguishable for all m,m′ ∈M. This is independent of any τ ∈ T and any ∆ ∈
{0, 1}∗. Hence the probabilistic distributions over sets {Auth(sk, ∆, τ, C) | C ←
Commit(m, r), r $← R} and {Auth(sk, ∆, τ, C ′) | C ′ ← Commit(m′, r′), r′ $← R}
are perfectly indistinguishable for all m,m′ ∈ M, τ ∈ T , ∆ ∈ {0, 1}∗. Since
{Auth(sk, ∆, τ, C) | C ← Commit(m, r), r $← R} = {PrivateCommit(sk,m, r,∆,
τ) | r $← R} for all m ∈M, τ ∈ T , ∆ ∈ {0, 1}∗ the probabilistic distributions over
{PrivateCommit(sk,m, r,∆, τ) | r $← R} and {PrivateCommit(sk,m′, r′, ∆, τ)
| r′ $← R} are also (perfectly) indistinguishable. The PublicCommit case is trivial.

Next, we investigate the homomorphic property of such an FDC. We can show
that if the homomorphic authenticator scheme HAuth satisfies both correctness
properties — authentication and evaluation, and furthermore supports efficient
verification, then the transformed FDC is also correct.

Lemma 6. If HAuth achieves authentication (see [10]), evaluation correctness
(see [10]), and efficient verification (see [10]), then FDC is correct in the sense
of Def. 8 with overwhelming probability.

Proof. Let λ be any security parameter, pp← Setup(1λ), (sk, pk)← KeyGen(pp),
and let ∆ ∈ {0, 1}∗ be an arbitrary dataset identifier. Let m ∈M be an arbitrary
message and r ∈ R arbitrary randomness. We set A← PrivateCommit(sk,m, r,∆,
τ), C ← PublicCommit(m, r), FI ← FunctionCommit(pk, Iτ ), where Iτ is the
labeled identity program. Then we have A = Auth(sk, ∆, τ, C). By the authenti-
cation correctness of HAuth, we know that Ver(Iτ,∆, vk, C, σ) = 1. Since HAuth
achieves efficient verification, EffVer(vkIτ , C, σ,∆) = 1 with overwhelming proba-
bility. By construction, FunctionVerify(pk, A,C, FI , ∆) = 1.

Let {mi, σi,Pi)}i∈[N ] be any set of tuples (parsed as σi = (ri, Ai)) such that
for Ci ← PublicCommit(mi, ri), Fi ← FunctionCommit(pk,Pi), FunctionVerify(pk,
Ai, Ci, Fi, ∆) = 1. This implies EffVer(vkPi , Ci, σi, ∆) = 1, thus Ver(Pi,∆, vk, Ci,
σi) = 1 with overwhelming probability. Then let m∗ = g(m1, . . . ,mN ), r∗ =
ĝ(m1, . . . ,mN , r1, . . . rN ), C∗ ← PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN ),
F ∗ ← FunctionCommit(pk,P∗), A∗ ← Eval(f,A1, . . . , AN ), and σ∗ = (r∗, A∗).
From the homomorphic property of Com, we have C∗ = CEval(g, C1, . . . , CN ).
By the evaluation correctness of HAuth we have Ver(P∗, vk, C∗, σ∗) = 1. Thus
EffVer(vkP∗ , C∗, σ∗, ∆) = 1 with overwhelming probability, due to the correctness
of efficient verification. By construction, FunctionVerify(pk, A∗, C∗, F ∗, ∆) = 1.

We now look at the essential security property of an FDC — unforgeability.
We show how an adversary that can break the security experiment for FDCs
can be used to break the security experiment for homomorphic authenticators. A
simulator can forward the queries used by the adversary in the FDC experiment
as queries in the homomorphic authenticator experiment, and use the resulting
forgery in the one experiment to compute a forgery in the other.
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Lemma 7. If HAuth is secure (see [10]), then FDC is unforgeable (Def. 11).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPUF−CMA

A,FDC , we then show how a simulator S
can use A to win the security experiment HomUF− CMAA,HAuth (see [10]).

Setup S gets pp′ from the challenger of the experiment HomUF− CMAA,HAuth.
It runs CK ← CSetup(1λ), CK′ ← CSetup′(1λ). It sets pp = (CK,CK′, pp′)
and outputs pp to the adversary A.

Key Generation S receives (ek, vk) from the challenger of the experiment
HomUF− CMAA,HAuth. It sets pk = (ek, vk) and outputs pk to A.

Queries When A ask queries (∆, τ,m, r), S computes (C, d)← Commit(m, r)
and queries (∆, τ, C) to receive an authenticator σ. It sets A = σ and replies
to the query with the private commitment A. This is the exact same reply to
a query in experiment EXPUF−CMA

A,FDC .
Forgery The adversary A returns a forgery (P∗∆∗ ,m∗, r∗, A∗). S computes

(C∗, d∗)← Commit(m∗, r∗) and outputs (P∗∆∗ , C∗, A∗).

A type 1, 2, 3 forgery in experiment EXPUF−CMA
A,FDC corresponds to a forgery

in experiment HomUF− CMAA,HAuth. Thus S produces a forgery with the same
probability as A.

We now analyze an FDC obtained by our transformation with respect to its
efficiency properties. On the one hand we have succinctness, which guarantees
that authenticators are short, so bandwidth requirements are low. On the other
hand, we show how the FDC inherits amortized efficiency, i.e. efficient verification
after a one-time preprocessing from the efficient verification of the underlying
homomorphic authenticator scheme.

Lemma 8. If HAuth is succinct (see [10]), then FDC is succinct (Def. 12).

Proof. By assumption, HAuth produces authenticators whose size depends at
most logarithmically on the data set size n. By construction, the output size of
PrivateCommit and Eval thus depends at most logarithmically on n.

Lemma 9. If HAuth is efficiently verifiable (see [10]), then FDC has amortized
efficiency in the sense of Def. 13.

Proof. Let t(n) be the runtime of f(m1, . . . ,mn). FunctionVerify parses a function
commitment F = (vkP , CP) and runs EffVer(vkP , C,A,∆). By assumption, the
runtime of EffVer is o(t(n)). Thus the runtime of FunctionVerify is also o(t(n)).

4.1 A New Structure-Preserving Homomorphic Signature Scheme

We now consider the special case of a single-dataset, structure-preserving homo-
morphic signature scheme. Obviously, our transformation also works for such
a scheme. This can easily be seen by interpreting the underlying authenticator
scheme as one where all algorithms are constant over all inputs ∆ ∈ {0, 1}∗. This
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leads to a single dataset FDC. It is an immediate corollary of [14, Theorem 2]
that a single dataset FDC can be transformed into a multi dataset FDC. On
a high level, this transformation uses a keyed pseudorandom function that on
input a dataset ∆ ∈ {0, 1}∗ produces the keys (sk∆, ek∆, vk∆) and then uses a
conventional UF-CMA secure signature scheme to bind the dataset to the public
keys by signing ∆ | vk∆. For details, see Fiore et al. [14]. In Sec. 5, we present
such a single dataset structure-preserving homomorphic signature scheme.

5 A New Single-Dataset, Structure-Preserving Linearly
Homomorphic Signature Scheme

We now describe a novel structure-preserving linearly homomorphic signature
scheme SPHAuth for a single dataset. As we discussed in Sec. 4, this can be
extended to a scheme for multiple datasets by standard methods. Our structure-
preserving linearly homomorphic signature scheme is the first structure-preserving
homomorphic signature scheme to achieve efficient verification, and the first
context hiding. It achieves the latter even in an information-theoretic sense.

HSetup(1λ) : On input a security parameter λ, this algorithm chooses the pa-
rameter n ∈ Z, a bilinear group bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ)
and the tag space T = [n]. Additionally, it fixes a pseudorandom function
F : K × {0, 1}∗ → Zp. It outputs the public parameters pp = (n, F, bgp).

HKeyGen(pp) : On input the public parameters pp, the algorithm chooses chooses
x1, . . . , xn, y, z ∈ Zp uniformly at random. It sets hi = gxit for all i ∈ [n], as
well as Y = gy2 , Z = gz2 . Additionally the algorithm chooses a random seed
K

$← K for the pseudorandom function F . It sets sk = (K,x1, . . . , xn, y, z),
ek = 0, vk = (h1, . . . , hn, Y, Z) and outputs (sk, ek, vk).

Auth(sk, τ,M) : On input a secret key sk, an input identifier τ , and a message
M ∈ G1, the algorithm takes x, y from sk. It computes s = FK(τ) and sets
S = gs1, Λ =

(
gxτ+s

1 ·My
) 1
z . It outputs σ = (Λ, S).

HEval(f, {σi, }i∈[n], 0) : On input an function f :Mn →M and a set {σi}i∈[n]
of authenticators, and an empty evaluation key, the algorithm parses f =
(f1, . . . , fn) as a coefficient vector. It parses each σi as (Λi, Si) and sets
Λ =

∏n
i=1 Λ

fi
i and S =

∏n
i=1 S

fi
i . It returns σ = (Λ, S).

Ver(P, vk,M, σ) : On input a labeled program P , a verification key vk, a message
M ∈ G1, and an authenticator σ, the algorithm parses σ = (Λ, S). It checks
whether e (Λ,Z) = e (M,Y ) ·

∏n
i=1 h

fi
τi · e (S, g2). If the equation holds, it

outputs 1, otherwise it outputs 0.

This scheme SPHAuth is structure-preserving, as messages are taken from G1,
public keys lie in G2 or GT and authenticators lie in G1. An obvious requirement
for this structure-preserving homomorphic signature scheme is to be correct. For
homomorphic authenticators, two different notions of correctness are considered.
One ensures that freshly generated authenticators obtained by running Auth
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verify correctly. The other correctness property ensures that any derived signature,
obtained by running HEval verifies correctly w.r.t the correct labeled program P .

Lemma 10. SPHAuth satisfies authentication correctness (see [10]).

Proof. For all public parameters pp← HSetup(1λ), and key triple (sk, ek, vk)←
HKeyGen(pp), we have sk = (x1, . . . , xn, y, z), ek = 0, vk = (h1, . . . , hn, Y, Z). For
any input identifier τ ∈ T , and any messageM ∈ G1 we have σ = (Λ, S) with Λ =(
gxτ+s

1 ·My
) 1
z and S = gs1. We consider P = Iτ the identity program for label τ .

During the computation of Ver(Iτ , vk,M, σ), e (Λ,Z) = e
((
gxτ+s

1 ·My
) 1
z , gz2

)
=

e
(
gxτ+s

1 ·My, g2
)

= e (gxτ1 , g2)·e (gs1, g2)·e (M, gy2 ) = e (M,Y )·hτ ·e (S, g2). Thus
SPHAuth satisfies authentication correctness with probability 1.

Lemma 11. SPHAuth satisfies evaluation correctness (see [10]).

Proof. We fix the public parameters pp← HSetup(1λ), key triple (sk, ek, vk)←
HKeyGen(pp), a function g : GN1 → G1, given by its coefficient vector (g1, . . . , gN )
and any set of program/message/authenticator triples {(Pi,Mi, σi)}i∈[N ] such
that Ver(Pi, vk,Mi, σi) = 1 for all i ∈ [N ]. So in particular, for σi = (Λi, Si),
e (Λi, Z) = e (Mi, Y ) · hPi · e (Si, g2) For readability, we write hPi =

∏n
k=1 h

fi,k
τi,k

with Pi = (fi,1, . . . , fi,n, τi,1, . . . , τi,n). LetM∗ =
∏N
i=1 M

gi
i , P∗ = g(P1, . . . ,PN ),

and σ∗ = HEval(g, {σi}i∈[N ], 0) (we have an empty evaluation key). We parse σ∗ =
(Λ∗, S∗). Then e (Λ∗, Z) = e

(∏N
i=1 Λ

gi
i , Z

)
=
∏N
i=1 e (Λi, Z)gi =

∏N
i=1(e (Mi, Y )·

hPi ·e (Si, g2))gi =
∏N
i=1 e (Mi, Y )gi ·

∏N
i=1 h

gi
Pi ·

∏N
i=1 e (Si, g2)gi = e(

∏N
i=1 M

gi
i ,

Y ) · hP∗ · e
(∏N

i=1 S
gi
i , g2

)
= e (M∗, Y ) · hP∗ · e (S∗, g2). Thus SPHAuth satisfies

evaluation correctness with probability 1.

Next, we show that SPHAuth is efficient with respect to both bandwidth
(succinctness) and verification time (efficient verification).

Lemma 12. SPHAuth is succinct (see [10]).

Proof. An authenticator consist of 2 G1 elements and is thus independent of n.

Lemma 13. SPHAuth allows for efficient verification (see [10]).

Proof. We describe the algorithms (VerPrep,EffVer):

VerPrep(P, vk) : On input the labeled program P = (f, τ1, . . . , τn), with f given
by its coefficient vector (f1, . . . , fn), the algorithm takes Y,Z from vk. For
label τi it takes hτi from vk. It computes hP ←

∏n
i=1 h

fi
τi and outputs

vkP ← (hP , Y, Z). This is independent of the input size n.
EffVer(vkP ,M, σ): On input a concise verification key vkP , a message M , and

an authenticator σ, the algorithm parses σ = (Λ, S). It checks whether the
following equation holds: e (Λ,Z) = hP · e (M,Y ) · e (S, g2). If it does, it
outputs 1, otherwise it outputs 0.
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This obviously satisfies correctness. We can see that the runtime of EffVer
is O(1), and is independent of the input size n. Thus, for large n, this scheme
allows for efficient verification.

We now prove the unforgeability of our scheme. To this end, we first describe
a sequence of games, allowing us to argue about different variants of forgeries.
We show how any noticeable difference between the first two games leads to a
distinguisher against the pseudorandomness of F . We then show how both a
noticeable difference between the latter two games, as well as a forgery in the
final game lead to a solver of the double pairing assumption.

Theorem 2. If F is a pseudorandom function and the double pairing assumption
holds in G2 (see Def. 23), then SPHAuth is unforgeable.

Proof. We now provide the security reduction for the unforgeability of our scheme
in the standard model. We define a series of games with the adversary A and
we show that A wins, i.e. any game outputs 1, only with negligible probability.
Following the notation of [10], we write Gi(A) to denote that a run of game i
with A returns 1. We use flag values badi, initially set to false. If, at the end of
each game, any of these previously defined flags is set to true, the game simply
outputs 0. Let Badi denote the event that badi is set to true during game i.

Game 1 is defined as the security experiment HomUF− CMAA,MKHAuth(λ)
between adversary A and challenger C.

Game 2 is defined as Game 1, except that the keyed pseudorandom function
FK is replaced by a random function R : {0, 1}∗ → Zp.

Game 3 is defined as Game 2, except for the following change. The challenger
runs an additional check. It computes σ̂ ← HEval(f, {σi, }i∈[n], 0) over the σi
given to the adversary A in answer to his queries. It parses σ̂ = (Λ̂, Ŝ). It parses
the forgery σ∗ = (Λ∗, S∗). If Ŝ = S∗ it sets bad3 = true.

First, we show that for every PPT adversary A running Game 2, there exists
a PPT distinguisher D such that |Pr[G2(A)]− Pr[G1(A)]| ≤ AdvPRFF,D (λ).

Assume we have a noticeable difference |Pr[G1(A)]− Pr[G2(A)]| ≥ ε. Since
the only difference between these games is the replacement of the pseudorandom
function F by the random function R, this immediately leads to a distinguisher
D that achieves an advantage of ε against the pseudorandomness of F .

Now, we show that Pr[Bad3] = negl(λ). The simulator S gets as input bgp, Z ∈
G2. It simulates Game 3.

Setup Simulator S chooses the parameter n ∈ Z and the tag space T = [n]. It
outputs the public parameters pp = (n, bgp).

KeyGen Simulator S chooses ai, bi ∈ Zp uniformly at random for all i = 1, . . . , n.
It sets hi = gait · e (g1, g2)bi . It chooses y ∈ Zp uniformly at random and sets
Y = gy2 . It gives the verification key vk = (h1, . . . , hn, Y, Z) to A.

Queries When queried for (M, τ), simulator S sets Λ = gbτ1 as well as S =
g−aτ1 ·M−y. Since aτ , bτ were chosen uniformly at random, the signature is
correctly distributed.
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Forgery Let (P∗,M∗, σ∗) with σ∗ = (Λ∗, S∗) be the forgery returned by A.
S follows Game 3 to compute Λ̂, Ŝ, M̂ . Since σ∗ is a successful forgery,
we furthermore know that both e (Λ∗, Z) = e (M∗, Y ) ·

∏n
i=1 h

fi
τi · e (S∗, g2)

and e
(
Λ̂, Z

)
= e

(
M̂, Y

)
·
∏n
i=1 h

fi
τi · e

(
Ŝ, g2

)
. Dividing the equations and

considering that Ŝ = S∗ since bad3 = true, e
(
Λ∗

Λ̂
, Z
)

= e
(
M∗

M̂
, Y
)

or

alternatively e
(
Λ∗

Λ̂
, Z
)
· e
((

M̂
M∗

)y
, g2

)
= 1 and we have found a solution to

the double pairing problem. By definition, we have M∗ 6= M̂ .

Now we consider the general case. The simulator S gets as input bgp, Z ∈ G2. It
simulates Game 3.

Setup Simulator S chooses the parameter n ∈ Z and the tag space T = [n]. It
outputs the public parameters pp = (n, bgp).

KeyGen Simulator S chooses ai, bi ∈ Zp uniformly at random for all i = 1, . . . , n.
It sets hi = gait · e (g1, G2)bi . It chooses y ∈ Zp uniformly at random and sets
Y = Zy. It gives the verification key vk = (h1, . . . , hn, Y, Z) to A.

Queries When queried for (M, τ) simulator S sets Λ = gbτ1 ·My as well as
S = g−aτ1 . Note that since aτ , bτ were chosen uniformly at random the
signature is correctly distributed.

Forgery Let (P∗,M∗, σ∗) with σ∗ = (Λ∗, S∗) be the forgery returned by A.
S follows Game 3 to compute Λ̂, Ŝ, M̂ . Since σ∗ is a successful forgery, we
furthermore know that both e (Λ∗, Z) = e (M∗, Y ) ·

∏n
i=1 h

fi
τi · e (S∗, g2) and

e
(
Λ̂, Z

)
= e

(
M̂, Y

)
·
∏n
i=1 h

fi
τi · e

(
Ŝ, g2

)
.

Dividing the equations and using the identity Y = Zy yields e
(
Λ∗

Λ̂
, Z
)

=

e
(
M∗

M̂
, Zy

)
· e
(
S∗

Ŝ
, g2

)
or alternatively e

(
Λ∗

Λ̂
·
(
M̂
M∗

)y
, Z
)
· e
(
Ŝ
S∗ , g2

)
= 1

and we have found a solution to the double pairing problem. Since we have
bad3 = false we know that Ŝ 6= S∗.

Finally, we argue the privacy of SPHAuth. Intuitively, a homomorphic authen-
ticator scheme is context hiding if it is infeasible to derive information about the
inputs to a computation from an authenticator to the outcome of a computation
(beyond what can be learned from the output itself). We show that for SPHAuth,
this holds even against a computationally unbounded adversary.

Theorem 3. SPHAuth is perfectly context hiding (see [10]).

Proof. We show that SPHAuth is perfectly context hiding by comparing the dis-
tributions of homomorphically derived signatures to that of simulated signatures.
First, in our case, the algorithm Hide is just the identity function. More pre-
cisely, we have Hide(vk,M, σ) = σ, for all possible verification keys vk, messages
M ∈ G1 and authenticators σ. Thus we have HideVer = Ver, so correctness and
unforgeability hold by Lemmas 10, and 11, and Theorem 2.

We show how to construct a simulator Sim that outputs signatures perfectly
indistinguishable from the ones obtained by running Eval. Parse the simulator’s
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input as sk = (K,x1, . . . , xn, y, z), P∆ = (f, τ1, . . . , τn, ∆). It computes si =

FK(τi). It sets S′ = g

∑n

i=1
si

1 and Λ′ =
(
g

∑n

i=1
(xτi+si)

1 ·My

) 1
z

.

Let σi ← Auth(sk, τi,Mi), σ∗ ← HEval(f, {σi, }i∈[n], 0). Parsing σ∗ = (Λ∗, S∗),
we have by construction S∗ = S′ and Λ∗ = Λ′. Since these elements are identical,
they are indistinguishable against a computationally unbounded distinguisher.

6 Related Work

6.1 Transforming homomorphic authenticators

Catalano et al. [12] showed a transformation for linearly homomorphic signatures.
They introduced a primitive called linearly homomorphic authenticated encryption
with public verifiability (LAEPuV), and how to combine linearly homomorphic
signature schemes with Paillier encryption to obtain LAEPuV schemes. Their
work is, however, restricted to the computational security of Paillier encryption.
Our approach also allows for information-theoretic hiding properties.

We now survey work related to the primitives used in our transformations.

6.2 Commitments

Commitment schemes are a convenient tool to add verifiability to various pro-
cesses, such as secret sharing [23], multi-party computation [8], or e-voting [22].
The most well-known and widely used commitment schemes used to provide
verifiability are Pedersen’s commitments [23]. In [26], FDC schemes are intro-
duced. Unlike previous commitment schemes, they allow for succinctness and
amortized efficiency. Furthermore, FDCs support messages stored in datasets
and thus enables a much more expressive notion of public verifiability and more
rigorous definition of forgery. Besides, a secure bulletin board is not required. In
this work, we investigate the relations between homomorphic authenticators and
FDCs. In particular, we show how to construct FDCs from structure-preserving
signatures. In [20], the notion of functional commitments is introduced. Their
notion of function bindingness, however, is strictly weaker than our notion of
adaptive unforgeability. The instantiation proposed supports linear functions
on field elements, i.e. vectors of length 1, while we support vectors of arbitrary
polynomial length. Furthermore, notions such as amortized efficiency and suc-
cinctness are not considered. In commitment-based audit schemes, authenticity is
typically achieved by using a secure bulletin board [13], for which finding secure
instantiations has been challenging so far.

6.3 Homomorphic authenticators

Homomorphic authenticators have been proposed both in the secret-key setting,
as homomorphic MACs (e.g. [5, 7, 9, 28]), and in the public-key setting as ho-
momorphic signatures (e.g. [6, 10, 11, 24, 25]). In contrast, FDCs additionally
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consider information-theoretic privacy. Libert et al. [19] presented a structure-
preserving, linearly homomorphic signature scheme. For structure-preserving
homomorphic signatures, so far, only schemes limited to linear functions are
known. Our construction in Sec. 5 is, however, the first such scheme to achieve
efficient verification as well as the first to be context hiding.

6.4 Structure-preserving signatures

The notion of signatures to group elements consisting of group elements were
introduced by Groth [16]. This property was later called structure-preserving [2].
Since then, various constructions have been proposed (e.g. [1, 4, 15,17]).

7 Conclusion

In this paper, we have investigated the relations between homomorphic authen-
ticators and FDCs. We have shown that every FDC can be transformed into a
homomorphic signature. Conversely, we then showed that structure-preserving
homomorphic signature schemes can be turned into FDCs. Finally, we introduced
a new structure-preserving scheme suitable for our transformation. This con-
struction is indeed the first such scheme to allow for efficient verification. These
results give us a more thorough understanding on the relationship between FDCs
and homomorphic signatures. Ultimately, they further support the addition of
information-theoretic confidentiality to suitable homomorphic signature schemes.
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