
Founding Secure Computation on Blockchains

Arka Rai Choudhuri
Johns Hopkins University

Vipul Goyal
Carnergie Mellon University

Abhishek Jain
Johns Hopkins University

Abstract

We study the foundations of secure computation in the blockchain-hybrid model, where a
blockchain – modeled as a global functionality – is available as an Oracle to all the participants
of a cryptographic protocol. We demonstrate both destructive and constructive applications of
blockchains:

– We show that classical rewinding-based simulation techniques used in many security proofs
fail against blockchain-active adversaries that have read and post access to a global blockchain.
In particular, we show that zero-knowledge (ZK) proofs with black-box simulation are im-
possible against blockchain-active adversaries.

– Nevertheless, we show that achieving security against blockchain-active adversaries is pos-
sible if the honest parties are also blockchain active. We construct an ω(1)-round ZK
protocol with black-box simulation. We show that this result is tight by proving the
impossibility of constant-round ZK with black-box simulation.

– Finally, we demonstrate a novel application of blockchains to overcome the known im-
possibility results for concurrent secure computation in the plain model. We construct a
concurrent self-composable secure computation protocol for general functionalities in the
blockchain-hybrid model based on standard cryptographic assumptions.

We develop a suite of techniques for constructing secure protocols in the blockchain-hybrid
model that we hope will find applications to future research in this area.

1 Introduction

Blockchain is an exciting new technology which is having a profound impact on the world of cryp-
tography. Blockchains provide both: new applications of existing cryptographic primitives (such
as hash function, or zero-knowledge proofs), as well as, novel foundations on which new crypto-
graphic primitives can be realized (such as fair-secure computation [ADMM14, BK14, CGJ+17],
or, one-time programs [GG17]). In this work, we seek to examine the foundations of secure com-
putation protocols in the context of blockchains. More concretely, we study what we call the
blockchain-hybrid model and examine constructions of zero-knowledge and secure computation in
this model.

The Blockchain-Hybrid Model. In order to facilitate the use of blockchains in secure compu-
tation, we study the blockchain-hybrid model, where the blockchain – modeled as a global ledger
functionality – is available to all the participants of a cryptographic protocol. The parties can
access the blockchain by posting and reading content, but no single party has any control over the
blockchain. Our modeling follows previous elegant works on formalizing the blockchain functional-
ity [KZZ16, BMTZ17, BGK+18]. In particular, our model is based on the global blockchain ledger
model from Badertscher et. al [BMTZ17].

1

We study simulation-based security in the blockchain-hybrid model. In our model, the simulator
does not have any control over the blockchain, and simply treats it as an oracle just like protocol
participants. Thus, unlike traditional trusted setup models such as common reference string, the
blockchain-hybrid model does not provide any new “power” to the simulator. In particular, the
simulator is restricted to its plain model capabilities such as resetting the adversary or using
knowledge of its code. Thus, in our model, the blockchain can be global, in that it can be used
by multiple different protocols at the same time. This is reminiscent of simulation in the global
UC framework [CDPW07, CJS14a, HPV16]. A related model is the global Random Oracle model
[CJS14a] where the simulator can only observe the queries made by the adversary to the random
oracle, but cannot program the random oracle (since it is global and therefore shared across many
protocols).

Secure Computation based on Blockchains. We study the foundations of secure compu-
tation in the presence of the global blockchain functionality. Interestingly, we demonstrate both
destructive and constructive applications of blockchains to cryptography. Primitives which were
earlier possible to realize now become impossible. At the same, working in this model allows us
to overcome previously established deep impossibility results in cryptography. Interestingly, we
also utilize mining delays – typically viewed as a negative feature of blockchains – for constructive
purposes in this work. Our main results as discussed next.

1.1 Our Results

Simulation Failure in the Presence of Blockchains. We consider a new class of adversaries
that we refer to as blockchain-active adversaries. These adversaries are similar to usual crypto-
graphic adversaries, except that they have user access to a blockchain, i.e., they can post on the
blockchain and read its state at any point.

We observe that such adversaries can foil many existing simulation techniques that are used for
proving security of standard cryptographic schemes. To illustrate the main idea, let us consider
rewinding-based black-box simulation techniques that are used, e.g., in zero-knowledge (ZK) proofs
[GMR85], secure multiparty computation [Yao82, GMW87], and signature schemes in the random
oracle model constructed via the Fiat-Shamir heuristic [FS86]. A crucial requirement for the success
of rewinding-based simulation is that the adversary should be oblivious to the rewinding. Usually,
this requirement can be easily met since the simulator can simply “reset” the code of the adversary,
which prevents it from keeping state across the rewindings.

A blockchain-active adversary, however, can periodically post on the blockchain and use it to
maintain state across rewindings, and therefore detect that it is being rewound. In this case, the
adversary can simply abort and therefore fail the simulation process.1 It is not too difficult to turn
the above idea into a formal impossibility result for ZK proofs against blockchain-active adversaries,
when the simulation is required to be black-box.

Theorem 1 (Informal). There does not exist an interactive argument in the plain model which is
zero-knowledge w.r.t. black-box simulation against blockchain-active adversaries.

The above impossibility result extends to secure multiparty computation and other natural
cryptographic primitives whose security is proven via a rewinding simulator.

1This is reminiscent to the problems that arise in the context of UC security, where the adversary cannot be
rewound since it can communicate with an external environment, leading to broad impossibility results for zero-
knowledge and secure computation [Can01a, CF01a, CKL03].

2

Constructing Zero-Knowledge Protocols. To overcome the above problems posed by blockchains,
we look towards blockchains for a solution as well. Our idea is to make the protocol blockchain
active as well. That is, in addition to the adversary, the honest parties would have access to the
blockchain as well.

Our first positive result is an ω(1)-round ZK proof system in the blockchain-hybrid model whose
security is proven w.r.t. black-box simulation.

Theorem 2 (Informal). Assuming collision-resistant hash functions, there exists an ω(1)-round
ZK proof system in the blockchain-hybrid model w.r.t. black-box simulation.

Interestingly, in our construction, the honest parties do not post any message on the blockchains.
Instead, they only keep a “tab” on the current state of the blockchain in order to decide whether
or not to continue the protocol.

We also show that the above result is tight. Namely, we show that using black-box simulation,
constant-round ZK is impossible in the blockchain-hybrid model.

Theorem 3 (Informal). Assuming one-way functions, there does not exist an O(1)-round ZK
argument system in the blockchain-hybrid model w.r.t. a (expected probabilistic polynomial time)
black-box simulator.

This is in sharp contrast to the plain model where there are a number of classical constant round
zero-knowledge protocols that are proven secure w.r.t. a black-box simulator [GK96, FS90, BJY97].

Concurrent Secure Computation using Blockchains. Classical secure computation protocols
such as [Yao82, GMW87] only achieve “stand-alone” security, and fail in the setting of concurrent
self-composition, where multiple copies of a protocol may be executed concurrently, under the
control of an adversary. In fact, achieving concurrent secure computation in the plain model has
been shown to be impossible [CKL06, Lin03, Lin04, Lin08, BPS06, Goy12, AGJ+12, GKOV12].
The above impossibility results are far reaching and rule out secure computation for a large class
of functionalities in a variety of settings.

Interestingly, we show that concurrent self-composition is possible in the blockchain-hybrid
model w.r.t. standard real/ideal model notion of security with a PPT simulator. Thus, our results
(put together) show that designing cryptographic primitives in the blockchain-hybrid model is, in
some sense, harder and easier at the same time.

Theorem 4 (Informal). Assuming collision-resistant hash functions and oblivious transfer, there
exists a concurrent self-composable secure computation protocol for all polynomial-time functional-
ities in the blockchain-hybrid model.

In our protocol, each party is required to post an initial message (which corresponds to a
commitment to its input and randomness) on the blockchain. However, an honest party can simply
perform this posting in an “offline” phase prior to the start of the protocol. In particular, once the
protocol starts, an honest party is not required to post any additional message on the blockchain.

A number of prior beautiful works have constructed concurrent (and universally composable)
secure computation in various setup models such as the trusted common reference string model
[CLOS02], the registered public-key model [BCNP04], the tamper-proof hardware model [Kat07,
CGS08, GIS+10], and the physically uncloneable functions model [BFSK11, DFK+14, BKOV17].
We believe that the blockchain model provides an appealing decentralized alternative to these models
since there are no physical assumptions or centralized trusted parties involved. Moreover, it allows
for basing concurrent security on an already existing and widely used infrastructure. Further, it
is possible to obtain strong guarantees of the following form: an adversary who can break our

3

construction can also break the security of the underlying blockchain (potentially allowing it to
gain large amounts of cryptocurrency), or the underlying cryptographic assumptions (oblivious
transfer and collision-resistant hash functions in our case).

Impossibility of UC Security. While Theorem 4 establishes the feasibility of concurrent self-
composition, we show that universal composition security [Can01a] is impossible in the blockchain-
hybrid model:

Theorem 5 (Informal). Universally composable commitments are impossible in the blockchain-
hybrid model.

We prove the above result via a simple adaptation of the impossibility result of [CF01a] to the
blockchain-hybrid model. The main intuition behind this result is that a simulator in the blockchain-
hybrid model has the same capabilities as in the plain model, namely, the ability to rewind the
adversary or using knowledge of its code. Crucially, (unlike the non-programmable random oracle
model [CJS14a]) the ability to see the queries made to the blockchain do not constitute a new
capability for the simulator since everyone can see those queries.

1.2 Technical Overview

We start with the observation that if an adversary is blockchain-active, it can “detect” that it
is being rewound by posting the transcript of the interaction so far on the blockchain. In more
detail, upon getting an incoming message, the adversary concatenates the entire transcript with a
session ID and submits it to the blockchain Oracle. Before giving a response, the adversary waits
for the next block to be mined and checks the following: the transcript it posted on the blockchain
has indeed appeared, and, no such transcript (for the same session and the same round) appeared
on any of the prior blocks. If the check passes (which is guaranteed in the real execution), the
adversary proceeds honestly with computing and sending the next protocol message. We show that
it would be impossible for any polynomial-time simulator to rewind this adversary which forms the
basis of our black-box impossibility result for zero-knowledge.

Constructing Black-Box Zero-Knowledge Protocols. To overcome the above problems
posed by blockchains, we look towards blockchains for a solution as well. Our idea is to make the
protocol blockchain active as well. Specifically, we let the honest prover keep track of the blockchain
state, and, if the number of new blocks mined since the beginning of the protocol exceed a fixed
number k, abort. Thus, the honest parties use the blockchain to implement a time-out mechanism.
We emphasize, however, that we do not require the honest parties to have synchronized clocks.
The only requirement placed is that the protocol must be finished in an a priori bounded amount
of time, as measured by the progress of the blockchain. For example, while using Bitcoin, if k is set
to 20, this gives the parties nearly 3.5 hours to finish the zero-knowledge protocol before a time-out
occurs (since a block is mined roughly every 10 minutes in Bitcoin). For simplicity, we will treat
the parameter k as a constant (even though our constructions can handle an arbitrary value of k
by scaling the round complexity of the protocol appropriately).

We devise a construction for black-box zero-knowledge proofs where the number of “slots”
(or rewinding opportunities) in the protocol is higher than k. While the adversary can send any
information to the blockchain Oracle at any point of time, there can be at most k points in the
protocol execution where the adversary actually receives from the Oracle a new (unforgeable) mined
block. However by our construction, this would still leave several slots in the protocol where the
simulator is free to rewind (without having to forge the blockchain state).

4

A potentially complication in the design of the simulator arises from the fact that, apart from
the newly mined blocks, the adversary can also “listen in” on the network communication in real
time. This could consist of various (honest party) transactions currently outstanding on the network
and waiting to be included in the next block. This is formalized by buffer reads in the model of
Badertscher et. al [BMTZ17]. We handle this problem by having the simulator simply replay the
honest-party outstanding transactions since they could not have changed from the main thread to
the look-ahead thread. The adversarial outstanding transactions (which might change from thread
to thread) in the current thread are already known to the simulator since the simulator can read all
outgoing messages from the adversary. The above ideas form the basis of our first positive result
modulo the issue of simulation time which is discussed next.

The Issue of Simulation Time. Interestingly, the fact that blockchains can be used to implement
a global unforgeable clock presents a novel challenge in proving security against blockchain-active
adversaries, that to the best of our knowledge, does not arise elsewhere in cryptography. Typically
in cryptography, the running time of the simulator is larger than the running time of the adversary.
This means that the number of blocks mined during a simulated execution may be higher than the
number of blocks mined during a real execution. Then, the number of mined blocks can be used as
“side-channel” information to distinguish real and simulated executions, if the adversary and the
distinguisher are blockchain-active! Such a difficulty does not arise in the plain model since the
simulator is assumed to have complete control over the clock of the adversary (including the ability
to freeze it).

To address this issue, we seek to construct a simulator whose running time is the same as the
real protocol execution. Towards that end, we build upon techniques from the notion of precise
zero-knowledge [MP06]. To start with, it would seem that we need to construct a simulator with
precision exactly 1, something that is currently not known to be possible. To resolve this problem,
our key observation is that there is a crucial difference between the time that the simulator takes to
finish and the number of computation steps it executes. In particular, if the simulator can execute
a number of computations in parallel, it could potentially perform more computations than the
prover in the real execution, and yet, finish in the same amount of time. Our rewinding strategy
would run several threads of execution in parallel (e.g., by making several copies of the adversary
code) and ensure that by the time the main2 thread finishes, all the rewound execution threads have
finished as well. To ensure that the simulation succeeds, our simulator is necessarily required to
have a super-constant number of rewinding opportunities (which can be pursued in parallel). Such
a simulator would give a guarantee of the following form: any information learnt by an adversarial
verifier in the protocol could also be produced from scratch by an algorithm which is capable of
running sufficient (polynomial) number of computations in parallel. For example, a quad core
processor is capable of running 4 parallel computations.

We believe that the issue of simulation time is one of independent interest. In particular,
developing an understanding of the time required by the simulator (as opposed to the number
of computation steps) could shed additional light on the knowledge complexity of cryptographic
constructions as well as motivate the study of strong notions of security.

Lower Bound on Round Complexity of Black-Box Zero-Knowledge. We prove that
constant round ZK arguments are impossible w.r.t black-box simulation in the blockchain-hybrid
model. Our impossibility result holds even for expected polynomial-time simulators.

Consider an adversarial verifier that waits for a fixed constant time c before responding to any
message from the prover. Our proof works in two steps:

2The thread output by the simulator is referred to as the main thread.

5

1. Recall that black-box simulators can only query the adversarial verifier as an Oracle. However,
the simulator may choose to make these queries in parallel rather than sequentially by making
several copies of the adversary state (and hence, increasing the number of available Oracles).

In the first step, we assume that the simulator is memory bounded. This means that at any
given time, the simulator may only have a bounded (strict polynomial) number of copies (say)
q(·) of the adversary. Furthermore, since the verifier takes time c to answer each query, the
total number of queries the simulator may make to the adversary in a given time t can be
bounded by q·t

c (an a priori bounded strict polynomial). Now we observe the following:

– The simulator must terminate within roughly t steps where t is the time an honest
prover takes to complete the proof. To see this, let r be an upper bound on the number
of blocks that can created in the time taken by the honest prover to complete the proof.
We consider a blockchain active adversary that observes the state of the blockchain when
the protocol starts, and posts a transcript on the completion of the proof. If it notices
that more than r blocks have been created since the protocol started, it concludes that
it is interacting with the simulator.

– Thus, the overall number of queries (and hence) the running time of the simulator
is a strict polynomial. Now, we can directly invoke the result of Barak and Lindell
[BL02] that rules out constant-round ZK arguments with strict polynomial-time black-
box simulation.

2. The above only rules out a simulator with “a priori bounded parallelism.” However what if,
e.g., the number of parallel queries the simulator may make to the verifier cannot be a priori
bounded (and instead we only require that the simulator finish in a priori bounded number of
computational steps)? In particular, the simulator may see the responses to the queries made
so far, and, adaptively decide to increase the number of parallel queries (i.e., the number of
copies of the adversary)? This case is more tricky and as such, the ideas from the work of
[BL02] don’t apply.

To resolve this issue, we crucially rely upon the fact that by carefully choosing the delay
parameter c and an aborting probability for the adversary, the number of such “adaptive
steps” can be bounded by a constant. Thereafter, we argue that in each adaptive step,
if the simulator increases the number of parallel copies by more than an a priori bounded
polynomial factor, it runs the risks of blowing the number of computation steps to beyond
expected polynomial. On the other hand if the number of parallel copies blow up by at most
a fixed polynomial factor, since the number of adaptive steps is a constant, the simulator
is still using “bounded parallelism” (a case already covered by our previous step). The full
proof is delicate and can be found in Appendix 6.

Concurrent Secure computation. We now proceed to describe the main ideas behind our pos-
itive result for concurrent self-composable secure computation. We start by recalling the intuition
behind the impossibility of concurrent secure computation w.r.t. black-box simulation in the plain
model.

A primary task of a simulator for a secure computation protocol is to extract the adversary’s
input. A black-box simulator extracts the input of the adversary by rewinding. However, in the
concurrent setting, extracting the input of the adversary in each session is a non-trivial task. In
particular, given an adversarial scheduling of the messages of concurrent sessions, it may happen
that in order to extract the input of the adversary in a given session s, the simulator rewinds past
the beginning of another session s′ that is interleaved inside the protocol messages of session s.

6

When this happens, the adversary may change its input in session s′. Thus, the simulator would
be forced to query the ideal functionality more than once for the session s′.

Indeed, as shown in [Lin04], this intuition can be formalized to obtain a black-box impossibility
result for concurrent self-composition w.r.t. the standard definition of secure computation, where
only one query per session is allowed. While Lindell’s impossibility result is only w.r.t. black-
box simulation, subsequent works have shown impossibility of concurrent secure computation even
w.r.t. non-black-box simulation [BPS06, Goy12, AGJ+12, GKOV12].

In order to overcome the impossibility results, our starting idea is the following: prior to the
start of a protocol, each party must commit to its input and randomness on the blockchain. It
must then wait for its commitment string to be posted on the blockchain before sending any further
message in the protocol. Similar to our ZK protocols (with stand-alone security), we use a time-out
mechanism to place an upper bound on the number of blocks that can be mined during a session.
Then, by using sufficiently many rewinding “slots,” we can ensure that there exist some slots in
each session where the adversary is guaranteed to not see new block (and hence no new interleaved
sessions), making them “safe” for rewinding. Note, however, that this mechanism does not bound
the overall number of concurrent sessions since an adversary can start any polynomial number of
sessions in parallel.

Once we have the above protocol template, the key technical challenge is to perform concurrent
extraction of the adversary’s inputs in all of the sessions. Since there are multiple “unsafe” rewind-
ing slots in every session (wherever a new block is mined), we need to extract adversary’s inputs
in all of the sessions under the constraint that only the safe slots are rewound. Unfortunately,
commonly known rewinding strategies in the concurrent setting [RK99, KP01, PRS02] rewind all
parts of the protocol transcripts (potentially multiple times). Therefore, they immediately fail in
our setting.

In order to solve this problem, we develop a new concurrent rewinding strategy. The starting
idea towards developing this rewinding strategy is the observation that our particular setting has
some similarities to the work of Goyal et al. [GLP+15] who were interested in a seemingly unre-
lated problem: designing commitment schemes that are secure w.r.t. chosen commitment attacks
[CLP10]. Goyal et al. introduced what they call the “robust extraction lemma” that guarantees
concurrent extraction even if a constant number of “breakpoints” – that cannot be rewound – are
interspersed throughout the overall transcript of the concurrent sessions. These breakpoints are
analogous to the unsafe points in our setting.

While this serves as a useful starting point, robust extraction is not directly applicable to
our setting since overall, the number of external blocks seen by the adversary (the equivalent of
breakpoints in [GLP+15]) cannot be bounded. Indeed, if the number of sessions is T , the number
of blocks can only be upper bounded by T · k (if e.g., all the sessions are sequential).

Our main observation is that the concurrent adversary can only choose one of the following:
either too much concurrency, or too many newly mined blocks, but not both. This allows us to
come up with a new variant and analysis of the robust extraction lemma which we believe could
be of independent interest. In particular, our new variant uses twice as many slots as the one used
by the robust extraction lemma. We refer the reader to the technical sections for more details.

1.3 Related Work

Blockchains and Cryptography. In a recent work, [GG17] used blockchains to construct non-
interactive zero-knowledge (NIZK) arguments and selectively-secure one-time programs. Their
model, however, is fundamentally different from ours in that they rely on a much stronger notion
of simulation where the simulator controls all the honest miners in the blockchain. Intuitively,

7

this is somewhat similar to the honest majority model used to design (universally composable)
secure multiparty computation protocols. Due to the power given to the simulator, their model
necessitates the blockchain to be “local” (i.e., private) to the protocol. In contrast, our model
allows for the blockchain to be a “global” setup since the simulator has no extra power over
the blockchain compared to the adversary. This is similar to the difference between universal
composability framework [Can01a] and global universal composability framework [CDPW07], where
in the former model, a setup (such as a common reference string) cannot be reused by different
protocols, whereas in the latter model, a common setup can be used across multiple protocols.
Indeed, since the simulator has no additional power except the ability to reset the adversary or use
knowledge of its code, NIZKs are impossible in our model, similar to the plain model. Unlike our
work, [GG17] do not consider interactive ZK proofs or any notion of secure multiparty computation.

In another recent work, [CGJ+17] study the problem of fair multiparty computation in a
“bulletin-board” model that can be implemented with blockchains. Similar to [GG17], however,
their model provides the simulator the ability to control the blockchain. Prior to their work, multi-
ple works [ADMM14, BK14] studied the problem of fairness with penalties using cryptocurrencies.

Several elegant works have conducted a formal study of various properties of blockchains
[GKL15, PSs17, GKL17, KRDO17, BMTZ17]. Most relevant to our work is that of Badertscher
et. al [BMTZ17] whose modeling of the blockchain ideal functionality we closely follow.

Concurrent Security. The study of concurrent security for cryptographic protocols was initiated
by Dwork et al. [DNS98] who also introduced a timing model for constructing concurrent ZK. In
this model, the parties have synchronized clocks and are required to insert “delays” at appropriate
points in the protocol. A refined version of their model was later considered in [KLP05] for the
problem of concurrent secure computation. We note that while our approach to concurrent secure
computation in the blockchain-hybrid model appears to bear some similarity to the timing model,
there are fundamental differences that separate these models. For example, the simulator can fully
control the clock of the adversary in the timing model, while this is not possible in our setting
since the blockchains provide an unforgeable clock to the adversary. More importantly, in the
timing model, there are no “unsafe” points, and the simulator can rewind anywhere. For this
reason, the timing model does not require developing new concurrent extraction techniques, and
instead standard rewinding techniques for the stand-alone setting are applicable there. Finally, in
the timing model, honest parties insert artificial delays in the protocol based on their clocks, while
in our constructions, an honest party responds immediately to messages received from the other
(possibly adversarial) party.

1.4 Organization

We start with our model of the blockchain in section 2, and all subsequent results are in this
model. In section 4 we describe a ω(1) round black-box zero-knowledge protocol. We describe our
concurrently extractable commitment scheme in section 5 and use our constructed commitment
scheme to achieve a concurrently secure two-party computation protocol described in section 5.3.
We move on to our impossibility results starting with a lower bound on the round complexity of
black-box zero-knowledge in section 6. In section 7 we show that allowing only the adversary access
to the blockchain rules out zero knowledge. Finally, we show that UC commitments are impossible
in section 8.

8

2 Blockchain Model

Blockchains. In a blockchain protocol, the goal of all parties is to maintain a global ordered
set of records that are referred to as blocks. New blocks can only be added using a special mining
procedure that simulates a puzzle-solving race between participants and can be run by any party
(called miner) executing the blockchain protocol. Presently, two broad categories of puzzles are
used: Proof-of-Work (PoW) and Proof-of-Stake (PoS).

Following the works of [KZZ16, BMTZ17, BGK+18], we model the blockchain as a global ledger
Gledger that internally keeps a state state which is the sequence of all the blocks in the ledger. Parties
interact with the ledger by making one of many queries described by the functionality.

We reproduce here the ledger functionality described in [BMTZ17] with a few minor modifica-
tions to be described subsequent to the description.

The ledger maintains a central and unique permanent state denoted by state. When data/-
transactions are sent to Gledger, they are validated using a Validate predicate and added to a buffer
buffer. The buffer is meant to indicate those transactions that are not sufficiently deep to become
permanent. The Blockify function creates a block including some transactions from buffer and ex-
tends state. The decision of when the state is extended is left to the adversary. The adversary
proposes a next block candidate NxtBC containing the transactions from the buffer it wants in-
cluded in the state. An empty NxtBC is used to indicate that the adversary does not want the state
to be updated at the current clock tick. To restrict the behavior of the adversary, there is a ledger
algorithm ExtendPolicy that enforces a state-update policy restriction. See appendix A for further
discussion on the ExtendPolicy.

Each registered party can see the state, but is guaranteed only a sufficiently long prefix of
it. This is implemented by monotonically increasing pointers pti, defining the prefix state|pti , for
each party that the adversary can manipulate with some restrictions. This can be viewed as a
sliding window over the state, wherein the adversary can only set pointers to be within this window
starting from the head of state. The size of the sliding window is denoted by windowSize. It should
be noted that the prefix view guarantees that the value at position k will appear in position i in
every party’s state.

A party is said to be desynchronized if the party recently registered or recently got de-registered
from the clock. At this point, due to network delays, the adversary can make the parties believe
in any value of the state up until the party gets messages from the network. This time period is
denoted by the parameter Delay, wherein the desynchronized parties are practically under the con-

trol of the adversary. A timed honest input sequence
−→
I TH , is a vector of the form ((x1, P1, τ1), · · · ,

(xm, Pm, τm)), used to denote the inputs received by the parties from the environment, where Pi is
the player that received the input and τi was the time of the clock when the environment handed
the input to Pi. The ledger uses the function predict-time to ensure that the ideal world execu-
tion advances with the same pace (relative to the clock) as the protocol does. −→τ state denotes the
block-insertion times vector, which lists the times each block was inserted into state.

Functionality Gledger

Gledger is parameterized by found algorithms, Validate, ExtendPolicy, Blockify, and predict-time: windowSize,
Delay∈ N. The functionality manages variables state,NxtBCbuffer, τL, and −→τ state as described above. The
variables are initialized as follows: state := −→τ state := NxtBC := ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the subset of honest parties H ⊆ P and the subset
of de-synchronized honest parties PDS ⊂ H. The sets P,H,PDS are all initially set to ∅. When a new honest

9

party is registered at the ledger, if it is registered with the clock already then it added to the party sets H
and P and the current time of registration is also recorded if the current time τL > 0, it is also added to PDS .
Similarly, when a party is deregistered, it is removed from both P (and therefore also from PDS or H). The
ledger maintains the invariant that it is registered (as a functionality) to the clock whenever H 6= ∅.

For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state view
statei := ε (initially set to empty). The functionality also keeps track of the timed honest-input sequence in a

vector
−→
I T

H (initially
−→
I T

H := ε)

Upon receiving any input I from any party or from the adversary, send (CLOCK-READ, sidC) to Gclock and
upon receiving the response (CLOCK-READ, sidC , τ), set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered continuously
since time τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂.

2. If I was received from an honest party Pi ∈ P:

(a) Set
−→
I T

H :=
−→
I T

H ||(I, Pi, τL);

(b) Compute
−→
N = (

−→
N 1, · · · ,

−→
N `) := ExtendPolicy

(−→
I T

H , state,NxtBC, buffer,−→τ state

)
and if

−→
N 6= ε set state := state||Blockify(

−→
N 1)|| · · · ||Blockify(

−→
N `) and −→τ state := −→τ state||τ `L where

τ `L = τL|| · · · ||τL.

(c) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set
ptk := |state| for all Pk ∈ H \ PDS .

(d) If
−→
N 6= ε, send (state) to A; else send (I, Pi, τL) to A

3. Depending on the above input I and its sender’s ID, Gledger executes the corresponding code from the
following list:

– Submitting data:

If I = (SUBMIT, sid, x) and is received from a party Pi ∈ P or from A (on behalf of corrupted
party Pi) do the following

(a) Choose a unique identifier uid and set y := (x, uid, τL, Pi)

(b) buffer := buffer ∪ {y}.
(c) Send (SUBMIT, y) to A if not received from A.

– Reading the state:

If I = (READ, sid) is received from a party Pi ∈ P then set statei := state|min{pti,|state|} and return
(READ, sid, statei) to the requestor. If the the requestor is A then send (state, buffer).

– Maintain the ledger state:

If I = (MAINTAIN-LEDGER, sid) is received by an honest Pi ∈ P and predict-time(
−→
I T

H) = τ̃ > τL
then send (CLOCK-UPDATE, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:

If I = (NEXT-BLOCK, hflag, (uid1, · · · , uid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfUid← ε

(b) For i ∈ [`], if there exists y := (x, uid, τL, Pi) ∈ buffer with ID uid = uidi then set listOfUid :=
listOfUid||uidi.

(c) Finally, set NxtBC := NxtBC||(hflag, listOfUid).

– The adversary setting state-slackness:

If I = (SET-SLACK, (Pi1 , p̂ti1), · · · , (Pi` , p̂ti`)) with {Pi1 , · · · , Pi`} ⊆ H \ PDS is received from the
adversary, do the following:

(a) If ∀j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂ti1 ≥ |stateij |, set ptij := p̂tij for every j ∈ [`].

10

(b) Otherwise set ptij := |state| for all j ∈ [`]

– The adversary setting the state for desynchronized parties:

If I = (DESYNC-STATE, (Pi1 , state′i1), · · · , (Pi1 , state′i`)) with {Pi1 , · · · , Pi`} ⊆ PDS is received
from the adversary, set set stateij := state′ij for every j ∈ [`].

The work of Badertscher et al [BMTZ17] show that under appropriate assumptions, Bitcoin
realizes the ledger functionality described enforcing the ExtendPolicy described in appendix A.
For convenience we’ve made a few syntactic changes to the Gledger functionality as described in
[BMTZ17]:

– Firstly, the Validate predicate is not relevant in our setting since parties will use ledger to
post data, and these should be trivially validated. Hence, we’ve abstracted out the Validate
predicate from the description of the model.

– We require that the adversary cannot invalidate data sent by other parties, thereby denying
data from ever making it on to the ledger. For transactions, the adversary can invalidate
honest transactions. This can be remedied using a strong variant of Gledger described in
[BMTZ17].

– Every time that the size of the state increases, the adversary is notified of the new state by
Gledger.

The changed functionality the same properties of the ideal Gledger functionality as described in
[BMTZ17].

Remarks. We point out a few properties of the Gledger functionality and its use case in our setting.

– As described in [BMTZ17], we can achieve a strong liveness guarantee by slightly modifying
the above ledger functionality which guarantees that posted information will make it on to
the view of other parties within ∆ := 4 ·windowSize number of blocks (relative to the view of
the submitting party).

– There are occasions wherein we will run parallel executions of the adversary, and one thread
will be assigned to be the main execution thread while the others will be denoted as ‘look-
ahead” threads. In an effort to make the adversary oblivious to rewinding, we cannot allow
messages from these “look-ahead” threads to make its way to Gledger. Drop messages sent
by the adversary to Gledger and will have to abort the thread if Gledger sends a state with an
increased size.

– We require that for a READ query, buffer is efficiently simulatable, while state is not. This
is a reasonable assumption to make given that the state indicates the permanent component
of the blockchain, and simulating this would requiring forging the state. On the other hand,
the buffer consists of outstanding queries from both honest and adversarial parties. From
the description of Gledger, each time a SUBMIT query is made to Gledger, the information
is passed along to the adversary, and the adversary’s own outstanding queries are known.
Looking ahead, a READ query can be answered without making a query to Gledger. The
honest outstanding queries are replayed on each thread since they could not have changed
across threads, while the adversarial queries local to that thread are known to the simulator.

11

– We wait for Delay time before the start of any protocol to ensure all parties are synchronized.
Moving ahead, for simplicity of exposition, the notion of de-synchronised parties is ignored.

– While the works of [KZZ16, BMTZ17, BGK+18] use Gclock functionality, we do not require
parties to have access to a clock and can consider this to be local to Gledger. In fact our positive
results do not rely on parties having access to a clock.

– Additionally, we require that a locally initialized Gledger is efficiently simulatable to any ad-
versary that does not have additional access to the global Gledger. These local Gledger will be
useful in establishing certain properties of our protocol.

Blockchain active (BCA) adversaries. Consider an adversary that has access to Gledger, and
thus can post to and access the state (the entire blockchain) at any time. In fact its strategy in
any protocol may be a function of the state. We refer to any such adversary that actively uses the
Gledger as a blockchain active adversary (BCA).

Simulation in the Blockchain-hybrid model. Moving ahead, we interchangeably use blockchain-
hybrid and Gledger-hybrid, while preferring the later for our formal descriptions. A simulator has the
same power as other parties while accessing the global functionality Gledger. In addition, it acts as an
interface between the party and Gledger, and thus can choose what messages between the party and
the functionality it wants delivered. This is unlike the setting considered in [CGJ+17, GG17]
where the simulator has control of the blockchain, and thus can “rewind” the blockchain by
discarding and re-creating blocks. This is reminiscent of the difference between simulation in
Universal Composability (UC) framework [Can01a] and simulation in the global UC framework
[CDPW07, CJS14a, HPV16].

Our simulator can use arbitrary polynomial amount of parallelism. Although arbitrary, the
polynomial is fixed in advance. We will use this modeling to run parallel invocations of the adversary
by making copies.

At this point we would like to emphasize the need for considering this model for the simulator.
We start off by mentioning that any party can use the state obtained from Gledger as the basis for
its execution. Importantly, the adversary’s view is now no longer determined solely by the message
it receives from the simulator since the Gledger state gives it an additional auxiliary input. In the
plain model, if we wanted to rewind the adversary back to a specific point in the execution, we
could restart the adversary and send the same messages up to the specific point. And we were
guaranteed that the adversary’s responses would be identical. But now since the adversary has
access to Gledger, its responses could depend on the state of Gledger.

Let us consider such an adversary. Now when the simulator tries to restart the adversary,
suppose the state has expanded since. Even if the simulator provides the same messages as a
previous execution, the adversary’s behavior now may be drastically different and of potentially
no use to the simulator. The simulator could ensure identical behavior by providing it the earlier
truncated view of the state, but moving forward with this execution would be problematic since any
message that the adversary wants to post will no longer appear on the state within the promised
time period, and thus the adversary will notice that the Gledger no longer follows the model specified.
Thus it is imperative that executions are run in parallel to ensure that views across multiple threads
are identical if the same inputs are provided.

The above modeling is crucial for rewinding when we prove security of our protocols. We
will work with this modeling unless otherwise specified. Looking ahead, our construction of the
zero-knowledge proof in the non-black-box setting will use a modified variant of this model.

12

Security. Since the distinguisher attempting to distinguish between views of the adversary in
the real and simulated setting has access to Gledger, the simulator cannot create an isolated view
of Gledger for the adversary. But as it turns out, the ability to initialize a local Gledger is a useful
property useful in certain situations that we will leverage in our work.

Protocols in the plain model are a reference to any protocol that does not require its participants
to interact with Gledger in any form. These protocols are proven secure without considering the
presence of Gledger. Given such a protocol, a blockchain active adversary may try to leverage access
to this global functionality Gledger to gain undue advantage over the setting where it did not have
such access. We are interested in such adversaries since we want to see how the security of known
protocols or primitives fare when the adversary has access to the Gledger.

3 Definitions and Preliminaries

Unless otherwise specified, we consider the adversaries that have access to the global functionality
Gledger, and thus the view includes messages received from and sent to Gledger. Thus, when we denote
that two distributions representing the views of parties with access to Gledger are computationally
indistinguishable in the Gledger-hybrid model, we give distinguisher access to the global Gledger func-
tionality. An immediate consequence of this is that, any view generated by a simulator using a
privately initialized Gledger functionality will be trivially distinguished from the real execution by
the distinguisher that views the state of the global Gledger.

3.1 Zero Knowledge in the Gledger-hybrid model

Definition 1. An interactive protocol (P,V) for a language L is zero knowledge in the Gledger-hybrid
model if the following properties hold:

– Completeness. For every x ∈ L,

Pr
[
outV [P(x,w)↔ V(x)] = 1

]
= 1

– Soundness. There exists a negligible function negl(·) s.t. ∀x /∈ L and for all adversarial
prover P∗.

Pr
[
outV [P∗(x)↔ V(x)] = 1

]
≤ negl(n)

– Zero Knowledge. For every PPT adversary V ∗, there exists a PPT simulator Sim such
that the probability ensembles

–
{

viewV [P(x,w)↔ V(x, z)]
}
x∈L,w∈RL(x),z∈{0,1}∗

–
{

Sim(x, z)
}
x∈L,w∈RL(x),z∈{0,1}∗

are computationally indistinguishable in the Gledger-model.

3.2 Concurrently Secure Computation in the Gledger-hybrid model

In this work, we consider a malicious, static adversary that chooses whom to corrupt before the
execution of the protocol. The adversary controls the scheduling of the concurrent executions. We
only consider computational security and therefore restrict our attention to adversaries running

13

in probabilistic polynomial time. We denote computational indistinguishability by ≈c, and the
security parameter by n. We do not require fairness and hence in the ideal model, we allow a
corrupt party to receive its output in a session and then optionally block the output from being
delivered to the honest party, in that session. Further, we only consider “security with abort”. To
formalize the above requirement and define security, we follow the standard paradigm for defining
secure computation (see also [Lin08]). We define an ideal model of computation and a real model
of computation, and require that any adversary in the real model can be emulated by an adversary
in the ideal model. More details follow.

IDEAL MODEL. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality F : {0, 1}r1 × {0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let P1

and P2 denote the two parties in a single execution. In total. let there be k parties Q1, Q2, · · · , Qk,
where each party may be involved in multiple sessions with possibly interchangeable roles, i.e. Qi
may play the role of P1 in one session and P2 in some other session. Let the total number of
executions be m = m(n). For each ` ∈ [m], we will denote by P `1 , the party playing the role of
P1 in session `. P `2 is defined analogously. The adversary may corrupt any subset of the parties in
Q1, . . . , Qk. The ideal world execution proceeds as follows:

I Inputs: There is a PPT usage scenario which gives inputs to all the parties. For each session
` ∈ [m], it gives inputs x` ∈ X ⊆ {0, 1}r1 to P `1 and y` ∈ Y ⊆ {0, 1}r2 to P `2 . The adversary
is given auxiliary input z ∈ {0, 1}∗, and chooses the subset of the parties to corrupt, say M .
The adversary receives the inputs of the corrupted parties.

II Session initiation: When the adversary wishes to initiate the session number `, it sends a
(start-session, `) message to the trusted party. On receiving a message of the form (start-session, `),
the trusted party sends (start-session, `) to both P `1 and P `2 .

III Honest parties send inputs to the trusted party: Upon receiving (start-session, `) from
the trusted party, an honest party P `i sends its real input along with the session identifier.
More specifically, if P `1 is honest, it sends (`, x`) to the trusted party. Similarly, an honest P `2
sends (`, y`) to the trusted party.

IV Corrupted parties send inputs to the trusted party: At any point during execution,
a corrupted part P `1 may send a message (`, x′`) to the trusted party, for any string x′` (of
appropriate length) of its choice. Similarly, a corrupted party P `2 sends (`, y′`) to the trusted
party, for any string y′` (of appropriate length) of its choice.

V Trusted party sends results to the adversary: For a session `, when the trusted party
has received messages from both P `1 and P `2 , it computes the output for that session. Let x′`
and y′` be the inputs received from P `1 and P `2 , respectively. It computes the output F(x′`, y

′
`).

If either P `1 or P `2 is corrupted, it sends (`,F(x′`, y
′
`)) to the adversary. If neither of the parties

is corrupted, then the trusted party sends the output message (`,F(x′`, y
′
`)) to both P `1 and

P `2 .

VI Adversary instructs the trusted party to answer honest players: For a session `,
where exactly one of the party is corrupted, the adversary, depending on its view up to this
point, may send the message (output, `) to the trusted party. Then, the trusted party sends
the output (`,F(x′`, y

′
`)), computed in the previous step, to the honest party in session `.

VII Outputs: An honest party always outputs the value that it received from the trusted party.
The adversary outputs an arbitrary (PPT computable) function of its entire view (including

14

the view of all corrupted parties) throughout the execution of the protocol including messages
exchanged with the Gledger functionality.

The ideal execution of a function F with security parameter n, input vectors −→x ,−→y , auxiliary
input z to Sim and the set of corrupted parties M , denoted by IDEALFM,Sim(n,−→x ,−→y , z), is defined
as the output pair of the honest parties and the ideal world adversary Sim from the above ideal
execution.

REAL MODEL. We now consider the real model in which a real two-party protocol is executed
(and there exists no trusted third party). Let F ,−→x ,−→y , z be as above and let Π be a two-party
protocol for computing F . Let A denote a non-uniform probabilistic polynomial time adversary
that controls any subset M of parties Q1, . . . , Qk. The parties run concurrent executions of the
protocol Π, where the honest parties follow the instructions of Π in all executions. The honest
party initiates a new session `, using the input provided whenever it receives a start-session message
from A. The scheduling of all messages throughout the execution is controlled by the adversary.
That is, the execution proceeds as follows: the adversary sends a message of the form (`,msg) to
the honest party. The honest party then adds msg to its view of session ` and replies according to
the instructions of Π and this view in that session. At the conclusion of the protocol, an honest
party computes its output as prescribed by the protocol. Without loss of generality, we assume the
adversary outputs exactly its entire view in the execution of the protocol, which includes messages
exchanged with the Gledger functionality.

The real concurrent execution of Π with security parameter n, input vectors −→x ,−→y , auxiliary
input z to A and the set of corrupted parties M , denoted by REALFM,A(n,−→x ,−→y , z), is defined as
the output pair of the honest parties and the real world adversary A from the above real world
process.

Definition 2. Let F and Π be as above. Then protocol Π for computing F is a concurrently secure
computation protocol in the Gledger-hybrid model if for every probabilistic polynomial time adversary
A in the real model, there exists a probabilistic polynomial time adversary Sim in the ideal model
such that for every polynomial m = m(n), every input vectors −→x ∈ Xm,−→y ∈ Y m, every z ∈ {0, 1}∗,
and every subset of corrupt parties M , the following{

IDEALFM,Sim(n,−→x ,−→y , z)
}
n∈N ≈c

{
REALFM,A(n,−→x ,−→y , z)

}
n∈N

holds in the Gledger-hybrid model.

3.3 Extractable Commitment Protocol 〈C,R〉

Let com(·) denote the commitment function of a non-interactive perfectly binding string commit-
ment scheme. Let n denote the security parameter. The commitment scheme 〈C,R〉 between the
committer C and the receiver R is described as follows.

Commit Phase: This consists of two stages, namely, the Init stage and the Challenge-Response
stage, described below:

Init: To commit to a n-bit string σ, C chooses (` ·N) independent random pairs of n-bit strings

{α0
i,j , α

1
i,j}

`,N
i,j=1 such that α0

i,j ⊕α1
i,j = σ for all i ∈ [`], j ∈ [N]. C commits to all these strings using

com, with fresh randomness each time. Let B ← com(σ), and A0
i,j ← com(α0

i,j), A
1
i,j ← com(α1

i,j)
for every i ∈ [`], j ∈ [N].

Challenge-Response: For every j ∈ [N], do the following:

15

– Challenge : R sends a random `-bit challenge string vj = v1,j , . . . , v`,j .

– Response : ∀i ∈ [`], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending the decommitment
information.

Open Phase: C opens all the commitments by sending the decommitment information for each
one of them. R verifies the consistency of the revealed values. This completes the description of
〈C,R〉.

Notation. We introduce some terminology that will be used in the remainder of this paper. We
refer to the committed value σ as the preamble secret. A sloti of the commitment scheme consists
of the i’th Challenge message from R and the corresponding Response message from C. Thus, in
the above protocol, there are N slots.

4 Black-box Zero Knowledge

In this section we will describe a ω(1) round zero-knowledge protocol that can be proven secure
using a black-box simulator. We start with a description of the graph hamiltonicity proof protocol,
and then build our protocol atop this protocol.

4.1 Graph Hamiltonicity Zero-knowledge Proof

As a starting point, we describe the the Hamiltonicity proof system. In the simplest setting, the
prover proves the existence of a Hamiltonian cycle in graph. The description of the protocol can
be found in figure 1.

Properties. The protocol is zero-knowledge when a single instance is run, and thus witness
indistinguishable. Witness indistinguishability holds even when the protocol is run in parallel. In
addition, the above protocol satisfies the notion of special simulation, where the simulator can
trivially simulate the proof if it is aware of the verifier’s challenge. This, similar to witness indis-
tinguishability, holds even when the protocol is run in parallel.

Roughly, the idea to simulate the protocol when we know the challenge prior to the first message
sent by the prover, is the following:

– If the challenge bit is 0, then commit to adjacency matrix of the permuted graph π(G).

– On the other hand, if the challenge bit is 1 commit to the complete graph Kn.

It is easy to see that the conditions for the corresponding challenge is met by the verifier. It also
follows that the simulation holds when the protocol runs in parallel.

4.2 Our Protocol

The high level idea for our protocol is that the verifier commits to its challenge via the multi-round
extractable commitment described in section 3.3, and reveals the challenge in place of the second
round of the Hamiltonicity proof system. Since we are constructing a proof system where the prover
has unbounded computational power, we require the commitment by the verifier to be statistically
hiding so that an unbounded adversarial prover is not able to guess the challenge. We refer to the
multi-round extractable commitment as the preamble.

In the preamble, the challenge committed to by the verifier is retrieved by rewinding the verifier
in each of the slots. As long as the rewinding is successful in one of the slots, the committed challenge

16

Hamiltonicity proof system

Common Input: A directed graph G = (V,E) with n
def
= |V |.

Auxiliary Input for Prover: a directed Hamiltonian, C ⊂ E, in G.

1. Select a random permutation π, of the vertices V and using a statistically binding commitment
scheme commit to the entries of the adjacency matrix of the permuted graph.

2. The verifier uniformly selects a bit σ and sends it to the prover.

3. The prover sends a message based on the value of σ it receives:

– if σ = 0, the prover sends π along with the decommitment to all the values it had
committed to earlier.

– if σ = 1, the prover decommits only to entries in the permuted adjacency matrix
(π(u), π(v)) with (u, v) ∈ C.

4. The verifier first checks if all the values decommitted to by the prover are valid (with respect
to their corresponding commitment).

– if σ = 0, the verifier checks if the revealed graph is the original graph permuted by π.

– if σ = 1, the verifier checks if all the revealed values on the matrix is 1 and form a cycle.

The verifier accepts if and only if both the initial checks, and the checks corresponding to the
challenge verify .

Figure 1: Hamiltonicity proof system

can be extracted. But in the presence of the blockchain (abstracted by the Gledger functionality)
this becomes difficult. Consider a verifier that sends the challenge received by the prover in a given
slot to Gledger, and waits for the state to expand to include the challenge before responding to the
challenge. It then checks in the state if there is another challenge from the prover for the same
slot. If this is the case, it knows that it has been rewound, and will abort the protocol. Thus, in
the simulated setting, the verifier will abort with a disproportionate probability in comparison to
the real execution.

The trivial solution of not relaying messages from the verifier to Gledger on the look ahead threads
does not work because the verifier can refuse to respond unless the state expands.

Thus, to overcome this issue, we design a protocol in the blockchain-hybrid model, where the
protocol requires all parties to access Gledger in order to participate in the protocol. In our protocol,
we just require that during the preamble, the local state of each party increases by at most k. But
since parties may have different views of thus state, we must be careful when we claim the state
size increase for other parties. But since Gledger guarantees that |stateP − stateV| ≤ windowSize, we
are guaranteed that if the size of the state of one party increases by k, the size of the state of any
other party can increase by at most windowSize +k (with maximum when both parties point to the
head of the state initially).

If we set the number of rounds of the preamble to be m > k + windowSize, we are guaranteed
to have at least m − (k + windowSize) slots where the state does not expand during the slot. For

17

simplicity we assume k to be a constant, but our protocol can handle arbitrary k by scaling the
number of rounds accordingly. The high level idea then is to just rewind in the slots where the state
has not expanded, and thus the verifier does not expect the state to expand before it responds, and
thus messages to or from Gledger can be kept from the verifier on the look ahead threads. Of course
the exact number of rounds would depend on the exact simulator strategy. In our protocol, the
number of rounds in the preamble is set to be m = ω(1). We should point out that k > windowSize
to avoid trivial aborts in an honest execution of the protocol since otherwise the parties may start
off with states that may then be k behind the head of the state, and in one computation step
catches up to the head, thereby increasing local state size by k, and thus causing an abort. The
complete protocol is presented in Figure 2.

Theorem 6. The protocol BCA-ZK is a Zero-Knowledge Proof with black-box simulation in the
Gledger-hybrid model.

Completeness. The parameter k for protocol needs to be selected appropriately such that
honest provers do not “time-out” prior to completion of the first phase (PRS preamble). Once
this is ensured, the completeness of the protocol follows immediately from the completeness of the
underlying Hamiltonicity proof system. We set k to be a constant satisfying this property.

A honest prover sends random challenges in the first phase and performs appropriate checks.
In the second phase, it uses its witness to the statement to answer the verifier’s challenge.

Soundness. On a high level, soundness follows from the statistical hiding property of the commit-
ment scheme and the soundness of the underlying Hamiltonicity proof system. Because of statistical
hiding, other than with negligible probability, even an unbounded prover cannot break the hiding
of the commitment scheme. The values revealed by the verifier are randomly chosen strings, inde-
pendent of the the challenge string. Thus, other than with negligible probability, no information
about the challenge string is revealed by the end of Phase I. The rest of the protocol then relies
on the soundness of the Hamiltonicity proof system, which simply requires that the challenge from
the verifier is random and unknown to the prover.

For the reduction, we use prover P, breaking the soundness of our protocol, to construct a
prover PHC that breaks the soundness of the underlying Hamiltonicity proof system.
PHC behaves as follows:
– Commit to random challenge in the initial commitment for σ and likewise commits to 2mn

random strings and send to P. From the statistical hiding property, P’s view is indistinguish-
able when PHC commits to random strings.

– Respond to P’s challenges honestly.

– Forward P’s first message in Phase II to the external challenge verifier.

– Let the challenge verifier respond with be σ̃. We break the binding property of the the
commitment scheme to find decommitments that are consistent with σ̃. This applies to the
initial commitment and the unopened commitments in Phase I.

– Send these decommitments to the prover.

– When the prover sends the third message in Phase II, relay it to the external challenge verifier.
If P breaks soundness, so does PHC.

Thus with only negligible probability difference, PHC breaks the soundness of the Hamiltonincity
proof system.

18

Protocol BCA-ZK

Common Input: An instance x of a language L with witness relation RL, the security parameter
n, the time out parameter k and the round parameter m := m(n).

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL, size of local state from the
ledger iP := |stateP|.

Auxiliary Input for Verifier: size of local state from the ledger iV := |stateV|.

Phase I: Prior to each message sent in this phase, the respective party checks if the size of the
state is such that |stateP| < iP + k (correspondingly |stateV| < iV + k for the verifier). If not, the
party aborts.

1. Prover uniformly select a first message for a two round statistically hiding commitment scheme
and send it to the verifier.

2. Verifier uniformly selects σ ∈ {0, 1}n, and mn pairs of n-bit strings (σ0
`,p, σ

1
`,p) for ` ∈ [n], p ∈

[m] such that ∀`, p : σ0
`,p⊕σ1

`,p = σ. It commits to all 2mn+1 selected strings using the statisti-

cally hiding commitment scheme. The commitments are denoted by α, {αb`,p}b∈{0,1},`∈[n],p∈[m].

3. For p = 1 to m:

(a) Prover sends an n-bit challenge string rp = r1,p, . . . , rn,p to the verifier.

(b) Verifier decommits α
r1,p
1,p , . . . , α

rn,p
n,p to σ

r1,p
1,p , . . . , σ

rn,p
n,p .

4. The prover proceeds with the execution if and only if all the decommitments send by the
verifier are valid.

Phase II: The prover and verifier engage in n parallel executions of the Hamiltonicity protocol as
described below:

1. The prover sends the first message of the Hamiltonicity proof system.

2. The verifier decommits α to σ. And also reveals all mn commitments not decommitted to in
the earlier phase.

3. The prover checks if decommitted values σ, {σb`,p}b∈{0,1},`∈[n],p∈[m] are valid decommitments.

Additionally, check if ∀`, p : σ0
`,p ⊕ σ1

`,p = σ. If any of the checks fail, abort. Else, send the
third message of the Hamiltonicity proof system.

4. Verifier checks if all conditions of the Hamiltonicity proof system are met. It accepts if and
only if this is the case.

Figure 2: Protocol for zero-knowledge proof in the blockchain aware setting.

We note that we need statistical hiding in Phase I because an all powerful prover should not
be able to guess the challenge bits. And we require statistical binding in the Hamiltonicity proof
in Phase II because we don’t want the prover to be able to break binding property to change the
adjacency matrix that it committed to.

Zero-knowledge. We need to construct a simulator Sim such that the following ensembles are

19

computationally indistinguishable in the Gledger-hybrid model{
viewV [P(x,w)↔ V(x, z)]

}
x∈L,w∈RL(x),z∈{0,1}∗

,
{

Sim(x, z)
}
x∈L,w∈RL(x),z∈{0,1}∗

.

We now describe the simulator in Figure 3.

Simulator Sim

1. Send the first message of the two round statistically hiding commitment scheme.

2. At any point in the simulation, if on the main thread the size of the state of either the prover
or verifier increases by k, then quit and output the view of the verifier. Unless otherwise
specified, the simulator relays messages between the Gledger and the verifier.

3. For each p ∈ [m],

– Select a random challenge string for the main thread, and n− 1 challenge strings for the
look-ahead threads. All the threads are run in parallel.

– On the look ahead thread, no messages to or from the Gledger are relayed.

– A slot on the look ahead thread terminates if the slot completes successfully, or if the size
of the local state increased after the threads were created (or if the adversary aborts).

Note that there might be look-ahead threads from earlier slots running in parallel while the
main thread may have progressed further.

4. If in each of the look-ahead threads, the slot is terminated prior to completion (all m · (n− 1)
of them), output ⊥rewind and exit.

5. Since the abort condition does not hold, other than with negligible probability, the challenge
string has been obtained. Use the challenge string to simulate Phase II of the protocol.

Figure 3: Simulator for zero-knowledge proof in Gledger-hybrid model.

In order to prove zero-knowledge, we consider an intermediate simulator Sim1 that receives a
witness w to the statement x. Sim1 on input x,w, z proceeds identically to the honest execution
except that in Phase I, before the challenge message from the prover P in each slot, we sample n−1
other challenge messages and fork look ahead threads to be run in parallel. Thus, there are a total
of m · (n− 1) look ahead threads.

The main and look ahead threads are run in parallel. They are executed almost identically but
for the following difference: In the look ahead threads, none of the queries made to the Gledger are
forwarded to the Gledger. As described in section 2, the READ queries to Gledger are simulated within
each thread without having to query Gledger. In addition, the look ahead threads are run until either
a block is created, or the slot completes, whichever happens first (the adversary may also abort).

At the completion of Phase I, if none of the slots on the look ahead thread completed before being
terminated, output ⊥rewind. (i.e. for none of the slots look ahead thread completed successfully
with a response from the verifier.)

We note that to optimize the simulator, we can stop creation of look ahead threads if at any
point a look ahead thread successfully completes its slot. But for simplicity of exposition, we do

20

not do so here.
Now, we claim the following:

Claim 1. The following are statistically indistinguishable in the Gledger-hybrid model:{
viewV [P(x,w)↔ V(x, z)]

}
x∈L,w∈RL(x),z∈{0,1}∗

,
{

Sim1(x,w, z)
}
x∈L,w∈RL(x),z∈{0,1}∗

Proof. Since the main thread remains unchanged and the only difference is the creation of look
ahead threads, all we need to argue is that ⊥rewind is output with negligible probability. To this
end, we make the following additional claim.

Claim 2. The probability with which Sim1 outputs ⊥rewind is negligible.

Proof. We prove this by contradiction. Assume that the probability is noticeable. We note that
Sim1 outputs ⊥rewind only if Phase I completes, and in all the look ahead threads, the simulator
is forced to terminate it before it completes (i.e. if the size of the state increased before the look
ahead threads were completed). It should be noted that since the adversary (with restrictions)
controls when the state expands, it could potentially attempt to cause the state to increase at
different rates in the look ahead thread. This makes no difference to the analysis since this can
just be thought of as the adversary waiting for the state to expand before completion of the slot.
For ease of notation, we shall call a slot good if the state did not expand after the slot started,
and before its completion. This can refer to either a slot in the main thread, or in the look ahead
thread. Thus, by this notation, Sim1 outputs ⊥rewind only if the preamble completes and none of
the slots on the look ahead threads are good.

To prove this, we shall consider yet another intermediate simulator Sim′1. It is identical to
Sim1, but instead of picking the main thread challenge, and then the look-ahead challenges, pick n
random strings and assign one of them to be the main thread challenge, and the remaining strings
will be challenges on the look ahead thread. (The only difference is that in this case is that the
main challenge is decided randomly from a set of challenges, as opposed to fixing a main thread and
then choosing the look ahead threads.) Hence the probability that Sim′1 outputs ⊥rewind is identical
to the probability that Sim1 outputs ⊥rewind.

To recall, Sim′1 outputs ⊥rewind if both the following conditions hold:

– k′ = (k+windowSize) blocks are not mined prior to completion of Phase I on the main thread.
This ensures that at least m− k′ slots on the main thread are good.

– For each p ∈ [m], every look ahead slot is not good.

Now let us look at the probability with which this happens. If the Phase I does not abort, then
we know that there are at least m−k slots on the main thread T that are good. And for the failure
condition to be met, all the look-ahead slots at the same position terminate before completion (as
the state expanded before it completed). Thus given the view prior to the slot, the corresponding
good slot was chosen with probability 1/n. We can repeat this analysis for each such good slot
on the main thread. Given that we choose the random string to be the main thread challenge
independently for each p ∈ [m], for any choice of m strings of length n each we get:

Pr[Sim′1 outputs ⊥rewind] ≤ 1

nm−k
≤ nk · negl(n) (1)

when m = ω(1).
Thus, from our assumption that k is a constant, we get the probability that Sim′1 outputs ⊥rewind

to be negligible. This is also gives us the requirement that the number of rounds in the protocol
must be ω(1).

21

This gives us a contradiction to our assumption that the probability with which Sim1 outputs
⊥rewind is non-negligible.

Now in the last step, the only change from Sim1 is that we use the special simulation property
of Hamiltonicity proof system. Now this becomes identical to our described simulator. View
indistinguishability follows trivially as a consequence. Thus we get the following claim.

Claim 3. The following are computationally indistinguishable in the Gledger-hybrid model:{
Sim1(x,w, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

and
{

Sim(x,w, z)
}
x∈L,w∈RL(x),z∈{0,1}∗

5 Concurrent Self Composable Secure Computation

In this section, we will construct a two-party protocol that is secure under concurrent self compo-
sition. We follow the line of works [CGJ15, GGJ13, GJO10] that rely on realizing an extractable
commitment scheme that remains extractable even when there are multiple concurrent copies of
this scheme in execution. Thus we construct our protocol in a two-step process. First, we describe
a modified version of the multi-round extractable commitment preamble in the blockchain-hybrid
model and show that we can extract from each session when multiple sessions are executed con-
currently. Next, we plug our constructed concurrently extractable commitments into the compilers
constructed in [CGJ15, GGJ13, GJO10] to achieve a concurrently secure two-party computation
protocol.

5.1 Concurrently Extractable Commitment

In this section we present our construction of the concurrently extractable commitment scheme in
the blockchain-hybrid model. We will refer to this as the modified PRS preamble. The idea for the
modified PRS preamble is quite simple. Prior to starting the preamble, the party needs to post
the first message to Gledger. It is guaranteed that it will appear in the view of every party within
the next ∆ := 4 · windowSize blocks. Once the local state increase by ∆ blocks, it sends the same
message to the receiver. Posting to Gledger gives the party an “expiry period” of k-blocks after the
∆ wait i.e., all slots of the preamble must be completed before the size of the state increases by
a total of ∆ + k. As in the case of zero-knowledge, if the size of the state of a party increases by
∆ + k, for any other party the size of the state can have increased by at most ∆ + k+ windowSize,
which is a constant when k is a constant. This needs to be taken into account when choosing the
parameters ` and k. The formal description of the protocol is given below.

Protocol 〈C,R〉BCA

Common Input: The security parameter n, the time-out parameter k, and the round pa-
rameter 2 · ` := `(n).

Input to the Committer: the value σ to be committed, size of local state from the ledger
iC := |stateC |.

Input to the Receiver: size of local state from the ledger iR := |stateR|.

Commitment:

22

1. Committer uniformly selects σ ∈ {0, 1}n, and 2 · ` · n pairs of n-bit strings (σ0
`,p, σ

1
`,p)

for ` ∈ [n], p ∈ [2 · `] such that ∀`, p : σ0
`,p ⊕ σ1

`,p = σ. It generate commitments to all
2(2 · `) · n + 1 selected strings using the statistically binding commitment scheme. The
commitments are denoted by α, {αb`,p}b∈{0,1},`∈[n],p∈[2·`]. Send a SUBMIT query of these
commitments to Gledger. By our assumption, these will be guaranteed to appear in every
party’s state (at the same position) when |stateC | = iC + ∆. Let it appear in index i of
the state.

2. The committer sends to receiver the commitments along with the index i of the state
that it appears in. The receiver verifies if the commitments were indeed in the designated
index of the state.

3. Prior to each message subsequently sent, the respective party checks if the size of the
state is such that |stateR| < iR + k + ∆ (correspondingly |stateC | < iC + k + ∆ for the
committer). If not, the party aborts.

For p = 1 to m:

(a) Receiver sends an n-bit challenge string rp = r1,p, . . . , r1n,p to the committer.

(b) Committer decommits α
r1,p
1,p , . . . , α

rn,p
n,p to σ

r1,p
1,p , . . . , σ

rn,p
n,p .

5.2 Simulation-Extraction Strategy

In this section, we will describe a simulation-extraction strategy. The goal of this strategy is to
extract the value committed by an adversary in every session of multiple concurrent executions of
the modified preamble described above. We present a new concurrent strategy where our starting
point is the simulator described in [GLP+15]. The relevant description has been reproduced here.

The scheduling of messages is controlled by the adversary A∗, and when A∗ sends the p-th
message of a session s, it immediately receives the next message of s. The only exception to this
are the special messages relevant to the Gledger. In this case, A∗ sends a message to Gledger, and can
proceed with the other parts of the execution. Once Gledger sends a message to A∗, A∗ immediately
receives it. This is not universal across all queries to Gledger since a READquery is immediately
responded to by Gledger, and needs to be handled accordingly.

The state of A∗ at any given point consists of its view up to that point. The starting state of
A∗ is denoted by sta0, which is its state before it receives its first message. In addition, LIVE(sta)
denotes the set of live sessions when the execution is at the state sta. When the preamble starts, A∗
sends a START along with its commitment, and on successful completion of the preamble expects
a message of the form (END, α) from the simulator. As described in [GLP+15], we will require this
to be the value A∗ committed in preamble.

The simulator Sim receives as auxiliary input a string z ∈ {0, 1}∗, and the security parameter
n. It incorporates A∗ as a black-box, and let T = T (n) be the maximum number of sessions (of
the modified preambles) that are started by A∗. Unlike the setting described in [GLP+15], the
external messages refer to those from Gledger. We let the execution on look ahead threads proceed
when the adversary has sent a message to Gledger without forwarding the query, and only abort the
thread when the size of the state increases. Recall, from the description of Gledger, the adversary
also receives SUBMIT messages every time an honest party submits something to Gledger. These
are passed on to A∗ on both the main and look ahead threads. This stems from the fact that
these can be replayed in each thread of execution. On the look ahead thread, when A∗ makes

23

read queries, we follow the strategy outlined in the model in section 2. These READ queries are
answered local to a thread without having to pass on queries to Gledger as follows: The adversary,
and thus the simulator, is aware of the transactions/data sent by honest parties since Gledger sends
them to the adversary as and when they arrive. These messages can be replayed within threads.
For the transactions/data sent by the adversary, the simulator maintains a local buffer for each
thread, collecting but not forwarding these queries. When the look ahead threads make a READ
query, combine the state from the start of the thread (since we haven’t aborted the thread, we’re
guaranteed that the state hasn’t expanded), the honest SUBMIT queries along with the SUBMIT
queries sent by the adversary only local to that thread. It is crucial to note that we do not
make any changes to state.

Sim starts by setting (1n, z) on A∗’s input tape, and a sufficiently long uniform string on its
random tape. Sim then starts the recurse procedure:

(sta, T)← extract(2 · ` · T, sta0, ∅, 1, ∅, 0)

The terminology used in the recurse procedure are:

– t is the block length (of a block of recursion), and the base case will occur when t = 1.

– sta refers to the starting state.

– T refers to the table containing solutions.

– f is used to denote if the execution lies on the main thread. f = 1 if and only if the block lies
on the main thread of execution.

– aux refers to auxiliary tables that are used in special cases (see [GLP+15] for details).

– id refers to the identity of a block of execution used to uniquely identify it.

Throughout its execution, messages of recurse are forwarded back and forth between Gledger and
A∗. The final output of Sim is the first output of recurse, namely sta which is also known as the
main thread of execution.

Procedure recurse(t, sta, T , f, aux, id)

1. If t = 1, repeat the following keeping in mind that if at any point, a session “expires”
(state size has increased by k + ∆ since session information posted to Gledger), abort the
session:

(a) If the next message is START, check if relevant information is in the state and start
a new session s.

– send r←$ {0, 1}n as the challenge of the first slot of s.

– add entry (s : 1, r,) to T .

(b) If the next message is the slot-i challenge of an existing session s.

– send r←$ {0, 1}n as the slot-i challenge of s.

– add entry (s : i, r,) to T .

(c) If the next message is the slot-i response, say γ, of an existing session s.

– If γ is a valid message.

24

– update entry (s : i, r,) to (s : i, r, γ).

– if i = 2 · `, i.e., it is the last slot, send (END, extract(s, id, T , aux)).

– Otherwise, if γ =⊥, abort session s and add (s :⊥,⊥,⊥) to T .

– Update sta to be the current state of A∗

– return (sta, T).

(d) If the next message is a message from A∗ to the Gledger
– If READ message, drop the message, simulate the READ response (as described)

and continue.

– If f = 0, i.e., it is a look ahead block, then drop the message (stop it from
reaching Gledger) and continue.

– If f = 1, i.e., it is the main thread, then forward the message to Gledger, and
continue.

(e) If the next message is an expanded state from the Gledger to A∗

– If f = 0, i.e., it is a look ahead block, then return (sta, T).

– If f = 1, i.e., it is the main thread, do the following:

– Update sta to be the current state of A∗

– For every live session s ∈ LIVE(sta), do the following:

– ×s,id = true

– for every block id′ that contain the block id, set ×s,id′ = true.

(f) If other messages from Gledger, pass to A∗ and continue.

2. If t > 1,

Rewind the first half twice

(a) (sta1, T1)← recurse(t/2, sta, T , 0, aux, id ◦ 1) [look-ahead block C ′]

(b) Let aux2 := (aux, T1 \ T),

(sta2, T2)← recurse(t/2, sta, T , f, aux2, id ◦ 2) [main block C]

Rewind the second half twice

(c) Let T ∗ := T1 ∪ T2,

(sta3, T3)← recurse(t/2, sta2, T ∗, 0, aux, id ◦ 3) [look-ahead block D′]

(d) Let aux2 := (aux, T1 \ T),

(sta4, T4)← recurse(t/2, sta2, T ∗, f, aux4, id ◦ 4) [main block D]

(e) return (sta4, T3 ∪ T4).

Procedure extract(s, id, T , aux)

1. Attempt to extract a value for s from T .

2. If extraction fails, consider every block id1 for which ×s,id1 = true.

25

– Let id′1 be the sibling of id1, with input/output tables Tin, Tout respectively.

– Attempt to extract from auxid′1 := Tout \ Tin; (included in aux).

3. If all attempts fail, abort the simulation and return ExtractFail.

Otherwise return the extracted value.

Although we describe the simulator in terms of a recursive rewinding strategy, to ensure that
the adversary does not gain any side channel leakage in the form of increase of state size for the
state in Gledger, all threads are run in parallel. The total number of threads is given by the recursion
h(2 · ` ·T (n)) ≤ 4 ·h(` ·T (n)) which gives us h(2 · ` ·T (n)) ≤ (` ·T (n))2poly(n) threads. Thus if the
total number of sessions and slots are polynomial, we have only polynomial many threads. And by
our assumption of the simulator having access to arbitrary polynomial parallelism, we can run this
threads in parallel.

Claim 4. Sim succeeds other than with negligible probability.

To prove this claim, we shall rely on the following robust extraction lemma. Informally, the
lemma states that there exists a simulator that can extract the commitment made by the adversary
without having to rewind an external protocol Π. The lemma states this by describing an online
extractor E which can run in super-polynomial time to extract the committed value. We refer the
reader to [GLP+15] for further details.

Lemma 1 (Robust Extraction Lemma [GLP+15]). There exists an interactive Turing Machine Sim
(“robust simulator”) such that for every A∗, for every Π = 〈B,A〉, there exists a party E (“online
extractor”), such that for every n ∈ N, for every x ∈ domB(n), and every z ∈ {0, 1}∗, the following
conditions hold:

1. Validity constraint. For every output ν of REALA
∗
E,Π(n, x, z), for every PRS preamble s

(appearing in ν) with transcript τs, if there exists a unique value v ∈ {0, 1}n and randomness
ρ such that openPRS(τs, v, ρ) = 1, then

αs = v,

where αs is the value E sends at the completion of preamble s.

2. Statistical simulation. If k = k(n) and ` = `(n) denote the round complexities of Π and the
PRS preamble respectively, then the statistical distance between distributions REALA

∗
E,Π(n, x, z)

and outs
[
B(1n, x)↔ SimA

∗
(1n, z)

]
is given by:

∆(n) ≤ 1

2Ω(`−k·logT (n))
,

where T (n) is the maximum number of total PRS preambles between A∗ and E. Further the
running time of Sim is poly(n) · T (n)2.

The reason the lemma doesn’t directly apply to our setting is that there needs to be a “gap”
between the number of slots of the preamble and the number of external messages. For instance,
if the number of external messages are constant and the number of slots super-constant, we get a

26

simulator that fails with negligible probability. Unfortunately in our setting, we can loosely upper
bound the number of external state expansion messages by T · k, which is no longer a constant.

To see why this our previous point about simulating the buffer is important important, each
READ query and its corresponding response from Gledger will count as an external message by our
definition. Since there is no prior bound on the number of such queries the adversary can make,
we cannot hope to use the approaches listed above directly.

The proof of the above claim follows an argument of contradiction. Assume there is an adversary
A for which the above simulator Sim fails, we shall construct using A and Sim, a new adversary Ã
such that there are only a constant number of external messages, but the simulator S̃im described
in [GLP+15] fails with noticeable probability, thus violating the robust extraction lemma.

As a matter of technicality, and for ease of proof, the adversaries A and Ã participate in
slightly different preambles. A participates in preambles that have 2 · ` slots, while Ã participates
in preambles that have only ` slots. Thus, care must be taken when we Ã forwards messages from
A.

Before we describe the constructed adversary, Ã, we introduce some notation. Let stai be the
state of the adversary A on the main thread, when the STARTi message is sent on this thread. We
partitions the set LIVE(stai) into two sets HALF(stai) and HALFc(stai) = LIVE(stai) \ HALF(stai),
where HALF(stai) is the set of all preambles that have completed at least half (`) of their slots (but
not all of them since they’re in LIVE(stai)). Intuitively, these preambles for these sessions already
contain enough information on the tables generated by Sim, and thus there is no need to forward
them to S̃im.

Recall, in the preamble, the first message that is sent along with START, is the commitment to v

and 2 ·` ·n pairs
(
v0
i1,i2

, v1
i1,i2

)
for , i1 ∈ [2 ·`], i2 ∈ [n] such that ∀i1 ∈ [2 ·`], i2 ∈ [n] v0

i1,i2
⊕v1

i1,i2
= v.

We denote this message for a session u to be ExtComu. Additionally, we denote by ExtComu[p : p+i3]
for p+ i3 ≤ 2 · `, the (truncated) commitment consisting of the commitment to v as before and of

(i3 + 1) · n pairs
(
v0
i1,i2

, v1
i1,i2

)
for i1 ∈ [p, p+ i3] , i2 ∈ [n]. Thus ExtComu = ExtComu[1 : 2 · `].

Consider session j ∈ HALFc(stai). Let pij be the slot of session j for which A received a

challenge, but did not send a response. i.e. pij − 1 slots were completed in session j. Given that

j ∈ HALFc(stai), we have 1 ≤ pij ≤ `. We will use ExtComu[pij + 1 : pij + `] as the preamble

commitment for Ã. This leaves slots pij + ` + 1 to 2 · ` when pij < ` that need to be dealt with
appropriately.

Given the notation and the idea described, we construct the adversary Ã as follows:

adversary Ã(1n, z)

1. Guess the slot î for which the simulator Sim fails to extract from A.

2. Initialize Sim with random coins and auxiliary input z. Sim will in turn initialize A to
use in a black-box manner.

3. Prior to Ã sending out any messages, it executes the interaction between A and Sim up
to the point that A sends STARTî on the main thread. It does so by relaying messages
between Sim and A in each parallel execution till A outputs STARTî. During the execu-

tion of the interaction between Sim and A, if Sim send messages to the Gledger, Ã sends

this message too. When Ã receives a state expansion message from the Gledger, this is
forwarded to Sim.

27

4. On receiving STARTî and the corresponding ExtComî,

output STARTî and ExtComî[1 : `]

forward response received to A.

5. For all other messages, the behavior is defined as follows:

– If the next message from A is a STARTj message for session j,

output STARTj and ExtComj [1 : `]

forward response received to A.

– If the next message from A is the slot-p response, say γ, of session j.

– If j ∈ HALF(stâi) #sessions with at least half the slots completed

– if p < 2 · `
respond internally with the challenge for slot p+ 1.

– if p = 2 · ` #last slot of the main preamble
use Sim’s extract procedure to extract the value vj committed in session

j.
respond with (ENDj , vj)

– If j ∈ HALFc(stâi) #sessions with at least half the slots remaining

– if p = p̂ij ,
output STARTj and ExtComj [p+ 1 : p+ `].
forward response received to A.

– if p̂ij < p < p̂ij + `,
output γ.
forward response received to A.

– if p = p̂ij + `, #last slot of modified preamble

output γ.

on receiving (ENDj , ṽj), store ṽj and respond internally with the challenge
for slot p+ 1.

– if p̂ij + ` < p < 2 · `,
respond internally with the challenge for slot p.

– if p = 2 · `, #last slot on main preamble
use the stored value ṽj and respond with (ENDj , ṽj).

– If j /∈ LIVE(stâi) #sessions started after (and including) session î

– if p < `,
output γ.
forward response received to A.

– if p = `, #last slot of modified preamble

output γ.

on receiving (ENDj , ṽj), store ṽj and respond internally with the challenge
for slot p+ 1.

– if ` < p < 2 · `,
respond internally with the challenge for slot i+ 1.

28

– if p = 2 · `, #last slot on main preamble
use the stored value ṽj and respond with (ENDj , ṽj).

– If the next message from A is a message to Gledger, output this query.

– On receiving state expansion message from the Gledger, forward to A.

6. Quit on receiving response to the last slot in session î.

We would like to make a minor technical note at this point. While we stated that we wanted an
adversary Ã that receives only a constant number of external messages (state expansion messages
from Gledger), prior to Ã sending any messages for the session, it waits for some external messages.
Unfortunately, these may not be a constant. But, this makes little difference as the “core” of the
transcript still contain only a constant number of external messages, and rewinding at these points
do not affect the external messages sent early on.

5.3 The Protocol

In this section, we describe our concurrent secure computation protocol Π in the Gledger-hybrid
model for a general functionality F . Our protocol is, in fact, the same as the one presented in
[GJO10, GGJ13, CGJ15], except that we use the concurrently extractable commitment from Section
5.1. Indeed, the core ingredient of the compiler in [GJO10] (which is also used in [GGJ13, CGJ15])
is a concurrently extractable commitment, and in particular, it follows from these works that if
there exists a concurrent simulator for the extractable commitment, then the resultant compiled
protocol securely evaluates the function F .

For completeness, we recall the protocol here. The proof of security for our case follows in
essentially an identical fashion to [GJO10] with the main difference being that our simulator only
performs a single ideal world query per session (while the simulator performs multiple ideal world
queries per session in their work). We discuss other minor differences in Section 5.3.2.

5.3.1 Building Blocks

Statistical Binding String Commitments. We will use a (2-round) statistically binding string
commitment scheme, e.g., a parallel version of Naor’s bit commitment scheme [Nao91] based on
one-way functions. For simplicity of exposition, however, in the presentation of our results, we will
use a non-interactive perfectly binding string commitment. Let com(·) denote the commitment
function of the string commitment scheme.

Statistical Witness Indistinguishable Arguments. We shall use a statistically witness in-
distinguishable (SWI) argument 〈Pswi, Vswi〉 for proving membership in any NP language with
perfect completeness and negligible soundness error. Such a scheme can be constructed by using
ω(log k) copies of Blum’s Hamiltonicity protocol [Blu87] in parallel, with the modification that the
prover’s commitments in the Hamiltonicity protocol are made using a statistically hiding commit-
ment scheme [NOVY98, HHK+05] .

Semi-Honest Two Party Computation. We will also use a semi-honest two party computation
protocol 〈P sh

1 , P sh
2 〉 that emulates the ideal functionality F in the stand-alone setting. The existence

of such a protocol 〈P sh
1 , P sh

2 〉 follows from [Yao86, GMW87, Kil88].

Concurrent Non-Malleable Zero Knowledge Argument. Concurrent non-malleable zero
knowledge (CNMZK) considers the setting where a man-in-the-middle adversary is interacting

29

with several honest provers and honest verifiers in a concurrent fashion: in the “left” interactions,
the adversary acts as verifier while interacting with honest provers; in the “right” interactions, the
adversary tries to prove some statements to honest verifiers. The goal is to ensure that such an
adversary cannot take “help” from the left interactions in order to succeed in the right interactions.
This intuition can be formalized by requiring the existence of a machine called the simulator-
extractor that generates the view of the man-in-the-middle adversary and additionally also outputs
a witness from the adversary for each “valid” proof given to the verifiers in the right sessions.

Barak, Prabhakaran and Sahai [BPS06] gave the first construction of a concurrent non-malleable
zero knowledge (CNMZK) argument for every language in NP with perfect completeness and
negligible soundness error. In our construction, we will use a specific CNMZK protocol, denoted
〈P, V 〉, based on the CNMZK protocol of Barak et al. [BPS06] to guarantee non-malleability.
Specifically, we will make the following two changes to Barak et al’s protocol: (a) Instead of using
an ω(log n)-round extractable commitment scheme [PRS02], we will use the N -round extractable
commitment scheme 〈C,R〉 (described in Section 3.3). (b) Further, we require that the non-
malleable commitment scheme being used in the protocol be public-coin w.r.t. receiver3. We now
describe the protocol 〈P, V 〉.

Let P and V denote the prover and the verifier respectively. Let L be an NP language with
a witness relation R. The common input to P and V is a statement x ∈ L. P additionally has
a private input w (witness for x). Protocol 〈P, V 〉 consists of two main phases: (a) the preamble
phase, where the verifier commits to a random secret (say) σ via an execution of 〈C,R〉 with the
prover, and (b) the post-preamble phase, where the prover proves an NP statement. In more detail,
protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in execution of 〈C,R〉 (Section 3.3) where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉 that was exe-
cuted in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to x (i.e., R(x,w) = 1, where
w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

3The original NMZK construction only required a public-coin extraction phase inside the non-malleable com-
mitment scheme. We, however, require that the entire commitment protocol be public-coin. We note that the
non-malleable commitment protocol of [DDN91] only consists of standard perfectly binding commitments and zero
knowledge proof of knowledge. Therefore, we can easily instantiate the DDN construction with public-coin versions
of these primitives such that the resultant protocol is public-coin.

30

Modified Extractable Commitment Scheme 〈C ′, R′〉 Due to technical reasons, in our secure
computation protocol, we will also use a minor variant, denoted 〈C ′, R′〉BCA, of the extractable
commitment scheme presented in 5.1. Protocol 〈C ′, R′〉BCA is the same as 〈C,R〉BCA, except that
for a given receiver challenge string, the committer does not “open” the commitments, but instead
simply reveals the appropriate committed values (without revealing the randomness used to create
the corresponding commitments). More specifically, in protocol 〈C ′, R′〉BCA, on receiving a challenge
string vj = v1,j , . . . , v`,j from the receiver, the committer uses the following strategy: for every
i ∈ [`], if vi,j = 0, C ′ sends α0

i,j , otherwise it sends α1
i,j to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉BCA in our main construction, we will require the committer C ′ to prove

the “correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that the
commitments that it sent in the first step are “well-formed”.

We remark that the extraction proof for the simulation-extraction procedure also holds for the
〈C ′, R′〉BCA commitment scheme.

5.3.2 Protocol Description

Notation. Let com(·) denote the commitment function of a non-interactive perfectly binding
commitment scheme. Let 〈C,R〉BCA denote the N -round extractable commitment scheme and
〈C ′, R′〉BCA be its modified version as described above. For the description, we drop the subscript
and refer to them as 〈C,R〉 and 〈C ′, R′〉 respectively. Let 〈P, V 〉 denote the modified version of
the CNMZK argument of Barak et al. [BPS06]. Further, let 〈Pswi, Vswi〉 denote a SWI argument
and let 〈P sh

1 , P sh
2 〉 denote a semi-honest two party computation protocol 〈P sh

1 , P sh
2 〉 that securely

computes F in the stand-alone setting as per the standard definition of secure computation.
Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security parameter. The

protocol proceeds as follows.

Protocol BCA-CONC

I. Trapdoor Creation Phase.
1. P1 ⇒ P2 : P1 creates a commitment Com1 = com(0) to bit 0 and sends Com1 to P2. P1

and P2 now engage in the execution of 〈P, V 〉 where P1 proves that Com1 is a commitment
to 0.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment Com2 = com(0)
to bit 0 and sends Com2 to P1. P2 and P1 now engage in the execution of 〈P, V 〉 where
P2 proves that Com2 is a commitment to 0.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor”
to be used during the simulation of the protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol 〈C ′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and engages in an execution of

〈C ′, R′〉 (denoted as 〈C ′, R′〉1→2) with P2, where P1 commits to x1‖r1. Next, P1 and
P2 engage in an execution of 〈Pswi, Vswi〉 where P1 proves the following statement to P2:

31

(a) either there exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2 is
valid with respect to the value x̂1‖r̂1, or (b) Com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the
random string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s
input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of
〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since 〈P sh

1 , P sh
2 〉 is

secure only against semi-honest adversaries, we first enforce that the coins of each party are
truly random, and then execute 〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives

a proof using 〈Pswi, Vswi〉 of its honest behavior “so far” in the protocol. We now describe the
steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2.
Similarly, P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and
r′′2 = r2 ⊕ r′2. Now, r′′1 and r′′2 are the random coins that P1 and P2 will use during the
execution of 〈P sh

1 , P sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from
P sh

1 followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain

all the messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2) is
supposed to send a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now engage

in an execution of 〈Pswi, Vswi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 such that (a) the commitment proto-
col 〈C ′, R′〉1→2 is valid with respect to the value x̂1‖r̂1, and (b) β1,j =
P sh

1 (T1,j , x̂1, r̂1 ⊕ r′1)

ii. or, Com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

Proof of Security. Our proof of security follows in almost an identical fashion to [GJO10, GGJ13,
CGJ15]. The main difference is that due to the property of our concurrent extractor (Section 5.2),
our simulator only needs to make one ideal world query per session (as opposed to multiple ideal
world queries). Indeed, this is why we achieve standard concurrent security, while [GJO10, GGJ13,
CGJ15] achieve security in the so-called multiple-ideal-query model.

Our indistinguishability hybrids also follow in the same manner as in [GJO10, GGJ13, CGJ15].
There is one minor difference that we highlight. The hybrids of [GJO10, GGJ13, CGJ15] maintain
a “soundness invariant”, where roughly speaking, it is guaranteed that whenever an honest party
changes its input in any sub-protocol used within the secure computation protocol, the value com-
mitted by the adversary in the non-malleable commitment (inside the CNMZK) does not change,
except with negligible probability. In some hybrids, this property is argued via extraction from the
non-malleable commitment.

In our setting, we have to be careful with such an extraction since a blockchain-active adversary
may try to keep state using Gledger. However, the key point is that for such a soundness argument, the

32

reduction can use a locally initialized Gledger that it controls (and can therefore modify arbitrarily).
This follows from the fact that we do not care about the view of an adversary in such a reduction
to be indistinguishable to a distinguisher that has access to Gledger. In fact, it will trivially be
distinguishable. But since a locally initialized Gledger is indistinguishable to the adversary that is
simply allowed to interact using the given interface (i.e. efficiently simulatable), the adversary’s
behavior does not change. Using this idea, we can perform extraction as in the plain model.

6 Impossibility of Constant Round Black-Box Zero Knowledge

In this section, we prove the impossibility of constant round zero-knowledge protocols w.r.t. black-
box simulation in the blockchain-hybrid model. The starting point for our result is the beauti-
ful work by Barak and Lindell[BL02] who showed that it is impossible to construct (non-trivial)
constant round zero knowledge arguments or proofs with respect to black-box simulation if the
simulator runs in strict polynomial time. At a high level, their impossibility result constructs a
verifier with appropriate probability of abort in a given step such that with noticeable probability
an honest execution will complete, but the simulator “runs out of time” when it attempts to gain
any advantage over an honest prover. While they prove their impossibility result w.r.t. strict poly-
nomial time black-box simulators, we extend their impossibility in our blockchain-hybrid model to
stronger classes of simulators. In addition to simulators which run in strict polynomial time, we
consider two additional classes of simulators: (1) simulators that can run in expected polynomial
time, but have an a priori bounded memory, and hence at any time, can make a fixed polynomial
number of queries to the adversary by running them in parallel; and (2) simulators that can run
in expected polynomial time, but can make an unbounded number of queries to the adversary by
running them in parallel. It is easy to see that the second class is stronger than the first. These
results complement our positive results and demonstrate that our constructed protocols are tight.

For our setting, a universally constant round protocol will be such that the number of rounds
are constant, and there is a constant upper bound on the size that the state can increase by during
an execution of the protocol.

For a constant round protocol, let us first consider the simplest setting where the simulator can
only run for some strict polynomial time. In addition, it can make a fixed number of polynomial
queries in parallel to the adversary by making copies. While the polynomial can be arbitrary, it
is fixed in advance. Thus, the effective number of computation steps for the simulator is a strict
polynomial. We can thus apply directly the result from [BL02] to construct a verifier that prevents
the simulator from gaining any advantage over an honest prover.

Bounded memory simulator. Now we let us consider an expected polynomial time simulator
with bounded memory. This means that at any given time, the simulator may only have a strict
polynomially bounded number of parallel executions. To invoke the result from Barak-Lindell
[BL02], we need to describe a verifier strategy that forces the simulator to always run in strict
polynomial time. Intuitively this means that for the given verifier strategy, any simulator running
in super-polynomial time would leak side-channel information, i.e. the verifier would realize it was
being run in super-polynomial time. We assume that a k-round protocol gives some upper bound r
on how much the size of the state can expand during the execution of the protocol. This is enforced
by the ExtendPolicy function. See appendix A.

We describe below an adversarial verifier strategy that forces the simulator to run in strict
polynomial time:

– At the start of the protocol, the verifier obtains the state stateV from Gledger. Let the size of
the state be iV := |stateV|.

33

– Behave according to underlying honest strategy.

– When the prover sends its last message p`, the verifier sends the signed transcript to Gledger,
and waits for stateV to include the transcript. Let i∗ be the index of the state that the
transcript appear in. It then checks if i∗ − iV is larger than r, if so it outputs a special abort
symbol ⊥.

Note that unlike plain model, due to the presence of Gledger, a verifier’s view is not completely
determined by the messages it receives from the prover.

Given that the interval between state being expanded is some polynomial (since the adversary
controls this in a restricted manner), a super-polynomial running time would ensure that the
increase in state size is not a constant. Thus, to avoid a trivial distinguisher that looks for the
special abort, the simulator must run in strict polynomial time.

Unbounded memory. We now proceed to extend the impossibility to simulators that have no a
priori bound on the number of parallel queries they make to the verifier, but still run in expected
polynomial time. Here, we need to be wary of the simulator adaptively choosing to increase number
of parallel queries.

While the result [BL02] does not apply to this setting, our results will build on their verifier
strategy. Our adversarial verifier waits for constant time c1 (here time is in terms of computation
steps) on getting the query, answers correctly with prob ε and aborts with prob 1 − ε. We will
choose the probability such that ε > 1/q(n) for some polynomial q(·). The probability (over P’s
random coins) that an honest P causes the honest verifier to accept is p = εc, where c is the number
of rounds in the protocol. Since c is a constant, an honest prover will convince the verifier with
noticeable probability as desired.

Let ε = ε(n) be some value to be determined later. Let H = {Hn}n∈N be a family of f(n)-wise
independent hash function, such that for every h ∈ Hn, h : {0, 1}≤c·m → {0, 1}n, where {0, 1}≤c·m
denotes all strings of length at most c · m. f(n) will be determined later. c denotes the prover
messages in the proof, and m = m(n) denotes the longest prover message of the protocol. We
present the detailed strategy below:

Verifier V

Random tape: (h, r) - h defines a function in Hn, and r is of the length of the random tape
required by the honest verifier strategy Input: Series of prover messages q = (α1, . . . , αi)

1. Step 1 - decide whether or not to abort:

(a) Compute h(q′) for every prefix q′ of q. That is, for every j(1 ≤ j ≤ i), compute
h(α1, . . . , αj).

(b) Wait c1 time and abort (by outputting the special symbol ⊥), unless for every j,
the first log

(
1
ε

)
bits of h(α1, . . . , αj) are equal to 0.

(Since the definition of V is by its next message function, we have to ensure that it replies
to q only if it would not have aborted on messages sent prior to q in an interactive setting.
This is carried out by checking that it would not have aborted on all prefixes of q.)

2. Step 2 - if not aborting,

(a) Run the honest verifier on input α1, . . . , αi and with random tape r, and obtain its
response β.

34

(b) Wait c1 time and output β.

For simplicity of exposition, we assume that the verifier is always convinced. Our analysis naturally
extends to the more general setting, where this may not hold.

Now consider the behavior of the same verifier in a simulation by Sim. Sim can issue any number
of queries (in parallel) to the adversary at any point of time (by making copies). Consider epochs
each of length c1. In each epoch, the simulator may make a query at any point (and will get the
answer only in the next epoch after time c1 has elapsed). Represent the total number of queries the
simulator makes in epoch i by qi. Note that the Sim can only run for fixed constant c2 epochs (else
our earlier proof would apply). Let p̃ be the probability that Sim output a transcript (α1, . . . , αc)
such that the honest verifier accepts, and Sim received a non-aborting response for every prefix
query. By the zero-knowledge property, p̃ is at least p − negl(n). Specifically, because ε is chosen
such that it is an inverse of a polynomial, we have p̃ ≥ p/2. Since the simulator Sim is black-box,
it does not know ε and can only observe the output of the queries.

We show that in each adaptive step, if Sim increases the number of parallel copies by more than
an a priori bounded polynomial, it no longer runs in expected polynomial time.

– Consider epoch 1. During this epoch, by construction of the verifier, the simulator has not
received any response from the verifier. Irrespective, it makes q1 queries to the verifier.
We claim that other than with negligible probability (over the coins of Sim), there exists a
polynomial f1(n) such that q1 ≤ f1(n).

If it is not the case, with noticeable probability Sim runs in super-polynomial time. Thus,
Sim’s expected running time would become super-polynomial as well, violating our restriction.

– We define E to be the even that the simulator has seen less than c + 1 queries answered up
until that point.

– Now consider epoch 2. During this epoch, it receives responses to the queries made in epoch
1. Let us represent this by a “configuration” vector v1 of dimension q1 where each entry is
either ⊥ if it aborted, or > otherwise. We split our analysis of the number of queries q2,
in epoch 2, into two cases: Case I. If the number of non-aborts in v1 are at most c, i.e.

event E holds, then there exists a polynomial f2(n) such that for every configuration of v1,
q2 ≤ f2(n).

Case II. There is no such f2, i.e. there is a configuration v∗1 such that the number of queries
q2 is super-polynomial. If event E holds, then at most c “>” symbols in every characteristic
vector v1. Thus, the total number of such characteristic vectors are(

q1

0

)
+

(
q1

1

)
+ · · ·+

(
q1

c

)
.

Since c is a constant, the total number is a polynomial (other than with negligible probability).
Thus each possible configuration v∗1 occurs with noticeable probability given event E holds.
With noticeable probability Sim now runs in super-polynomial time. Thus, Sim’s expected
running time would become super-polynomial as well, violating our restriction.

We notice that if the event E holds, other than with negligible probability the simulator
makes q2 number of queries, that are bounded by some polynomial.

35

– For i ∈ {2, . . . , c2}, we follow identically the analysis for q2. But here, the characteristic
vector vi would include a symbol (⊥ or >) for all queries made before epoch i started. Thus,
its dimension would be

∑i−1
i=1 qi.

– Thus, conditioned on E, the queries of Sim are bounded by f1(n), f2(n), . . . , fc2(n) in their
respective epochs. We denote by f := f(n) =

∑c2
i=1 fi(n) the bound on the number of queries

made by the simulator given event E holds.

From the formula that for n Bernoulli trials where each trial succeeds with probability p, the
probability of having k or more successes is at most

(
n
k

)
pk. In our setting, a trial is a query message

from the simulator, and the trial succeeds with probability ε. Thus the probability of having c+ 1
or more successes in f trials is at most

(
f
c+1

)
εc+1.

Consider the event good where Sim outputs a verifying transcript, but receives exactly c non-
aborting responses from the verifier. From the earlier discussion, Sim must output an accepting
transcript with probability at least εc/2. And since the probability of having c+1 or more successes
in f trials is at most

(
f
c+1

)
εc+1, the event good occurs with probability at least εc/2−

(
f
c+1

)
εc+1. If

we can set the value of ε to be such that this probability is noticeable, we can rely on the proof in
[BL02]. Roughly, this is because we can then use Sim to convince an honest verifier with the same
probability. We refer the reader to [BL02] for details.

To this end, we set ε = 1

4·(f
c+1)

. Note that since f is a polynomial, and c is a constant, there

exists a polynomial such that ε(n) = 1/p(n). Thus the difference between εc/2 and
(
f
c+1

)
εc+1 is

εc/4, which is an inverse polynomial as desired.

7 Black-Box Impossibility of Zero Knowledge in the Plain Model

In this section we shall show that in the plain model, it is impossible to construct a zero knowledge
proof system against blockchain active adversaries (BCA).

Recall that the main advantage of a black-box simulator over an adversary is its ability to
rewind the adversary. We now sketch a simple verifier strategy that makes it impossible for the
simulator to successfully rewind the verifier.

For any polynomial `, let (p1, v1, p2, v2, · · · , p`, v`, p`+1) denote the sequence of messages in a
purported ZK protocol. Let stateV be the Gledger state of the verifier. The adversarial verifier
strategy is as follows:

– On receiving a prover message pi, send the transcript (p1, v1, p2, v2, · · · , pi) (along with the
corresponding session id) to Gledger, and wait for the size of the state to increase by 4 ·
windowSize.

– Now, check for the if the following two conditions hold:

– the sent message is on the state; and

– there is no other transcript of the form (p̃1, ṽ1, p̃2, ṽ2, · · · , p̃i) for the same session id
anywhere in the state.

Only if both the checks pass, proceed by sending the honest response vi. It is not explicitly
stated, but the verifier maintains the state of the blockchain, and updates its state as it
receives valid blocks.

36

It is clear that in the interaction with the honest prover, the verifier behaves honestly and
completes the protocol.

Now, consider any simulator. For the simulator to gain any advantage over a prover, the
simulator must receive responses from the verifier for at least two different i-th messages pi and p̃i
for some i. From the verifier’s strategy, we know that in both cases the verifier sends the transcript
to Gledger and waits for the state to expand sufficiently before responding. If the posted transcript
does not appear on the state after the specified wait period, the verifier aborts. This ensures that
the simulator cannot rewind the verifier without detection, and thus gains no advantage over an
honest prover.

8 UC Impossibility

In this section, we will show that it is impossible to achieve universal composition security [Can01b]
in the blockchain model. This might seem surprising given the positive results of [CJS14b] in the
non-programmable global random oracle (RO) model, which seems to have a similar flavor.

A crucial difference in these settings is that in the case of the non-programmable global RO
model, the posts by the honest parties to the oracle, and their corresponding responses, are private.
This is not true for the blockchain model as the queries are public to everyone. Importantly, this
in turn implies that the environment sees the actual blockchain, and not a view that the simulator
presents to the environment. This prevents the simulator from changing any query made by the
adversary to the blockchain. If the simulator does change the query, the environment will always
be able to tell the difference between the real and ideal execution. Intuitively, seeing the queries to
blockchain is not unique to the adversary, and thus does not constitute a new capability.

For this impossibility, we work in a slightly different model where we allow parties to make
an outstanding query request to the blockchain, asking for outstanding queries that have not been
included in the block. This closely models what happens in practice since parties broadcast the
information they want to post to the blockchain to anyone connected to them. This explicitly
models the fact that parties can see queries made to the blockchain. We show the impossibility of
UC secure commitments [CF01b] in the blockchain model. We define the ideal functionality of the
commitment here, and refer to the reader to [Can01b, CF01b] for details and definitions.

Functionality FCOM

FCOM proceeds as follows with parties P1, . . . , Pn and an adversary Sim.

1. Upon receiving a value (Commit, sid, Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the value b
and send the message (Receipt, sid, Pi, Pj) to Pj and Sim.

2. Upon receiving a value (Open, sid, Pi, Pj) from Pi, proceed as follows: If some value b was
previously recorded, then send the message (Open, sid, Pi, Pj , b) to Pj and Sim and halt. Oth-
erwise halt.

Figure 4: The ideal commitment functionality

Let us assume to the contrary, that there exists a simulator Sim for an adversarial committer.
Then, we shall describe an adversarial receiver that uses Sim to extract the value committed by
the committer. The adversarial committer works as follows:

1. Initialize Sim.

37

2. Behave as a “fake committer” by passing any message sent by the committer to Sim, and
vice-versa.

3. As and when blocks are received from the blockchain, pass them on to Sim.

4. When the committer makes a query q to the blockchain, this query is sent to Sim on behalf
of the “fake committer”.

5. Since Sim cannot change the query made by the adversary, when it makes the same query q
to the blockchain, we block this query. But as before, when a subsequent block is mined, we
pass it on to Sim.

6. When Sim makes a query to the UC commitment ideal functionality, stop and output this as
the committed value.

9 Acknowledgments

The second author’s research was supported in part by a grant from Northrop Grumman, a gift
from DOS Networks, and, a Cylab seed funding award. The first and third authors’ research was
supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213, and a subaward from
NSF CNS-1414023.

References

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 443–458, 2014.

[AGJ+12] Shweta Agrawal, Vipul Goyal, Abhishek Jain, Manoj Prabhakaran, and Amit Sahai.
New impossibility results for concurrent composition and a non-interactive complete-
ness theorem for secure computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 443–460, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In 45th FOCS, pages 186–195, Rome,
Italy, October 17–19, 2004. IEEE Computer Society Press.

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically
uncloneable functions in the universal composition framework. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 51–70, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Heidelberg, Germany.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic avail-
ability. Cryptology ePrint Archive, Report 2018/378, 2018. https://eprint.iacr.

org/2018/378.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge
arguments based on any one-way function. In Walter Fumy, editor, EUROCRYPT’97,

38

https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2018/378

volume 1233 of LNCS, pages 280–305, Konstanz, Germany, May 11–15, 1997. Springer,
Heidelberg, Germany.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 421–439, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany.

[BKOV17] Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, and Ivan Visconti.
Unconditional UC-secure computation with (stronger-malicious) PUFs. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 382–411, Paris, France, April 30 – May 4, 2017. Springer, Hei-
delberg, Germany.

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction.
In 34th ACM STOC, pages 484–493, Montréal, Québec, Canada, May 19–21, 2002.
ACM Press.

[Blu87] Manual Blum. How to prove a theorem so no one else can claim it. In International
Congress of Mathematicians, pages 1444–1451, 1987.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a
transaction ledger: A composable treatment. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In 47th FOCS, pages 345–354, Berkeley, CA, USA, October 21–24, 2006.
IEEE Computer Society Press.

[Can01a] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[Can01b] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceed-
ings, pages 61–85, 2007.

[CF01a] Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, pages 19–40, 2001.

[CF01b] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

39

[CGJ15] Ran Canetti, Vipul Goyal, and Abhishek Jain. Concurrent secure computation with
optimal query complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 43–62, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian
Miers. Fairness in an unfair world: Fair multiparty computation from public bulletin
boards. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 719–728, Dallas, TX, USA, October 31 – November 2,
2017. ACM Press.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC se-
cure computation using tamper-proof hardware. In Nigel P. Smart, editor, EURO-
CRYPT 2008, volume 4965 of LNCS, pages 545–562, Istanbul, Turkey, April 13–17,
2008. Springer, Heidelberg, Germany.

[CJS14a] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with
a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,
pages 597–608, 2014.

[CJS14b] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 14, pages 597–608, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In EUROCRYPT,
pages 68–86, 2003.

[CKL06] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally compos-
able two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167,
2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550, Las
Vegas, NV, USA, October 23–26, 2010. IEEE Computer Society Press.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In 23rd ACM STOC, pages 542–552, New Orleans, LA, USA, May 6–8, 1991.
ACM Press.

[DFK+14] Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz, Anna Lysyanskaya, and
Dominique Schröder. Feasibility and infeasibility of secure computation with malicious
PUFs. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 405–420, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

40

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th
ACM STOC, pages 409–418, Dallas, TX, USA, May 23–26, 1998. ACM Press.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, pages 186–194, 1986.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd ACM STOC, pages 416–426, Baltimore, MD, USA, May 14–16, 1990. ACM
Press.

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using
blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 529–561, Baltimore, MD, USA, November 12–15, 2017. Springer,
Heidelberg, Germany.

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. What information is leaked under
concurrent composition? In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 220–238, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wa-
dia. Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 308–326, Zurich, Switzerland, Febru-
ary 9–11, 2010. Springer, Heidelberg, Germany.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key
generation on the internet in the plain model. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 277–294, Santa Barbara, CA, USA, August 15–19, 2010.
Springer, Heidelberg, Germany.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone pro-
tocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–323, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Im-
possibility results for static input secure computation. In CRYPTO, pages 424–442,
2012.

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-efficient
concurrently composable secure computation via a robust extraction lemma. In Yev-
geniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 260–289, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

41

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 291–304, 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[Goy12] Vipul Goyal. Positive results for concurrently secure computation in the plain model.
In 53rd FOCS, pages 41–50, New Brunswick, NJ, USA, October 20–23, 2012. IEEE
Computer Society Press.

[HHK+05] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commitment.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 58–77,
Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Composable security in the tamper-proof hardware model under minimal com-
plexity. In Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part I, pages 367–399,
2016.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
115–128, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general
composition of secure protocols in the timing model. In Harold N. Gabow and Ronald
Fagin, editors, 37th ACM STOC, pages 644–653, Baltimore, MA, USA, May 22–24,
2005. ACM Press.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
357–388, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-
many.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734,
Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-party
computation. In FOCS, pages 394–403, 2003.

42

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 203–222, Cambridge, MA, USA, February 19–
21, 2004. Springer, Heidelberg, Germany.

[Lin08] Yehuda Lindell. Lower bounds and impossibility results for concurrent self composition.
Journal of Cryptology, 21(2):200–249, April 2008.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages
306–315, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, January 1991.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-
knowledge arguments for NP using any one-way permutation. Journal of Cryptology,
11(2):87–108, March 1998.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In 43rd FOCS, pages 366–375, Vancouver, British
Columbia, Canada, November 16–19, 2002. IEEE Computer Society Press.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In EUROCRYPT, pages 415–431, 1999.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Extend Policy for Bitcoin

We copy verbatim from [BMTZ17] the properties ensured by ExtendPolicy:

1. The speed of the ledger is not too slow. This is implemented by defining an upper bound
maxTimewindow on the time interval within which at least windowSize state blocks have to be
added. This is known as minimal chain-growth.

2. The speed of the ledger is not too fast. This is implemented by defining a lower bound
minTimewindow on the time interval such that the adversary is not allowed to propose new
blocks if windowSize or more blocks have already been added during that interval.

3. The adversary cannot create too many blocks with arbitrary (but valid) contents. This is
formally enforced by defining an upper bound η on the number of these so-called adversarial
blocks within a sequence of state blocks. This is knows as chain quality. Formally, this is

43

enforced by requiring that a certain fraction of blocks need to satisfy higher quality standards
(to model blocks that were honestly generated).

4. Last, but not the least, ExtendPolicyguarantess that if a transaction is “old enough”, and still
valid with respect to the actual state, then it is included into the state. This is a week form
of guaranteeing that a transaction will make it into the state unless it is in conflict.

The formal description can be found in [BMTZ17].

44

	Introduction
	Our Results
	Technical Overview
	Related Work
	Organization

	Blockchain Model
	Definitions and Preliminaries
	Zero Knowledge in the Gledger-hybrid model
	Concurrently Secure Computation in the Gledger-hybrid model
	Extractable Commitment Protocol "426830A C,R"526930B

	Black-box Zero Knowledge
	Graph Hamiltonicity Zero-knowledge Proof
	Our Protocol

	Concurrent Self Composable Secure Computation
	Concurrently Extractable Commitment
	Simulation-Extraction Strategy
	The Protocol
	Building Blocks
	Protocol Description

	Impossibility of Constant Round Black-Box Zero Knowledge
	Black-Box Impossibility of Zero Knowledge in the Plain Model
	UC Impossibility
	Acknowledgments
	Extend Policy for Bitcoin

