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Abstract

We propose Path Oblivious Heap, an extremely simple, practical, and optimal oblivious
priority queue. Our construction also implies a practical and optimal oblivious sorting algorithm
which we call Path Oblivious Sort. Not only are our algorithms asymptotically optimal, we show
that their practical performance is only a small constant factor worse than insecure baselines.
More specificially, assuming roughly logarithmic client private storage, Path Oblivious Heap
consumes 2× to 7×more bandwidth than the ordinary insecure binary heap; and Path Oblivious
Sort consumes 4.5× to 6× more bandwidth than the insecure Merge Sort. We show that these
performance results improve existing works by 1-2 orders of magnitude. Finally, we evaluate our
algorithm for a multi-party computation scenario and show 7× to 8× reduction in the number
of symmetric encryptions relative to the state of the art.

1 Introduction

We show how to construct a statistically secure oblivious priority queue through a simple modifi-
cation to the (non-recursive) Path ORAM algorithm [39]. Since our construction is compellingly
simple, we begin the paper by presenting the construction informally. Let N denote the maximum
number of items the priority queue can store. Imagine a binary tree with N leaves, where each
non-root node in the tree can hold O(1) records that are either real or dummy, and the root node
can hold super-logarithmically (in the security parameter) many records. Every real element in
the tree carries its own position label, which ties the element to a path in the tree. For readers
familiar with Path ORAM [39], so far the data structure is the same as a Path ORAM binary
tree. Our key insight is the following (which, in hindsight, turns out to be surprisingly simple): we
additionally tag each node in the tree with the minimum element in its subtree (henceforth called
a subtree-min) as well as its position label. Observe that whenever a path in the tree is modified,
it takes only path-length amount of work to modify the subtree-min of all nodes along the path —
to do this we only need to examine this path and all sibling nodes to the path. We can support
Insert and ExtractMin queries as follows:

• Insert: to insert an item, assign it a random position label that ties the element to a random
path in the tree. Add the item (tagged with its position label) to the root bucket. Perform
eviction on two randomly selected paths (that are non-overlapping except at the root). An
eviction operation tries to move real elements on the path closer to the leaf (while making sure
that every element still resides on the path it is assigned to). Recalculate the subtree-mins
of the two eviction paths.

∗Dedicated to the memory of Emil Stefanov (1987-2014), to all those fun times, the many days and nights that
we worked together.
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• ExtractMin: by examining the root node’s subtree-min, find out which path the minimum
element resides in. Read that path, remove the minimum element from the path and save it
in the CPU’s local cache. Perform eviction on the path just read, and moreover, recalculate
the subtree-mins of the path just read.

We stress that due to subtree-min labels that our algorithm maintains throughout, there is no
need for a recursive position map which was necessary in previous tree-based ORAMs [12, 39, 42]
and oblivious data structures [44] — one can easily find out the path of the minimum element by
examining the root’s subtree-min label.

Other types of requests, such as Delete, DecreaseKey, and IncreaseKey can be supported
in a similar manner. We can additionally hide the request type by emulating the super-set of access
patterns for all requests. Since each request always operates on at most two paths in a binary tree,
we call our construction Path Oblivious Heap.

Theorem 1 (Path Oblivious Heap). Assume that each memory word is at least logN bits and
every item in the priority queue can be stored in O(1) words. Further, suppose that the CPU has
O(logN + log 1

δ ) words of private cache. There exists a statistically secure oblivious priority queue
algorithm that supports each operation in the set {Insert,ExtractMin,Delete, DecreaseKey,
IncreaseKey} requiring only O(logN) words to be transmitted between the CPU and the memory
per operation, where N denotes the maximum number of elements the priority queue can store, and
δ denotes the failure probability per request.

Readers familiar with tree-based ORAM constructions might also recall that Circuit ORAM [42]
is a further improvement to Path ORAM [39]: in Circuit ORAM, the CPU needs only O(1) words
of private cache whereas in Path ORAM, the CPU needs O(logN + log 1

δ ) words of private cache.
The only difference between Circuit ORAM and Path ORAM is that the two adopt a different
path-eviction algorithm. If we instantiated the above Path Oblivious Heap algorithm but now with
Circuit ORAM’s eviction algorithm, we obtain the following corollary which further reduces the
CPU’s private cache to O(1):

Corollary 1 (Path Oblivious Heap: Circuit Variant). Same as Theorem 1, but now the CPU needs
only O(1) words of private cache and each request consumes O(logN + log 1

δ ) bandwidth.

Henceforth to distinguish the two variants instantiated with Path ORAM and Circuit ORAM’s
eviction algorithms respectively, we call them the Path-variant and the Circuit-variant respectively1

From a theoretical perspective, the Circuit-variant is a strict improvement of the Path-variant —
if the CPU had O(logN + log 1

δ ) private cache in the Circuit-variant, the bandwidth needed per
request would also be O(logN) just like the Path-variant.

Optimality. Path Oblivious Heap outperforms existing works both in asymptotic and concrete
performance, and moreover achieves optimality in light of the recent lower bound by Jacob et
al. [25]. We recommend the Path-variant for a cloud outsourcing scenario, and the Circuit-variant
for RAM-model multi-party computation [24,31] — recall that these are the two primary application
scenarios for oblivious algorithms.

The overhead of our scheme relative to an insecure binary heap (which is the most widely
adopted priority queue implementation) is minimal: binary heap requires fetching a single tree
path of length logN (as well as all sibling nodes) where each node stores a single data item.
Assuming that the CPU has enough local cache to store an entire tree path, our scheme requires
fetching only 2 paths per request but each node in the tree now stores 2 items.

1The title of our paper calls both the Path-variant and the Circuit-variant “Path Oblivious Heap” generically
since in both variants, every request operates on O(1) number of tree-paths.
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Reference implementation. A reference implementation (created by Daniel Rong and Har-
jasleen Malvai) is available at https://github.com/obliviousram/PathOHeap.

1.1 Applications

Oblivious streaming sampler and applications in distributed differential privacy. In
Section 5.2, we show how to leverage our Path Oblivious Heap algorithm to design an efficient
oblivious streaming sampler, i.e., an algorithm that randomly samples k elements from an incoming
stream of a-priori unknown length (possibly much larger than k), consuming at most O(k) memory;
moreover, the algorithm’s access patterns do not reveal which elements in the stream have been
sampled. We describe how this oblivious sampler can be a key building block in designing an
intereseting class of distributed differential privacy mechanisms motivated by practical scenarios
that companies such as Google and Facebook care about.

Practical oblivious sort. Last but not the least, our work immediately implies a practical and
optimal oblivious sort algorithm which we call Path Oblivious Sort, which can sort N elements
in N(logN + log 1

δ ) time and IO with probability 1 − δ. Our new Oblivious Sorting algorithm
can replace bitonic sort [6] which is the de facto choice for implementation today despite being
non-optimal and consuming O(n log2 n) cost [31,33,34] — see Section 1.2 for more discussions.

Evaluation results suggest that in a cloud-outsourcing setting, our oblivious heap and oblivi-
ous sorting algorithms consume only a small constant factor more bandwidth relative to insecure
baselines. Specifically, Path Oblivious Heap consumes only 2× to 7× more bandwidth than the
ordinary insecure binary heap; and Path Oblivious Sort consumes only 4.5× to 6× more bandwidth
than the insecure Merge Sort.

1.2 Related Work

Oblivious RAMs. Oblivious RAM (ORAM) was first proposed by Goldreich and Ostrovsky [20,
21] in a ground-breaking work. They show that any RAM algorithm can be compiled to an oblivious
counterpart whose memory access patterns leak no information, and somewhat surprisingly, such
oblivious compilation incurs only poly-logarithmic (multiplicative) blowup relative to the insecure
baseline. Subsequent works have improved Goldreich and Ostrovsky’s construction; to date the best
known ORAM algorithm achieves O(logN) blowup where N is the size of memory consumed by
the original RAM [4]. On the other hand it has been shown that logarithmic overhead is necessary
for ORAMs [20,21,28].

Oblivious data structures. Since ORAM is a generic technique that compiles any algorithm or
data structure to an oblivious form, a näıve way to obtain an oblivious priority queue is to apply
an ORAM compiler to a standard insecure priority queue algorithm such as the widely-adopted
binary heap. Although in theory this achieves logarithmic slowdown w.r.t. the insecure binary
heap [4], the known theoretical optimal construction, OptORAMa [4], is completely impractical.

A couple recent works have shown how to construct practical oblivious priority queues that
enjoy logarithmic slowdown w.r.t. to the insecure binary heap. Specifically, Toft [40] constructs
an oblivious priority queue with O(log2N) cost per request (c.f. binary heap requires O(logN)
cost per request). Wang et al. [44] show a more practical construction where each request can be
completed in O(logN(logN+log 1

δ )) time and bandwidth (measured in words transmitted between
the CPU and memory).
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An interesting question is whether we can outperform generic ORAM simulation for constructing
an oblivious priority queue. Note that the ORAM lower bound applies only to a generic oblivious
compiler, but not for any specific algorithm such as priority queue. The very recent work of
Jafargholi et al. [26] was first to answer this question affirmatively: they showed how to construct
an oblivious priority queue where each request completes in amortized O(logN) bandwidth, but
requiring O(log 1

δ ) words of CPU cache. In another very recent work, Jacob et al. [25] prove that
any oblivious priority queue must incur Ω(logN) bandwidth per request even when the CPU can
store O(N ε) words in its private cache where 0 < ε < 1 is an arbitrary constant.

Comparison with Jafargholi et al. [26]. Since the very recent work by Jafargholi et al. [26]
is the most closely related, we now provide more detailed comparison with them. Theoretically,
on a standard word-RAM, our result is asymptotically better than theirs since we require only
O(1) words of CPU private registers where Jafargholi et al. [26] requires super-logarithmic in the
security parameter to get negligible failure probability (also in the security parameter). In practical
cloud-like scenarios, our evaluation results in Section 6 suggest that our algorithm is at least an
order of magnitude faster than theirs. Furthermore, our overhead notion is measured in terms of
the worst-case cost per request where they use an amortized notion — in their scheme, a request
can in the worst case incur linear cost (although this happens infrequently).

Nonetheless Jafargholi et al. [26]’s algorithm is theoretically interesting in the following senses.
First, their algorithm has asymptotically better IO performance when the memory’s native block
size is much larger than a single entry stored in the priority queue. Specifically, imagine that one
must pay the cost of a single big block even when retrieving, say, one entry, which is much smaller
than the memory block. In this case, Jafargholi et al. [26] achieves an additional factor of χ speedup
relative to ours assuming each memory block can store χ entries. While this metric is theoretically
interesting, it has limited relevance to the two primary applications for oblivious priority queue
and oblivious sorting: 1) cloud outsourcing and 2) secure multi-party computation:

• In a practical cloud-outsourcing scenario, typically the main bottleneck is the client-server
bandwidth and not the server’s disk IO. Observe that the client-server transmission is not
bound to any “native block” constraint For example, our algorithm retrieves a couple tree
paths at a time, and one could combine these paths into one or more network packets (even
though the buckets fetched are not necessarily contiguous in physical storage). For this reason,
almost all prior ORAM schemes designed for the client-server setting [23, 35, 36, 38, 45] focus
on measuring the bandwidth consumption.

• In multi-party computation [24, 42], similarly, there is no “native block size” constraint. In
this case, a word-RAM model with O(1) CPU registers is the most appropriate as prior works
have compellingly shown [42].

Another theoretically interesting aspect of their construction is that it can be instantiated with
a k-wise independent hash function, and thus fewer random bits need to be consumed per request.
In comparison, our construction consumes logarithmically many random bits per request.

Oblivious sorting. Theoretically speaking, n items can be obliviously sorted in O(n log n) time
using sorting networks such as AKS [3] and Zigzag sort [22]. These constructions are optimal: due
to recent lower bounds [17, 30], we know that any oblivious sorting scheme must incur Ω(n log n)
time on a word-RAM, either assuming that the algorithm treats each element as “indivisible” [30]
or assuming that the famous Li-Li network coding conjecture [29] is true [17].
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Unfortunately, known optimal sorting networks [3, 22] rely on expander graphs and thus suffer
from enormous constants, making them completely impractical. Almost all known implementations
of oblivious sorting, either for cloud-outsourcing [13,38,46] or for multi-party computation [31,33,
34], instead adopt the asymptotically worse bitonic sort [6] which costs O(n log2 n). Given our
evaluation results, Path Oblivious Sort should now become the scheme of choice in either a cloud-
outsourcing or multi-party computation setting for almost all parameters we care about.

Offline ORAM. Boyle and Naor [7] show that given a RAM-model oblivious sorting algorithm
that consumes T (n) time to sort n elements, one can construct an offline ORAM with T (N)/N
blowup. In comparison with a standard (online) ORAM, an offline ORAM must see all the requests
upfront. Thus, just like Jafargholi et al. [26], our work also implies a statistically secure offline
ORAM with O(logN) blowup. Jafargholi et al. [26] achieves this result too but assuming that the
CPU can cache super-logarithmic (in the security parameter) number of words. We remove this
extra assumption and require only O(1) CPU-registers.

We stress that although logarithmic-overhead online ORAM is also possible, the only known con-
struction [4] for the online setting requires computational assumptions. Our scheme is statistically
secure, and the statistically secure logarithmic-overhead offline ORAM result is of incomparable
nature to known optimal online ORAM [4].

2 Definitions

We consider algorithms in the standard RAM model, where word-level addition and bitwise boolean
operations can be accomplished in unit time (note that we need not assume word-level multiplication
in unit time). Like in the standard RAM model, we assume that each memory word is capable of
storing its own index, i.e., if the RAM’s total memory size is n, then each memory word is at least
log n bits long. A RAM program’s runtime is the number of CPU steps it takes to complete the
computation, its bandwidth or IO cost is the number of words transmitted between the memory
and the CPU. In cases where the CPU may store super-constant number of words and compute on
them in a single time step, the bandwidth of a RAM may be larger than the runtime.

2.1 Priority Queue

We assume that when the priority queue is first initiated, a constructor function is called which
takes in a desired security parameter λ. Afterwards, the priority queue supports the following
types of operations — below we define the “programming interface” in the same way as that of an
insecure binary heap:

• ref ← Insert(k, v): insert a value v with the key k into the priority queue, and return a
reference (i.e., handle) to the inserted element denoted ref.

• (k, v, ref) ← FindMin(): return the item whose key is the smallest (henceforth called the
minimum item) in the priority queue without deleting it.

• Delete(ref): delete the item with the reference ref from the priority queue.

• (k, v)← ExtractMin(): remove and return the minimum item from the priority queue.

Given the above operations, we can support DecreaseKey and IncreaseKey by calling
Delete followed by Insert. For simplicity we define only the above operations explicitly.
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Remark 1. Our definition of a priority queue matches the standard interface provided by a popular
binary heap — in a standard binary heap, to call Delete and DecreaseKey operations, the caller
also needs to supply a reference handle to the object being deleted or modified. The recent work
by Jafargholi et al. [26] in fact adopts a slightly non-standard definition that is somewhat stronger
than the standard binary heap: in particular, their Delete operation takes in only the item to
be deleted but not its reference handle — for this reason, they need a k-wise independent hash
function in their constrction to calculate an element’s handle from the item itself. By adopting the
standard definition, we avoid the reliance on a k-wise independent hash.

2.2 Oblivious Simulation of Priority Queue

We first define a weaker notion of security (called type-revealing security), where, informally speak-
ing, only the request types are revealed to the adversary but not the contents of the requests. For
example, in our oblivious sorting application later, this weaker notion is sufficient. It is not difficult
to strengthen our definition and construction to additionally hide the request types too incurring
only minimal additional cost — we shall later elaborate on type-hiding security in Appendix D.

We define obliviousness through a simulation-based approach: we would like that the adversary’s
observations in the real-world be statistically close to an ideal-world in which access patterns are
simulated by a simulator that observes only the request types but not the contents of the requests.
In the ideal world, the reference handles returned to the adversary contain only the time at which
the element was inserted where time is measured in the number of requests so far. In the real world,
we may imagine that all additional fields of the reference handle (besides the time) are encrypted
or secret-shared so the adversary cannot observe the actual contents of the handle in the same
way that actual data contents are encrypted or secret shared and unobservable to the real-world
adversary (see also Remark 3).

Ideal functionality Fpq. An ideal-world priority queue, henceforth denoted Fpq, implements
the above priority-queue interface correctly. As mentioned, we assume that in the ideal world, the
reference ref of an element is simply the time at which the element was inserted (where time is
measured by the number of operations so far)2

Oblivious simulation. Let N denote an upper bound on the number of elements stored in the
priority queue. let T ≥ N denote an upper bound on the total number of priority queue operations.
Let ε(λ, T ) be a function in λ and T . Let PQ(1λ, N) denote a priority queue algorithm whose
execution is parametrized with a security parameter λ and the maximum capacity N . Henceforth
we often write PQ for short omitting the default parameters. We say that PQ is a (1− ε)-oblivious
simulation of Fpq iff there exists a stateful simulator Sim, such that for any conforming, even
computationally unbounded adversary A, its views in the following experiments IdealA(1λ, N, T )
and RealPQ,A(1λ, N, T ) have statistical distance at most ε(λ, T ) for any choice of λ, N , and T :

• IdealA(1λ, N): A(N,T ) adaptively issues T priority-queue queries. For each query Q, A re-
ceives not only the output from Fpq but also the outcome of Sim(1λ, N,Q.type) where Q.type ∈
{insert, findmin, delete, extractmin} extracts the query type from Q.

• RealPQ,A(1λ, N, T ): A(N,T ) interacts with a challenger C which internally runs a copy of the
real-world algorithm PQ(1λ, N) instantiated with the security parameter λ and the maximum

2Note that the adversary knows the index of the query; thus using time as the ideal-world reference does not
reveal additional information to the adversary. Basically, in the ideal world, the adversary is able to later on ask to
delete an element by specifying the time at which it was inserted.
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capacity N . Note that A recognizes only ideal-world references that represent the time at which
elements were inserted; however PQ recognizes the real-world references whose format is deter-
mined by the algorithm itself. Therefore, C acts as a man-in-the-middle between A and PQ, it
passes queries and answers back-and-forth between A and PQ, translating the references from
the ideal-world format to the real-world format and vice versa.

At the end of each query, C also informs A the access pattern incurred by the algorithm PQ in
answering this query (where by “access pattern” we mean the ordered sequence consisting of
every memory address accessed).

We require that a conforming adversary A(N,T ) must satisfy the following:

1. it always submits a valid ideal-world reference in any delete request, i.e., the reference must
correspond to a time at which an insertion was made and moreover the corresponding element
inserted must still exist in the priority queue; and

2. the total number of elements inserted into the priority queue that have not been extracted must
never exceed N .

Note also that the notion of oblivious simulation captures correcteness and security requirements
in a single simulation-based definition — this approach is inspired by the standard literature on
multi-party computation.

Typically, we want the scheme’s failure probability ε(λ, T ) to be negligibly small in λ as long as
the total number of requests T (λ) is polynomially bounded in λ. If this is guaranteed, we say that
the scheme “realizes an oblivious priority queue” as formally defined below.

Definition 1 (Oblivious priority queue). We say that PQ realizes an oblivious priority queue iff
PQ (1− ε)-obliviously simulates Fpq, and moreover, the failure probability term ε(λ, T ) is negligibly
small in λ for any T that is polynomially bounded in λ.

Remark 2 (On the failure probability’s dependence on T ). Notice that in our definition of oblivious
simulation above, we allow the scheme’s failure probability ε(λ, T ) to depend on the number of
requests T . In our scheme later, the failure probability suffers from a union bound over T . This
definitional approach is standard in the cryptography literature: it is customary to let the scheme’s
failure probability be dependent on the adversary’s running time (which is lower bounded by T
in our case). In cryptography, a typical guarantee we aim for is that as long as the adversary’s
running time is polynomially bounded in the security parameter λ — in our case, this implies that
T is polynomially bounded in λ — we would like the scheme’s failure probability to be negligibly
small in λ.

Remark 3. In the security definition above, we assume that the adversary can only observe the
access patterns but not the contents of the data being transmitted. In practice, standard techniques
such as encryption or secret-sharing can be employed to hide data contents. Encryption is often used
in a single-server setting whereas secret sharing may be employed in a multi-server setting [9, 32]
or in multi-party computation [24,31,42].

3 Path Oblivious Heap

In this section, we provide a formal description of our oblivious priority queue algorithm. We first
present a version instantiated from the non-recursive Path ORAM [39], we then discuss how to
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modify the construction to use Circuit ORAM’s eviction algorithm [42] to get tighter bounds on
the CPU’s private cache. This organization is not only to aid understanding, but also because of the
fact that the two variants are each recommended for the cloud outsourcing and secure multi-party
computation settings respectively.

For simplicity, for the time being we assume that the priority queue is preconfigured with an
a-priori upper bound N on the number of elements that it can hold, and an upper bound T ≥ N
on the total number of priority-queue requests. We will later get rid of this known-T assumption
in Section 3.5 to support an unbounded number of queries.

We will use the notation λ to denote an appropriate security parameter. We would like that
over poly(λ) number of requests, the priority queue’s security failure probability be negligibly small
in λ.

3.1 Data Structure

The primary data structure is a (non-recursive) Path-ORAM binary tree with N leaves where N
denotes an upper bound on the number of entries stored in the priority queue.

Buckets. Each tree node is also called a bucket since it stores an array of either real or dummy
elements. Every non-root bucket B in the tree can store a suitable constant number of elements
and each element is either real or dummy. The root bucket’s size will be related to the security
parameter — in particular, later we will show that for the failure probability to be negligly small
for any polynomially bounded request sequence, the root bucket’s capacity |Broot| must be set to
be super-logarithmic in the security parameter λ, We refer the reader to Remark 4 for discussions
on what is a suitable constant to adopt for the non-root bucket size.

Real and dummy elements. Each real element is of the form (k, v, ref), i.e., it not only contains
a key-value pair denoted (k, v), but also a reference ref := (pos, τ) containing two pieces of metadata:

1. a random position label pos ∈ {0, 1, . . . , N − 1} — this random position label is chosen
uniformly at random when the element is inserted through an Insert operation; and

2. a timestamp τ remembering that this pair (k, v) was inserted during the τ -th operation —
later τ will be included in inserted elements’ references to make sure that the references are
globally unique.

Henceforth we assume that a dummy element is of the form (k = ∞, v = ⊥, ref = ⊥). In
particular, a dummy element has the maximum possible key.

Definition 2 (Path invariant [42]). We maintain exactly the same path invariant as in Path
ORAM [39]: a real element with the position label pos must reside somewhere along the path from
the root to the leaf node identified by pos.

Subtree minimum. Additionally, each bucket B in the tree is always tagged with its subtree-min
M := (k, v, (pos, τ)), which denotes the minimum element contained in the subtree rooted at B.
Henceforth, if two elements have the same key k, we will break ties using the timestamp field τ .

Remark 4 (Non-root bucket capacity: provable vs. practical choices). For our mathematical
proofs to go through, we need to set non-root bucket’s capacity to be 5 or larger. However, for
practical implementation, we recommend a practical choice of 2 for the non-root bucket capacity.
Note that this is customary in the tree-based ORAM line of work — in all earlier works such as Path
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ORAM [39] and Circuit ORAM [42], the provable stochastic bounds are not tight in the constant;
and through simulation, one can observe that even smaller bucket sizes lead to exponentially sharp
tail bounds. For example, in Path ORAM [39] and Circuit ORAM [42], a bucket size of 4 or 5 is
in the formal theorem statements, but these works use a bucket size of 2 or 3 in implementation.
How to further tighten these constants in the stochastic proofs seems rather challenging and has
been left open since the beginning of this line of work.

3.2 Basic Operations

Throughout our construction, we assume that data contents are either freshly re-encrypted or
re-secret-shared when being written to external memory (see also Remark 3).

Bucket operations. Henceforth we assume that each bucket B supports two basic operations
both of which can be implemented obliviously in |B| = O(1) cost for non-root buckets and in |Broot|
cost cost for the root bucket — we will show later that |Broot| must be super-logarithmic in the
security parameter for the failure probability to be negligibly small for any polynomially bounded
request sequence:

1. B.Add(k, v, ref): add the tuple (k, v, ref) to the bucket B and throw an Overflow exception if
unsuccessful. This can be accomplished obliviously through a linear scan of the bucket, and
writing the tuple to a dummy location. For obliviousness, whenever a real element is encountered
during the scan, make a fake write, i.e., write the original element back. If no dummy location
was found during the scan, throw an Overflow exception.

2. B.Del(ref): delete an element with the reference ref from the bucket B if such an element exists.
If such an element exists, return the element; else return dummy. This can be accomplished
obliviously through a linear scan of the bucket, writing the original element back if it does not
have the reference ref; otherwise replacing it with dummy.

Path operations. We will need two types of path operations. Henceforth let P denote a path
in the tree identified by the leaf node’s index.

1. P.ReadNRm(ref). Read every bucket on the path P and if an element of the reference ref
exists, save its value in the CPU’s local cache and remove it from the path. This can be
accomplished by scanning through every bucket B on P from root to leaf and calling B.Del(ref).

2. P.Evict(). Eviction is an algorithm that works on a path, and tries to move real elements on
the path closer to the leaf while respecting the path invariant. We shall review Path ORAM’s
eviction algorithm shortly below and this is what we will adopt in our scheme too.

3. P.UpdateMin(). Whenever we operate on a path, the subtree-mins on the path need to
be updated using an UpdateMin procedure. This procedure can be accomplished in time
proportional to the path length as described below: for every bucket B on path P from leaf
to root, recalculate its subtree-min by taking the minimum of 1) the minimum element of the
current bucket B; and 2) the subtree-mins of both children.

Background: review of Path ORAM’s eviction. As mentioned, P.Evict() is an eviction
algorithm that operates on a path. In Path ORAM [39], the eviction algorithm takes the entire
path and tries to pack the elements on the path as close to the leaf as possible while respecting the
path invariant of every element.
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To achieve this, the CPU can locally perform the following algorithm after reading back the
path, where the root is assumed to be at the smallest level of the path P, a slot L in a bucket is
said to be empty if the slot currently contains a dummy element, and recall that each element’s
position label pos is encoded in the reference ref:

Path ORAM’s eviction algorithm [39]:

For bucket B ranging from the leaf to the root on P:

For every empty slot in L ∈ B:

If ∃ an element in P in a level smaller than B and moreover this element can legitimately
reside in B based on its position label pos:

Move this element to this the slot L.

3.3 Heap Operations

We assume that the priority queue maintains a counter denoted τ that records the number of
operations that have been performed so far, i.e., this counter τ increments upon every operation.
At any point of time, if a bucket throws an Overflow exception when trying to add an element, the
entire algorithm simply aborts with an Overflow exception.

Path Oblivious Heap:

• FindMin(): Let (k, v, ref) := the subtree-min of the root bucket Broot and return (k, v, ref).

• Insert(k, v):

1. Choose a random position label pos
$←{0, 1, . . . , N − 1}.

2. Call Broot.Add(k, v, (pos, τ)) where τ denotes the number of operations performed so far.

3. Pick two random eviction paths P and P ′ that are non-overlapping except at the root — the
two eviction paths can be identified by the indices of the leaf nodes.

4. Call P.Evict() and P.UpdateMin(); then call P ′.Evict() and P ′.UpdateMin().

5. Return the reference ref := (pos, τ).

• Delete(ref) where ref := (pos, τ ′):

1. Let P denote the path from root to the leaf node identified by pos;

2. Call P.ReadNRm(ref), P.Evict(), and P.UpdateMin().

• ExtractMin(): Let (k, v, ref) := FindMin() and call Delete(ref).

We shall prove the following theorem later in Appendix B.

Theorem 2 (Oblivious simulation of Fpq). Suppose that every non-root bucket has capacity at
least 5 and that the root bucket’s capacity is denoted by |Broot|. The above PQ algorithm is a
(1− ε)-oblivious simulation3 of Fpq for ε = T · e−Ω(|Broot|).

As a special case, suppose that all non-root buckets have capacity 5 and the root bucket’s capacity
|Broot| = ω(log λ), then the resulting scheme realizes an oblivious priority queue by Definition 1.

3Although our earlier formal definition of oblivious simulation assumes that the priority queue algorithm PQ does
not know T upfront, it is easy to extend the definition for a priority queue algorithm PQ that knows an upper bound
on T a-priori — basically, in RealPQ,A(1λ, N, T ), pass not only N to PQ as input, but also T .
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Proof. Deferred to Appendix B.

3.4 Asymptotical Efficiency

Clearly FindMin looks at only the root’s subtree-min label, and moreover each Delete, Insert,
and ExtractMin request consumes path-length amount of bandwidth. Suppose that the CPU
locally stores the root bucket, then it is not hard to see that to support each Delete, Insert,
and ExtractMin request, only O(logN) entries of the priority queue need to be transmitted.
Additionally relying on Theorem 2 to parametrize the root bucket’s size, we can now analyze the
scheme’s efficiency and security tradeoff as formally stated in the Theorem 3 below. Theorem 3
follows in a somewhat straightforward fashion from Theorem 2 through variable renaming and
augmented with a simple performance analysis — we present its proof nonetheless for completeness.

Theorem 3. Let N(λ) and T (λ) denote the a-priori upper bound on the number of elements in the
priority queue and the maximum number of requests respectively. Let D := |k|+ |v| be the number
of bits needed to represent an item of the priority queue; let w be the bit-width of each memory
word, and let C := d(D + log T )/we.

There is a suitable constant c0 such that if we instantiate the algorithm in Section 3 with
the root bucket capacity being |Broot| = c0 log 1

δ(λ) where 0 < δ(λ) < 1/T (λ), and a non-root

bucket capacity of 5, then the resulting scheme (1−Tδ)-obliviously simulates Fpq consuming O(C ·
(logN + log 1

δ )) words of CPU private cache; and moreover it completes each FindMin request in
O(C) bandwidth, and supports each Delete, Insert, and ExtractMin request consuming at most
O(C logN) bandwidth, measured in the number of words transmitted between CPU and memory.

Proof. Consider the algorithm presented in Section 3 that is parametrized with N and T , a non-
root bucket capacity of 5, and the root’s capacity being |Broot| := c0 · log(1/δ) where c0 is a
suitable constant such that the exp(−Ω(|Broot|)) failure probability in Theorem 2 is at most δ.
Now, the (1− Tδ)-oblivious simulation claim follows directly from Theorem 2. For the asymptotic
performance claims, observe that each FindMin request looks at only the root’s subtree-min label
and thus takes only O(C) time; and each Delete, Insert, and ExtractMin request visits O(1)
number of tree-paths where the root may be permanently cached on the CPU side; thus O(C logN)
bandwidth is required.

We want the failure probability to be negligibly small in λ as long as T is polynomially bounded
in λ. To achieve this we can set the root bucket’s capacity to be super-logarithmic in λ ensuring
that the per-request failure probability is negligibly small. We thus derive the following corollary.

Corollary 2 (Oblivious priority queue). Let C be defined in the same way as Theorem 3. For any
arbitrarily small super-constant function α(λ), for every T there exists an algorithm that realizes an
oblivious priority queue by Definition 1 supporting at most T requests, consuming O(C · (logN +
α(λ) log λ)) words of CPU private cache, and moreover the algorithm completes each FindMin
request in O(C) bandwidth, and each Delete, Insert, and ExtractMin request in O(C · logN)
bandwidth measured in number of words transmitted between the CPU and memory.

Proof. Follows in a straightforward fashion from Theorem 3 by letting the root bucket capacity |B| =
α(λ)·log λ. Now, for T = poly(λ), the failure probability is bounded by poly(λ)·exp(−Ω(α(λ) log λ))
which is negligibly small in λ as long as α(·) is super-constant.
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3.5 The Case of Unknown T

So far we have assumed that we know the maximum number of requests (denoted T ) a-priori since
the scheme needs to allocate enough space in each entry to store a timestamp of log T bits. It
is easy to remove this assumption and construct an oblivious priority queue that only needs to
know N a-priori but not T . Recall that we needed the log2 T -bit timestamp in the references only
to serve as a unique identifier of the element. Based on this idea, we will leverage an oblivious
priority queue and an oblivious stack [44].

1. Primary PQ: the primary PQ works just as before except that the originally log2 T -bit τ is
now replaced with a log2N -bit unique identifier. We will leverage an unconsumed-identifier
stack to ensure that every element existing in PQ receives an unconsumed identifer τ .

2. Unconsumed-identifier stack S: stores a list of unconsumed identifiers4 from the domain
{0, 1, . . . , N − 1}. Initially, S is initialized to contain all of {0, 1, . . . , N − 1}.

Now, for each PQ.Insert query, we call τ ← S.Pop to obtain an unconsumed identifier and τ
will become part of the reference for the element being inserted. Whenever PQ.ExtractMin or
PQ.Delete is called, let τ be part of the reference for the element being extracted or deleted. We
now call S.Push(τ) to return τ to the unconsumed pool.

In our unknown-T construction, the metadata stored in each entry is now of O(logN) bits
rather than O(log T ) bits for the earlier known-T case (note that in general, T ≥ N). We thus
obtain the following corollary where C is now redefined as C := d(D + logN)/we.

Corollary 3 (The case of unknown T ). Let D := |k|+|v| be the number of bits needed to represent an
item of the priority queue; let w be the bit-width of each memory word, and let C := d(D+logN)/we.

For any arbitrarily small super-constant function α(λ), there exists an algorithm that realizes
an oblivious priority queue by Definition 1 supporting an unbounded number of requests, consuming
O(C · (logN + α(λ) log λ)) words of CPU private cache, and moreover the algorithm completes
each FindMin request in O(C) bandwidth, and each Delete, Insert, and ExtractMin request in
O(C · logN) bandwidth measured in number of words transmitted between the CPU and memory.

Proof. We have described the construction in the paragraph before this corollary, where every in-
stance of known-T oblivious priority queue adopted satisfies Corollary 2. The performance analysis
follows in a straightforward fashion by observing that we can construct an oblivious stack (where
each element fits in a single memory word) with O(logN) bandwidth assuming O(logN+α(λ) log λ)
words of CPU private cache due to Wang et al. [44].

4 The Circuit Variant: Tighter Bounds and Applications in Multi-
Party Computation

So far, we presented an oblivious heap construction instantiated from the (non-recursive) Path
ORAM [39]. The resulting scheme (i.e., the Path-variant) requires that the CPU be able to locally
store and process path-length amount of data, i.e., a total of O(logN + log 1

δ ) of priority queue
elements where δ is the per-request failure probability (see Theorem 3). We recommend the Path-
variant for cloud outsourcing scenarios since it is reasonable to assume that the client can store
O(1) tree-paths; and by making this assumption, every priority queue request can be served in a
single roundtrip.

4In fact, for type-revealing security, even a non-oblivious stack would work. For type-hiding security (see Ap-
pendix D), however, we would need an oblivious stack that hides the type of operations.
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The Path-variant, however, is not the best candidate for a secure multi-party computation
scenario. Suppose that each priority queue entry fits in a single memory word of w bits, with
the earlier Path-variant, each priority queue request is supported with a circuit of size O(wL logL)
where L = O(logN+log 1

δ ) denotes the path length [42,43]. Specifically, the circuit size is dominated
by the eviction circuit; and implementing Path ORAM’s eviction algorithm as circuit requires
oblivious sorting on the path as previous works have shown [42,43], resulting in a size-O(wL logL)
circuit.

In this section, we describe a Circuit-variant where the eviction algorithm follows that of non-
recursive Circuit ORAM [42]. This variant overcomes the above two drawbacks in exactly the same
way how Circuit ORAM [42] overcomes the drawbacks of Path ORAM [39]:

1. it reduces the CPU’s private cache to O(1) words; and

2. in a multi-party computation scenario, the Circuit-variant results in optimal circuit size. Specif-
ically, assuming that each entry fits in one word of size w, then the circuit size for each priority
queue request is bounded by O(w · L) where L = O(logN + log 1

δ ) denotes the path length.

As earlier works have pointed out [24, 42], having small CPU cache is in fact important for
having small circuit size in multi-party computation. In a multi-party computation scenario, the
CPU’s private state is secret shared among multiple parties and the CPU’s computation must be
done through an expensive cryptographic protocol that models the CPU’s private computation as
a boolean or algebraic circuit; and moreover, this circuit must take all of the CPU’s private cache
as input. For this reason, if we adopt an algorithm with L amount of CPU cache, the circuit
representing CPU computation must have size at least L (but possibly more than L, e.g., the
Path-variant requires Θ(wL logL) circuit size).

4.1 Algorithm

Background on Circuit ORAM. Recall that Circuit ORAM is an improvement of Path
ORAM: Path ORAM’s eviction (see Section 3.2) requires that the CPU store and compute on
an entire path; Circuit ORAM devises a new eviction algorithm that avoids this drawback: specif-
ically, the eviction algorithm now can be evaluated by a CPU with O(1) words of private cache.
At a very high level, without going into algorithmic details, recall that Path ORAM’s eviction
algorithm is the most aggressive (i.e., greediest) one can perform on a path. By contract, Circuit
ORAM’s eviction algorithm is the greediest but subject to making only a single data-scan over the
path, from root to leaf (and additionally, O(1) number of metadata scans to prepare for the actual
data scan).

More specifically, Circuit ORAM [42]’s eviction algorithm in fact differentiates between two
types of paths5:

• If P is not a path where a ReadNRm operation has just taken place, then a full eviction is
performed where the CPU makes a single data scan over the entire path P from root to leaf,
and attempts to evict as greedily as possible subject to a single data scan (as mentioned, O(1)
metadata scans are performed first to prepare for the data scan).

5In this paper, we consider the variant of Circuit ORAM [42] with provable stochastic bounds on the overflow
probability. The Circuit ORAM paper in fact suggests a simplified version recommended for implementation, where
the partial eviction on the ReadNRm path is not performed. Although so far we do not know a formal stochastic
proof for this simplified variant, empirical evaluations show that this simplified variant has the same exponentially
sharp tail bound on the overflow probability as the provable variant.
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• If P is a path where a ReadNRm operation has just taken place, the eviction algorithm now
performs a partial eviction instead: in this case, eviction is performed on a segment of P from
the root to the bucket where an element has just been removed; for the remainder of the path P,
dummy eviction is performed.

The details of Circuit ORAM’s eviction algorithm are somewhat involved and we refer the
readers to the original Circuit ORAM paper [42] for a full-fledged description and various open-
source projects [1,2] for reference implementations. For the purpose of this paper, the details of the
eviction algorithm are not important — the reader may treat this part as a blackbox, and in fact
even our proofs need not open this blackbox since we reduce the probability of overflow to Circuit
ORAM’s probability of overflow.

The following fact is shown in the Circuit ORAM paper [42]:

Fact 1 (Efficiency of Circuit ORAM’s eviction algorithm). Given a path P containing L elements,
where each element can be encoded in C memory words, Circuit ORAM’s eviction algorithm can
be accomplished on P in O(C · L) bandwidth consuming only O(1) words of CPU private cache.

Furthermore, the eviction algorithm operating on P can be encoded as a boolean circuit of size
O(C · w · L) where w denotes the bit-length of each word.

The Circuit-variant. We are now ready to describe the Circuit-variant of our Path Oblivious
Heap algorithm. Essentially the algorithm is identical to the one described in Section 3, the only
difference being that whenever eviction is needed on a path, we employ Circuit ORAM’s eviction
algorithm instead of Path ORAM’s eviction algorithm.

Based on Circuit-variant we can derive the following theorem — note that here we simply state
the version with unknown T .

Theorem 4 (Circuit-variant with typical parameters). Let C,w be defined as in Corollary 3: C
denotes the number of words for storing each priority queue entry and w denotes the bit-length for
each word. For any arbitrarily small super-constant function α(λ), there exists an algorithm that
realizes an oblivious priority queue by Definition 1 supporting an unbounded number of requests,
consuming only O(1) words of CPU private cache, and moreover,

1. it completes each FindMin request in O(C) runtime and bandwidth, and each Delete,
Insert, and ExtractMin request in O(C · (logN +α(λ) log λ)) amortized runtime and band-
width;

2. for every request, the algorithm computes on and updates O(1) tree-paths, and the computation
performed can be represented as an O(Cw · (logN + α(λ) log λ))-sized boolean circuit.

Proof. Using exactly the same proof of Theorem 2 in Appendix B. Specifically, the proof of The-
orem 2 reduces Path Oblivious Heap’s overflow probability to that of Path ORAM, relying on
Theorem 7 that was proven in the Path ORAM paper [39]. As stated in Theorem 7, in fact the
same theorem holds for Circuit ORAM [42] too. Thus, we can identically prove Theorem 2 for the
Circuit-variant. Now, letting every non-root bucket be of capacity 5, letting the root bucket be of
capacity |B| = α(λ) log λ, we can conclude that the failure probability is negligibly small in λ as
long as T is polynomially bounded in λ.

It remains to show the performance statements: observe that FindMin examines only the
root’s subtree-min label, and every other request performs ReadNRm, Evict, and UpdateMin on
O(1) tree-paths. Clearly ReadNRm and UpdateMin takes time at most O(CL) on a word-RAM
with O(1) words of CPU private cache where L = O(logN +α(λ) log λ) is the path length; further,
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the ReadNRm and UpdateMin operations can be represented O(C ·w ·L)-sized boolean circuits. The
same also holds for Evict according to Fact 1. Therefore the stated performance analysis holds.

5 Applications

5.1 Path Oblivious Sort: Practical and Optimal Oblivious Sort

We say that an algorithm Sortm(1λ, ·) is a (1 − ε(λ))-oblivious sort algorithm, iff there exists a
simulator Sim such that for any input array I containing m elements,

Fsort(I),Sim(m)
ε≡ (O, addr) where (O, addr)← Sortm(1λ, I)

where Fsort is an ideal functionality that sorts the input I and outputs the result, and
ε≡ means

that the two distributions have statistical distance at most ε.
Given m elements each of the form (k, v), we can obliviously sort them as follows: 1) initiate an

oblivious PQ parametrized with a security parameter λ and the space-time parameters N = T = m;
2) insert each element sequentially into an oblivious priority queue by calling the Insert algorithm;
and 3) call ExtractMin() a total of m times and write down the outputs one by one.

Theorem 5 (Optimal oblivious sorting). Let D := |k|+|v| be the number of bits needed to represent
an item to be sorted; let w be the bit-width of each memory word, and let C := d(D + logN)/we.
Then, for any 0 < δ < 1 and any m, there exists a (1− δ) oblivious sort algorithm which consumes
O(1) words of CPU cache and O(Cm(logm+ log 1

δ )) bandwidth to sort m elements.

Proof. Deferred to Appendix C.1.

5.2 Oblivious Streaming Sampler with Applications to Distributed Differential
Privacy

A streaming sampler samples and maintains a random subset of k entries from an incoming stream,
without knowing how long the stream is a-priori. The machine that implements the sampler has
small space, e.g., it only has O(k) space whereas the entire stream may contain n� k entries.

Oblivious streaming sampler. In this paper we specifically care about an oblivious streaming
sampler which is an important building block in large-scale, federated learning applications as we
explain shortly afterwards. Below we first describe what an oblivious sampler aims to achieve, we
then motivate why it is an important building block in large-scale, privacy-preserving federated
learning. We shall first introduce the notion of an oblivious streaming sampler assuming a server
with secure processor such as Intel SGX. Then, we describe an alternative instantiation where the
secure processor is replaced with cryptographic multi-party computation.

Imagine that the incoming data stream is encrypted to the secure processor’s secret key, and the
sampled entries will reside in encrypted format in the server’s memory. In this way, the adversary
(e.g., the operating system on the server or a rogue system administrator) cannot observe the
contents of the stream nor the sampled entries. The adversary, however, can observe the memory
access patterns of the sampler. We would like to make sure that from the memory access patterns,
the adversary learns no information which entries have been sampled and stored — this property
is called obliviousness.

Of course, the secure processor can also be replaced by a cryptographic multi-party computation
protocol. For example, there are m servers, possibly run by different organizations, and the users
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secret share their data items among the m servers, forming a secret-shared stream. The m servers
will now perform a long-running multi-party computation protocol to implement the streaming
sampler, and all sampled entries will be secret-shared across the parties too. In this scenario,
similarly, we also would like to make sure that the access patterns to memory do not leak any
information about which entries have been sampled.

Application in distributed differential privacy. Companies like Google and Facebook have
been pushing for privacy-preserving federated learning. Specifically, they collect a stream of user
data, e.g., Google Chrome’s opt-in diagnostics feature collects information about whether users
have visited certain websites. The collected data stream will allow the service providers to perform
useful machine learning and statistical analysis to optimize their systems and provide better user
experience; however, the challenge is to achieve this while protecting each individual user’s privacy.
Specifically we shall consider differential privacy [14] which has become a de facto notion of privacy
in such applications.

Until recently, two primary approaches were suggested to achieve distributed differential privacy
in such applications:

• Local differential privacy. One näıve approach is a mechanism commonly called randomized
response (an improved variant of this was employed by Google Chrome in an effort called
RAPPOR [16]): basically, each user independently randomizes its own data: by adding
sufficient noise to its data, each user is responsible for ensuring differential privacy for itself.
This approach enables accurate analytics of simple function (e.g., linear functions and first-
order statistics) provided that enough randomized samples can be collected. However, for
learning more general functions, this approach may not provide sufficient accuracy.

• Central differential privacy. This approach relies on a trusted curator who is entrusted with
the cleartext data collected from users, the curator performs the statistical analysis adding
appropriate noise as necessary, and publishes the final (noisy) output that is guaranteed to
be differentially private. The central approach allows us to compute a much broader class
of functions with good accuracy, but having a trusted curator is an undesirable and strong
assumption. Although the trusted curator can in principle be emulated by a cryptographic
multi-party computation protocol, the cryptographic overhead is large, making it unfit for
large-scale, high-bandwidth scenarios such as those faced by Google and Facebook.

Recently, there has been growing interest in a new approach that aims to achieve differential
privacy in the so-called shuffle- or sample-model. Several recent papers [5,10,11,15,18,27] show that
if the incoming user data is either randomly shuffled or sampled, for a class of suitable functions,
users often can get away by adding much smaller noise to their data than a pure local mechanism
such as randomized response (for achieving a similar degree of privacy), and in some cases we can
even get a privacy-accuracy tradeoff similar to the central model, but without relying on a trusted
curator!

Because of the benefits of the shuffle- and sample- models, it has been raised as an interesting
practical challenge how to implement such a shuffler and sampler in practice for large-scale time-
series data — this open problem is currently being actively worked on by researchers in the space.
Note that no matter whether we adopt a sampler or shuffler, it is typically important that the
sampler or shuffler be done by a trusted manner: specifically, which entries have been sampled
or what permutation has been applied must be kept secret for the differential privacy analyses to
follow.
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In this paper, we show how to rely on an oblivious priority queue to implement such a privacy-
preserving sampler suitable for an emerging class of differential privacy mechanisms in the so-called
sample model. Note that although the solutions suggested require that the sampler be implemented
by either a secure processor or through cryptographic multi-party computation (MPC), implement-
ing a small and specialized task securely (either with secure processor or MPC) is typically much
more efficient than having to implement generic data analytics tasks with secure processor or MPC.

In a concurrent and independent work [37], Sasy and Ohrimenko also consider how to design an
oblivious sampler motivated by the same distributed differential privacy application — however,
their problem formulation is not in the streaming setting, and they adopt a security notion where
the adversary observes only a serialized list of memory accesses but not the CPU step in which
each access is made.

5.2.1 Formal Definition

More formally, consider an ideal functionality Fksample, which, upon receiving a stream S, outputs
a set of k randomly sampled items from S in a random order, where the sampling is performed
without replacement.

Assume that k is bounded by a fixed polynomial in the security parameter λ. An oblivious
streaming k-sampler henceforth denoted (O, addr)← OReservoirk(1λ, S) is a streaming RAM algo-
rithm which consumes only O(k) memory and makes a single pass over a stream S: the output O
contains k sampled items, and the notation addr denotes the ordered sequence of access patterns
of the algorithm over all |S| time steps.

We say that OReservoirk(1λ, ·) obliviously simulates Fksample iff the following holds: there is
a simulator Sim, such that for any stream S whose length is a fixed polynomial in the security
parameter λ, there is a negligible function ν(·) such that the following holds:(

Fksample(S), Sim(|S|)
) ν(λ)
≡

(O, addr) where (O, addr)← OReservoirk(1λ, S)

In the above,
ν(λ)
≡ means that the two distributions have statistical distance at most ν(λ).

5.2.2 Warmup: the Famous Reservoir Sampling Algorithm

A beautiful and well-known Reservoir sampling algorithm by Vitter [41], commonly referred to
as Algorithm R, allows us to realize a streaming sampler with only O(k) memory — but in the
prior streaming algorithms line of work was not concerned about preserving privacy. Algorithm R
basically works as follows: for the first k incoming items, store all of them; when the m-th item
arrives where m > k, with probability 1/m, overwrite an already stored item, selected at random,
with the new item.

Now, the most straightforward implementation of Algorithm R would select an already stored
item at random and access that position directly; but this leaks information of the type: item i and
item j cannot both be stored, if the algorithm accessed the same memory location during step i and
step j. A näıve way to make the algorithm oblivious is to make a linear scan over the entire stored
array of size k, and whenever the index to replace is encountered, write the new element; otherwise
simply pretend to make a write (but write the old contents back). To ensure full obliviousness,
even if the newly arrived item is to be thrown away, we still need to make a linear scan through
the k-sized array. In this way, processing every item in the stream requires O(k) time, and this can
be rather expensive, if say, k =

√
n for some large choice of n.
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5.2.3 Our Construction

We can rely on an efficient oblivious priority queue PQ, preconfigured with the maximum capacity
k, to make Algorithm R oblivious.

• Whenever a new item arrives, choose a random label with ω(log λ) bits and mark the item
with this label. This label will be used as the comparison key for the oblivious priority queue
PQ.

• For each m ≤ k, when the m-th item arrives, after choosing a random label for the item,
simply call PQ.Insert and insert it into the priority queue.

• For any m > k, when the m-th item arrives, first choose a random label for the item; next, flip
a random coin ρ that is 1 with probability 1/m and 0 otherwise; and finally, do the following:

– if ρ = 1, call PQ.ExtractMin to remove the item with the smallest label, and then call
PQ.Insert to add the new item;

– else, call PQ.ExtractMin to return and remove the item with the smallest label, and
then call PQ.Insert to add back the same minimum element just extracted.

• Finally, when the stream S ends, call the PQ.ExtractMin algorithm k number of times to
extract all k elements and write down each extracted element one by one as the output.

If we adopt our Circuit-variant in the above algorithm with the root bucket size set to |Broot| =
Θ(1/δ), then on a word-RAM with O(1) words of CPU cache, every item in the stream can be
processed in O(log k + log 1

δ ) runtime.

Theorem 6 (Oblivious streaming sampler). Suppose that PQ realizes an oblivious priority queue
by Definition 1. Then, the above algorithm obliviously simulates Fsample.

Proof. Deferred to Appendix C.2.

6 Concrete Performance in Outsourcing

6.1 Experimental Setup

Consider a cloud-outsourcing setting where a client with small local cache stores a dataset, organized
according to a priority queue, on an untrusted server. In this section, we refer to the RAM machine’s
CPU as the client and the external memory as the server. We built a Java simulator of our algorithm
which runs on a single machine which simulates both the client and the untrusted storage.

Metric. We measure the number of bits transferred between the client and the untrusted storage
server. Earlier in Section 1.2, we have explained why this is the most suitable metric for a cloud
setting and adopted by almost all prior works on ORAM and oblivious algorithms for cloud out-
sourcing [23,35,36,38,45]. We compare the bandwidth blowup of our oblivious algorithms relative
to insecure baselines, that is, the ordinary Binary Heap and Merge Sort.
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(a) Payload = 64 bits
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(c) Payload = 256 bits

Figure 1: Concrete Performance for Cloud Outsourcing. The orange curve represents
Path Oblivious Heap where the client performs path-caching. The blue curves is when our Path
Oblivious Heap performs path+treetop caching to match the client storage of Jafargholi et al. [26].
The green and the maroon curves represent prior works by Jafargholi et al. [26] and Wang et al. [44]
respectively. In all figures, the comparison key is 32 bits and the per-request failure probability is
at most 2−80.

Concrete instantiation and parameters. We use the Path-variant that is more suitable for
cloud outsourcing. As mentioned in Remark 4, instead of choosing a bucket size of 5 needed
in the theoretical proof, we choose a bucket size of 2 for our evaluation. We also adopt standard
optimizations that have been suggested and adopted in earlier works [19,39,42]. On each insertion,
we perform 1 read-path eviction [39] and 1 deterministic reverse-lexicographical order eviction
which was initially suggested by Gentry et al. [19].

We apply the standard methodology for determining concrete security parameters for tree-based
ORAMs [39, 42] and oblivious data structures [44] — this approach is commonly adopted in this
entire line of work since all known theoretical tail bounds are not tight in the constants. Due to the
observation that time average is equal to ensemble average for regenerative stochastic processes,
we simulate a long run containing more than 3 billion accesses, and plot the stash size against log
of the failure probability. Since by definition, we cannot simulate “secure enough” values of λ in
any reasonable amount of time, we simulate for smaller ranges of λ and extrapolate to our desired
security parameter, i.e., a failure probability of 2−80 per request. Our simulation results show that
the root bucket is smaller than 20 for achieving a per-request failure probability of 2−80.

In our evaluation, N = 232, and each element has a 32-bit key and varying payload sizes. We
consider two natural choices of client-cache sizes for our algorithm:

• Path caching. Here we assume that the client can cache a single tree-path plus one additional
subtree-min label (of a sibling node). In total, the client caches at most 20 + 2 logN entries and
at most logN + 2 subtree-min labels.

• Path + treetop caching. In this case, we assume that in addition to caching roughly one path
(as noted above), the client additionally caches between 6 to 7 smallest levels. This setting is for
comparison with Jafargholi et al. [26]. As we explain below, since their algorithm requires larger
client-side storage to be practically efficient, when comparing with them we tune our algorithm
to have a matching client-side storage.
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Figure 3: Concrete Performance for MPC. The
blue curve represents Path Oblivious Heap (the circuit-
variant) The green and the maroon curves represent prior
works by Jafargholi et al. [26] and Wang et al. [44] respec-
tively. In all figures, the comparison key is 32 bits and
the per-request failure probability is at most 2−80.

Table 1: Asymptotic circuit size for various schemes in the MPC setting. |k| denotes
the key size, |v| denotes the payload size, and N denotes the total capacity of the priority queue.
The last column is the circuit size for typical parameters for ease of understanding.

Scheme Circuit size
Circuit size for |k| = |v| =
O(logN), logN ≤ log 1

δ

Wang et al. [44] O((logN · (|k|+ logN) + |v|)(logN + log 1
δ )) O(log2N log 1

δ )
Jafargholi et al. [26] O((|k|+ |v|) · (logN + log 1

δ ) · log log 1
δ ) O(logN log 1

δ log log 1
δ )

Path oblivious heap
(circuit-variant)

O((|k|+ |v|+ logN) · (logN + log 1
δ )) O(logN log 1

δ )

6.2 Evaluation Results

In the simulation, we assume that N elements have already been inserted into the priority queue.
We then consider a sequence of requests that contains a sequence of requests containing a repetition
of Insert, ExtractMin, DecreaseKey operations alternating in this fashion.

In our simulation, we consider the variant of Path Oblivious Heap with stronger, type-hiding
security (see Appendix D) i.e., hiding not only the contents of the items inserted into the priority
queue, but also the request type as well. We compare our algorithm with two prior works, the
oblivious priority queue construction by Wang et al. [44], and the more recent construction by
Jafargholi et al. [26]. We measure the number of bits transferred between the client and server,
and we consider the bandwidth blowup relative to an insecure baseline, that is, the popular binary
heap.

The work by Jafargholi et al. [26] has good practical performance only when the client can store
super-logarithmically many entries. More concretely, their algorithm needs to perform maintainance
operations called PushUp and PushDown, which operates on 3 buckets at a time. To have good
practical performance, the client needs to be able to cache at least 3 buckets since otherwise
oblivious sorting will be necessarily within the triplet of buckets. The bucket size is related to the
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security parameter. From the analysis in their paper, and through a more precise simulation of
their binomial tail bound (which is tighter than the Chernoff approximation stated in their paper),
we determine that their bucket size needs to be 536 to attain a per-request failure probability of
2−80. To be fair, we configure all algorithms, including the insecure binary heap, Wang et al. [44],
as well as our algorithm to employ roughly the same amount of client-side cache.

Bandwidth cost. Figure 1 shows the bandwidth results. In this figure, the orange curve is when
the client performs path-caching. The blue curve corresponds to the case when Path Oblivious
Heap is configured with the same amount of client storage as the prior work Jafargholi et al. [26],
fixing the per-request failure probability to be 2−80 — through our calculation, this means that our
algorithm additionally caches the smallest 6 to 7 levels of the binary tree.

For the stronger notion of type-hiding security, the results show that our algorithm is only 3× to
7× more expensive than the insecure binary heap depending on the ratio of the payload size w.r.t.
metadata size. Although not shown in the figure, we note that if hiding the request type is not
needed, our algorithm will enjoy further speedup: specifically, ExtractMin and Delete requests
will be 2× faster since only one path is visited during each ExtractMin whereas DecreaseKey and
Insert requests will visit two paths. For all data points we considered, our algorithm outperforms
prior works by 1-2 orders of magnitude.

Among the oblivious algorithms evaluated, Wang et al. [44] is a logarithmic factor slower than
our algorithm and that of Jafargholi et al. [26], although for most of the scenarios we considered
in the evaluation, Wang et al. [44] has better concrete performance than Jafargholi et al. [26],
especially when either N is small or the payload is large.

Number of round trips. We also evaluate the number of roundtrips incurred by our scheme
in comparison with existing schemes, and the result is depicted in Figure 2. Wang et al. [44]
incurs logarithmically many roundtrips due to the recursion in the algorithm; in comparison, our
algorithm incurs a single roundtrip per priority-queue request, assuming that the client can store
O(1) tree-paths. Basically in our algorithm, the client can fetch the at most 1 ReadNRm and at
most 2 Evict paths altogether, along with the relevant metadata from sibling nodes necessary for
the UpdateMin operation; now, the client locally updates these paths and writes the result back to
the server in one round-trip.

We did not plot the number of roundtrips for Jafargholi et al. [26] since every now and then,
their scheme incur a worst-case bandwidth cost of Θ(N), and thus their number of roundtrips can
be almost linear in N in the worst case assuming that the client can store only poly-logarithmically
many entries (the curve will not be in the visible area of our plot if we had plotted it).

7 Concrete Performance in MPC

We next evaluate our scheme’s concrete performance in secure multi-party computation (MPC)
scenarios.

Schemes to compare with. We compare the cost incurred for MPC for Wang et al. [44],
Jafargholi et al. [26], and our scheme. The asymptotic circuit sizes incurred by these schemes are
depicted in Table 1. Assuming that the key size is at least logN bits, then roughly speaking, our
scheme asymptotically outperforms Wang et al. [44] by a logarithmic factor, and we outperform
Jafargholi et al. [26] by a log log factor. Although Wang et al. [44] is asymptotically worse than
Jafargholi et al. [26], as our evaluation results show, Wang et al. [44] outperforms Jafargholi et
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al. [26] in practice and in this sense, Wang et al. [44] represents the state-of-the-art in terms of
concrete performance.

Setup and metrics. As mentioned, the empirical state-of-the-art is an earlier work by Wang et
al. [44] (CCS’14) where they evaluated the concrete performance of their oblivious priority queue
scheme in a secure multi-party computation scenario. We adopt the same experimental setup and
evaluation metrics as Wang et al. [44] to best contrast with prior work.

Like Wang et al. [44], we consider an encrypted database scenario, where Alice stores the
encrypted, oblivious priority queue, and Bob comes with the priority queue requests. After each
query, Alice obtains the new state of the database, without learning the request Bob has performed,
nor the answer.

We use an open-source, semi-honest garbled circuit backend called FlexSC [1]. As Wang et
al. [44] point out, the bottleneck is the cost of generating and evaluating garble circuits; therefore,
the number of symmetric encryptions (AES) is an indicative performance metric. The metric is
also platform independent which facilitates reproducibility of the result. We note that modern
processors with instruction-level AES support can compute 108 AES-128 operations per second.
Just like Wang et al. [44], our evaluation assmes that the oblivious data structure is already set up
in a preprocessing phase; and our evaluation focuses on the online cost per request.

Concrete instantiation and parameters. We use the Circuit-variant for our MPC-related
evaluations. We adopt the same practical optimizations as suggested in the original Circuit ORAM
work [42]: we choose a bucket capacity of 2 although the theoretical proofs need to assume a larger
constant; we do not perform eviction on the path where an element has been extracted; and we
perform two evictions based reverse-lexicographical ordering per request. As mentioned, in the
tree-based ORAM and oblivious data structure line of work, the variants with provable stochastsic
bounds always perform a constant factor worse than the schemes that have been implemented
and are known to enjoy the best empirical performance. Again, we determine concrete security
parameters using a standard methodology detailed in Section 6 — but this time we do it with
Circuit ORAM’s eviction algorithm. For a bucket size of 3 and using a reverse-lexicographical
order for choosing eviction paths, we found that a root-bucket size of 33 is sufficient for achieving
2−80 security.

Evaluation results. We show the results in Figure 3. When the database contains 230 entries,
our scheme results in 7× to 8× fewer number of symmetric encryptions than the prior state of the
art [44]. Since our improvement is asymptotic, the speedup will become greater with larger data
sizes.
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A Additional Background on Non-Recursive Path ORAM and
Circuit ORAM

In this section, we review the (non-recursive) Path ORAM [39] and the Circuit ORAM [42] al-
gorithm. The two algorithms are almost identical with the primary difference being how path
evictions are performed. Path ORAM’s eviction algorithm requires that the CPU be able to store
an entire tree path (otherwise oblivious sorting would be required over the path). In comparison,
Circuit ORAM’s eviction can be performed by a CPU with a single register.

Data structure. A non-recursive Path ORAM [39] or Circuit ORAM [42], parametrized by a
security parameter λ and a capacity parameter N , is formed as a binary tree with N leaves, where
each node in the tree is called a bucket. To achieve a security failure probability of negl(λ), the
root bucket Broot should be large enough to store ω(log λ) blocks, whereas every internal bucket B
holds a suitable constant number of blocks. All blocks stored in the tree are either real or dummy:
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• A real block is of the form (addr, data, pos) where addr dentoes addr ∈ {0, 1, . . . N−1} denotes
the logical address of the block; data denotes an arbitrary payload string — we assume that
the pair (addr, data) can fit in a single block; and pos ∈ {0, 1, . . . , N − 1} denotes the position
label for the block.

• A dummy block is of the form (⊥,⊥,⊥).

Path invariant. The data structure always respects the following path invariant: a real block
whose position label is pos must reside on the path from the root to the leaf numbered pos.

Algorithms. The (non-recursive) Path ORAM or Circuit ORAM supports the following opera-
tions:

pos← Insert(addr, data):

1. Pick a random position label pos ∈ {0, 1, . . . , N − 1} and call Broot.Add(addr, data, pos);
where Broot.Add can be implemented identically as described in Section 3. Note that if
the bucket B is already fully occupied and there is no room to successfully perform the
addition, an Overflow exception is thrown.

2. Pick two random eviction paths P and P ′ that are non-overlapping except at the root
bucket — note that the paths may be identified by the indices of the leaf nodes. Now,
call P.Evict() and P ′.Evict(). We will discuss the path eviction algorithsm in more detail
shortly in the paragraph “Path eviction”.

3. Return pos;

data← Read(addr, pos):

Assume: pos must be the label returned by Insert when the block at address addr was
added; moreover this block must not have been removed since it was added.

1. For each bucket B from the root to the leaf identified by pos: sequentially scan through
the bucket B:

• when addr is encountered, remember the data field in the client’s local cache and
and replace the block with dummy block;

• else write the original block back for obliviousness.

2. Call P.Evict() where P is the path defined by pos.

3. Return data.

Path eviction. In Path ORAM, the path eviction algorithm (denoted Evict) works as follows:
the CPU fetches the entire path into its local registers and locally computes a new path as follows:
pack all real blocks on the path as close to the leaf as possible while respecting the path invariant.
Once the new path has been computed, the CPU writes the entire path back to memory.

One can now see that Path ORAM’s eviction algorithm requires that the CPU cache the entire
path including the super-logarithmically sized root bucket (otherwise expensive oblivious sorting
must be applied over the eviction path). Circuit ORAM [42] improves upon Path ORAM and
allows a CPU with O(1) words of private cache to perform the eviction, making only O(1) linear
scans over the path. In this way, even with O(1) CPU registers, Circuit ORAM’s eviction algorithm
completes in in O(|Broot| + logN) time, i.e., proportional to the path length. We refer the reader

26



to Section 4 and the Circuit ORAM [42] paper for the details of its eviction algorithm. Note that
Circuit ORAM’s eviction algorithm differs slightly between a Read path where an element has just
been removed, and a non-Read path selected for eviction.

Stochastic bounds. Consider an adversary A that interacts with a challenger denoted C and
adaptively submits a sequence of requests either of the form (Insert, addr, data) or of the form
(Read, addr). It is guaranteed that for a Read request, a conforming adversary A always supplies
an addr that has been added (and has not been removed since its addition).

• Whenever C receives a request of the form (Insert, addr, data) from A, it simply calls Path
ORAM’s (or Circuit ORAM’s) pos ← Insert(addr, pos, data) algorithm and records the pos
that is returned.

• Whenever C receives a request of the form (Read, addr) from A, it finds out the correct position
label pos for addr and calls Path ORAM’s (or Circuit ORAM’s) data ← Read(addr, pos)
algorithm and returns data to A.

• No matter which query C, at the end of the query C returns to A the access patterns made
by the Path ORAM (or Circuit ORAM) algorithm.

The following theorem holds for both Path ORAM and Circuit ORAM (with different constants
inside the Ω-notation), and the proofs are presented in the respective papers [39,42]:

Theorem 7 (Overflow probability for Path ORAM [39] and Circuit ORAM [42]). Assume that the
Path ORAM or Circuit ORAM scheme is parametrized with a non-root bucket size of 5, and a root
bucket size denoted |Broot|. For any conforming adversary A issuing T queries, the probability that
the above experiment encounters Overflow is upper bounded by T · exp(−Ω(|Broot|)).

B Oblivious Simulation: Proof of Theorem 2

We now prove Theorem 2. Since ExtractMin is implemented by FindMin and Delete, and our
current security definition is willing to reveal the type of operations, without loss of generality
in our proofs it suffices to consider only three types of requests: FindMin, Insert, and Delete.
Observe also the following:

• FindMin has a deterministic access pattern;

• the access pattern of Insert is fully determined by the choice of the two eviction paths
ρ, ρ′ ∈ {0, 1, . . . , N − 1}; and

• the access pattern of Delete(ref) where ref := (pos, τ) is fully determined by the position
label pos contained in the ref.

Modified notion of access pattern. For convenience, in our proof, we will use a modified
notion of access pattern for our real-world algorithm:

• the access pattern of FindMin is ∅;

• the access pattern of Insert is defined by the choice of the two eviction paths ρ, ρ′ ∈
{0, 1, . . . , N − 1}; and
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• the access pattern of Delete(ref) where ref := (pos, τ) is defined by pos.

We now consider an algorithm PQ∞ which is the same as the real-world algorithm PQ but with
unbounded buckets. Recall that we will use the modified notion of access pattern for PQ∞. Under
this modified notion of access pattern, we first show that PQ∞ is a perfectly oblivious simulation
of Fpq.

Lemma 1. Under the modified notion of access pattern, PQ∞ is a 1-oblivious simulation of Fpq.

Proof. The simulator Sim is defined in the most obvious manner: upon receiving findmin output
∅; upon receiving insert, output two random eviction paths ρ, ρ′ ∈ {0, 1, . . . , N − 1} that are non-
overlapping except at the root; upon receiving delete, output a random number from {0, 1, . . . , N−
1}.

To see why the adversary’s views in IdealA and RealPQ∞,A are identically distributed, we make
the following observations:

Fact 2. A always receives the correct answer upon a findmin request in the experiment RealPQ∞,A.

Proof. In the experiment RealPQ∞,A, the challenger C always correctly translates the ideal-world
and real-world references. If so, it is not too hard to see that PQ∞ always returns the correct
minimum element upon FindMin — this is because our algorithm guarantees that all nodes’
subtree-min are correctly maintained at the end of each request.

Therefore, to prove Lemma 1, it suffices to show that the simulated access patterns output by
Sim are identically distributed by the access patterns of PQ∞. Notice that upon an insert query,
no matter in RealPQ∞,A or IdealA, the adversary always sees two fresh random numbers from
{0, 1, . . . , N − 1} even when conditioned its view so far in the experiment. Now consider a delete

query and suppose that A wants to delete an element inserted at time τ :

• In the experiment RealPQ∞,A, the adversary A sees the random path chosen for the element
inserted at time τ , and this random choice was made earlier at time τ ;

• In the experiment IdealA, the adversary A sees a random path chosen right now by Sim.

It is not hard to see that even in the experiment RealPQ∞,A, upon a delete query and con-
ditioned on the adversary’s view so far, the random path revealed is uniform at random from the
range {0, 1, . . . , N − 1} — specifically, notice that the adversary’s view so far does not depend on
the random choice made earlier at time τ .

Lemma 2 (Probability of Overflow). For any conforming adversary A, in the real-world experiment
RealPQ,A, an Overflow exception is encountered with probability at most T · exp(−Ω(|Broot|)).

Proof. If there is a conforming adversary A that can cause RealPQ,A to encounter Overflow with
probability ν, we can easily construct an adversary A′ that cause the (non-recursive) PathORAM
to encounter Overflow with probability ν too. Specifically,

• A′ invokes a non-recursive PathORAM parametrized also with N and λ — note that in the
binary tree of PathORAM every bucket has the same capacity as the corresponding node in
our PQ algorithm.

• Furthermore, A′ internally maintains a correct priority queue, and upon any findmin query
from A it always returns the correct answer to A.
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• Whenever A submits findmin, A′ returns the ∅ access patterns to A;

• Whenever A submits an insert request, A′ may arbitrarily choose this element’s logical
address addr to be any fresh address from the range {0, 1, . . . , N − 1} that is different from
the address of any element inserted but not extracted so far; now A′ submits a (Insert, addr, ∗)
request to its own challenger where ∗ denotes an arbitrary payload string which we do not
care about. As a result, A′ obtains the PathORAM’s access patterns that are fully determined
by two eviction paths P and P ′, A′ returns these paths’ identifiers to A.

• Whenever A issues a delete request on an element inserted at time τ , A′ finds out the correct
logical address addr of this element and submits a (Read, addr) request to its challenger. As a
result, A′ obtains the PathORAM’s access patterns that are fully determined by a read path,
A′ returns this read path’s identifier to A.

Now, the experiment RealPQ,A is fully determined by the random coins ~ψ consumed by A and
the random coins ~µ consumed by PQ. If the execution of RealPQ,A determined by (~ψ, ~µ) encounters
overflow, the execution of the above experiment determined also by (~ψ, ~µ) — where ~ψ denotes A’s
random coins and ~µ denotes PathORAM’s random coins — will also encounter overflow.

Thus, the lemma follows directly from Theorem 7 of Appendix A.

We can now prove Theorem 2. From Lemma 1 and Lemma 2 we have that PQ is a (1 − ε)-
oblivious simulation of Fpq under the modified notion of access patterns. Since the modified access
patterns and the original accesses patterns have a one-to-one correspondence, we conclude that PQ
is a (1− ε)-oblivious simulation of Fpq under the original notion of access patterns too.

C Deferred Proofs for Applications

C.1 Deferred Proofs for Oblivious Sort

We now prove Theorem 5. We can construct a simulator Sim′ by leveraging PQ’s simulator de-
noted Sim. Our simulator Sim′ calls Sim(1λ, N, insert) for n number of times and then calls
Sim(1λ, N, extractmin) for n number of times, and outputs the sequence of access patterns.

We first consider a hybrid execution denoted Hyb which replaces the PQ in the algorithm with
FPQ and outputs the resulting output array and the simulated access patterns output from Sim′.
By the definition of oblivious simulation, the real-world execution (i.e., joint distribution of output
and real-world addresses) has negligible statistical distance from Hyb. The proof now follows by
observing that the output of Hyb is identically distributed as the ideal-world execution.

C.2 Deferred Proofs for Oblivious Streaming Sampler

We now prove Theorem 6. Let Sim be the simulator for PQ. Let Sim′ denote the following simulator:
when the m-th item arrives:

• if m ≤ k, output the access pattern for writing down a label of ω(λ) bits for the new item,
and call and output what Sim(1λ, N, insert) outputs;

• else if m > k, output the access pattern for writing down a label of ω(λ) bits for the new
item, call Sim(1λ, N, extractmin), followed by Sim(1λ, N, insert), and output the respective
outputs;

• finally, when the stream ends, call Sim(1λ, N, extractmin) for a total of k times and output
the respective outputs.
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Hyb1. Consider a hybrid execution where we replace PQ with the ideal functionality Fpq. Let
Real denote the joint distribution of the real-world output and the memory access patterns; let
Hyb1 denote the joint distribution of the output from the hybrid execution, and the simulated
memory access patterns output by Sim′. Due to the definition of oblivious simulation, Real and
Hyb1 have negligible statistical distance.

Hyb2. Consider the following hybrid where the incoming stream is processed by an ideal func-
tionality FAlgR which internally executes the Algorithm R [41] on the incoming stream, and when
the entire stream is all consumed, it outputs the stored items in a random order. Let Hyb2 denote
the joint distribution of the output from FAlgR in this hybrid, and the simulated memory access
patterns output by Sim′.

Conditioned on no label collision, then in Hyb1, every time an Extract request is made, an
independent random element existing in the heap is extracted. Therefore, the distribution Hyb1

conditioned on no label collisions is identical to that of Hyb2. Since the labels are ω(log λ) bits
each, the probability of having label collisions is negligibly small since T is polynomially bounded
in λ. Hyb1 and Hyb2 have negligible statistical distance.

Ideal. Now consider the ideal-world execution and let Ideal denote the joint distribution of the
output from Fsample in the ideal-world execution, and the simulated memory access patterns output
by Sim′. Vitter [41] proved that running Algorithm R (i.e., FAlgR) on the stream will produce
the same output distribution as running Fsample on the stream. Therefore, Hyb2 and Ideal are
identically distributed.

Summarizing the above, we conclude that Real and Ideal have negligible statistical distance
which implies the theorem.

D Achieving Type-Hiding Security

So far our algorithm hides the contents of the items inserted into the priority queue but does not
hide the type of the requests. Recall that in our security definitions earlier in Section 2.2, the
simulator in the ideal world receives the sequence of request types (but not the actual requests). In
practice, sometimes it is desirable to consider a stronger notion of security where we additionally
require that the request types must be hidden too. Formally, we can modify the security definition
in Section 2.2: now the ideal-world simulator no longer receives the sequence of request types but
only an upper bound on space N and the length of the request sequence T .

It is easy to additionally hide the type of requests too. Basically, for every request, say
ExtractMin, we can make dummy accesses that emulate the access patterns of all other requests,
including Insert, FindMin, and Delete, and run the real algorithm ExtractMin. We do the
same for every type of request — note that we need to run the algorithms, fake or real, in a fixed
order. With this modification, the cost of Insert, Delete, and ExtractMin blow up by only a
constant factor; and FindMin now incurs logarithmic cost too (instead of constant).

Remark 5. As a practical optimization, one can take the smallest super-sequence of the access
patterns of all types of requests, and incur only this super-sequence access patterns for every request;
doing either useful or dummy work with each physical access depending on what the request is.
Since there are only constant types of requests, this super-sequence over all request types can be
identified a-priori through exhaustive search; moreover, in comparison with the request with the
longest access pattern, the super-sequence access pattern is only O(1) longer.
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Remark 6. For the unknown-T case (see Section 3.5), we need to push or pop from the unconsumed-
identifier stack depending on the type of the request, note that the oblivious stack by Wang et al. [44]
can easily support push-dummy or pop-dummy operations to emulate the access patterns of a push
or pop operation without performing any real work.

E Concrete Performance for Oblivious Sorting

We now present concrete performance for oblivious sorting considering a cloud outsourcing scenario.

E.1 Optimizations for Path Oblivious Sort

In our experiment, we performed the following straightforward optimizations to the basic Path
Oblivious Sorting algorithm. It is easy to see that these modifications do not break security. Recall
that the algorithm has an Insert phase during which we insert n elements into a Path Oblivious
Heap, and an ExtractMin phase during which we extract the minimum element from the heap
one by one.

1. During the Insert phase, we do not update the subtree-min labels.

2. After all n elements are inserted, we calculate all tree nodes’ subtree-min labels.

3. During the ExtractMin phase, do not perform eviction but update the subtree-min labels
on the read path.

It is not hard to see that these optimizations do not change our provable guarantees since it
does not introduce extra overflow in comparison with the unoptimized version for every randomness
tape adopted by the algorithm.

E.2 Evaluation Results

We measure the bandwidth blowup relative to an insecure baseline, that is, Merge Sort.

Results. Figure 4 shows our simulation results and comparison with the de facto implementation
choice bitonic sort [6]. In this figure, the solid lines show the performance of Path Oblivious Sort
whereas the dotted line shows the performance of bitonic sort. We simulated three variants of Path
Oblivious Sort:

1. the näıve variant that uses Path Oblivious Heap as a blackbox (see Section 5.1) with path-
caching;

2. an optimized variant described in Appendix E.1, also with path-caching; and

3. an optimized variant with path+treetop caching to match the client-side storage of Jafargholi
et al. [26];

The figure shows that when the payload is much larger than the comparison key, our Path
Oblivious Sort algorithm has only 6× bandwidth blowup relative to the insecure Merge Sort; and
has about 4.5× bandwidth blowup relative to Merge Sort if the client caches the smallest 6 ∼ 7
levels of the tree.
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(a) Payload = 32 bits
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(b) Payload = 256 bits
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(c) Payload = 2048 bits

Figure 4: Concrete Performance for Path Oblivious Sort. The green and orange curves
represent Path Oblivious Sort (with or without practical optimizations) where the client performs
path-caching. The blue curve represents Path Oblivious Sort when the client performs path+treetop
caching to match the client storage of storage as Jafargholi et al. [26]. We did not draw the curve
for Jafargholi et al. [26] since it performs worse than bitonic sort for the parameters we simulated
and thus the curve is outside the chart’s visible region. In all figures, the comparison key is 32 bits
and the per-request failure probability is at most 2−80.

Comparison with bitonic sort. In our simulations, the break-even point w.r.t. bitonic sort is
between n = 27 to n = 215 depending on the payload6 and comparison key ratio. From this figure,
we can see that bitonic sort is a logarithmic factor worse asymptotically in comparison with our
algorithm.

Note that for our algorithm, if the bandwidth were exactly cn log n· (key size + payload size)
for some constant c, then the lines should be horizontal. In reality they are not horizontal because
the our algorithm has some metadata such as the position label (whose size grows proportional to
log n). The slight positive slope of our algorithms’ curves stem from the fact that the metadata
ratio becomes slightly larger as log n increases. As expected, when the payload to metadata ratio
becomes large, our curves become flatter.

In terms of number of round-trips, our Path Oblivious Sort algorithm requires O(n) number of
round-trips assuming that the client can store at least one tree-path — in fact, under logarithmic
client-side storage, Bitonic sort incurs asymptotically logarithmically more roundtrips than our
algorithm. However, Bitonic sort has fewer roundtrips when the client storage is larger. As Chan
et al. [8] show, Bitonic sort can be implemented O((n/M) · log2(n/M)) number of roundtrips where
M denotes the number of entries the client can locally store. In this sense, our Path Oblivious Sort
algorithm is preferrable when the network’s round-trip latency and the client-side storage are both
small, i.e., when the total bandwidth consumed becomes the dominant metric.

Comparison with Jafargholi et al. [26]. We use the simple (and more efficient) version of Ja-
fargholi et al. [26]’s oblivious priority queue algorithm (supporting only Insert and ExtractMin)
to realize oblivious sort. As mentioned earlier, for their algorithm to have good practical perfor-
mance the client must be able to cache 3 buckets at a time, and each bucket needs to store roughly
536 entries to obtain a per-request failure probability of 2−80. Using path+treetop caching, we can
tune our local storage to match theirs as represented by the blue curve in Figure 4.

Under this setting, their algorithm has roughly 96× slowdown relative to Merge Sort whereas

6Note that one cannot just sort the comparison key and later on re-arrange the payload accordingly, since näıvely
re-arranging the payload leaks information. The oblivious sorting must be applied to the payload too.
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our algorithm achieves roughly 4.5× to 6× slowdown relative to Merge Sort depending on how
large the payload is. For the range of N simulated, Jafargholi et al. [26]’s never broke even with
bitonic sort — even though the latter is asymptotically worse its practical performance is better
for the range of N we simulated. For this reason, we did not plot their algorithm in Figure 4 (it
would be outside the chart’s visible region).
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