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Abstract—Secure Multi-party Computation (MPC) is one of
the most influential achievements of modern cryptography: it
allows evaluation of an arbitrary function on private inputs
from multiple parties without revealing the inputs. A crucial
step of utilizing contemporary MPC protocols is to describe the
function as a Boolean circuit. While efficient solutions have been
proposed for special case of two-party secure computation, the
general case of more than two-party is not addressed. This paper
proposes MPCircuits, the first automated solution to devise the
optimized Boolean circuit representation for any MPC function
using hardware synthesis tools with new customized libraries
that are scalable to multiple parties. MPCircuits creates a
new end-to-end tool-chain to facilitate practical scalable MPC
realization. To illustrate the practicality of MPCircuits, we
design and implement a set of five circuits that represent real-
world MPC problems. Our benchmarks inherently have different
computational and communication complexities and are good
candidates to evaluate MPC protocols. We also formalize the
metrics by which a given protocol can be analyzed. We provide
extensive experimental evaluations for these benchmarks; two
of which are the first reported solutions in multi-party settings.
As our experimental results indicate, MPCircuits reduces the
computation time of MPC protocols by up to 4.2×.

Index Terms—Multi-party computation, secure function eval-
uation, logic synthesis, secure auction, secure voting, private-set
intersection, stable matching, nearest-neighbor search

I. INTRODUCTION

Secure multi-party computation (MPC a.k.a., SMC) is one
of the most influential achievements of modern cryptography.
It provides a provably-secure method for multiple parties to
jointly evaluate a function on their private inputs without
disclosing the input values to each other. MPC protocols can
be categorized into two main groups: protocols based on (i)
the GMW (Goldreich-Micali-Wigderson) paradigm [1] and (ii)
the Garbled-Circuit (GC) paradigm [2]. The original idea of
two-party GC is later generalized for multi-party setting in the
Beaver-Micali-Rogaway (BMR) protocol [3]. Both paradigms
require the underlying function to be represented as a Boolean
circuit. The tools and methods for Boolean computations of
two-party protocols are available, but they are not readily
scalable or available for multiple parties. Present ad-hoc re-
alization of secure multi-party tasks do not provide a holistic
tool usable for a variety of other MPC applications.

Two standing challenges that users face while utilizing
MPC protocols are: (i) generating optimized Boolean circuits
for the pertinent task, and (ii) the necessity of knowing the
details of the protocol. The first complication often results

in a high inefficiency in the protocol execution. The latter
is even more critical, triggering possible security breaches if
the exact protocol is not followed. Protocols that interpret
a multi-party computation as multiple invocations of two-
party secure computation are not just impractical, but also
specifically susceptible to such breaches. Therefore, there is a
need for an end-to-end solution that bridges the gap between
usability and secure realization of MPC protocols.

During the past two decades, a number of practical real-
izations for the special case of two-party secure computation
have been presented, reducing the execution time by several
orders of magnitude [4], [5], [6], [7], [8], [9], [10], [11].
However, less focus has been on the general problem of secure
multi-party (more than two) computation, even though many
practical problems (e.g., auction and voting) are inherently
multi-party and cannot be reduced to two-party settings.

To the best of our knowledge, there have only been three
MPC realizations that support more than two parties [12], [13],
[14]. Among them, only [14] supports circuit generation: the
crucial first step of MPC. However, this framework precedes
one of the most crucial MPC optimizations: free-XOR [15],
which allows XOR, XNOR, and NOT gates to be evaluated
without any communication or encryption. The two more
recent frameworks [12], [13] support free-XOR but only focus
on the specific (ad-hoc) protocol execution with no systematic
solution for the circuit generation step.

In this paper, we present the first automated methodology
to generate Boolean circuits, customized for MPC protocols
with state-of-the-art optimizations. Inspired by TinyGarble [8],
the most efficient Boolean circuit generator for the two-party
setting, we leverage standard logic synthesis tools for this
purpose. Note that two-party libraries such as TinyGarble
cannot be used for the MPC problem since the synthesis tech-
nology libraries are not compatible with the MPC protocols.
In addition, the order of logic computation (determined by
the API and the Boolean netlist sorter) is radically different
for two-party protocols. MPCircuits relies on designing new
technology libraries for the logic synthesis tools customized
for MPC protocols. Our solution can be integrated with any
cryptographic back-end engine for the MPC protocol, e.g., the
realizations in [12], [13], to allow users to perform a holistic
secure multi-party computation.

This work also aims to facilitate future research on MPC.
One of the key enablers in analyzing different protocols
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is to have a comprehensive set of benchmarks representing
different applications/tasks. To do so, we compile a set of
benchmarks that represent critical real-world MPC problems.
Our benchmark set includes practical problems of auction,
voting, and set intersection that have been evaluated in prior
MPC literature. However, the methodologies presented in this
paper for auction and voting do not need the presence of any
trusted third parties as in the existing work [16], [17]. We
also design circuits for two new benchmarks, namely, stable
matching and nearest-neighbor search. Our circuits for stable
matching and nearest-neighbor search are the first solutions in
the multi-party setting. Each proposed benchmark captures a
different set of requirements and domains, which ensures the
applicability of MPCircuits to diverse scenarios.

We use a set of metrics to quantify the performance of
MPCircuits on each of the benchmarks. These metrics en-
compass different characteristics of the MPC protocol, an-
alyzing the performance of the solution for settings with
varying computation power and communication bandwidth.
We prototype our solution and perform extensive evaluations
on our benchmarks for a range of parameter sizes. In brief,
our three main contributions are as follows:
• Introducing the first holistic solution to automatically create

optimized Boolean circuits for MPC. We provide a new
technology library for hardware synthesis tools to generate
circuits compatible with MPC. Our approach is modular and
can produce efficient circuits for various functionalities.

• Designing and implementing circuits for five compelling
secure multi-party computation tasks. These tasks represent
five key MPC problems that cover most of the applications
suggested in literature, namely, auction, voting, set inter-
section, stable matching, and nearest neighbor search. We
further introduce metrics by which each benchmark could
be analyzed for efficiency and scalability.

• Creating automated tools for end-to-end MPC realization,
i.e., a simple-to-use API and interpreter programs to convert
the generated netlist to formats usable by MPC back-end
engines. Extensive experimental results are provided for the
different parameter configurations confirming the efficiency
and scalability of MPCircuits.

Code Availability: https://github.com/sadeghriazi/MPCircuits

II. PRELIMINARIES

The methodologies presented in this paper are compati-
ble with MPC frameworks based on both BMR [12] and
GMW [13] protocols. For brevity, we only report proof-of-
concept evaluations based on BMR [3]. This protocol has
two main phases: garbling and evaluation. In the first phase,
all parties jointly create the garbled version of the circuit.
In the second phase, each party receives partial information
from other parties and begins to evaluate the circuit locally.
The garbling phase is usually the most costly stage in the
protocol execution. However, since it is independent of the
actual inputs from the participating parties, it can be pre-
computed in advance.

Garbling. In this phase, all parties assign two random labels
for every wire in the circuit, one for semantic value zero
and one for semantic value one. We use notations consistent
with [12]: kiw,a ∈ {0, 1}κ denotes random label of wire w for
the semantic value a ∈ {0, 1} held by party Pi i = 1...n where
n is the total number of parties. κ is the security parameter
and is usually set to 128. For each gate, parties encrypt output
labels using F 2, a double-key pseudorandom function and use
two input labels as keys. Consider gate g, with two inputs u
and v, and output wire w. For example, in the case of an AND
gate, output label for semantic value 1 (kw,1) is encrypted
using the two input labels of semantic value 1 (ku,1 and kv,1).
Since there are four possible input combinations for any two-
input Boolean gate, parties create four different encryptions
of the correct output label and their corresponding input keys.
The collection of all four encrypted values is called a garbled
table. More precisely, for every a, b ∈ {0, 1}, the output label
for c = g(a, b) ∈ {0, 1} is encrypted as{( n⊕

i=1

F 2
kiu,a, k

i
v,b

(ng ◦ j)⊕ kjw,g(a,b)

)}n
j=1

(1)

where ng is the unique ID number for a gate and ◦ denotes
concatenation operation. In order to mask the relationship
between labels and actual semantic values, each party also
assigns a permutation bit λiw and sets λw = ⊕ni=1λ

i
w. All four

encrypted values are permuted according to permutation bits.

Evaluation. In order to transfer the labels associated with
the true value of an input wire, the Oblivious Transfer (OT)
protocol is used. In OT, one party holds two (or multiple)
messages mi and another party holds the selection bit(s) b. At
the end of the protocol, the receiver gets mb and learns nothing
about other message(s) while the sender learns nothing about
the selection bit(s). Given the collection of n keys for each
input wire, all parties can decrypt one row of each garbled
table (those connected to input gates) and generate the output
keys of those gates. The evaluation process continues until
output gates are reached. Therefore, the evaluation process
can be computed locally once each party has the correct
combination of all n keys for all input gates. Note that none of
the intermediate values are revealed to any party. In fact, the
semantic value of each wire is XOR-shared among all parties.
All labels are unintelligible by themselves. At the end of the
protocol, each party only sends her share of the output wires’
labels such that everyone can locally compute the plaintext
output result. Please see [12] for more detailed explanation.

Free-XOR Optimization. Kolesnikov et al. [15] proposed a
method that eliminates the need for creating garbled tables for
XOR gates, rendering them almost free of cost. To utilize this
technique, each party Pi needs to create a one-time random
number Ri ∈ {0, 1}κ. Same as before, kiw,0 is generated
randomly but kiw,1 is set to Ri ⊕ kiw,0 for every wire. Due
to this correlation of labels, the output label of each XOR gate
can be computed by XORing the two input labels without any
communication between parties.
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III. AUTOMATED CIRCUIT GENERATION

The first, and one of the most critical, step in practical secure
realization of a function through MPC protocols is generation
of the Boolean circuit that describes the pertinent functionality.
We now elaborate on our methodology for automatically
creating the Boolean circuit such that it is optimized for MPC
as well as making it compatible with any given realization of
the protocol. The corresponding steps of the circuit generation
in MPCircuits are illustrated in Figure 1.
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Fig. 1: Global flow of MPCircuits circuit generation.

In the first step, the user writes the function description
in a Hardware Description Language (HDL), e.g., Verilog.
With recent progress in High-Level Synthesis (HLS) tools,
it is also possible to develop the function in C and convert
it to HDL using these tools. Inspired by TinyGarble [8], we
employ logic synthesis tools to compile the HDL source code
using our customized libraries. Thus, we generalize the idea
of TinyGarble for multi-party (more than two-party) secure
execution. Recall that in contrast to non-XOR gates, XOR
gates do not require communication or encryption during
garbling/evaluation due to the free-XOR technique [15]. As il-
lustrated in [12], the number of non-XOR gates determines the
computation and communication cost. Therefore, MPCircuits
objective function is to minimize the total number of non-XOR
gates (nnon−XOR) in the circuit description.

We re-define the problem of minimizing nnon−XOR as a
special case of logic optimization to be performed by the
synthesis tools. These tools have been subject to more than two
decades of improvement leading to sophisticated algorithms
to minimize a given constraint, e.g., power consumption,
circuit area, or critical path. We develop new synthesis and
cell libraries to be utilized by such logic synthesis tools.
Our synthesis libraries incorporate the realization of basic
arithmetic and logic operations (add, subtract, multiplication,
division, if-else, etc.) using minimum number of non-XOR
gates. The cell library in MPCircuits, which is used for ASIC
mapping, contains Boolean logic gates AND, shifted_AND,
XOR, and XNOR. The area of the XOR and XNOR gates are set
to zero and that of the other gates to one and the constraint
is set to minimizing the total area of the circuit. As a result,
the synthesis process minimizes the total number of non-XOR
gates in the final netlist. This process automatically generates
an optimized Boolean circuit for the BMR protocol. Note that
the output of the TinyGarble framework cannot be used for
the MPC protocols since the produced netlist contains logic
gates that are not supported by MPC realizations [12].

The logic synthesis tool outputs a standard Verilog netlist
containing cells that are included in the cell library. In order to
use the netlist in a MPC protocol, one has to perform certain
post-synthesis steps. This translation involves three steps: (i)
a parser reads the Verilog netlist and converts it to an array
of structures defining the logic operation of a particular gate
and its input/output connections, (ii) a scheduler reads the
connection information of the gates and topologically sorts
them based on the dependencies, (iii) the sorted array of gates
is written to a file in a specific format. This file is public and
is sent to all the parties participating in the secure protocol.
Note that, only the last step is specific to one particular MPC
realization (BMR protocol in our implementation). Therefore,
our methodologies can be applied to a large variety of secure
protocols that are based on a Boolean netlist (e.g., the frame-
work in [13]) with a simple modification to the last step.

Our proof-of-concept implementation is based on the BMR
realization presented in [12]. To the best of our knowledge,
this is one of the only two MPC frameworks that supports the
free-XOR [15] optimization. Moreover, authors have optimized
the BMR protocol to have a constant number of rounds which
is strongly preferred in Internet settings where the communica-
tion delay is significant. In [12], most of the computation can
be shifted to the offline phase and precomputed in advance.
We utilize the SCAPI [18] library (source code of [12]) in
our implementation. This library supports only five types of
Boolean logic. Therefore, our cell library contains only those
five gates. However, this constraint does not increase the
number of non-XOR gates and only increases the number of
XOR gates. Incorporating the other gates in the cell library
is straightforward, in case they are supported by another
realization of an MPC protocol.

Security Model. The BMR protocol in [12] is provably
secure in the Honest-but-Curious (HbC) security model. In this
model, all participating parties follow the protocol but they can
attempt to extract more about the other parties’ input from the
information they send and receive. There are two variants of
HbC adversary model: honest-majority and dishonest-majority.
In the former model, the protocol is secure as long as the
majority of the parties are not corrupted. In the latter model,
any number of corrupted parties cannot infer information
other than what can be inferred from the outcome of the
computation. For example, the FairplayMP [14] framework
is secure for an honest majority. In addition, protocols in HbC
model are generally orders of magnitude faster than the ones
in malicious model [12] in which parties can deviate from the
protocol anytime. HbC model is the building block for stronger
security models such as security against malicious adversaries.
MPCircuits can automatically generate optimized Boolean
circuits for both security models. Note that the methodolo-
gies presented in this work do not change the security or
correctness of the MPC protocol. MPCircuits provides an
automated solution to generate Boolean circuit representations
that have minimal number of non-XOR gates, thus, improving
the efficiency of the MPC protocol.
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IV. CIRCUIT DESIGNS

We design and implement a set of Boolean circuits for five
compelling MPC tasks and report the experimental results for
all of them using our circuit synthesis approach. Three of these
applications, i.e., Auction, Voting, and PSI have been studied
in the prior literature and we compare MPCircuits with state-
of-the-art solutions. In MPCircuits, we have provided the first
secure solution for K-nearest neighbor search (K-NNS) and
Stable Matching. Not only do these two benchmarks address
real-world needs, but each of them captures an important
criteria: (i) in K-NNS (unlike other benchmarks) only one
party receives the result of the protocol and therefore makes
the process of Oblivious Transfer (OT) asymmetric since only
one party evaluates the garbled circuit and only (n − 1) OTs
are performed (compare to (n− 1)2); this is the first reported
instance of an asymmetric OT. (ii) In Stable Matching, the size
of the circuit grows with O(n4). In all other benchmarks the
point-to-point communication rapidly becomes the bottleneck.
Therefore, they cannot be used to validate other properties
such as the scalability of the circuit generation. Evaluating an
MPC framework on the Stable Matching benchmark illustrates
the scalability of the framework in terms of circuit generation
since the number of gates rapidly increases with the increase
in the number of parties and soon becomes the bottleneck.

V. AUCTION

We design a Boolean circuit for auction in which the
highest bidder is selected and pays the bid value. In traditional
mechanisms, the auction is processed by a third party and all of
the bid values are revealed to the third party. This raises many
privacy concerns such as the possibility of information leakage
or collusion between one of the bidders and the executing
party. Here, we implement and analyze both types of auctions
and illustrate the practicality and scalability of our solution.

Input: Each party Pi holds a bidi, i = 1...n.
Output: The index (ID) of the highest bidder imax
and the highest bid value xpay = max(x1, ..., xn).
Parameter(s): Number of bits b to represent a bid.

Circuit Design: Figure 2 shows the internal architecture of the
Boolean circuit for auction. The inputs to the circuit are the
bids (upper side) and the output is the maximum bid value and
the index (ID) of the winner. The darker blocks correspond to
inputs and outputs of the circuit. Bids are compared in pairs
using the comparison (CMP) blocks. The maximum value is
then passed on to the next layer and so forth. A simple solution
to compute the winner ID (WID) is to pass along the index of
the higher bid at each stage. However, this solution requires
O(n lg(n)) AND gates where lg(.) is the base-2 logarithm.

We propose a more optimized approach that requires O(n)
number of AND gates. While the complexity does not change
significantly, in practice, the number of AND gates is reduced
by a factor of lg(n). Our method is based on re-using the
output of the CMP blocks. Consider the last CMP block at the
bottom right corner. Depending on the output of this block,
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Fig. 2: Boolean circuit for auction.

one can identify the most significant bit (MSB) of the WID.
For example, if the output is 1, it shows that the winner is from
the second half of the bidders and hence, the WID starts with
one. We can recursively continue this approach and depending
on the already computed WID digits, the next digit is selected.
More precisely, if we denote the output of the jth CMP block
at layer l by CMP[l][j], we have

WID[α] = CMP[α− 1][WID[α− 1 : 0]]

At the end, WID holds the ID of the winner in reversed
order (from least significant bit to most). The complexity of
the total number of AND gates in the circuit is O(n b).

VI. VOTING

A secure voting mechanism can preserve the privacy of all
voters in an election. This, in turn, can replace old solutions
based on anonymization and law-enforcement. The aforemen-
tioned solutions are all centralized and have a single point of
failure. A modern secure voting mechanism can ensure the
correctness of the election and privacy of voters even in the
presence of any set of corrupted parties.

Input: Each party Pi holds the index of the candidate
to whom she wants to vote (votei).
Output: The index of the candidate, nh, with the
highest vote.
Parameter(s): Number of candidates nc.

Circuit Design: The internal design of the Boolean circuit for
voting is illustrated in Figure 3. The inputs to the circuit are
n votes, each representing the index of a candidate (lg(nc)-
bit). Each vote is an input to a “lg(nc) to nc” Decoder (DEC)
module. Therefore, based on the vote value, only one of the
output lines of the DEC is set to one. These output wires are
then connected to a COUNT module to count the number of
votes. The COUNT module is implemented as a binary tree of
ADD blocks. At each level of the binary tree, the operands’ bit-
length of the ADD blocks are set to the minimal value that can
accumulate the result. Hence, the COUNT module results in an
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efficient realization that only requires x−1 non-XOR gates for
counting the number of ones in a binary array of size x. The
final step is to find the maximum number of votes. This task
can be implemented using the auction module (Section V),
where the bids are vote-counts. Finally, the output of the circuit
is the ID of the winner candidate (WID).
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Fig. 3: Boolean circuit for voting.

In case of a tie in the vote-counts, our circuit outputs the first
candidate as the winner. If another tie-breaking mechanism is
needed, our solution can easily be modified due to its modular
structure. The complexity of the total number of AND gates in
each of the circuit components are O(n lg(nc)) (decoders),
O(n) (COUNT modules), and O(nc lg(n)) (auction circuit).
The overall circuit complexity isO(n lg(nc)+nc lg(n)) which
scales linearithmicly with n and nc.

VII. SET INTERSECTION

Private Set Intersection (PSI) allows two or multiple parties
to obtain the elements at the intersection of their sets without
revealing the other elements that are not in common. For
example, multiple people can identify their mutual contact pro-
files/friends by inputting their contact list to the PSI protocol
without revealing the rest of their contact lists. At the end of
the protocol, only the mutual list of all parties is revealed.

In E-commerce, an online advertisement agency and a
company can participate in the PSI protocol where the ad-
vertisement agency inputs its list of all the people who have
been shown the ads of the company. The second set of inputs
to the protocol is the list of the people who have bought the
products provided by the company. At the end of the PSI
protocol, both entities know how many people have bought the
product as a result of seeing the advertisement. This provides
a way to understand the effectiveness of the advertisement
for the company. Note that the same process could not be
realized in plaintext due to various privacy/security reasons.
Revealing such information is privacy invasive and can damage
the reputation of both the companies. In addition, disclosing
customer’s data might be against the law in some situations.

Input: Party Pi holds a set Si ⊂ Ω where Ω is the
universal set.
Output: The intersection set S = ∩ni=1Si.
Parameter(s): The size of the universal set Ω or
equivalently the number of bits required to describe
an element in the universal set b = lg |Ω|. Maximum
number of elements in each party’s set m.

Circuit Design: Two different implementations are provided
for PSI: a Bitwise-AND based circuit and a Sort-Merge-
Compare-Shuffle (SMCS) based circuit. The first one is more
efficient for scenarios in which Ω is small whereas the second
approach is more suitable when m is small and Ω can be
very large. Note that sets are represented differently in the
two implementations as we explain in each section.

Bitwise-AND. In this implementation, each set is equivalent
to a binary vector. The binary value at index j denotes the
presence of the j-th element in a given set. Therefore, each
set is represented as a |Ω|-bit binary vector. The intersection
set S is computed as bit-wise AND between all of the sets
provided by all parties. As a result, the complexity of the
circuit is O(n |Ω|), linear in both the number of parties and
the size of the universal set; but independent from the number
of elements in each parties’ set m.
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Fig. 4: High-level circuit description of the Sort-Merge-
Compare-Shuffle for Private Set Intersection. Three operations
are performed at each stage: merge, compare, and sort.

Sort-Merge-Compare-Shuffle (SMCS). In scenarios where
m << |Ω|, more efficient solutions than Bitwise-AND can
be devised. Here, we present one of the most complicated
circuits in our benchmarks which is the generalization of the
approach presented in [19] from two-party setting to any n-
party case. As the input to this circuit, each set is represented
as a vector of m integers where each integer is b-bit. We will
first explain the solution for two sets only. The intersection of
two sets can efficiently be computed using three operations:
sort, merge, and compare. First, each of these two sets should
be sorted. Then by merging the two sorted sets, all elements
in common will be brought together. Finally, by comparing
adjacent elements, one can find the common elements in both
sets. Since the set intersection is an associative operation, one
can express the set intersection of n sets as a consecutive
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set intersection of two sets until reaching the final result.
Therefore, the SMCS circuit has a binary tree structure where
at each node, the intersection of two sets are computed. The
final node computes the final intersection of all sets. Note
that the first sort operation can locally be computed by each
participant since it is independent of the other parties’ private
data. A final shuffle operation is needed in order to eliminate
the information leakage which we describe later in this section.
Without loosing any generality, assume that the number of sets
(participants) is a power of two. If this is not the case, dummy
nodes can be avoided in the tree structure. Please see Figure 4
for a high-level description of the SMCS circuit.

We now elaborate on each part of the SMCS circuit. The
challenge is that the merger and sorter circuits should have
a fixed structure and non-random access to the intermediate
values since random access is a very costly operation in the
MPC protocols. We rely on the bitonic merger and sorter
circuits that satisfy this condition. Bitonic sort is one of the
sorting networks that is an efficient circuit-based realization
of a sorting algorithm. Input numbers are given to the circuit
and after series of conditional swap operations, a sorted list is
given as the output of the circuit. The only operation used in
the circuit is conditional swap: given two input numbers, swap
them if they are not sorted and do not swap them otherwise.
The bitonic sort has a recursive structure. It first sorts each half
of the input and then merges the two sorted lists. The base case
is a circuit that sorts only two numbers which is equivalent to
a conditional swap module. Our implementation of the bitonic
sort circuit is also a recursive hardware description code.

The second half of the bitonic sorter represents the bitonic
merger circuit. The input to the bitonic merger must be a
bitonic sequence. A sequence xi of numbers is called bitonic
if for some k (0 ≤ k < m):

x0 ≤ x1 ≤ ... ≤ xk ≥ ... ≥ xm−1 ≥ xm

or a circular shift of such sequence. Therefore, before merging
the two sorted lists, one needs to reverse order the second list
such that the concatenation of two lists be a bitonic sequence.
This reverse-ordering should take place for input sets as well
as for intermediate sets. Note that the reversing the order of
a set does not incur any computation or communication cost
and is realized as changing the order of wires in the circuit.

The second layer in the SMCS circuit is the comparison
layer. After the merger layer, all identical elements in both
sets are now beside each other. An intuitive solution is to
have a series of comparison blocks that compare every two
adjacent elements. However, it has been shown that having a
3-input comparison block as follows is more efficient [19]:

CMP3 (x1, x2, x3) =

{
x2 if x1 = x2 | x2 = x3

0b otherwise

Given an array of 2m elements, we only need m−1 CMP3
blocks and one CMP block (compared to 2m CMP blocks).

The output of the comparison layer is an array of m numbers
consisting of 0b and the elements in the intersection of two

sets. Before proceeding to the next stage (and similar to
the first stage), the array has to be sorted. Note that the
intermediate sets should not be revealed to any party since
some information about the private input sets will be learned
by other parties. Therefore, in contrast to the first stage, the
sets should be sorted inside the MPC protocol.

At the end of all stages, the final set should be shuffled prior
to be revealed in plaintext to all parties. This step is necessary
because the final set potentially has a sequence of 0b between
two common elements. The position of zeros (0b) reveal the
distribution of elements that were not in the intersection and
belong to one (or multiple parties) only.

The shuffling layer can be realized using Waksman per-
mutation network [20] which takes as input an array and
shuffles them based on the control bits. One of the parties
is required to provide these control bits as well. However,
this task makes one of the parties to have more control in
the secure computation. For example, a dishonest party that
is selected to provide the control bits can simply put all of
them as zero which makes the shuffle layer ineffective and he
can learn some information. As a result, we devise another
solution that is secure but does not require more input from
any party. The solution is to simply sort the final list before
revealing it in plaintext. This approach is secure since all of the
0b elements are brought together. More precisely, in all of the
scenarios that the common elements are fixed, the final sorted
set remains the same and an adversary cannot distinguish
different scenarios. The overall complexity of the SMCS
circuit is O(nm lg2mb) = O(nm lg2m lg |Ω|) (compare
with Bitwise-AND circuit with complexity O(n |Ω|)).

Modular Structure. One of the advantages of using a generic
secure multi-party computation protocols such as BMR is its
modular nature and flexibility. Unlike customized protocols,
additional functionalities and computations can be augmented
to the circuit seamlessly. For example, and auditing step can be
added before releasing the final result: the intersection set is
revealed if and only if the number of elements in common
is less than a threshold. Such auditing steps are favorable
especially when Ω is small and an adversary can easily put
his input set as the universal set in which case, he clearly
learns the intersection of all other sets. As another example, it
is very straightforward to build other variants of PSI such as
PSI-Cardinality which only outputs the size of the intersection
and not the elements.

VIII. STABLE MATCHING

Stable matching is the process of assigning the members of
two groups to each other (one-to-one) where each person has
a preference list. This assignment should satisfy the stability
condition after the assignment: no two individuals should
prefer to be matched with each other compared to their already
assigned partners. In other words, the assignment is stable in
a sense that no rematching will occur even if individuals are
free to do so. Stable matching is one of the most complicated
task in secure computation because of the complex and data-
dependent memory accesses during the computation [21], [22].

6



L0

L1

Ln/2

... 

MUX

Lg

MUX

f

Ln/2+1

Ln/2+2

Ln

... 

MUX

Lf

M
U

X

is
_f

re
e_

g
ro

u
p

2

Update
Logic

M
U

X

m
at

ch
_l

is
t

is
_f

re
e_

g
ro

u
p

1

P
ri

o
ri

ty
 E

n
co

d
er

g

M
U

X

C
 [

.]

++

h

update

Stable Matching Circuit at Round r j

is
_f

re
e_

g
ro

u
p

1
C

 [
.]

is
_f

re
e_

g
ro

u
p

2
m

at
ch

_l
is

t

is
_f

re
e_

g
ro

u
p

1
C

 [
.]

is
_f

re
e_

g
ro

u
p

2
m

at
ch

_l
is

t

... In
p

u
t 

fr
o

m
 c

ir
cu

it
 a

t 
ro

u
n

d
 r

j-
1

In
p

u
t 

to
 c

ir
cu

it
 a

t 
ro

u
n

d
 r

j+
1

... 

n
ex

t 
u

n
as

si
g

n
ed

p
er

so
n

preference lists from group 1 preference lists from group 2

more preferred (g or h)?

C[g]

Fig. 5: The circuit for stable matching unrolled for round rj . The circuit takes as input the intermediate values from previous
round rj−1, processes the current round based on the preference lists, and outputs the updated values.

Accessing the memory when the address is a secret value
is a very costly operation in secure computation since the
actual value of the address should remain private. In order
to realize this constraint, random access to the memory is
implemented using multiplexers inside the garbled circuit.
Hence, the address as well as the accessed data remain private
since they are processed inside the garbled circuit.

In secure stable matching, the match list is computed while
keeping the preference lists private to their respective owners.
This problem has been studied in the recent literature [21],
[22] where the secure stable matching problem is reduced to a
two-party secure computation scenario. Each individual XOR-
shares her preference list and sends it to two non-colluding
servers who perform the secure computation. However, stable
matching is inherently a multi-party problem and the assump-
tion of two non-colluding servers may not be feasible in
practice. To the best of our knowledge, we provide the first
solution for multi-party secure stable matching.

Input: Party Pi holds a preference list Li with size
of m. Each list is an array of lg(n2 )-bit numbers (IDs
of the other group’s members) sorted from the most
preferred to the least.
Output: The match list: an array of size n

2 where each
number is lg(n2 )-bit.
Parameter(s): The size of the preference list m.

Circuit Design: Gale and Shapley [23] were first to formal-
ize the stable matching problem and proposed an algorithm
that can find the matching list. During the computation, the
matching list stores the temporary assignment of individuals.
The algorithm works as multiple rounds. In each round rj , an
unassigned individual from group 1, say g, is selected. The
circuit identifies if this individual can be assigned to the most
preferred person given the preference list of g. Note that in
this algorithm, each element of the preference list is accessed
only once. If the match is not accepted, next preferred ID is

selected in future rounds. The number of attempts for each
individual from group 1 is stored as an array of counters C,
i.e., C[i] denotes the number of attempts for individual i.

Assume that at round rj , unassigned individual g from
group 1 is selected. The circuit first accesses the C array
and finds the next preferred individual that is not already
processed, let’s call that ID f , f = Lg[C[g]]. The circuit
increases the number of attempts for g by incrementing C[g].
If f is unassigned, the circuit assigns f from group 2 to g
from group 1. Otherwise, it is necessary to determine whether
f prefers g or his already assigned person h from group 1. The
decision can be made by comparing the index of h and g in
the preference list of f . That is, comparing index_of(h) and
index_of(g) in Lf . If index_of(g) is less than index_of(h)
in Lf , it means f prefers g over h. In this case, f is assigned
to g and h gets unassigned and nothing happens otherwise.

In the next round, another unassigned individual from
group 1 is selected and the same computation is performed.
The process continues until all elements in the preference
lists are processed. Note that this algorithm can be realized
using a sequential circuit [21] but since there is currently no
methodology for making the BMR protocol compatible with
sequential circuits, we need to unroll the circuit as depicted in
Figure 5. The overall complexity of the combinational circuit
for secure stable matching is O(n3 m lg(n)).

IX. NEAREST-NEIGHBOR SEARCH (NNS)

In this benchmark, each party holds an attribute value vi
and one of the parties (P ∗) is interested to learn which party
(or parties) has the most similar (closest) attribute to her, given
a certain similarity metric. NNS has many applications in
classification, data mining, recommender systems, and prox-
imity search. A privacy-preserving solution enables a client to
find the most similar profiles without revealing her attribute.
For example, consider an online dating website where each
person creates a profile containing sensitive information about
his/her age, personal preferences, and the zipcode of where
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she/he lives. Today, a centralized server knows all of the
clients’ information and provides the match result to each
party. This computation model is also prone to internal and
external attacks where clients’ sensitive information is revealed
to the attacker. In contrast, we propose a privacy-preserving
method that is decentralized and is provably secure even if all
other parties collude. Our methodology is modular and can be
realized for any similarity metric since only the comparison
module has to be modified.

Input: Party Pi holds an attribute value vi.
Output: The set of kn closest (most similar) at-
tributes to party P ∗ input (v∗) given a similarity
function sim(., .).
Parameter(s): Number of bits b required to repre-
sent each attribute. Number of nearest neighbors to
be found (kn).

Circuit Design: Our implementation for NNS is the gener-
alization of the combinational circuit in [24] that computes
1-nearest neighbor search. We generalize the combinational
circuit for any value of kn. The core block of the design
is a module that takes as input kn distance values along
with a new distance value and outputs the corresponding kn
minimum distances from the total kn + 1 inputs. This module
is instantiated n times where each instance processes the
input from one party. Please note that in contrast to the two-
party garbled circuit protocol, there is no known solution to
use the sequential circuit in the general multi-party variant.
Therefore, sequential circuits provided for k-nearest neighbors
cannot be used. The overall complexity of the combinational
circuit for NNS is O(n kn b). MPCircuits supports the
distance computation module to be any distance metric, e.g.,
the Hamming distance, euclidean distance, edit distance, or
taxicab distance. In the following, the reported experimental
results correspond to the Hamming distance.
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Fig. 6: The circuit of the Nearest-Neighbors Search (NNS) that
finds the kn most similar attributes to v∗. In the experimental
results, the circuit is unrolled for n times.

X. EXPERIMENTAL RESULTS AND RELATED WORK

We first discuss the metrics by which we characterize each
application. We outline the metrics and the reason for their
importance in practical realization of the MPC protocols.
• Execution time (T ): The total execution time of the protocol

comprises the time required for garbling/evaluating the cir-
cuit (TGE) as well as time spent on the communication TC .
In a general case, these two can overlap in time depending
on whether the implementation is pipelined/multi-threaded
or not and hence, T ≤ TGE + TC . The distinction between
the two timing parameters is important since TGE mostly
depends on the computational power, whereas, TC depends
on the network quality (delay and bandwidth).

• Communication (Comm): Maximum number of bytes ex-
changed between any two parties. The “maximum” is
required for protocols in which communication between
parties are asymmetric. In the BMR protocol, the com-
munication between each two parties can be computed as
the multiplication of number of non-XOR gates, a constant
factor (=9), number of parties minus one (n − 1), and the
bit-length of each wire label (usually 128).

• Memory footprint and scalability (Mem): One of the im-
portant characteristics for each MPC protocol is the amount
of memory allocated in the end-to-end execution. Protocol-
s/frameworks that consume a high volume of memory have
limited scalability in real-world scenarios where the input
size from each party is large.

Experimental Setup. The experiments are performed on a
server equipped with 24 core Intel(R) Xeon(R) E5-2650 v4
@2.20GHz CPU with 256GB of RAM. We run all n parties
in the same LAN network with 20ms round-trip latency and
10Gbps bandwidth. Synopsys Design Compiler 2015.06-SP2
is used to synthesize the Boolean circuits. RC is constant in all
of our benchmarks for different values of parameters since our
prototype implementation is based on [12] which has a con-
stant round complexity. The SCAPI library utilizes Advanced
Encryption Standard (AES) encryption and naturally benefits
from the AES-NI which is supported by our machine. In our
experimental results, we have used built-in Ubuntu time tool
with -f ’%M’ flag to determine the memory footprint.
Auction. We perform experiments for different numbers of
participants (n) in the auction for two values of b. Table I
shows the results. As can be seen, the optimized Boolean
circuits using MPCircuits technology libraries reduce the
number of AND gates by 3.3×. Bogetoft et al. [16] have
proposed a solution for secure auction. Their solution is based
on multiple “Trusted Third Parties (TTPs)”. TTPs compute
the true outcome of the auction on behalf of the bidders. In
this computation model, if all TTPs collude, the real input of
all parties are revealed, whereas, in our approach, all parties
securely process the auction and even if all other parties
collude, nothing is revealed. The approach of [25] also requires
a separate party called “Auction Issuer”. The methodology
in [26] additionally requires outsourcing the computation to
two TTPs. Larson et al. [27] design a method based on
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a verifiable secret sharing scheme. The drawback of their
approach is that not all participants in the auction are involved
in the secure computation protocol and the security relies on
the evaluators. Therefore, our solution is the only solution that
(i) has constant round complexity and (ii) guarantees security
even for cases where all other parties are corrupted.

TABLE I: Secure Auction.

Non-optimized Optimized

b n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

16
4 69 324 261 97 0.74 0.62 2.39 0.04 10.25
8 140 761 600 228 1.69 1.91 6.62 0.22 10.29
16 281 1638 1281 492 3.51 4.48 15.06 1.01 18.14

32
4 133 660 534 194 0.74 0.66 3.41 0.08 10.31
8 269 1547 1229 454 1.66 1.83 6.50 0.44 10.36
16 539 3324 2621 975 3.48 4.34 16.85 2.01 30.65

Voting. Table II shows the experimental results for different
number of parties (voters) and candidates. As can be seen,
MPCircuits is between 1.4-2.7× more efficient compared to
standard utilization of logic synthesis tools. Civitas [17] is a
secure voting system which is verifiable and coercion-resistant
but requires five different type of agents for its execution.
Fujioka et al. [28] also propose a solution for secure auctions
but it requires two additional entities called administrator and
the counter conspire. In contrast, our solution does not involve
any additional agents or entities.

TABLE II: Secure Voting.

Non-optimized Optimized

nc n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

2 8 7 17 18 8 1.57 1.77 9.35 3.3 KB 10.09
16 19 43 45 16 3.29 4.29 13.76 0.02 10.09

4
4 17 50 23 37 0.71 0.54 3.25 0.02 10.09
8 49 128 105 79 1.64 1.80 6.46 0.08 10.08
16 123 294 249 147 2.99 4.11 14.23 0.30 10.08

8 16 250 739 545 388 3.40 4.01 15.40 0.80 15.30

Private Set Intersection. Table III shows the experimental
results of Bitwise-AND circuit for different sizes of the
universal set and different numbers of parties. For all PSI
experiments, parameter m is set to 16. The corresponding
results for the SMCS circuit are shown in Table IV. As can
be seen, the optimized Boolean circuits using MPCircuits
technology libraries reduce the number of AND gates by 4.2×.

There has been an extensive research focus on the Private
Set Intersection (PSI) problem for a two-party situation [29],
[30], [19]. In [19], authors propose a method for two-party
PSI based on garbled-circuit approach. To the best of our
knowledge, the only solution that is proposed for secure multi-
party private set intersection is a recent work by Kolesnikov
et al. [31]. Their approach is a customized solution that is
optimized only to perform PSI in an identical security model
as this work. Their computation platform is comparable but
more powerful than ours. In the LAN setting, for a set size
of 216 and 10 parties, their total running time is 12 seconds
with 23MB of communication. Whereas, for a universal set
of size 105 (∼ 217) and 8 number of parties, our running

time is 24 seconds with 314MB of communication. Although
our solution is less optimized, we want to emphasize that we
have proposed a generic solution to create any functionality,
whereas, their solution is specially optimized for PSI. In
addition, our solution has a very modular structure and can
easily be modified to support other variants of the PSI, e.g.,
PSI cardinality in which only the number of mutual elements
is revealed. Moreover, in Bitwise-AND circuit, the actual size
of each party’s set is not revealed since the inputs are fixed-
length binary vectors.

TABLE III: Private set intersection (Bitwise-AND variant).
Non-optimized Optimized

|Ω| n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

104
4 0 3.00E+04 0 3.00E+04 0.94 0.69 3.89 12.36 65.24
8 0 7.00E+04 0 7.00E+04 2.73 1.99 9.46 67.29 403.94
16 0 1.50E+05 0 1.50E+05 12.61 4.74 30.46 308.99 2835.59

105
4 0 3.00E+05 0 3.00E+05 1.99 0.88 6.80 123.60 584.44
8 0 7.00E+05 0 7.00E+05 11.82 2.89 24.05 672.91 3892.61

TABLE IV: Private set intersection (SMCS variant).
Non-optimized Optimized

b n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

16
4 1.05E+04 7.77E+04 5.02E+04 1.86E+04 0.82 0.56 3.52 7.66 52.57
8 2.42E+04 1.81E+05 1.16E+05 4.30E+04 2.42 1.76 6.59 41.37 280.42
16 5.15E+04 3.88E+05 2.48E+05 9.19E+04 9.65 4.40 41.50 189.34 1843.72

Stable Matching. Table V shows the circuit size as well as the
experimental results for different group sizes and preference
list lengths. As can be seen, the optimized Boolean circuits
generated by MPCircuits technology libraries have 1.6-2.4×
lower number of AND gates. To the best of our knowledge,
there has been no prior solution for multi-party secure stable
matching. State-of-the-art solutions reduce the task to two-
party secure computation problem [21], [22]. All parties
outsource the computation to two servers which are assumed to
not collude. While these solutions can scale to bigger set sizes,
they rely on additional servers to find the match list on their
behalf. If two servers collude, they can learn the preference list
of all individuals in plaintext. In contrast, our security model is
much stronger where any number of corrupted parties cannot
learn the preference list of other individuals and the solution
does not require additional servers for the computation.

TABLE V: Secure stable matching.
Non-optimized Optimized

m n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

2
8

1.83E+02 1.11E+03 7.28E+02 5.35E+02 1.35 1.54 6.96 0.51 10.42
4 7.51E+02 4.55E+03 2.95E+03 2.24E+03 1.45 1.54 7.05 2.16 21.39

3
12

1.69E+03 9.61E+03 5.21E+03 6.03E+03 2.35 2.52 10.94 9.11 84.50
6 5.48E+03 3.10E+04 1.74E+04 1.90E+04 2.94 2.57 11.83 28.63 230.88

4
16

4.22E+03 3.70E+04 2.38E+04 1.67E+04 4.13 3.74 15.35 34.32 341.76
8 1.18E+04 1.11E+05 7.32E+04 4.66E+04 5.97 4.04 18.23 95.95 920.10

Nearest-Neighbor Search. Due to the space limitation, we
report the results for b = 32 in Table VI. The distance
function is Hamming Distance (HD). However, the circuit
can be instantiated for any value of b. As can be seen,
MPCircuits customized libraries result in 3-3.2× perfor-
mance improvement compared to standard utilization of logic
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synthesis tools. Songhori et al. [24] propose a solution based
on Garbled Circuits [2]. However, their approach is limited
to the two-party setting only. Similarly, Qi et al. [32] create
a scheme based on Homomorphic encryption for two-party
settings. Perhaps the most similar work to ours is [33] where
they support a multi-party setting. Nevertheless, they have not
implemented their scheme.

TABLE VI: Secure k-nearest neighbor search.

Non-optimized Optimized

kn n #XOR #AND #XOR #AND
OT
(s)

TGE
(s)

T
(s)

Comm
(MB)

Mem
(MB)

1 8 7.64E+02 1.77E+03 1.79E+03 5.56E+02 1.61 1.77 7.40 0.53 10.75
16 1.50E+03 3.68E+03 3.73E+03 1.16E+03 3.26 3.76 16.07 2.39 38.27

2 8 8.66E+02 3.31E+03 2.73E+03 1.08E+03 3.26 1.78 7.40 1.04 16.06
16 1.67E+03 7.25E+03 5.82E+03 2.37E+03 3.48 1.79 16.32 4.88 66.54

3 8 9.77E+02 4.64E+03 3.62E+03 1.52E+03 1.59 1.70 9.26 1.46 20.42
16 1.85E+03 1.06E+04 8.20E+03 3.50E+03 3.52 4.01 14.85 7.21 98.21

XI. LIMITATIONS AND FUTURE WORK

In our experiments, we observe that the main bottleneck for
running the BMR protocol for any number of parties higher
than 16, is scaling the number of communication ports as
well as the number of physical machines. In BMR, each party
needs to communicate with all other parties using a secure
communication channel, resulting in a total of n (n−1)

2 point-
to-point communication. Nevertheless, we want to emphasize
that our approach for generating the optimized circuits can
scale up to considerably higher sizes. For example, Table VII
and Table VIII show the number of Boolean gates for higher
parameter sizes in secure auction and secure NNS, respec-
tively. As can be seen, the circuit generation can easily scale
up to 512 and 1024 number of parties.

TABLE VII: Circuit generation for higher number of partici-
pants in secure auction.

b n #XOR #AND b n #XOR #AND

16
256 2.08E+04 8.42E+03

32
256 4.25E+04 1.66E+04

512 4.18E+04 1.69E+04 512 8.51E+04 3.33E+04
1024 8.36E+04 3.38E+04 1024 1.70E+05 6.67E+04

TABLE VIII: Circuit generation for higher number of partic-
ipants in the secure kn-NNS search when b = 32.

kn n #XOR #AND kn n #XOR #AND

2
128 2.04E+04 4.88E+04

3
128 3.13E+04 7.20E+04

256 4.10E+04 9.82E+04 256 6.30E+04 1.45E+05
512 8.22E+04 1.95E+05 512 1.27E+05 2.89E+05

XII. CONCLUSION

We present MPCircuits, the first automated methodology
to generate optimized Boolean circuits for secure multi-party
computation (MPC). The Boolean circuit generation is a key
step to employing the MPC protocols. We leverage industrial
logic synthesis tools and transform the problem of generating
optimized circuits for MPC to a logic synthesis problem.
Our solution is modular and generic and can be adopted by
different MPC protocols and implementations. To illustrate

the practicality of our approach, we design and implement
Boolean circuits for five compelling tasks in MPC. Namely,
we consider auction, voting, private set intersection, stable
matching, and nearest neighbor search. We perform extensive
experimental evaluation of all five benchmarks based on
the Beaver-Micali-Rogaway (BMR) protocol and show that
MPCircuits automatically generates optimized circuits that
require up to 4.2× less garbled gates.
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