
A Framework for Cryptographic Problems from
Linear Algebra

Carl Bootland1, Wouter Castryck1,2, Alan Szepieniec1, Frederik Vercauteren1

1 imec-COSIC, Department of Electrical Engineering, KU Leuven
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

firstname.lastname@kuleuven.be
2 Section of Algebra, Department of Mathematics, KU Leuven

Celestijnenlaan 200B, 3001 Heverlee, Belgium

Abstract. We introduce a general framework encompassing the main
hard problems emerging in lattice-based cryptography, which naturally
includes the recently proposed Mersenne prime cryptosystem, but also
code-based cryptography. The framework allows to easily instantiate
new hard problems and to automatically construct post-quantum secure
primitives from them. As a first basic application, we introduce two new
hard problems and the corresponding encryption schemes.
Concretely, we study generalizations of hard problems such as SIS, LWE
and NTRU to free modules over quotients of Z[X] by ideals of the form
(f, g), where f is a monic polynomial and g ∈ Z[X] is a ciphertext
modulus coprime to f . For trivial modules (i.e. of rank one) the case f =
Xn +1 and g = q ∈ Z>0 corresponds to ring-LWE, ring-SIS and NTRU,
while the choices f = Xn−1 and g = X−2 essentially cover the recently
proposed Mersenne prime cryptosystems. At the other extreme, when
considering modules of large rank and letting deg f = 1 one recovers the
framework of LWE and SIS.

Keywords: LWE, SIS, NTRU, quotient ring, post-quantum

1 Introduction

Lattice-based and code-based cryptography are rapidly emerging as leading con-
tenders for generating public-key cryptosystems that promise to withstand quan-
tum attacks. The popularity of these branches of cryptography are due in large
part to the simplicity and efficiency of their designs, but is certainly underscored
by their strong security guarantees. Two hard problems in particular, the Short
Integer Solution (SIS) [3] and Learning With Errors (LWE) [37] problems, stand
out in this regard. While these hard problems are expressible in the language of
simple linear algebra over finite rings, and are hence easy to use, they are also
provably hard-on-average, assuming the worst-case hardness of certain problems
in lattices.

In response to the quadratic scaling of both operational cost and memory as-
sociated with a full matrix representation, many proposals switch to using struc-
tured matrices [26,38,27]. In essence, random matrices are replaced by matrices

of multiplication by elements of the ring Rq = Z[X]/(f(X), q) resulting in the
ring-based versions ring-SIS (RSIS) and ring-LWE (RLWE) respectively. Similar
worst-to-average case reductions apply here, albeit from problems in structured
lattices, which are potentially easier. Nevertheless, the low bandwidth require-
ments and high speed made possible by the designs from this category make
their deployment an attractive option, and this in turn mandates careful study.

Some recent constructions have similar features to these ring-based cryp-
tosystems, but rely on modular big integer arithmetic rather than arithmetic
involving polynomials. We classify the AJPS cryptosystem [1] and the I-RLWE
cryptosystem of Gu [16] as members of this category, as well as several submis-
sions to the NIST PQC project [35] such as Ramstake [39] and ThreeBears [17].
Despite relying on different types of rings, the underlying mechanisms of both
categories bear a striking resemblance to each other in that a notion of ‘smallness’
of elements is preserved under addition and multiplication operations. This oper-
ational similarity suggests the possibility of a unifying perspective and a generic
framework for design and analysis.

This paper vastly generalizes the above setting by replacing the ciphertext
ring Rq by a quotient ring of the form Rg = Z[X]/(f(X), g(X)) with f, g ∈ Z[X]
and some restrictions on which pairs one can take. This description captures
both the familiar RLWE setting where g = q ∈ Z>0 as well as the big integer
arithmetic cryptosystems since when g(X) = X − b for some integer b, we have
(f(X), g(X)) = (f(b), X − b) so that Rg = Z[X]/(f(b), X − b) ∼= Z/(f(b)). As
such, our framework contains both RLWE and AJPS as special cases. To capture
plain LWE and module-LWE we will eventually work with free modules over Rg.

On top of the well-known examples it should be clear that our framework
will contain many more, possibly hard, problems that can be consider for use
in cryptographic applications. A systematic treatment of the exact hardness of
these problems would divert attention away from our current focus, hence we
defer such analysis to a future work.

1.1 A motivating example

To identify some of the problems we face in this more general setting, consider
the following standard noisy key agreement protocol. Let G ∈ Rg be a public
parameter, typically sampled uniformly at random or generated pseudorandomly
from a short seed. Alice samples two small elements a,b ∈ Rg and Bob does
the same for c,d. They then exchange aG + b and cG + d, thus allowing Alice
to obtain a(cG + d) and Bob to obtain c(aG + b) while thwarting any passive
eavesdropper. If ad − cb is small, then in principle Alice can obtain secret key
material identical to Bob’s by correcting the errors or extracting an identical
template, possibly with the aid of some additional reconciliation data.

Several requirements are needed to make this protocol work. 1) The represen-
tation of elements of Rg must be conducive to efficient computation. 2) Sampling
small elements must be possible and moreover, whenever a,b, c,d are small then
so is ad−cb. 3) The adversary must be unable to obtain (a,b) from (G,aG+b)

2

or (c,d) from (G, cG+d). 4) It must be possible to correct small perturbations
like ad− cb or at least tolerate them somehow.

These conditions have been studied extensively in the standard case where
g = q ∈ Z>0. This paper initiates the study of these same conditions in our
more general setting. As mentioned above, we view the ciphertext ring Rg as
the quotient of the parent ring R := Z[X]/(f(X)) by the ideal gR. The parent
ring is used to define smallness: informally, a small element of Rg is the reduction
modulo g of an element of the parent ring having small coordinates (in absolute
value) with respect to the power basis 1, X,X2, . . . , Xdeg f−1. Furthermore, when
computing in Rg, all variables are to be reduced into a set of representatives
Rep(Rg), see Section 2.2 for details; this forces noisy expressions to wrap around,
so that they become hard to distinguish from random expressions. Against this
framework, we will provide a thorough analysis of key points 1) and 2), thereby
providing a new set of tools for the cryptographer’s toolbox that are useful for
various specific applications. Condition 3) will be addressed in a future work
while condition 4) will be discussed only superficially as it has a more ad hoc
flavour.

2 A Recipe for Generating Problems

In this section we present a general recipe for concocting problems on which to
build cryptosystems. The recipe is given as a number of decisions to be taken
before ending up with a problem. When following this recipe it is instructive to
think of having a fixed amount of resources (informally this amount is the size
of the problem) to allocate to the different ingredients. Here we simply state the
choices to be made and do not attempt to answer the more difficult question of
how to make the most appetising dish.

Throughout this section, we look at what choices are made in five differ-
ent cases. Firstly, we start with plain LWE. Secondly ring-LWE together with
module-LWE are examined. Thirdly, we consider the problem underlying the
NTRU Prime cryptosystem from [6]. Next, we have the problems underlying the
two Mersenne prime cryptosystems due to Aggarwal, Joux, Prakash and San-
tha [1,2]. Finally, we take an example from coding theory, that of the McEliece
cryptosystem [29].

2.1 Select the parent ring

The first choice one needs to make is the monic polynomial f ∈ Z[X] defining
the parent ring R = Z[X]/(f). If we denote the degree of f by n ≥ 1, then
choosing a larger n requires allotting more of our resources to this ingredient,
furthermore the size of the coefficients of f also affects the consumption of re-
sources; one should keep these small in general so that condition 2) holds. The
parent ring naturally carries the structure of a free Z-module with (power) basis
1, X, . . . ,Xn−1.

3

Running example 1 (plain LWE). Here f is taken to be a linear polynomial, the
most obvious choice being f = X, so that R = Z[X]/(f) ∼= Z. In this case we
use the least amount resources possible.

Running example 2 (ring-LWE and module-LWE). Here we let f be irreducible,
so that R = Z[X]/(f) is an order in a number field.1

Running example 3 (NTRU Prime). The NTRU Prime cryptosystem sets n be
an odd prime and takes f = Xn −X − 1, an irreducible polynomial.

Running example 4 (AJPS). The Mersenne prime cryptosystem lets f = Xn−1
be such that f(2) = 2n − 1 is a prime number; note that n is necessarily prime
as well.

Running example 5 (McEliece). As with plain LWE one chooses f to be linear
and R = Z.

2.2 Select the ciphertext modulus

Next, we must choose a ciphertext modulus g ∈ Z[X], which defines the cipher-
text ring

Rg = Z[X]/(f, g)

in terms of which our problem will be formulated. We impose some restrictions
on the possible choice of g; throughout this paper we assume that

(i) f and g are coprime, i.e., their only common divisors are ±1: this ensures
that Rg is a finite ring,

(ii) deg(g) < n, which is not really a restriction since one can always replace g
by g mod f ,

(iii) there exists a positive integer a and a monic polynomial r ∈ Z[X] such that
(f, g) = (a, r) as ideals.

Assumption (iii) is the most restrictive, although not as badly as one might fear:
a heuristic proportion of 6/π2 ≈ 60.8% of all random pairs f and g satisfies this
condition, which is confirmed by experiment (if satisfied then r is linear with
overwhelming probability). The reason for (iii) is it ensures that the ciphertext
ring naturally comes equipped with a nice set of representatives

Rep(Rg) =
{
αdeg(r)−1X

deg(r)−1 + . . .+ α1X + α0

∣∣∣ αi ∈ {0, . . . , a− 1}
}
, (1)

in which all computations are to be reduced; this ensures condition 1) is satisfied.
We stress that having such a nice set of representatives is our only reason for
1 More precisely it is an order in the degree n number field K = Q[X]/(f). In fact
the formal definitions of ring-LWE [27] and module-LWE [22] require R to be the
maximal such order, denoted by OK , which may not be true in our setting (if K is
not monogenic then this is even impossible). However, allowing for arbitrary orders
would needlessly complicate our discussion, the more since there is no issue in the
common scenario where f is a cyclotomic polynomial.

4

this assumption: it would be possible to weaken it if one is willing to end up
with uglier or less canonical sets of representatives, though we avoid a detailed
discussion. In Section 5 we will explain how to decide if such a and r exist, and
if so, how to find them.

Just as with f the degree of g and the size of the coefficients of g plays
a role in defining how much resources a certain g uses. In fact, it is better
to consider the values of deg(r) and a as this is what defines the size of Rg:
#Rg = Res(f, g) = adeg(r). Increasing this value naturally increases the size of
the problem.

Running example 1 (plain LWE). Here g is a positive integer, usually denoted
by q, so that Rg ∼= Zq. In this case one can take a = q and r = f , hence
#Rg = qn.

Running example 2 (ring-LWE and module-LWE). Here again g is a positive
integer q so that one can take a = q and r = f .

Running example 3 (NTRU Prime). Again g is a positive integer q and one lets
a = q and r = f .

Running example 4 (AJPS). Here g = X − 2 and one can take a = 2n − 1 and
r = g = X − 2 because indeed (Xn − 1, X − 2) = (2n − 1, X − 2). Thus taking
a = 2n − 1 and r = X − 2 we have #Rg = 2n − 1.

Running example 5 (McEliece). As with plain LWE we take g to be an integer
q, but whereas in plain LWE q is relatively large here we take q = 2, thus
#Rg = 2n.

2.3 Select the rank

Thirdly, one must select a positive integer m, the rank, and construct the free
Rg-module

M := Rmg = Rg ×Rg × . . .×Rg︸ ︷︷ ︸
m copies

consisting of length m vectors with entries in Rg.
As with n (the degree of f), taking a larger m consumes more resources;

indeed the size of a element of M is mdeg(r) log |a|.

Running example 1 (plain LWE). Here m is a reasonably large integer andM =
Rmq
∼= Zmq .

Running example 2 (ring-LWE and module-LWE). In ring-LWE we take m = 1
so that M = Rq. In module-LWE m > 1 is a relatively small integer and the
module M is given by Rmq .

Running example 3 (NTRU Prime). Here m = 1 so that M = Rq.

Running example 4 (AJPS). Here again m = 1 so that M = RX−2.

Running example 5 (McEliece). In this case, the value of m is the dimension of
the code used.

5

2.4 Select the family of hard problems

After choosing the rank we select one of the following three problems, which
we call Ideal-LWE, Ideal-SIS, and Ideal-NTRU, respectively. Informally, these
problems in their basic form are to solve a system of ‘noisy’ linear equations,
to find a non-zero solution to a system of linear equations which is ‘small’, and
to express a matrix as a quotient of two ‘small’ matrices, respectively.2 In each
case the base ring is Zq for some positive integer q. These basic problems refer
to standard LWE, standard SIS and a matrix variant of NTRU, alluded to in
[18] when comparing NTRU to McEliece.3

The simplest way to generalise these basic problems is to replace the random
matrix defining the linear system by a matrix of multiplication; that is a linear
map on a free Zq-module defined by multiplying by an element of that module.
This gives the matrix some structure allowing for a more compact representa-
tion and gives rise to the ring versions of the problems. In particular this gives
standard the NTRU problem.

The second main way to generalise the basic problem is to take entries from
a larger ring than Zq, such as the ring Rg, which is a Za module itself.4 Thus, we
can replace the ring elements by deg(r)× deg(r) matrices of multiplication with
entries in Za which gives a block structure to the original matrix. This is the
general module approach which gives rise to the module variants of the problems
when g = a ∈ Z.

Now we have seen the two main generalisations we give the details of how
this can be applied to each problem.

Ideal-LWE For the Ideal-LWE problem one chooses two further parameters k,
the number of ‘keys’, and `, the number of samples (which will depend on the
application).5 The problem is then defined as:

Problem 1 (Ideal-LWE Search Problem). Let χ be a distribution on R defining
small elements and let k and ` be positive integers. Sample a uniformly random
element s from Rm×kg . The Ideal-LWE search problem is to find s given the
tuple (a,b) ∈ R`×mg × R`×kg where a ∈ R`×mg is sampled uniformly at random
and b = a× s + e ∈ R`×kg with e sampled from χ`×k.

In a number of circumstances one often wants to sample the secret s not from
the whole space but some subset of elements, for example by sampling it using
the error distribution. This so-called ‘small secret’ case allows more powerful
cryptographic constructions to be built as multiplying by s preserves smallness.
See [10, Sect. 4] and [32] for a reduction from the general case to the small secret
case.
2 The definition of what exactly ‘small’ means and what a distribution of small ele-
ments is is left to the next section.

3 See also [33] where this is elaborated in more detail.
4 Recall we have (f, g) = (a, r) for some a ∈ Z.
5 Often one considers ` to be simply polynomially bounded in the security parameter
rather than fixed.

6

Ideal-SIS In the Ideal-SIS and Ideal-NTRU problems we require a norm on
the ciphertext ring, ‖ · ‖ : Rg → R≥0. We abuse notation and write ‖a‖ < ρ for
a ∈ Rmg if, for all components ai of a, the relation ‖ai‖ < ρ holds.

Problem 2 (Ideal-SIS Search Problem). Given an integer ` > m together with a
bound ρ. Sample ` elements from M = Rmg uniformly at random, say a1, . . . ,a`,
then the Ideal-SIS problem is to find a non-zero vector z = (z1, . . . , z`) ∈ R`

such that ‖z‖ ≤ ρ and
∑`
i=1 ai · zi = 0.

One often considers the inhomogeneous problem where instead of finding a
linear combination summing to zero one is given a target vector which the linear
combination must sum to; this is also sometimes called the knapsack problem.

Ideal-NTRU The final problem we consider is that of the Ideal-NTRU problem.

Problem 3 (Ideal-NTRU Search Problem). Let χ be a distribution of small el-
ements on R with appropriate bound ρ. Sample u ← χm×m such that it is
invertible in Rm×mg and v ← χm×m.6 Set h = vu−1 ∈ Rm×mg .7 Then given h
and ρ the Ideal-NTRU search problem is to find a pair (u′,v′) with u′ invertible,
h = v′u′

−1, ‖u′‖ < ρ and ‖v′‖ < ρ.

Unlike with the previous choices the cost of picking a certain problem is
not so obvious; one could consider, for example, the size of the space which
the solution to the set of linear equations belongs but this is not so easy to
compute in the Ideal-SIS and Ideal-NTRU cases when the solution is restricted
to be small. We point out that the size of the problem is related but directly
equivalent to the hardness of a problem. For most choices of parameters, the best
known attacks rely on lattice reduction; hence in general the cost will depend
on the dimension of the lattice being reduced which need not directly reflect the
size of the problem.

Running example 1 (plain LWE). Here we of course select the Ideal-LWE prob-
lem.

Running example 2 (ring-LWE and module-LWE). This again amounts to se-
lecting the Ideal-LWE problem.

Running example 3 (NTRU Prime). Here we select the Ideal-NTRU problem.

Running example 4 (AJPS). The version of [1] amounts to selecting the Ideal-
NTRU problem while the corresponding NIST submission [2] amounts to select-
ing Ideal-LWE.

Running example 5 (McEliece). Here we are considering the problem of decrypt-
ing a ciphertext using only the public key. One essentially takes the Ideal-
LWE problem with a fixed number of samples (the length of the code).
6 The case of non-square v can also be considered.
7 We also have the choice of multiplying v on the left by u−1 but this leads to the
same problem; however there is a third option: to multiply v by the inverse of two
small square matrices, one on the left and one on the right. This is done in [12].

7

2.5 Distribution of small elements

Finally, we come to the issue of what a small element is. Informally spoken, by
a small element of R we mean an element having small coordinates (in absolute
value) with respect to the power basis. The archetypal example is that each
coordinate is sampled from a discrete Gaussian distribution with standard devi-
ation σ. The LWE type problems all typically use this type of distribution. One
can also consider the case when the coefficients are not sampled independently.
When σ becomes small enough, the coefficients are, with high probability, in the
set {−1, 0, 1}. When not sampled independently, it becomes possible to essen-
tially sample vectors of a specified Hamming weight, this is the distribution used
in the NTRU setting.

The question of precisely how small to take small elements is complex and
depends on the problem and application. In general larger errors give harder
problems but may inhibit functionality and performance of certain cryptographic
schemes.

3 A Catalogue of Problems

Now that we have a general outline for our recipe we can consider what problems
we can create using it. To this end we start to build a catalogue of problems by
looking at examples already in the literature, a number of which we have already
seen.

Ideal-LWE We first consider those using the Ideal-LWE problem. If one takes
the ciphertext modulus g to be an integer and set k = 1 then we get the familiar
LWE type problems: when deg(f) = 1 and m > 1 we get standard LWE, when
deg(f) > 1 and m = 1 we have the (poly-)RLWE problem,8 and bridging them
when deg(f) > 1 and m > 1 we find module-LWE. An example for when k > 1
is the matrix LWE problem from [7] which still takes g to be an integer.

In contrast, if one takes g(X) = X − b for some integer b and deg(f) > 1,
then one obtains LWE-like problems but associated with big integer arithmetic.
We identify the I-MLWE problem of ThreeBears [17] (m > 1, k = 1) and I-
RLWE problem of Gu [16] (m = k = 1) as members of this class. Further, the
Mersenne-756839 submission to NIST [34] defines and uses the Mersenne Low
Hamming Combination (MLHC) search problem for security; this is essentially
the I-RLWE problem when b = 2 and the secret s is not uniformly random but
sampled from the distribution χ. The Ramstake submission [39] also makes use
of the MLHC problem.

8 We note that the RLWE problem is usually stated in terms of the codifferent R∨

[27,28], but this can be avoided by using a different error distribution [11]. Therefore,
we do not consider this option in detail.

8

Ideal-NTRU Next we consider examples of the Ideal-NTRU problem. When
m = 1 and deg(f) > 1 we capture standard NTRU [19] along with NTRU
Prime [6] and many other variants when taking g(X) an integer as well as
the Mersenne Low Hamming Ratio (MLHR) problem [1] when g(X) = X − 2.
Furthermore, for m > 1 and g ∈ Z we have the basic matrix formulation of
NTRU [33] when deg(f) = 1 while MaTRU [12] uses deg(f) > 1.

Ideal-SIS Finally, with the Ideal-SIS problem there are relatively few examples,
all take g to be an integer. When deg(f) = 1 and m > 1 we have the standard
SIS problem [3], when deg(f) > 1 and m = 1 we have the ring-SIS problem [31]
and when both deg(f) > 1 and m > 1 we reach the module-SIS problem [22]. In
the case when both deg(f) and m are taken to be one, the resulting problem is
the (homogeneous) modular subset sum problem (SSP).

We can arrange all of these examples in a number of tables classified by the
problem family they utilise, the degrees of f and g as well as whether the rank
m is one or larger than one. We colour each cell either red (and mark with a
∗), when we don’t consider the problem as deg(g) ≥ deg(f); yellow, when there
is a known example in the current literature; or green (marked with a question
mark), when the problem has not yet been considered.

Looking at the green entries in the tables we can immediately see a number of
empty entries. Firstly, there seems to be no analogue of NTRU over the integers
which appears to be hard; the problem can be solved easily by performing lattice
reduction on the 2-dimensional lattice spanned by the row vectors (1, h), (q, 0)
and (q, 0) where h is the quotient of small elements in Zq. Secondly, to the best
of our knowledge no one has proposed a matrix version of the NTRU problem
over the AJPS ring Z[X]/(Xn − 1, X − 2) ∼= Z/(2n − 1). Thirdly, the ring and
module variants of the SIS problem have also not been considered when using
this ring. Finally, as we have already stated, we know of no paper which explicitly
considers the case when the modulus g has degree larger than one.

Cryptographic applications In practice, as cryptographers, our end goal is
to build cryptographic schemes which rely on the hardness of a given problem.
Just as with deriving a problem by following the above recipe, much of the
known cryptographic applications can equally be built almost automatically on
top of the new problems in much the same way as when building them from the
standard problems. The motivating key-exchange example in the introduction
essentially forms the basis for most applications.

In this respect we find that the LWE family is the most useful to us, while
the SIS family has the fewest known applications to date.

From the problems belonging to the LWE family we can build basic prim-
itives such as public key encryption [37,36], key exchange [21,5], digital signa-
tures [25,4]9 and oblivious transfer [36,8], as well as more advanced constructs
such as identity-based encryption [15] and fully homomorphic encryption [9,14].

9 See also the NIST competition for more constructions of these three primitives [35].

9

Ideal-LWE

m = 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 1-dimensional LWE [10] RLWE[27]

1 ∗ I-RLWE [16], MLHC [2]
... ∗ ?

m > 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 LWE, LPN [37], McEliece [29],

matrix LWE [7]
M-LWE [22,9]

1 ∗ I-MLWE [17]
... ∗ ?

Ideal-NTRU

m = 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 ? NTRU [19], NTRU Prime [6]

1 ∗ MLHR [1]
... ∗ ?

m > 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 matrix NTRU[33] MaTRU[12]

1 ∗ ?
... ∗ ?

Ideal-SIS

m = 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 modular SSP RSIS [31]

1 ∗ ?
... ∗ ?

m > 1 deg(f) = 1 deg(f) > 1

d
eg
(g
) 0 SIS [3] M-SIS[22]

1 ∗ ?
... ∗ ?

As for the NTRU family, there are known constructions for much the same
primitives: public key encryption [19,6], digital signatures [20], oblivious trans-
fer [30], identity based encryption [13] and fully homomorphic encryption [24].

The SIS family has turned out to be far less fruitful, however it has still been
used to create a digital signature scheme via hashing [15]. It is also known that
one can build zero knowledge proofs from the inhomogeneous SIS problem [23].

10

We expect that most of the above primitives can be straightforwardly adapted
to work using our more general problems and we give some simple examples in
the case of public key encryption in the next section.

4 New Examples

4.1 Generalising the Gu Encryption scheme to higher degree g

Here we present a generalisation of the Gu encryption scheme [16] where instead
of taking g to be linear we consider g of higher degree. We first define our
parent ring as R = Z[X]/(Xn + 1), that is we take f(X) = Xn + 1. Next, we
carefully choose our ciphertext modulus g = Xd + b where b > 1 such that
d | n, d < n and q = bn/d + (−1)n/d is prime.10 Then we have that the ideal
generated by f and g is also generated by g and the prime q; this is because
f = (Xd)n/d + 1 ≡ (−b)n/d + 1 = (−1)n/dq mod g. Therefore we have that
RXd+b

∼= Zdq as abelian groups, by considering a polynomial of degree at most
d− 1 as a vector of d coefficients. We will use this as a set of representatives of
Rg, see Equation (1). We also take the rank to be one, to simplify the discussion
somewhat but one can easily consider a module version of our scheme. Finally,
we choose a plaintext modulus p; the plaintext space will be Znp .

Next, we define a distribution of small elements in R, χσ, by sampling n
coefficients from a discrete Gaussian distribution with standard deviation σ, and
forming a polynomial of degree n − 1 from these coefficients. This polynomial
will then be reduced modulo g in our scheme to one with d coefficients, which
need not be small with respect to q, indeed we expect them not to be. We denote
by χσ the distribution on Zdq given by sampling from χσ and reducing modulo
g. In practice, to sample from χσ one will, for each of the d entries, sample n/d
coefficients from the discrete Gaussian, say εi, and compute

∑n/d−1
i=0 εi(−b)i as

the entry. Thus we see that σ should be much smaller than b.

Key Generation To generate a key we sample an element a uniformly at
random from RXd+b

∼= Zdq as well as elements s, e← χσ. Compute b = as+ pe.
The public key is the pair (a,b) while the private key is s.

Encryption Given a plaintext m ∈ Znp , consider it as a polynomial in R with
coefficients in [−p/2, p/2) and denote by m the reduction of this polynomial
modulo Xd+ b. Sample elements r, e1, e2 ← χσ and compute c1 = ar+pe1 and
c2 = br+ pe2 +m, where (a,b) is the public key of the intended recipient. The
ciphertext is the pair (c1, c2).

10 If n/d is odd then bn/d − 1 is divisible by b − 1 so the only way for it to be prime
is when b = 2 and n/d is prime, hence q must be a Mersenne prime. In our case we
want b to be large so we will always require n/d to be even. The choice of n being a
power of two gives generalised Fermat primes and we of course require b to be even.

11

Decryption Given a ciphertext (c1, c2) and a private key s one first computes
d = c2 − c1s. For each coefficient di consider it an integer in [−q/2, q/2) and
compute the balanced expansion with base −b, say di =

∑
j αi,j(−b)j where

αi,j ∈ [−b/2, b/2). Then for k = 0, . . . , n − 1 define mk = αi,j mod p where
i = kmod d and j = bkd/nc. Return the vector m = (mk).

Security Just as in Theorem 3.9 from [16], for the specific choices of f and g
taken here we can convert a RLWE sample with f = Xn + 1 and g = b to a
Ideal-LWE sample with the same f but g = Xd + b and conversely transform
a Ideal-LWE sample into a RLWE sample, in both cases with a growth in the
noise present in the sample. The conversions are simple to write down. To go
from RLWE to Ideal-LWE, for each polynomial in Rb (i.e. a, b and s), lift it to
a polynomial in R with coefficients in the symmetric interval around zero and
then reduce modulo Xd + b. In the reverse direction, for each element in RXd+b

with coefficients in the symmetric interval about zero, lift it to a polynomial in
R by expanding the coefficients to the base b with the coefficients of powers of b
in the range [−b/2, b/2) and then substituting b with −Xd. Reduction modulo
b gives an element of Rb.

A proof of the reductions is essentially the same as that given in [16] with
the same bound on the growth of the noise.

Somewhat Homomorphic Encryption It is straightforward to transform
this scheme into a somewhat homomorphic scheme akin to, for example, the
Brakerski-Fan-Vercauteren scheme [14]. Implementing this we found that with
the same parameters used in practice we could perform on average between zero
and three fewer multiplicative levels than with the original scheme.11

4.2 Module-NTRU over the AJPS ring

In this section we briefly describe a cryptosystem employing the Ideal-NTRU
problem with rank larger than one and which takes as the underlying ring the
AJPS ring; this means we will take f as Xn − 1 for some prime n such that
q = 2n − 1 is also prime, and g as X − 2. We also choose positive integers d
and w � n where d will be the rank of the module used and w will be the
Hamming weight of elements sampled from our distribution of small elements.
Formally, we define χw to be the uniform distribution over the set {

∑
i∈I 2i | I ⊂

{0, 1, . . . , n−1}, #I = w}. The plaintext space will be {0, 1}d and for decryption
we will choose two thresholds tl and tu satisfying 0 ≤ tu < tl ≤ n.

Key Generation To generate keys first sample two matrices u and v from
χd×dw with the condition that u is invertible modulo q. Compute w = vu−1. The
public key is w and the private key is u.

11 We dropped the condition that bn/d + 1 must be prime for this.

12

Encryption Given a public key w and a message m ∈ {0, 1}d, denote by m
the d× d diagonal matrix with the message bits down the diagonal. To encrypt,
sample two matrices r and e from χd×dw and a diagonal matrix d with uniformly
random coefficients modulo q. Compute the ciphertext as c = rw + md + e.

Decryption To decrypt the ciphertext c with the private key u first compute
the product p = cu. Then for each i in {1, . . . , d} consider the elements in
the ith row of p as binary strings of length n and compute the mean of the
Hamming weights of these binary strings. If this mean is at most the threshold
tl set mi = 0, if this mean is no smaller than tu set mi = 1 and otherwise abort.
Return the vector (mi).

Decryption works since we have p = cu = rv + mdu + eu and the entries
of rv and eu will still have relatively small Hamming weight while the entries
of mdu will be zero in the ith row if mi = 0 and be uniformly random if mi =
1. The probability that d uniformly random elements have a mean Hamming
weight smaller that the threshold tl can be made negligibly small by choosing
the parameters appropriately.

5 Generic Moduli

In this final section we look at the structure of the ring Rg for generic g. In this
case, our ring Rg = Z[X]/(f(X), g(X)) does not have an obvious canonical set
of representatives. In order to have useful representatives we will try to find a
pair a ∈ Z>0 and r ∈ Z[X] such that (f, g) = (a, r). When r is monic we can
use the set of representatives from Eq. (1). We note that if r is not monic then
a set of representatives is still possible to write down but is not so user-friendly.
Our choice of g will be constrained by Rg having such a set of representatives.

Now our task is to find such a and r, if they exist. It is natural to choose a
to be the smallest positive integer in (f, g) so that (f, g)∩Z = (a) which always
exists due to the coprimality of f and g. Then r is defined only modulo a and up
to units of Za[X]. The overall strategy is first to find a. Afterwards, we search
for an r using the Euclidean algorithm in the ring Za[X]. When a is composite,
Za is not an integral domain so that finding inverses modulo a can fail. However
in this case we will have found a factor of a and can use this factor, with some
work, to either split a into a product of coprime factors, work modulo each of
these factors and combine the results using the Chinese Remainder Theorem, or
write a as a power and use Hensel lifting to find r. Of course these subroutines
can also fail when a division fails but we recurse until an r is found. We remark
that if we don’t assume r exists then it is only possible to determine no r exists
during the lifting procedure. This ad hoc recursion strategy allows us to bypass
the need to factorize a at the onset.

Lemma 1. Let s, t ∈ Z[X] be such that sf + tg ∈ Z, with deg(s) < deg(g) and
deg(t) < deg(f), and further assume that the greatest common divisor of s and
t is 1. Then a = sf + tg is a generator of the ideal (f, g) ∩ Z.

13

Proof. We proceed by assuming (f, g) ∩ Z is not generated by sf + tg but some
proper divisor and derive a contradiction.

For some prime factor p of sf + gt we must have (sf + gt)/p ∈ (f, g)∩Z and
thus (sf + gt)/p = s′f + t′g for some s′, t′ ∈ Z[X]. We therefore have

sf + tg = ps′f + pt′g

and rearranging gives (s−ps′)f = (pt′− t)g. Since f and g are coprime, we must
have s− ps′ = kg as well as pt′ − t = kf for some polynomial k ∈ Z[X].

Denote by ·̄ : Z[X]→ Fp[X] reduction modulo p. Then k̄ḡ = s̄ and k̄f̄ = −t̄.
Since f is monic and Fp[X] is an integral domain we have deg(t̄) < deg(f̄) so
that k̄f̄ = −t̄ can only hold if k̄ = t̄ = 0, which implies s̄ = 0. But t̄ = s̄ = 0
implies p divides both s and t which contradicts the assumption that s and t
have greatest common divisor 1. ut

The question is thus how to find such s and t. One way to proceed is by com-
puting, using the extended Euclidean algorithm over Q[X], rational polynomials
s′ and t′ such that s′f+ t′g = 1 and deg(s′) < deg(g) and deg(t′) < deg(f), then
multiplying by the lowest common multiple of all the denominators appearing
in the coefficients of both s′ and t′ we find such s and t. The a we require is this
lowest common multiple.

Next we show that, when it does not fail, we can use Euclid’s algorithm to
find r modulo a positive divisor of a. Thus we assume in the lemma that an r
exists.

Lemma 2. Let d be a positive divisor of a and suppose that applying Euclid’s
algorithm to f and g in the ring Zd[X] does not fail and outputs the polynomial
ρ. Then ρ ≡ rmod d up to units in Zd[X].

Proof. Denote by ·̄ the residue modulo d. Since (f, g) = (a, r) we have (f̄ , ḡ) =
(ā, r̄) = (r̄) since d | a. Now by the properties of Euclid’s algorithm we have that
(f̄ , ḡ) = (ρ). Therefore r ≡ ρmod d up to a unit of Zd[X]. ut

If d is taken to be a prime p then Euclid’s algorithm never fails so we can
use it to find a suitable r modulo p. However it is possible that a larger power of
the prime divides a, say pe, and in this case if Euclid’s algorithm fails modulo pe
we need to use Hensel lifting to lift ρ, our solution modulo p, to one modulo pe.
Algorithm 1, shows how to do this iteratively from pj to pj+1. It is at this point
where a solution may fail to exist, showing that no such r exists.

Lemma 3. Algorithm 1 for Hensel lifting is correct.

Proof. Firstly we assume that ρ′ exists. By the preconditions, there exist α, β,
and further µ and ν such that ρ ≡ αf+βg, f ≡ µρ and g ≡ νρ modulo pj and we
write each of these in p-ary form with the subscript indexing the digit, starting
at zero. Note that α0 and β0 can be computed from f0 and g0 using the extended
Euclidean algorithm over Fp[X]. Also µ and ν can easily be computed from f , g

14

Algorithm 1: Hensel Lifting
Input: Polynomials f, g, ρ in Z[X] (with f monic), a prime p and a positive

integer j; satisfying αf + βg ≡ ρmod pj for some α, β ∈ Z[X], as well as
f ≡ ρµmod pj and g ≡ ρνmod pj for some µ, ν ∈ Z[X].

Output: A polynomial ρ′ ∈ Z[X] such that ρ′ ≡ α′f + β′gmod pj+1 for some
α′, β′ ∈ Z[X], as well as ρ′|f and ρ′|g in Zpj+1 [X]; or Fail if no such
polynomial exists.

µ← f/ρ . Arithmetic in Zpj [X].
ν ← g/ρ . Arithmetic in Zpj [X].
u← ((f − ρµ)/pj)mod p . Thus f ≡ ρµ+ pjumod pj+1.
v ← ((g − ρν)/pj)mod p . Thus g ≡ ρν + pjvmod pj+1.
γ, ξ, ζ = xgcdFp[X](ρ, µ) . Thus γ = ξρ+ ζµmod p.
δ, φ, ψ = xgcdFp[X](ρ, ν) . Thus δ = φρ+ ψνmod p.
θ ← ζψ(uν − vµ)mod p
ρ0 ← ρmod p
if γ 6 | u or δ 6 | v or ρ0 6 | θ then

return Fail
κ← (θ/ρ0 + ζφu− ψξv)τ
ρj ← (ζu− κρ0)/γmod ρ0 . Hence deg(ρj) < deg(ρ0).
ρ′ ← ρ+ pjρj . Arithmetic in Z[X].
return ρ′

and ρ. Then f − ρµ is divisible by pj , so defining u via f − ρµ = pjumod pj+1,
ρj and µj must satisfy

0 ≡ f − (ρ+ pjρj)(µ+ pjµj) ≡ pj(u− (ρjµ+ ρµj))mod pj+1,

or equivalently ρjµ + ρµj ≡ umod p. Hence, u ∈ (ρ0, µ0) = (γ) where γ is the
greatest common divisor of ρ0 and µ0 in Fp[X], say with Bézout coefficients ξ
and ζ so that γ = ξρ0 + ζµ0. So γ divides u and all solutions for ρj and µj are
given by

ρj = ζ
u

γ
− κρ0

γ
and µj = ξ

u

γ
+ κ

µ0

γ
(2)

for some κ ∈ Fp[X]. The same computation for g implies that δ must divide v
where δ = φρ0 +ψν0 is the greatest common divisor of ρ0 and ν0 over Fp[X] and
v = (g − ρν)/pj mod p. The solutions for ρj and νj are given by

ρj = ψ
v

δ
− λρ0

δ
and νj = φ

v

δ
+ λ

ν0
δ

(3)

for some λ ∈ Fp[X]. Equating the two expression for ρj in Equations (2) and (3)
we see that (κδ− λγ)ρ0 = ζuδ−ψvγ. Now using our expressions for γ and δ we
have (κδ− λγ)ρ0 = (ζuφ−ψvξ)ρ0 + ζψ(uν0− vµ0). Thus we must have that ρ0
divides θ := ζψ(uν0 − vµ0) and then κδ − λγ = ζuφ− ψvξ + θ/ρ0.

Next we note that gcd(γ, δ) = 1 as otherwise there would be a non-trivial
factor of µ0 and ν0 and then ρ0 could not be the highest-degree common factor

15

of f and g modulo p. Therefore we can write 1 = σγ + τδ for some σ, τ ∈ Fp[X]
and all solutions for κ and λ are given by

κ = (θ/ρ0+ζφu− ψξv)τ + εγ and λ = −(θ/ρ0+ζφu− ψξv)σ + εδ

for some ε ∈ Fp[X] and each such ε will give a valid solution. Algorithm 1 chooses
to take ε = 0 at first but implicitly changes its value later via modular reduction.
We find ρj by plugging in the expression for κ in Equation (2) then reducing
modulo ρ0. If this modular reduction subtracts kρ0, then this is equivalent to
choosing ε = k.

The post-conditions are satisfied because there is a solution for µj and νj
whenever there is one for ρj . Setting µ′ = µ+µjp

j and ν′ = ν + νjp
j this shows

that necessarily ρ′µ′ = f and ρ′ν′ = g in Zpj+1 [X]. Moreover, the requirement

ρ′ = (α+ pjαj)ρ
′µ′ + (β + pjβj)ρ

′ν′mod pj+1

is equivalent to w + α0µj + αjµ0 + β0νj + βjν0 = 0mod p, where w = (αµ +
βν − 1)/pj mod p which always has a solution for αj and βj as µ0 and ν0 are
coprime. Therefore, for any such solution, α′ = α + pjαj and β′ = β + pjβj
satisfy ρ′ = α′f + β′gmod pj+1.

The proof up until this point shows that if a ρj exists, then Algorithm 1 finds
one. Therefore, if the algorithm fails, such a ρj does not exist. ut

Remark 1. The algorithm can be modified to avoid computing γ, ξ, ζ and δ, φ, ψ
every iteration as these variables change only when p does. Also, it is possible to
output α′, β′, µ′, and ν′ along with ρ′, if required, but we opted here for brevity
and simplicity.

In practice one will not check whether we are working modulo a prime and
the requirement that p is a prime in Algorithm 1 and Lemma 3 is there only to
guarantee that the various calls to the Euclidean algorithm return a valid result
and will not fail. In practice if the Euclidean algorithm fails it will be because it
was unable to invert an integer modulo p and hence we will have found a factor
of p and can split it appropriately and try again on each factor until it succeeds.

In more detail, if one is working modulo a and finds a factor d then one can
find the largest power of d dividing a, say dk. Then if a/dk is coprime to d we can
work modulo a/dk and dk. Otherwise h = gcd(a/dk, d) is such that 1 < h < d
then we find the largest power of h dividing d and the largest power of h dividing
a/dk, say hl and hm respectively. Then hkl+m divides a and recurse using factors
hkl+m, (d/hl)k and a/(dkhm) until all factors are coprime. A solution modulo a
is then found by using the Chinese Remainder Theorem.

Our calculations (and some heuristics) suggest that 6/π2 ≈ 60.8% of all ran-
dom pairs f and g satisfy this condition, and that r is linear with overwhelming
probability in this case. Of the remaining 39.2%, a little over 25% give non-monic
r and in just under 14% of the cases no r exists. We leave open the question
whether non-monic r can be useful in ways that a monic r cannot.

16

Acknowledgements

This work was supported in part by the Research Council KU Leuven grants
C14/18/067 and STG/17/019. Carl Bootland is funded by an FWO fellowship.
Alan Szepieniec is supported by an IWT doctoral grant.

References

1. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A New Public-Key Cryptosystem
via Mersenne Numbers. IACR Cryptology ePrint Archive, Report 2017/481, ver-
sion 20170530:072202 (2017), https://eprint.iacr.org/eprint-bin/versions.
pl?entry=2017/481

2. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A New Public-Key Cryptosys-
tem via Mersenne Numbers. Cryptology ePrint Archive, Report 2017/481 (2017),
https://eprint.iacr.org/2017/481

3. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: Miller, G.L. (ed.) STOC 1996. pp. 99–108. ACM (1996)

4. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An Effi-
cient Lattice-Based Signature Scheme with Provably Secure Instantiation. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. pp. 44–60.
Springer International Publishing (2016)

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key
Exchange—A New Hope. In: USENIX Security 16. pp. 327–343. USENIX
Association (2016), https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim

6. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime: Reducing Attack Surface at Low Cost. In: Adams, C., Camenisch, J. (eds.)
SAC 2017. pp. 235–260. Springer (2018)

7. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the Ring! Practical, Quantum-Secure Key
Exchange from LWE. In: ACM SIGSAC 2016. pp. 1006–1018 (2016)

8. Brakerski, Z., Döttling, N.: Two-Message Statistically Sender-Private OT from
LWE. In: A. Beimel, S.D. (ed.) Theory of Cryptography. TCC ‘18, Springer (2018)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption Without Bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(Jul 2014)

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness
of Learning with Errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
STOC 2013. pp. 575–584. ACM (2013)

11. Castryck, W., Iliashenko, I., Vercauteren, F.: On error distributions in ring-based
LWE. LMS Journal of Computation and Mathematics 19(A), 130–145 (2016)

12. Coglianese, M., Goi, B.M.: MaTRU: A New NTRU-Based Cryptosystem. In:
Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. pp.
232–243. Springer Berlin Heidelberg (2005)

13. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient Identity-Based Encryption over
NTRU Lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. pp. 22–41.
Springer Berlin Heidelberg (2014)

14. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/
2012/144

17

https://eprint.iacr.org/eprint-bin/versions.pl?entry=2017/481
https://eprint.iacr.org/eprint-bin/versions.pl?entry=2017/481
https://eprint.iacr.org/2017/481
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008. pp. 197–206. ACM
(2008)

16. Gu, C.: Integer version of ring-LWE and its applications. Cryptology ePrint
Archive, Report 2017/641 (2017), https://eprint.iacr.org/2017/641

17. Hamburg, M.: Post-quantum cryptography proposal: ThreeBears (2018), https://
sourceforge.net/p/threebears/code/ci/master/tree/threebears-spec.pdf

18. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A New High Speed Pub-
lic Key Cryptosystem (1996), preliminary draft available at https://web.
securityinnovation.com/hubfs/files/ntru-orig.pfd?

19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267–288. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998)

20. Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: A Signature Scheme from Learn-
ing with Truncation. IACR Cryptology ePrint Archive, Report 2017/995 (2017),
https://eprint.iacr.org/2017/995

21. Jintai Ding, Xiang Xie, X.L.: A Simple Provably Secure Key Exchange Scheme
Based on the Learning with Errors Problem. Cryptology ePrint Archive, Report
2012/688 (2012), https://eprint.iacr.org/2012/688

22. Langlois, A., Stehlé, D.: Worst-Case to Average-Case Reductions for Module Lat-
tices. Designs, Codes and Cryptography 75(3), 565–599 (Jun 2015)

23. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved Zero-Knowledge Proofs of
Knowledge for the ISIS Problem, and Applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. pp. 107–124. Springer Berlin Heidelberg (2013)

24. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly Multiparty Computa-
tion on the Cloud via Multikey Fully Homomorphic Encryption. In: Karloff, H.J.,
Pitassi, T. (eds.) STOC 2012. pp. 1219–1234. ACM (2012)

25. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. pp. 738–755. Springer Berlin Heidelberg
(2012)

26. Lyubashevsky, V., Micciancio, D.: Generalized Compact Knapsacks Are Collision
Resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata,
Languages and Programming. pp. 144–155. Springer Berlin Heidelberg (2006)

27. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. pp. 1–23. Springer
Berlin Heidelberg (2010)

28. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors Over Rings. IACR Cryptology ePrint Archive, Report 2012/230 (2012),
https://eprint.iacr.org/2012/230

29. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
JPL DSN Progress Report 42–44 pp. 114–116 (01 1978)

30. Mi, B., Huang, D., Wan, S., Mi, L., Cao, J.: Oblivious Transfer based on NTRU-
Encrypt. IEEE Access pp. 7019–7028 (2018)

31. Micciancio, D.: Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-Way Functions from Worst-Case Complexity Assumptions. In: FOCS 2002.
pp. 356–365. IEEE Computer Society (2002)

32. Micciancio, D.: On the Hardness of Learning With Errors with Binary Secrets
(2018), http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf

33. Nayak, R., Sastry, C., Pradhan, J.: A matrix formulation for NTRU cryptosystem.
In: Proc. 16th IEEE International Conf. on Networks (ICON-2008) (2008)

18

https://eprint.iacr.org/2017/641
https://sourceforge.net/p/threebears/code/ci/master/tree/threebears-spec.pdf
https://sourceforge.net/p/threebears/code/ci/master/tree/threebears-spec.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pfd?
https://web.securityinnovation.com/hubfs/files/ntru-orig.pfd?
https://eprint.iacr.org/2017/995
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/230
http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf

34. NIST: Post-quantum crypto standardization (2018), http://csrc.nist.gov/
groups/ST/post-quantum-crypto/

35. NIST: Submission to the NIST call for PQC proposals. (2018), https://csrc.
nist.gov/projects/post-quantum-cryptography/round-1-submissions

36. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. pp. 554–571.
Springer Berlin Heidelberg (2008)

37. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: STOC 2005. pp. 84–93. ACM (2005)

38. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. pp. 617–635.
Springer Berlin Heidelberg (2009)

39. Szepieniec, A.: Ramstake. Technical report, National Institute of Standards
and Technology (2018), https://csrc.nist.gov/CSRC/media/Presentations/
Ramstake/images-media/Ramstake-April2018.pdf

19

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/CSRC/media/Presentations/Ramstake/images-media/Ramstake-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Ramstake/images-media/Ramstake-April2018.pdf

	A Framework for Cryptographic Problems from Linear Algebra

