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Abstract. Two recent papers have made significant advances towards a better understand-
ing of the concrete hardness of the computational supersingular isogeny (CSSI) problem;
this problem underlies the supersingular isogeny key encapsulation (SIKE) protocol, which
is the only isogeny-based submission to the NIST post-quantum standardization effort. The
first paper, by Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez,
argues that the van Oorschot-Wiener (vOW) parallel collision finding algorithm is the best
choice of classical algorithm for CSSI, and subsequently shows that the SIKE team were too
conservative in their classical security estimates. The second paper, by Jaques and Schanck,
gives an in-depth analysis into the best known quantum algorithms for CSSI, concluding
that quantum algorithms do not achieve a significant advantage over the vOW algorithm
and showing that the SIKE team were overly conservative in their quantum security analysis
as well. Both papers agree that significantly smaller parameters could be used in the SIKE
proposal to achieve NIST’s security requirements.

The main contribution of this work is an implementation of the van Oorschot-Wiener al-
gorithm. We present a number of novel improvements, both to practical instantiations of
the generic vOW algorithm and to its instantiation in the context of SIKE, that culmi-
nate in an improved classical cryptanalysis of CSSI. Subsequently, we study a set of three
SIKE parameterizations – one from the original proposal, SIKEp751, and two from the two
papers above, SIKEp434 and SIKEp610 – that we endorse for inclusion in future versions
of the SIKE proposal. We provide assembly-optimized performance benchmarks for these
parameter sets, which show that the SIKE protocol can be computed in approximately 6.5,
15.6 and 26 milliseconds on a 3.4GHz Intel Skylake processor at NIST’s levels 1, 3, and 5,
respectively.

Keywords: Post-quantum cryptography, supersingular elliptic curves, isogenies, SIDH,
SIKE, parallel collision search, van Oorschot-Wiener algorithm.

1 Introduction

In their call for proposals of post-quantum public key algorithms, the United States National
Institute of Standards and Technology (NIST) specifies five target security levels [Nat16, p. 18].
Levels 1, 3, and 5 are satisfied by a cryptosystem if any attack that breaks the relevant security
definition requires computational resources comparable to or greater than those required for re-
spective key searches on AES128, AES192 and AES256; levels 2 and 4 are satisfied if the required
computational resources are at least as much as those required for respective collision searches on
SHA256 and SHA384.
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The supersingular isogeny key encapsulation (SIKE) proposal [JAC+17] – the actively secure
version of Jao and De Feo’s SIDH key exchange [JDF11] – is one of 17 second round candidate
public key encryption or key establishment proposals, and the only proposal whose security is
based on the computational supersingular isogeny (CSSI) problem. Currently, the best known
classical and quantum attacks on the CSSI problem are generic claw finding attacks: given two
functions f : A → C and g : B → C with domains of equal size, the claw finding problem is to
find a pair (a, b) such that f(a) = g(b). The original security analysis by Jao and De Feo [JDF11,
§5.2] estimates the complexity of the CSSI problem by assuming the optimal black-box asymptotic
complexities for the claw finding problem: classically, it can be solved in O(|A|+ |B|) time using
O(|A|) space, while on a quantum computer Tani [Tan09] gives an algorithm that instead runs in
O( 3
√
|A||B|) time. Following Jao and De Feo, the SIKE team used these asymptotics to specify

three parameterizations that are intended to meet the requirements for security levels 1, 3, and 5.
Shortly after the NIST submission deadline, a 2018 paper by Adj, Cervantes-Vázquez, Chi-

Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [ACVCD+19] made a significant step towards a
better understanding of the concrete classical complexity of the CSSI problem. Their paper shows
that, despite its higher running time, the classical van Oorschot-Wiener (vOW) golden collision
finding algorithm [vOW99] has significantly lower space requirements than the meet-in-the-middle
claw finding algorithm, and their analysis concludes that the vOW algorithm should instead be
used to assess the security of SIDH/SIKE against (known) classical attacks. Indeed, the best
classical AES key search algorithms only require a modest amount of storage, so a fair and correct
analysis of cryptosystems (with respect to the security levels 1, 3 and 5) must take into account
the available time/memory trade-offs. Consequently, Adj et al. fix a conservative upper bound
on a storage capacity that will be prohibitively costly for the foreseeable future, i.e., 280 units of
storage, and then use this storage to analyze the classical runtime of vOW against the meet-in-
the-middle algorithm. Their analysis ultimately shows that the classical security estimates used
by the SIKE team were rather conservative, and significantly smaller parameters can be used to
achieve the requisite level of classical security corresponding to NIST’s levels 1, 3, and 5.

In a very recent and complementary paper, Jaques and Schank [JS19] give an in-depth analysis
into the complexity of the best known quantum algorithms for the CSSI problem. Similar to the
classical analysis of Adj et al., they conclude that the quantum security estimates in the SIKE
proposal were extremely conservative. In fact, Jaques and Schank’s precise quantum complexity
analysis of the CSSI problem [JS19, §6] uses models of computation that allow to directly compare
quantum algorithms with classical algorithms and shows that the best known quantum algorithms
do not achieve a significant advantage over the classical vOW algorithm. In certain attack scenarios,
they even conclude that it is the classical security that is the limiting factor, and that the vOW
algorithm in the classical model is the best known (classical or quantum!) algorithm to solve
CSSI. Thus, the precise, real-world complexity of the vOW parallel collision search algorithm is
paramount in the discussion of future parameters for SIDH/SIKE.

Contributions. We present an implementation of the van Oorschot-Wiener algorithm that we
aim to be a step towards a real-world, large-scale cryptanalytic effort. Our work extends that of Adj
et al. by introducing novel improvements to implementations of the generic vOW collision finding
algorithm and exploiting several optimizations specific to the contexts of SIDH and SIKE. Our
extensions and improvements to the vOW implementation and analysis in [ACVCD+19] include:

– Faster collision checking. One of the main steps in the vOW algorithm is to check whether
a given collision is the golden collision or not (see §2). This check occurs often enough that,
experimentally, our optimized version of generic vOW found that collision checking constitutes
close to 20% of the entire vOW algorithm (and this aligns with van Oorschot and Wiener’s
analysis, which also states 20% [vOW99, §4.2]). We give a novel method of performing this
check much more efficiently. This algorithm is based on a method of cycle finding due to
Sedgewick, Szymanski and Yao [SSY82], and it temporarily uses a small amount of local
storage (this amount can be input dynamically as a parameter) during the random walks to
accelerate the checking of a collision, once a collision is detected – see §3.4.
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– Precomputation. Generic collision finding algorithms like vOW are often implemented to target
high-speed symmetric primitives. One difference between those applications, and that of isoge-
nies, is that the computation of large-degree isogenies becomes the overwhelming bottle-neck
of the random walk functions, and thus of the overall algorithm. Subsequently, speeding up
the isogeny computations translates directly to a similar speedup of the entire collision finding
process. We show how to exhaust any available local memory to achieve such speedups via the
precomputation of parts of the full isogeny tree – see §3.3.

– SIKE-specific optimizations. Although the best algorithm for the general CSSI problem is
generic (in the sense that there are no better known choices of algorithm that exploit the
underlying structure of the CSSI problem), we take advantage of multiple optimizations that
apply to the specific instantiations defined in the SIKE proposal [JAC+17]. Firstly, we show
how to optimally exploit their choice of the starting curve as a subfield curve, by defining our
deterministic walk on (conjugate) classes of j-invariants; this modified walk is analogous to
the walk that exploits the negation map in the application of the Pollard rho algorithm to the
ECDLP [WZ99] – see §3.1. Secondly, we show how to exploit the fact that the SIKE proposal
does not randomize the isomorphism class of the output curve (this possibility was already
pointed out by De Feo, Jao and Plût [DFJP14]), by using the subsequent knowledge of the
final dual isogeny within the vOW algorithm – see §3.1. We quantify the precise security loss
suffered by these choices, and present the alternative choices that could be made to avoid this
loss in the SIKE proposal – see §5.2.

– Compression of distinguished points. The runtime of vOW crucially depends on the total
number of distinguished points that can be stored and accessed globally. Our implementation
makes a natural choice of the distinguishing property that allows distinguished points to be
stored in compressed form. While this observation is rather straightforward (see [vOW99, §6]),
its application in our scenario (especially for larger CSSI instances where the proportion of
distinguished elements becomes smaller) gives appreciable speedups to the runtime of vOW
and improves the runtime of our algorithms compared to those of Adj et al. [ACVCD+19].

Based on the above extensions to [ACVCD+19], and the aggressive optimization of vOW de-
scribed within this paper, we perform a range of experiments to solve CSSI at varying degrees
that further reinforce the security estimates claimed by Adj et al. and by Jaques and Schanck.
Subsequently, the second high-level contribution of this work is to provide optimized implementa-
tions of these new curves and updated SIKE performance numbers. In summary, our experimental
results and estimates show that the proposed parameterizations for NIST security category 1,
category 3 and category 5 achieve factor-1.4, 1.7 and 2.0 speedups in comparison to the original
SIKE parameterizations, on a modern x64 Intel platform. We refer to §5.3 for complete details.
We will be releasing our source code for the vOW implementation and for the optimized SIKE
instantiations and they will be linked to a future version of this article.

Finally, in Appendix B we further consider the case when the vOW algorithm is used to target
k unrelated public keys simultaneously. Here we extend the theoretical analysis given by van
Oorschot and Wiener to show that, when k = 2, k = 3, and k = 4, the modified algorithm will
(on average) solve at least one of the CSSI problems faster than the time taken to solve any given
CSSI problem on its own.

2 Preliminaries: van Oorschot-Wiener’s Collision Search

Prior to 2018, the literature on SIDH (starting with Jao and De Feo’s original paper [JDF11])
has consistently cited a meet-in-the-middle algorithm for the claw finding problem as the best
known classical algorithm for solving the CSSI problem. A crucial observation made by Adj et
al. [ACVCD+19] in 2018 is that, while the meet-in-the-middle claw finding algorithm has the
lowest known classical runtime for solving CSSI, its storage requirements are so large (for CSSI
instances of cryptographic size) that its application is not meaningful in any reasonable model of
cryptanalytic computation. Thus, Adj et al. instead fix a conservative limit on the total amount
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of storage available (that which is still said to be “prohibitively costly for the foreseeable fu-
ture” [ACVCD+19, §5]), and analyze the runtime of relevant algorithms subject to this storage
capacity. Their conclusion is that van Oorschot and Wiener’s parallel golden collision search algo-
rithm [vOW99] is the best classical algorithm for the CSSI problem.

After defining the CSSI problem in §2.1, we describe the classical meet-in-the-middle claw
finding algorithm in §2.2, which is both simpler than, and helps motivate, the description of
the vOW parallel collision finding algorithm that follows in §2.3. The complexity analysis of the
generic vOW algorithm is in §2.4, and we conclude the section in §2.5 with a summary of the
results concerning quantum algorithms from [JS19], those which put forward attack scenarios for
which it can be argued that vOW is the best known (classical or quantum) algorithm for attacking
SIKE, e. g. when an attacker is restricted by limited time.

2.1 The CSSI Problem

Herein we will restrict to the popular scenario whereby an instance of SIDH/SIKE is parameterized
by first fixing a prime p = 2e23e3 − 1 with 2e2 ≈ 3e3 and e3 � 1; all known implementations,
including those in the SIKE submission, specify a prime of this form. We work with the set of
isomorphism classes of supersingular elliptic curves in characteristic p. There are roughly p/12 such
classes, and these are identified by their Fp2 -rational j-invariants [Sil09, p. 146]. Since p ≡ 3 mod 4,
we will fix Fp2 = Fp(i) with i2 + 1 = 0 throughout. Each supersingular j-invariant belongs to the
same isogeny class [Mes86], which is precisely the set of (isomorphism classes of) elliptic curves,
E, where #E(Fp2) = (p+ 1)2 [Sil09, Ex 5.15].

In this paper, isogenies are non-constant rational maps between two elliptic curves that are
also group homomorphisms. We will be working only with separable isogenies, meaning that the
degree of any given isogeny is equal to the number of elements in its kernel. Any subgroup G ∈ E
determines a unique (up to isomorphism) isogeny whose kernel is G; this isogeny can be computed
using Vélu’s formulas [Vél71].

For a prime ` 6= p, there are precisely ` + 1 isogenies of degree ` that emanate from a given
supersingular curve. This induces a graph G` – called a supersingular isogeny graph – whose nodes
are the supersingular isomorphism classes and whose vertices are the degree-` isogenies (up to
isomorphism) between them. With the exception of nodes corresponding to j-invariants 0 and 1728,
the graph G` is a connected (` + 1)-regular multigraph which satisfies the Ramanujan expansion
property (see [DFJP14, §2.1]). Since every isogeny φ : E → E′ has a unique (up to isomorphism)

dual isogeny φ̂ : E′ → E, we can view G` as an undirected graph (excluding j = 0, 1728). We
return to the case where the node has j-invariant 1728 in §3.1.

For any n with p - n, the set of n-torsion points, E[n] = {P ∈ E(F̄p) : [n]P = 0E}, is such that
E[n] ∼= Zn⊕Zn is two-dimensional. Let (`, e) ∈ {(2, e2), (3, e3)}. Following [DFJP14, Problem 5.2]
(see also [ACVCD+19, §2.4]), we define a simplified version of the CSSI problem that underlies
the SIDH and SIKE protocols within the above context as follows.4

Definition 1 (CSSI). Given two supersingular elliptic curves E and E/G defined over Fp2 such
that there exists a (unique up to isomorphism) isogeny φ : E → E/G of degree `e with (cyclic)
kernel kerφ = G, the computational supersingular isogeny (CSSI) problem is to compute φ or,
equivalently, to determine a generator for G.

2.2 The Meet-in-the-middle Claw Finding Algorithm

The most naive approach to solving CSSI is to perform a brute force search for G. Since the
number of cyclic subgroups of order `e in E(Fp2) is (` + 1)`e−1, this takes O(`e) time. The claw

4 As in [ACVCD+19, §2.4, Problem 1], we opt to present the simplified version of the problem that
deviates from the original definition of the CSSI problem in [DFJP14, Problem 5.2] by omitting the
auxiliary torsion points because the algorithms considered here are independent of the information given
by these points.
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finding algorithm uses the fact that we can view G` as an undirected graph, so that we can instead
meet-in-the-middle. Following [JDF11] (and assuming for simplicity that e is even), we can build
two trees of curves: the first is the set of all isomorphism classes `e/2-isogenous to that of E,
the second is the set of all isomorphism classes `e/2-isogenous to that of E/G. While there are
(`+ 1)`e/2−1 classes in each set, with overwhelmingly high probability there will be only one class
that lies in both sets [JDF11, §5.1]. This class corresponds to the node on the isogeny graph
lying in the middle of the path from E to E/G, and once it is found, the CSSI problem is solved
by composing5 the `e/2-isogeny emanating from E with the dual of that emanating from E/G.
Assuming that the (` + 1)`e/2−1 classes emanating from one of the sides can be computed and
stored, then the time taken to solve CSSI in this way is now O(`e/2).

It was not until the recent work of Adj et al. [ACVCD+19] that the classical complexity of this
claw finding algorithm in the context of CSSI analysis was scrutinized. Given that `e/2 ≈ p1/4,
and that the smallest prime p used to instantiate SIDH/SIKE prior to [ACVCD+19] was larger
than 2500, Adj et al. argue that the O(p1/4) storage required to solve the problem as described
above is infeasible. Instead, they fix 280 as an upper bound on the number of units that can be
stored, and analyze the runtime of the claw finding algorithm subject to this storage capacity.
A CSSI attacker can now only afford to store a small fraction of the O(`e/2) nodes emanating
from one side at any given time, trying all of the nodes from the other side, and repeating this
process until the CSSI problem is solved. The analysis of Adj et al. therefore concludes that the
meet-in-the-middle algorithm is, for CSSI instances of cryptographic relevance, more costly than
the vOW algorithm described in the sequel.

2.3 Solving CSSI with van Oorschot-Wiener

Let S = {0, 1} ×
{

0, . . . , (`+ 1)`e/2−1 − 1
}

, E0 = E and E1 = E/G. That is, each element
(i, y) ∈ S represents a kernel subgroup on the elliptic curve Ei. For example, for ` = 2 the
proposal of Adj et al. [ACVCD+19, §4.4] is to define a correspondence between (i, y) = (i, (b, k)) ∈
{0, 1} ×

(
{0, 1, 2} ×

{
0, . . . , 2e/2−1 − 1

})
and the cyclic subgroup

〈R〉 =

{
〈Pi +

[
b2e/2−1 + k

]
Qi〉 if b = 0, 1 ,

〈
[
2k
]
Pi +Qi〉 if b = 2 ,

where 〈Pi, Qi〉 = Ei[2
e/2−1] .

The function that maps (i, y) 7→ R is denoted h. Let f : S → S be the function that, on input
of (i, y), computes the isogeny of degree `e/2 with kernel subgroup determined by y emanating
from Ei, evaluates the j-invariant of the image curve, and maps this j-invariant back to S using
a function g. In order to make f behave like a (pseudo-)random function on S, the function g is
chosen to be (pseudo-) random from Fp2 to S.

A collision for f is a pair x, x′ ∈ S with f(x) = f(x′) and x 6= x′. If f is modeled as a
random function, the expected number of collisions (over the set of random functions) is around
|S|/2 [vOW99, §4.2]. For SIDH we will rely on the function h described above, while for SIKE we
define the function in §3.2 (in both cases for ` = 2). Note that necessarily there exists one special
collision, namely the one between the two subgroups (one on E and one on E/G) that map to
the same j-invariant and solve the CSSI problem. Since this is the only useful collision to solve
the problem, we follow convention [vOW99, ACVCD+19] and refer to this collision as the golden
collision. For the remainder of this section we abstract away from the setting of isogenies, since it
is not necessary to understand the van Oorschot-Wiener algorithm. That is, we view f as a truly
random function on the set S for which we want to find a single golden collision.

The vOW algorithm requires a proportion θ of the points in |S| to be distinguished points. The
function that computes whether or not a point is distinguished can be any efficiently computable
function of the xi, so long as it ensures that close to θ · |S| of the |S| points will indeed be deemed
distinguished. The algorithm searches for collisions of f by performing many iterative walks in

5 Appendix F shows in detail how to actually compute a point of order `e that generates the kernel of
the isogeny composition.
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parallel as follows. Each walk selects a starting point x0 ∈ S at random, and produces a trail of
points xi = f(xi−1) for i = 1, 2, . . . until a distinguished point xd is reached. The triple (x0, xd, d)
is then added to a single common list and the processor chooses a new starting point at random
to produce a new trail.6

Let w denote the number of triples of the form (x0, xd, d) that can be stored in the list. To
simplify memory access, van Oorschot and Wiener suggest making the memory address for a given
triple a function of its distinguished point. For optimized parameterizations geared towards real-
world CSSI instantiations, we will have w � θ · |S|, i. e. we will not be able to store enough triples
to account for all of the distinguished points. This gives rise to three scenarios when we store a
given triple in memory. The first is that the memory at the given address was empty, in which
case we write the triple there and continue; the second is that the triple occupying the memory
corresponded to a different distinguished point, in which case we overwrite it with the new triple
and continue; the third scenario is that the two triples contain the same distinguished points, in
which case we have a collision and we must now check whether or not this is the golden collision.
Let these two triples be (x0, xd, d) and (x′0, x

′
d′ , d

′) with xd = x′d′ , and without loss of generality
assume d′ > d. To check the collision, we walk x′0 forward by iterating (x′0, d

′) ← (f(x′0), d′ − 1)
until d′ = d, so that both walks are the same number of steps from the distinguished point. We
then step both walks forward in unison iterating (x0, x

′
0) ← (f(x0), f(x′0)) until we find the first

point of where the walks collide, i. e. until we find x0 6= x′0 such that f(x0) = f(x′0). If this is
the golden collision, we are done. Otherwise, we replace the old triple with the new triple and
continue. Note that the expected value of d, i. e. the expected length of the trails, is geometrically
distributed with mean 1/θ.

Van Oorschot and Wiener note that there are two undesirable occurences that can arise during
their algorithm. The first is that a trail collides with the starting point of another trail, which
is called a Robin Hood. In practice, they note that θ is small enough that this occurence is rare.
If this happens, we replace the triple in memory by the triple that was found last. The second
potential pitfall is that a walk can enter into a cycle that does not contain a distinguished point.
In [vOW99] the suggested workaround is to set a maximum trail length (e. g. 20/θ), and to abandon
trails beyond this point.

Perhaps the most subtle aspect of the algorithm is that we are essentially forced to restart
the above process many times, for many different instantiations of the random function f . As is
explained in [vOW99, §4.2], there are roughly |S|/2 collisions that exist for f , and on average we
will have to find this many collisions before we encounter the golden collision. However, not all
collisions are equally likely to occur, and for any given f , the golden collision may have a very
low probability of detection. For example, it could be that one or both of the two points that
constitute the golden collision have very few trails leading into them, or in the extreme case, none
at all; this would mean we would have to be extremely lucky to find the collision, i. e. by choosing
the two points randomly as starting points. Thus, van Oorschot and Wiener explain that the best
average runtime is achieved by trying a function f until a requisite number of distinguished points
have been found (how many will be discussed in the next subsection), and then restarting with
a new function until the golden collision is found. Henceforth, we will use fn with n ∈ Z instead
of f , where the subscript will be used to index the different function versions used in one golden
collision search.

2.4 Complexity Analysis of van Oorschot-Wiener

Van Oorschot and Wiener give a complexity analysis for finding a golden collision [vOW99, §4.2].
However, they note that their complexity analysis is “flawed”, giving multiple reasons as to why
a precise closed formula for the runtime is difficult to achieve. Instead, after obtaining a general
form for the runtime formula, they choose to determine several of the constants experimentally.

6 In our scenario, where many collisions will be encountered before the golden collision is found, starting
new trails (rather than continuing on from distinguished points) avoids the potential of falling into a
cycle and repeatedly detecting the same collisions [vOW99, p.6, Footnote 5].
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We reproduce the flawed analysis from van Oorschot and Wiener, since we will refer back to
this analysis throughout. Recall that w is the number of triples (x0, xd, d) that can be stored in
memory. At any time when the memory is full, the average number of points on trails leading to
those w distinguished points is w/θ.

Writing N = |S| and given any element of S, (uniformly) randomly generated as output of
the random function fn, the probability of it being on the pre-existing trails is therefore w/(Nθ).
Thus, on average we compute Nθ/w points per collision. Checking a collision using the method
described above requires 2/θ steps on average, which gives the total average cost per collision as
Nθ/w+ 2/θ. Taking θ =

√
2w/N minimizes this cost to

√
8N/w steps to find a collision. As N/2

collisions are (on average) required to find the golden collision, we require (on average)
√

2N3/w
function iterations to solve the CSSI problem.

Let m be the number of processors run in parallel and t the time taken to evaluate the function
fn. Since the algorithm parallelizes perfectly [vOW99, §3] (in theory), the total runtime T required
to find the golden collision is

T =
2.5

m

√
N3/w · t , (1)

where 2.5 is one of the constants determined experimentally in [vOW99]. Some adjustments need to
be made to the parameters because the phase where the memory is being filled with distinguished
points is not accurately captured in the analysis. To describe the true performance of the algorithm,
the fraction of distinguished points is set to θ = α

√
w/N and the optimal constant α is determined

experimentally. The heuristic analysis by van Oorschot and Wiener suggests α = 2.25, which is
verified by the analysis of Adj et al. in the case of SIDH, but we will elaborate on this constant
more throughout the paper (e. g. Table 4).

The number w of distinguished points that can be stored has a crucial influence on the runtime
of the vOW algorithm as can be seen from the above formula. It is therefore important to store
distinguished points as compactly as possible. If the criterion for a point to be distinguished is the
number of leading or trailing zeroes in its bit representation, these zeroes do not have to be stored
allowing for a shorter bitlength for xd in the triple (x0, xd, d). Given a distinguished point rate of
θ, the number of zeroes would then be b− log θc. The counter d must be large enough to store the
number of steps in the longest trail, for example d must have dlog(20/θ)e bits. A distinguished
point can thus be stored with about 2 logN + log 20 bits as most of the counter can be stored in
the space of the omitted zero bits.

The total runtime involves the assumption that fn behaves like an average random function.
The average behavior can be achieved by using a number of different function versions fn as
explained above. To decide how long a function for a given n should be run before moving on,
van Oorschot and Wiener introduce the constant β. The function version needs to be changed
and distinguished points in memory discarded after β ·w distinguished points have been produced.
This constant is determined heuristically, analogously to the determination of α. For that purpose,
a single n is fixed and run until β · w distinguished points are produced. In the meantime, the
number of function iterations (i) and distinct collisions (c) are counted. The number of function
versions can then be approximated as n/(2c), while the expected run-time can be estimated as
in/(2c). It is concluded that the latter is minimal for β = 10.

We note that this experiment is extremely useful. Namely, it provides a very close estimate on
the run-time without having to run the full algorithm. For that reason, we run the same experiment
to estimate the impact of improved collision checking (see Fig. 3 in §3.4).

2.5 Quantum Algorithms for CSSI

The quantum claw finding algorithm by Tani [Tan09] has been referenced as being the best known
quantum algorithm to solve the CSSI problem in the original security analysis by Jao and De
Feo [JDF11, §5.2], as well as in the SIKE submission [JAC+17]. It relies on a generalization of
Grover’s search algorithm by Szegedy [Sze04] and uses quantum walks on Johnson graphs to solve
the claw finding problem with a query complexity of O( 3

√
`e).
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In their recent paper, Jaques and Schanck [JS19] provide an in-depth analysis of quantum al-
gorithms for claw finding applied to the CSSI problem. In particular, they analyse the complexity
of implementing and querying quantum memory, which is needed in Tani’s algorithm and which
previously had not been taken into account in the quantum security estimates for SIDH and SIKE.
Jaques and Schanck introduce models of computation that allow direct comparison between clas-
sical and quantum algorithms. They model quantum computers via qubit arrays that are memory
peripherals for classical controllers and provide a realistic parallel RAM model of computation and
the associated cost metrics. Along with Tani’s algorithm, they also consider a direct application
of Grover search to claw finding. Their analysis shows that, due to previously neglected costs for
quantum data structures, the quantum security estimates for the SIDH and SIKE parameters can
be increased. It further shows that in some attack scenarios, classical security is the limiting factor
for achieving a specified security level. While quantum algorithms promise to be more efficient for
attackers with limited memory, classical vOW outperforms quantum algorithms for attackers with
limited time. With respect to Tani’s query-optimal algorithm that has been previously used for
quantum security estimates for SIDH and SIKE, Jaques and Schanck [JS19, §6.2] state that “Our
conclusion is that an adversary with enough quantum memory to run Tani’s algorithm with the
query-optimal parameters could break SIKE faster by using the classical control hardware to run
van Oorschot-Wiener.”

3 Parallel Collision Search for Supersingular Isogenies

In this section we describe multiple optimizations that we employ when specializing the van
Oorschot-Wiener algorithm to SIKE. We elaborate on specific improvements related to design
choices of SIKE in §3.1, while we explain decisions related to the vOW algorithm in §3.2. Finally,
we show how to make use of local memory for precomputation in §3.3 and to improve collision
locating in §3.4.

3.1 Solving SIKE Instances

Although the problem underlying SIKE is closely related to the original SIDH problem, there are
slight differences due to design decisions. In this section we elaborate on those and their impact
on the van Oorschot-Wiener algorithm. That is, we show how to reduce the search space from size
3 · 2e2−1 (resp. 4 · 3e3−1) to 2e2−4 (resp. 3e3−1).

As usual, let {`,m} = {2, 3} and let φ : E → EA be an isogeny of degree `e` for which the goal is
to retrieve the (cyclic) kernel kerφ. We opt to represent curves in their Montgomery form [Mon87]
EA : y2 = x3 + Ax2 + x with Montgomery constant A ∈ Fp2 . Being in Montgomery form allows
for the use of very efficient arithmetic and for that reason, it has been the choice in the SIKE
proposal. Further note that for SIKE, if {U, V } is a basis for E[mem ], then the points φ(U), φ(V )
are given as well. However, as we do not use these points on EA and assume the simplified version
of the CSSI problem as presented in Definition 1, we can just think of a challenge as given by the
curve EA.

Since isogenies of degree `e` are determined by cyclic subgroups of size `e` , an easy counting
argument shows that there are exactly (`+ 1)`e`−1 of them. This forms the basis for the general
algorithm specified for SIDH by Adj et al. [ACVCD+19], essentially defining a random function
on the set of cyclic subgroups.

Moving to SIKE, we observe that an important public parameter of the SIKE specification is
the choice of the starting curve E0. Since p = 2e2 · 3e3 − 1 is congruent to 3 modulo 4 for e2 > 1,
the curve y2 = x3 + x is supersingular for any choice of (large) e2 and e3.

The initial step. Any point R of order `e` on E0 satisfies R = [s]P + [r]Q for r, s ∈ Z`e` .
It follows by the order of R that one of s or r does not vanish modulo `. However, the SIKE
specification [JAC+17, §1.3.8] assumes s to be invertible and simply sets s = 1. Firstly, this choice
simplifies implementation by making the secret key a sequence of random bits that is easy to
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sample. Secondly, in the case of ` = 2 an appropriate choice of P,Q allows the avoidance of
exceptional cases in the isogeny arithmetic [Ren18, Lemma 2]. The main consequence is that the
key space has size7 `e` as opposed to (`+ 1)`e`−1.

Finally, we note that although nodes in the isogeny graph generally have in-degree `+1, this is
not true for vertices adjacent or equal to j = 0 or j = 1728. In particular, the curve E0 : y2 = x3+x
has j-invariant j = 1728 which in the case of ` = 2 has in-degree 2, while its (only) adjacent node
has in-degree 4. This is shown in Fig. 1a. In the case of ` = 3 the curve has in-degree 2, while
its adjacent nodes have in-degree 5. This is shown in Fig. 1b. This illustrates that although the
number of distinct kernels is `e` , the number of distinct walks (say, as a sequence of j-invariants)
in the isogeny graph is only 2e2−1 (resp. 2 ·3e3−1) for ` = 2 (resp. ` = 3). We align the two (without
loss of precision) by starting our walks from the curve E6 : y2 = x3 + 6x2 + x in the case of ` = 2.
If ` = 3, we can define the kernel on a curve in the class of the left or right adjacent node to
j = 1728 (the choice indicated by a single bit).

The underlying reason for this happening is that E0 has a non-trivial automorphism group
containing the distortion map ψ that maps (x, y) 7→ (−x, iy) (with inverse −ψ). For any kernel
〈R〉 of size `e` we have E0/〈R〉 ∼= E0/〈ψ(R)〉 while 〈R〉 6= 〈ψ(R)〉, essentially collapsing the two
kernels into a single walk in the graph. For example, in Fig. 1 we see that the walk of size 1 from
node 0 to node 6 can be represented by two kernels (i. e. 〈(i, 0)〉 and 〈ψ(i, 0)〉). Note also that the
loop on node 0 in the 2-isogeny graph has kernel (0, 0) = [2e2−1]Q, which can never appear in the
computation of the kernel generated by R = P + [r]Q.

0 6

(a) The 2-isogeny graph

0

(b) The 3-isogeny graph

Fig. 1: Isogeny graphs starting from curves y2 = x3 +Ax2 +x where nodes are labeled by their A-coefficient

The final step. We observe that the elliptic curves are in Montgomery form, while isogenies
of degree 2e2 are computed as a sequence of 4-isogenies. As already noted in the original SIDH
proposal [DFJP14, §4.3.2], the choice of arithmetic in SIKE leads to the kernel of the final isogeny
being mapped to one of (1,±

√
A+ 2). These points define the same kernel subgroup (as they are

inverse to one another). Consequently, the (class of the) curve EA/〈(1,±
√
A+ 2)〉 is isogenous to

E0 by an isogeny of degree 2e2−2, and isogenous to the Montgomery curve E6 by an isogeny of
degree 2e2−3. Therefore, replacing EA by EA/〈(1,±

√
A+ 2)〉 reduces the number of distinct walks

to 2e2−3 in the case of ` = 2.
For ` = 3 the representative EA of its isomorphism class can be obtained as the co-domain

curve of a 3-isogeny starting from any of its adjacent nodes. As far as we know, this does not leak
any information about the final 3-isogeny.

The Frobenius endomorphism. Recall that every isomorphism class can be represented by
an elliptic curve E defined over Fp2 , and that it has an associated Frobenius map π : E → E(p)

mapping (x, y) 7→ (xp, yp). Given any kernel 〈R〉 ⊂ E, the fact that we are in characteristic p gives
rise to the identity

j(E/〈R〉)p = j(E(p)/〈π(R)〉) .
7 Technically, the specification actually makes the assumption that r is taken modulo the largest power

of 2 less than or equal to `e` . This only slightly impacts our statements in the case ` = 3 and we shall
ignore it in our discussion.
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As a result, it suffices to search for a path to a curve with j-invariant equal to j(EA) or j(EA)p.
In other words, we define an equivalence relation on the set of j-invariants by j0 ∼ j1 if and only
if j1 ∈ {j0, jp0}. Finding a path to EA reduces to finding a path to any representative of the class
[j(EA)]. In Fig. 2 we show how the classes propagate through the 2-isogeny graph starting at E6.
A very similar structure appears in the 3-isogeny graph. Note that we assume that the degree of
our walk is approximately

√
p, making it unlikely for endomorphisms of that degree to exist. As

such, the leaves of trees such as Fig. 2 will most probably all be distinct.

6

33

664554

1313111212117891010987

Fig. 2: Part of the 2-isogeny graph for any large p = 2e2 · 3e3 − 1 starting at E6 : y2 = x3 + 6x2 + x. The
black dots represent curves defined over Fp, while j-invariants in the same equivalence class are denoted
by equal numbers. All edges represent a 2-isogeny and its dual. In particular, there are exactly 23 + 1 = 9
classes at distance 4 from E6.

Although the number of classes is approximately half the number of j-invariants, it is perhaps
not obvious how to translate this into a computational advantange. First assume that ` = 2,
and that the optimizations specified above are taken into consideration. That is, we start on the
curve E6 and look for an isogeny of degree 2e2−3 to the curve EA. As usual, kernels are of the
form P + [r]Q for some basis {P,Q}. Note that there is no reason to choose P and Q exactly as
(multiples of) those in the SIKE specification, so we expand on a particularly simple choice here.

Recall first that #E6(Fp) = 2e2 · 3e3 [Sil09, Exercise V.5.10]. Since the Fp-rational endomor-
phism ring of E is isomorphic to one of Z[π] or Z[(1 + π)/2] [DG16, Proposition 2.4], a result by
Lenstra [Len96, Theorem 1(a)] tells us that

E6(Fp) ∼=

{
Z3e3 × Z2e2 if EndFp(E) ∼= Z[π] ,

Z3e3 × Z2e2−1 × Z2 if EndFp(E) ∼= Z[ 1+π
2 ] .

Consequently, there exists an Fp-rational point of order 2e2−3 and we can choose Q to be this
element. Moreover, p ≡ 7 mod 8 implies that

√
2 ∈ Fp, and therefore that E6[2] ⊂ E6(Fp). In

other words, π acts trivially on points of order 2. Since π fixes Q and has eigenvalues ±1, for any
other element P such that 〈P,Q〉 = E6[2e2−3], the action of Frobenius is given by

π|〈P,Q〉 =

(
−1 0
µ 1

)
, for some µ ∈ Z2e2−3 .

Note that [2e2−2]P has order 2 and therefore is fixed under π. As a result, µ is even. Replacing
P by P − µ

2Q leads to a basis {P,Q} such that π(P ) = −P and π(Q) = Q. Note that the value
of µ can be easily found (e. g. by using the Pohlig-Hellman algorithm [Sha71]) since the group is
extremely smooth.

Given such a basis {P,Q}, the conjugate of the j-invariant determined by 〈R = P + [r]Q〉
is given by the isogeny with kernel 〈−π(R) = P + [2e2−3 − r]Q〉. As a result, every class {j, jp}
can uniquely be represented by r ∈ {0, 1, . . . , 2e2−4}. If we start the algorithm by separately
testing r = 2e2−4, the remainder can be reduced to searching for kernels 〈P + [r]Q〉 where r ∈
{0, 1, . . . , 2e2−4 − 1}. This reduces the search space to size 2e2−4.
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By a completely analogous (and even simpler) argument we can fix a basis of E[3e3−1] on any
of the two adjacent nodes of E0 in the 3-isogeny graph such that the action of π on this basis is
described by a diagonal matrix with eigenvalues ±1. Similar to the case of ` = 2, this allows a
reduction of the search space from 2 · 3e3−1 to (approximately) 3e3−1.

3.2 Applying van Oorschot-Wiener to SIKE

In this section we fix ` = 2 and describe in detail how to implement the van Oorschot-Wiener
algorithm (with parameters defined as in §§2.3–2.4). In particular, we point out a subtle mistake in
the algorithm (appearing already in the original paper [vOW99] and also used in the work of Adj et
al. [ACVCD+19]) and show how to overcome this. That is, we show how to define distinguishedness
to achieve the average runtime for a fixed instance. Consequently, we can use precomputation to
analyze the behavior of van Oorschot-Wiener applied to SIKE at a much larger scale.

Again, we assume to be given a challenge curve EA that is isogenous of degree 2e2−3 to E6 and
aim to find the isogeny. We write e = e2/2 and let S = {0, 1, . . . , 2e−1 − 1}. Fix points P,Q ∈ E6

and U, V ∈ EA such that E6[2e−1] = 〈P,Q〉 and EA[2e−2] = 〈U, V 〉, where π(P ) = −P and
π(Q) = Q.

The step function. We begin by describing the function family fn. As we will be walking on
classes (of size 1 or 2) inside Fp2 , we begin by defining a canonical representative of the class.
Since the conjugate of j = a+ b · i ∈ Fp2 is simply j = a− b · i, we can say that j is even whenever
lsb(b) = 0. Using >> to denote the rightshift operator, we then define the function h from the set
S to the set of supersingular j-invariants by

h : r 7→

{
j if lsb(j) = 0

j if lsb(j) = 1
, for j =

{
j(E6/〈P + [r >> 1]Q〉) if lsb(r) = 0

j(EA/〈U + [r >> 1]V 〉) if lsb(r) = 1
.

In other words, the least significant bit of r determines whether we compute an isogeny starting
from E6 or EA, while we always ensure to end up on an even j-invariant. Finally, we define
fn : S → S by fn(r) = gn(h(r)), where gn is a hash function indexed by n that maps h(r) back
into S. More concretely, we let gn be the extended output function (XOF) based on the Merkle-
Damg̊ard construction [Mer79] around the AES-NI instruction set (see §4.1), with the initialization
vector determined by n.

We note that the Frobenius map π : (x, y) 7→ (xp, yp) is an endomorphism on E6, but not
(necessarily) on EA. Given an element r ∈ {0, 1, . . . 2e−2 − 1}, the kernels of the form P + [r]Q
determine isogenies of degree 2e−1 starting from E6, yet it follows from §3.1 that they correspond
to exactly 2e−2 (distinct) equivalence classes of j-invariants. The kernels of the form U + [r]V
determine isogenies of degree 2e−2 from EA, all of which lead to distinct and non-conjugate j-
invariants. Thus h maps bijectively into a set of size 2e−1−1, with only a single collision determined
by the isogeny from E6 to EA.

Distinguished points and memory. Assume the memory w to have size a (positive) power of
2. This is not technically necessary, but simplifies both the arguments and the implementation.
Elements of S are represented by exactly e− 1 bits and we assume that logw � e− 1.

Adj et al. [ACVCD+19, §4.4] determined the memory position of a triple (r0, rd, d) using the
logw least significant bits of MD5(3, rd). Moreover, the value rd is distinguished if and only if
MD5(2, rd) ≤ 232θ mod 232 (viewing the output of MD5 as an integer). Although the algorithm
will run, it has several complications.

1. Calling a hash function at every step to check for distinguishedness causes overhead in the
algorithm. Similarly, requiring a hash function computation for every read and write operation
to memory causes unnecessary overhead.
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2. The algorithm (typically) requires the use of several functions fn for distinct n. Since the
memory location of elements is independent of n, distinguished points generated by distinct
fn will collide in memory but not lead to a collision in either of the functions. To counteract
this, one could keep track of n in memory. As this is costly, the approach of Adj et al. is to zero
out the memory when the maximum number of distinguished points for a given n is reached.
This can get expensive as well, especially in the case of large distributed memory.

3. The distinguishedness property is independent of n. Although the runtime of the algorithm is
estimated to be 2.5

√
|S|3/w by van Oorschot and Wiener [vOW99, §4.2], this is only true if

one takes the average over all collisions. However, in the setting of SIKE (and in many settings
where one wants to find a specific collision), the value of the collision is fixed. That is, if the
golden collision of the function f is determined by values r, s ∈ S such that f(r) = f(s), then
the golden collision of fn (for all n) is also determined by r and s. The runtime will be above
average if one or both of r and s are distinguished. This is explained by the fact that the
algorithm will sample a new value every time it reaches r or s, only computing fn(r) or fn(s)
whenever they are sampled as initial values. Since distinguishedness is independent of n, this
behavior will propagate throughout all the fn.

We give a solution to all of these problems. First, we note that elements of our set are simply
uniform bit strings of length e − 1. Since the value rd of the triple will always be the output of
the (random) step function, we simply let the logw least significant bits determine the memory
location. More precisely, we store the triple (r0, rd, d) in the memory location indexed by (rd + n)
mod w. Notice that we choose the location to be dependent on n. Therefore, even if two values
collide in memory, the values that are stored will be distinct and we notice this immediately. In
that case, the stored value can simply be overwritten without checking for a collision. Of course,
it could happen that a value is written to memory by both fn and fn+w and none in between. But
for reasonable values of n and w this will (almost) never happen, and only incurs the (relatively
small) cost of checking for a collision when it does.

Secondly, we define the distinguishedness property. Since this should be independent of the
memory location, we use the value of rd >> logw. As usual, using all the remaining e− 1− logw
independent bits of rd, we define an integer bound by B = θ · 2e−1−logw. We then define rd to be
distinguished if and only if

(rd >> logw) + n ·B ≤ B mod 2e−1−logw .

In that case, every value of S is distinguished for approximately one in every B functions fn.
Although we do not prove that this reduces every instance to the average case, this holds true
heuristically.

We observe that in this case the most significant bits rd >> logw of a distinguished element
rd are not always zero. This would be preferable since it reduces the memory requirement, not
needing to store the top bits that are zero [vOW99, §6]. Instead we can simply write the value
(rd >> logw) + n · B mod 2e−1−logw to memory, which by definition is less than (or equal to) B.
Adding and subtracting n · B modulo 2e−1−logw when writing to and reading from memory has
negligible overhead.

Remark 1. The problems we address appear for SIDH, while the above description solves them
for SIKE. An analogous solution works for SIDH, but one should be careful that the values of S
are not uniform bit strings. That is, they are elements (i, b, k) ∈ {1, 2}× {0, 1, 2}× {0, . . . , 2e2/2−
1} [ACVCD+19, §4.4] which are represented as (3+e2/2)-bit strings where the least significant bit
determines i and two next lower order bits determine b. Instead, we define the memory location
by the value ((rd >> 3) + n) mod w and the distinguishedness property by

(rd >> (logw + 3)) + n ·B ≤ B mod 2e−1−logw , B = θ · 2e−4−logw .

In this case one should be even more careful not to lose too much precision for θ, but again the
assumption that e− 1� logw should alleviate this. In all of our instances this is not a concern.
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Precomputing the step function and experiments. The main upside to the above modifica-
tions is that every instance will have a guaranteed average runtime of (approximately) 2.5

√
|S|3/w.

As such, we do not have to worry about running into an unlucky instance.
However, there is a second useful consequence. That is, to analyze the behavior of our mod-

ifications it is sufficient to analyze a single instance. Now observe that any function fn is of the
form fn = gn ◦ h, where h is fixed across the different n and by far the most expensive part of the
evaluation of fn. For testing any instance for which h(S) fits into our memory, we can therefore
simply precompute all of h(r) for all r ∈ S and store them in a table indexed by r. The evaluation
of the step function fn(r) then simply looks up h(r) in the table, followed by an application of gn
(which is comparitively fast). This improves the speed of our benchmarks significantly, while not
affecting any outcomes with respect to a precise analysis of van Oorschot-Wiener.

We summarize the results so far in Table 1, comparing the results of our implementation to
the expected theoretical outcome as well as the results of Adj et al. [ACVCD+19]. Note that our

results are close to optimal, and showcase the expected speedup of a factor
√

63 ≈ 15× in the
number of steps when moving from SIDH to SIKE. Moreover, we note that our implementation
of SIDH also obtains a factor 2× speedup compared to [ACVCD+19]. It is not clear why this
happens.

Table 1: The average number of function versions n and evaluations of fn used for finding an isogeny
of degree 2e2 . The expected value (Exp.) for the number of function versions resp. steps is reported as
0.45 · |S|/w resp. log (2.5 ·

√
|S|3/w), for set size |S| = 3 · 2e2/2 resp. |S| = 2e2/2−1 for SIDH resp. SIKE.

The numbers are averaged over 1000 iterations and use 20 cores.

Function versions Steps

e2 logw
Exp. [ACVCD+19] This Exp. [ACVCD+19] This

SIDH SIKE SIDH SIDH SIKE SIDH SIKE SIDH SIDH SIKE

32 9 173 29 319 177 28 23.20 19.32 24.38 23.29 19.58

36 10 346 58 838 342 54 25.70 21.82 27.25 25.74 21.89

40 11 691 115 1015 677 103 28.20 24.32 29.01 28.33 24.40

44 13 691 115 942 704 107 30.20 26.32 30.91 30.37 26.42

48 13 2765 461 – – 434 33.20 29.32 – – 29.38

52 15 2765 461 – – 422 35.20 31.32 – – 31.34

56 17 2765 461 – – 424 37.20 33.32 – – 33.38

3.3 Partial Isogeny Precomputation

Computationally, the most expensive part in the van Oorschot-Wiener step function is the (re-
peated application of the) evaluation of the isogeny for a given kernel subgroup 〈R〉 of order `e`/2.
In order to alleviate this burden, one can precompute the isogeny tree partially. For example, one
can compute all possible isogenies of a fixed degree ∆ from the starting curve and store a table
of the corresponding image curves together with some torsion points that help to complete the
isogeny walks from these intermediate curves. The extreme case, when the full isogeny tree of
depth e` is precomputed, corresponds to the meet-in-the-middle algorithm as described by Adj et
al. [ACVCD+19]. Precomputing isogenies of smaller degree presents a trade-off between memory
and computation time for the vOW step function. We elaborate on how to do this in detail. As this
applies to the general case of SIDH treated by Adj et al., we discuss that first. We then specialize
to ` = 2 and finally consider SIKE instances.
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Let E be a supersingular curve with torsion points P,Q ∈ E such that 〈P,Q〉 = E[`d], for
some d > 0 (typically d ≈ e`/2 in the instantiations of van Oorschot-Wiener). Let R = [s]P + [r]Q
be a point of order `d, and φ : E → E/〈R〉 an isogeny of degree `d with kernel 〈R〉. Recall that `
does not divide both r and s. We split the isogeny φ into two isogenies in the usual way, with the
first having degree `∆ for some 0 < ∆ < d as follows.

Write s = s0 + s1`
∆ and r = r0 + r1`

∆ for s0, r0 ∈ Z`∆ and s1, r1 ∈ Z`d−∆ . Then R =
[s0]P + [r0]Q+ [`∆]([s1]P + [r1]Q), while the point R∆ = [`d−∆]R = [s0]([`d−∆]P ) + [r0]([`d−∆]Q)
generates the kernel of the isogeny φ∆ : E → E/〈R∆〉 of degree `∆. The point φ∆(R) on E/〈R∆〉
has order `d−∆ and determines an isogeny ψ∆ : E/〈R∆〉 → E/〈R〉 of degree `∆−d such that
φ = ψ∆ ◦ φ∆. Crucially, the first pair of partial scalars (s0 = s mod `∆ , r0 = r mod `∆) deter-
mines φ∆ and the points φ∆([s0]P + [r0]Q), φ∆([`∆]P ) and φ∆([`∆]Q) on E/〈R∆〉. Given this
curve and these points, the second pair of partial scalars (s1 = bs/`∆c , r1 = br/`∆c) determines
kerψ∆ = (φ∆([s0]P + [r0]Q)) + [s1]φ∆([`∆]P ) + [r1]φ∆([`∆]Q) and allows to complete the isogeny
φ. Therefore, precomputation consists of computing a table with entries[

E/〈R∆〉, φ∆([s0]P + [r0]Q), φ∆([`∆]P ), φ∆([`∆]Q)
]
,

for all (s0, r0) ∈ Z2
`∆ such that ` does not divide both s0 and r0. Such a table entry can then be

used to compute any full degree isogeny of degree `d with kernel point R = [s]P + [r]Q such that
s ≡ s0 mod `∆ and r ≡ r0 mod `∆ and any (s1, r1).

However, we show that it suffices to store only two points on E/〈R∆〉. If ` - s, then we can
assume that s = 1 and R = P +[r]Q for r ∈ Z`d . In this case we have R∆ = [`d−∆]P +[r0 · `d−∆]Q
and the precomputed table only needs to contain entries of the form[

E/〈R∆〉, P∆ = φ∆(P + [r0]Q), Q∆ = φ∆([`∆]Q)
]

(2)

for all r0 ∈ Z`∆ . The kernel of ψ∆ (for completing φ) can be computed as φ∆(R) = P∆ + [r1]Q∆
for any r with r ≡ r0 mod `∆. If instead ` | s, then ` - r and R = [`t]P + Q for some t ∈ Z`d−1

such that s = `t. In that case table entries are of the form[
E/〈R∆〉, P∆ = φ∆([`∆]P ), Q∆ = φ∆([`t0]P +Q)

]
for all t0 ∈ Z`∆−1 , while kerψ∆ = [t1]P∆ + Q∆. Altogether, the table contains `∆ + `∆−1 =
(`+1) ·`∆−1 entries and reduces the cost of any isogeny of degree `d from d log d to (d−∆) log(d−
∆) [DFJP14, §4.2.2].

Now we move on to SIKE and fix ` = 2. That is, we assume s = 1 and every table entry to
be of the form (2). Recall that the function h takes as input a value r ∈ Z`e−1 (where e = e2/2)
and computes an isogeny with kernel 〈P + [r >> 1]Q〉 on E6 if lsb(r) = 0, and an isogeny with
kernel 〈U + [r >> 1]V 〉 on EA otherwise. The latter reflects the case above with d = e− 2 perfectly,
leading to a precomputed table of size 2∆ from EA while reducing the cost of the isogeny from
(e− 2) log(e− 2) to (e− 2−∆) log(e− 2−∆). The case of the curve E6 is slightly different due to
the presence of the Frobenius endomorphism. Although there are 2e−2 distinct equivalence classes
of j-invariants, the degree of the corresponding isogenies is 2e−1. As such, we compute a table of
size 2∆ comprising of the equivalence classes of j-invariants at depth ∆ + 1 away from E6.8 The
cost of the isogenies reduces from (e− 1) log(e− 1) to (e− 2−∆) log(e− 2−∆). As a result, the
degree of isogenies used throughout the whole implementation is the fixed number e − 2 −∆. In
particular, choosing ∆ such that e − 2 − ∆ ≡ 0 mod 2 allows the use of the 4-isogenies used in
SIKE.

Computing an isogeny tree. To obtain the lookup table one computes image curves and torsion
points for all isogenies of degree 2∆ (resp. 2∆+1) and stores them indexed by their respective

8 This slightly changes how an element r0 + r12∆ ∈ Z2e−2 , for r0 ∈ Z2∆ and r1 ∈ Z2e−2−∆ , corresponds
to an isogeny. Instead of kernel 〈P + [r0 + r12∆]Q〉, it now gives rise to the kernel 〈P + [r0 + r12∆+1]Q〉.
This has no impact on the algorithm.
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kernel representation. Adj et al. [ACVCD+19, Section 3.2] describe a depth-first-search approach
to compute the required curves as the leaves of a full 2-isogeny tree of depth e2/2 for the meet-
in-the-middle algorithm (c. f. [ACVCD+19, Fig. 1]). This method is much more efficient than the
naive way of computing full isogenies of degree 2e2/2 for all possible kernel points. Obviously, this
algorithm can be applied for partial trees to compute isogenies of degree 2∆ (resp. 2∆+1) and an
analogous version can utilize a 4-isogeny tree.

Using memory for precomputation. Storing a table of curve and point data to precompute
parts of the isogenies obviously requires memory. Depending on the specific setup and commu-
nication properties of the network of parallel processors that runs a specific instance of the van
Oorschot-Wiener algorithm, this memory could instead be used for the main memory that stores
distinguished points. In other words, the memory to store precomputed tables might take away a
certain amount from the distinguished point storage space.

Assume that due to latency and communication constraints, each of the m parallel processors
needs its own table of size τ(∆) for precomputation, and for simplicity that every processor carries
out the same depth precomputation. For example, for the SIDH case of Adj et al. [ACVCD+19] we
would assume each processor to have precomputed a table of size τ(∆) = 2 · (2∆ + 2∆−1) = 3 · 2∆.
For SIKE we assume each processor to have precomputed a table of size τ(∆) = 2 · 2∆ = 2∆+1.

Remark 2. In an actual distributed implementation, the situation might be different and favor
precomputation more. For example, it is reasonable to assume that several processors in a multi-
core machine are able to share a precomputed table, reducing the constant m that we have used
in the above inequality. Furthermore, depending on the design of the main memory, each machine
in a distributed attack setup may have memory available that cannot contribute to the main
memory and might as well be used to store a table for a limited amount of precomputation.
In such situations, using memory for lookup tables might not have any negative effect on the
overall runtime of the van Oorschot-Wiener algorithm. In Example 1 we show that speed-ups
for cryptographic parameters can be obtained with very small tables, making this scenario more
realistic.

However, for now we continue with the above worst case assumption that m tables need to
be stored. As shown in Section 2.4, each distinguished point is represented with roughly e2 bits
(i. e. about 1

2 log p bits) since log |S| = e2/2− 1. This takes into account that the b− log θc leading
zeros in a distinguished point are omitted in memory. Every entry in the precomputed table can
be represented by three Fp2 elements (i. e. about 6 log p bits). Therefore, each such table element
uses memory that could store about 12 distinguished points instead. For precomputation depth
∆, the table entries thus use space for 12 · τ(∆) distinguished points. This means that the main
memory for the van Oorschot-Wiener algorithm is reduced from w to w − 12 · τ(∆) · m points,
assuming that each of the m processors stores its own table. Thus, the number of iterations of
the step function by the algorithm increases by a factor 1/

√
1− 12 · τ(∆) ·m/w. Note that this

is well-defined since 12 · τ(∆) ·m cannot exceed the maximum available memory w.
While taking away memory increases the expected number of function iterations, precompu-

tation reduces the cost of the step function by a factor σ(∆). We have σ(∆) = (e − ∆) log(e −
∆)/(e log e) for SIDH (given e2 is even), while

σ(∆) =
1

2

(
(e− 2−∆) log(e− 2−∆)

(e− 2) log(e− 2)
+

(e− 2−∆) log(e− 2−∆)

(e− 1) log(e− 1)

)
in the case of SIKE (separating the two equally likely cases where we start from E6 resp. EA).
The total runtime of the van Oorschot-Wiener algorithm decreases if

σ(∆)√
1− 12 · τ(∆) ·m/w

< 1 .
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Example 1. Let p = 2216·3137−1 and (e,m,w) = (108, 264, 280), following the setup of [ACVCD+19,
Remark 6]. For both SIKE resp. SIDH the (near) optimal pre-computation depth is ∆ = 6, for
which each processor pre-computes a local table of 12 · τ(∆) distinguished elements that requires
only about 41 resp. 62 kilobytes of memory (2.34% resp. 3.52% of the full memory w). In both
cases, this leads to reduction of the cost of the step function by a factor σ(∆) ≈ 0.93. For SIKE,
we reduce the runtime of the full algorithm by a factor approximately 0.94. For SIDH, this factor
is about 0.95.

However, a more realistic example assumes that many processors can share the precomputation
table. In our setup, a machine of 40 cores can share a single table. In that case, the optimal depth
is found at ∆ = 12. For SIKE, we use a table of about 2.7 megabytes (approximately 3.75% of the
total memory w). This reduces the cost of the algorithm by a factor 0.88. For SIDH we obtain a
table size of 4.0 megabytes (5.63% of the total memory). The runtime of the algorithm is reduced
by a factor 0.89.

In Table 2 we demonstrate the effect of precomputation on the SIKE step function.

Table 2: Effect of precomputation on the running time of the SIKE step function. Numbers represent the
cumulative running time in seconds of 1000000 calls to the step function, for the corresponding modulus
and precomputation depth ∆. All experiments were run on Atomkohle.

∆

e2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

32 20.51 17.96 15.47 13.09 10.91 8.84 7.17 4.92 — — — — — — —

36 23.50 20.46 17.91 15.45 13.08 10.85 8.82 7.18 4.84 — — — — — —

40 26.79 23.60 20.97 18.45 15.96 13.60 11.42 9.35 7.62 5.00 — — — — —

44 29.37 26.34 23.58 21.01 18.44 15.96 13.60 11.38 9.32 7.70 4.89 — — — —

48 32.48 29.57 26.88 24.21 21.33 18.80 16.25 13.83 11.57 9.41 7.70 4.87 — — —

52 36.38 32.93 29.92 27.13 24.15 21.53 18.85 16.36 13.93 11.64 9.48 7.76 4.87 — —

56 40.05 35.48 33.29 29.67 26.80 25.60 21.46 18.94 16.43 14.60 11.83 9.73 8.03 4.89 —

60 41.56 38.54 35.72 32.73 29.91 27.09 24.38 21.69 19.17 16.68 14.26 12.03 9.95 8.26 4.96

3.4 Fast Collision Checking

As discussed in Remark 2, in a real-world implementation processors are likely to have local
memory available that cannot contribute to the main memory (that which is used for storing the
list of triples containing distinguished points). In what follows, we describe another way to make
use of such memory to give significant speedups to the overall runtime of van Oorschot-Wiener.
Analogous to the previous subsection, even under the assumption we are consuming memory that
could otherwise be used to store distinguished points, we argue that dedicating a moderate amount
of storage to this faster collision checking will give speedups to the overall runtime.

Recall from §2.3 that a single walk in the van Oorschot-Wiener algorithm starts at a point
x0 ∈ S and produces a trail of points xi = f(xi−1) for i = 1, 2, . . . , until it reaches a distinguished
point xd. Assume that this triple (x0, xd, d) is then passed to main memory and a collision with
a previously stored triple, say (y0, ye, e), is encountered. If it is not a mere memory collision, this
means that xd = ye. Our task is now to check if we have found the golden collision, and this
amounts to locating the indices i < d and j < e for which xi 6= yj and f(xi) = f(yj), i.e., locating
the first point where the two paths coincide. Van Oorschot and Wiener note that, since d and e
have expected value 1/θ, retracing the two paths from their starting points to the colliding point
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requires 2/θ total steps on average [vOW99, p. 9]. Our goal is to reduce the number of function
iterations used for retracing and thus lower the overall runtime.

Saving intermediate values. Suppose that we still store distinguished point triples in main
memory as usual, but that there is enough local memory to store an additional n − 1 points
intermittently (more on what we mean by intermittently in a moment) during our walk from x0

to xd. Furthermore, assume that the checking of collisions takes place on a processor that has
access to the local memory, now storing n + 1 points. Relabeling x0 as xd0 and xd as xdn , this
means that when we detect that a collision has occured, we will now be able to use the points
(xd0 , xd1 , . . . , xdn), where 0 = d0 < d1 < · · · < dn, together with the points (y0, ye), to find the
first point of collision more efficiently.

We start by copying y0 to y′ and walking it forward as y′ ← f(y′) until it is the same distance
away from the distinguished points as the closest of the saved points, say xdj . We check whether
y′ = xdj . If not, we set y0 ← y′ and step y′ forward dj+1 − dj steps and compare again until it
collides with one of the n+ 1 saved points, say xdk . Note that equality checks are only done when
the walking point is the same distance away from the distinguished point as one of the xdi and
not at every step as in the original collision checking function. Once we detect the minimal index
k such that y′ = xdk , we know that the collision must take place between the points xdk−1

and
xdk . At this point, we can call the original collision checking function without saving intermediate
points on the two triples (xdk−1

, xdk , dk − dk−1) and (y0, y
′, dk − dk−1). Note that if the collision

occurs at xd0 , we have a Robin Hood and return false.

Let us take a look at what we have gained. First of all the trail with the stored points is not
retraced at all, only in the final call to the original collision checking, but this happens on a single
subinterval of length dk − dk−1, which in general is much smaller than stepping from xd0 to the
collision. The trail starting at y0 is fully retraced to the collision, where additional steps are taken
that cover the colliding interval. The savings are larger when intervals are shorter and thus when
more intermediate points are saved. This approach is implemented in our software.

Fig. 3 shows the reduction in the number of function steps for checking and locating collisions
when running the van Oorschot-Wiener algorithm on an AES-based function with a set of size
230 and memory of size 215. With α = 2.25, the average walk length is 1/θ ≈ 80. There is an
immediate gain for even allowing a small number of intermediate points to be saved, however the
additional gains become smaller when increasing this number. The reason for this is that when
the number of points that can be stored approaches the average length of the trails, almost every
point is stored and adding more memory does not significantly increase the number of points that
are actually saved, nor influence the intermediate interval lengths.

Remark 3. There is potential for further improvement by allowing storage for 2n − 2 points. We
proceed as above, store n−1 points while walking the trail, but also store n−1 intermediate points
when retracing the trail from y0 during collision checking. When the collision is encountered, we
set (y0, ye)← (xdk−1

, xdk). We can overwrite the n−1 elements in (xd0 , . . . , xdk−2
, xdk+1

, xdn) with
the n − 1 points left intermittently along the walk from (the original) y0 to xdk , and free up the
n − 1 duplicate points so that we can repeat this procedure. We recursively continue in this way
until we have ye = f(y0), at which point we can check whether the collision is golden. This is
made precise in Algorithm 1 (see Appendix A), which is written recursively. Note that the choice
of splitting the space for 2n − 2 points in half eases the exposition, but might be suboptimal.
Finding the optimal allocation of memory to the different trails should be determined for a large
scale cryptanalytic effort based on how much memory is available.
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Fig. 3: Number of steps used for locating a collision as a function of maximum amount of intermediate
values allowed for the AES-based random function with log |S| = 30, logw = 15. Averaged over 64 function
versions, using 28 cores and run on Atomkohle.

How to save points intermittently. It remains to describe how we choose to store the n − 1
intermediate points along our walks. Given the expected trail length of 1/θ, a reasonable approach
would be to store points at regular intervals of length 1/(nθ). However, we could end up walking
much further than 1/θ, meaning there would be a larger distance between the final intermediate
point and the distinguished point; or, our trail could be much shorter than 1/θ, meaning there
would be unused memory that could have decreased the average gap between intermediate points.
The ideal scenario is that all of the (n− 1) additional points have been used, and are as close to
being equally spaced as possible, when the distinguished point is reached. Since we do not know in
advance how long our trails will be, the best approach will involve overwriting previously placed
points in such a way that the distances between points grows as the length of the trail does.

We modify an algorithm used by Sedgewick, Szymanski and Yao [SSY82] in their target appli-
cation of finding cycles in random walks. In the first n steps of the trail, we exhaust the allocated
memory by storing a point at every step, so that (d0, d1, . . . , dn−1, dn) = (0, 1, . . . , n − 1, n),
and the points are all at distance 1 from one another. At any stage of the procedure, define
δ = minj>0{dj − dj−1}. From hereon, every δ steps, we simply look for the smallest value of j
where dj − dj−1 = δ, remove the point xdj from the list, and add the current point to the list.
At some point, the last point that is δ away from another point will be deleted and replaced by
a point that is twice as far away; by definition, the δ is simultaneously doubled, and all of the
points in the list will again be δ away from each other. This process is applied at lines 18 and 20
of Algorithm 1 (see Appendix A).

4 Implementation

Our implementation of the van Oorschot-Wiener algorithm is in C, relying on Microsoft’s SIDH
library [Mic19] for the underlying curve arithmetic. We have modified their code to support smaller
primes, and added non-constant time operations if beneficial (e. g. finite field inversions). For
parallel computations we use the gcc implementation of OpenMP 4.5 [Ope15]. For simplifying
batch experiments we wrote a SWIG [Bea96] interface. The experiments are run across the different
machines reported in Table 3.
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Table 3: A summary of the machines used to run experiments.

Name CPUs Base freq. Physical cores GCC v.

Atomkohle 2 × Intel(R) Xeon(R) E5-2690 v4 2.60GHz 2× 14 6.3.0
Solardiesel 2 × Intel(R) Xeon(R) Gold 6138 2.00GHz 2× 20 6.3.0

The software contains three step functions to run experiments. The first is a generic fast
random function, and the other two are those arising from random walks in the 2-isogeny graph
as determined by the SIDH (see §2.3) and SIKE (see §3.2) specifications. This allows the use
of a fast random function to verify that our implementation matches the expected asymptotic
values (confirming the original vOW analysis [vOW99]) and linear speed-up on larger sets (see
Appendix C), while also displaying our improvements in the SIDH and SIKE settings (e. g. as
shown in Table 1).

4.1 Selecting a XOF and PRNG

One goal of the implementation is to verify the runtime against the asymptotic theoretical values,
using a fast random function. Adj et al. [ACVCD+19] choose to use an MD5-based random func-
tion for this purpose. We have instead opted for a custom XOF based on the Merkle-Damg̊ard
construction [Mer79] around the AES-NI instruction set. This provides much better performance
on modern hardware, while guaranteeing cryptographic properties of the function. Regarding our
PRNG, we use AES-CTR mode based on the AES-NI instructions. We discuss in Appendix E
alternative options we considered. In Table 4 we reproduce [vOW99, Table 1] which computes the
O(·) constant in front of the expected number of steps for the optimal choice of θ and is used to
determine the constant α, to demonstrate the validity of our pseudo-random step function.

Table 4: Reproduction of [vOW99, Table 1], using the AES-based XOF on Solardiesel. The table reports

the number of function steps required to find the golden collision divided by
√

(|S|3/w). The experiments
are averaged over 1000 function versions and run with 20 cores.

logw

log |S| 2 4 6 8 10 12 14 16

20 3.90 2.87 2.62 2.52 2.48 2.45 2.40 2.28

24 3.99 2.89 2.60 2.51 2.48 2.48 2.47 2.45

28 3.95 2.92 2.59 2.51 2.49 2.48 2.48 2.47

32 4.07 2.90 2.61 2.51 2.49 2.48 2.48 2.48

36 4.22 2.94 2.60 2.52 2.49 2.48 2.48 2.48

4.2 Towards a Distributed Implementation

Although not within the scope of this work, our software aims to make distributing experiments
over the internet a straightforward extension. In contrast to other parallel cryptanalytic algorithms
(e. g. Pollard rho [Pol75]), the van Oorschot-Wiener algorithm presents some issues regarding

8 While online sources report 20 physical cores on each Xeon(R) E5-2673 v4, /proc/cpuinfo reports
otherwise. Notably, Intel does not provide a webpage for this specific revision.
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synchronization of the random function being used across machines in any specific window of
time. Indeed, this makes the addition of “hot-pluggin” machines to the computational pool and
keeping them up to date much harder than in other contexts, e.g., for a large-scale ECDLP
effort [BBB+09]. In this section we discuss some of the issues and possible solutions.

The function versions used in van Oorschot-Wiener have a certain “shelf life”, expressed in
terms of the number of distinguished points to be found by using it (see §2.4). Although the
algorithm parallelizes perfectly in theory, different CPUs may have different base frequencies and
instruction sets, meaning that they may find distinguished points at different rates. A single-
machine multi-threaded implementation of the algorithm may consider having a global counter
of the distingushed points found at any point in time. This poses two problems: it implies a lot
of (very cheap) indirect communication across cores, and requires care avoiding race-conditions
on the counter. For example, one could address the latter issue by protecting the counter with a
#pragma omp critical directive, which should not create parallelization issues if distinguished
points are found rarely enough. A similar global value can then be used to express the current
function version being used across cores.

While this works on small experiments, it would not scale towards a real cryptanalytic effort.
For example, when running van Oorschot-Wiener across 264 machines with θ ≈ 2−16, at every
step approximately 248 distinguished points would be found, causing the #pragma omp critical

directive to be a bottleneck [ACVCD+19, Remark 6]. Similarly, when running an instance over the
internet, reading and writing at every step from a global value introduces difficult synchronization
and latency issues.

Benchmarking. One solution to minimize the amount of core synchronization, is to assign to
every participating CPU a certain portion of the total number of distinguished points to be mined
for every function version, and have them synchronize information about the function version/state
of the search less frequently. To achieve this, we include a benchmarking function call. This runs
a fixed number of iterations of the algorithm, and measures how long each core takes (or a single
core if the CPU is a simple, multithreaded one). This information can then be passed to the central
database during a setup phase, so that it can decide how many points per function version to assign
to each core. In our case this is not necessary, since our experiments were run on single machines
with identical cores. Hence we simply assign an equal fraction of points to every core. We do not
investigate how to efficiently run the setup phase on a remote database any further. Of course,
benchmarking would have to be redone when adding or removing CPUs from the computational
pool.

Core synchronization. We now consider when and how to update the function version across
cores, giving three possible approaches. We refer to the first on as the windowed approach; cores
work in isolation recovering their portion of distinguished points, and consequently update only
their internal function version counter during a window of W versions. At the end of every W’s
function use, it updates its function version to a current “master” value. This could be remote
(determined by the database measuring distinguished points received), or copied from a “master”
thread in the local machine.

The second approach is called stakhanov ; cores recover their assigned number of distinguished
points, and then keep using the same random function and periodically checking (to either the
remote database or locally if running on a single machine), whether the other cores are already
done with that function version. When all cores finish, they update their respective function version
counter and start with the new function version.

The final method is similar to stakhanov, but lets cores that finish their portion of points
before others simply wait (or busy-wait) for others to finish, without doing extra work.

We have run experiments with all three methods on the same problem, and the stakhanov
method clearly comes out on top in our setting. In Fig. 4 we present the result for SIKE with
e2 = 32 and logw = 9. We decide to plot the inverse of the average wall time (in seconds), since
that should show a linear improvement (as it does).
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Fig. 4: Inverse wall time as a function of the number of cores used for the attack, averaged over 1000
function versions on Atomkohle. The experiment is run on SIKE with e2 = 32, logw = 9 with the
stakhanov synchronization strategy, using no precomputation. Outliers are hidden to improve plot scale.
The expected value was computed by picking the average value on the lowest number of cores, and scaling
it by the appropriate number for the other number of cores. As expected, the inverse wall time grows
linearly with the number of cores used.

Database versus peer-to-peer. A central issue when implementing vOW at scale is that of
organizing the memory in a distributed system. One option is to abstract the memory to an external
database. This would probably be partitioned into various smaller memory banks, connected each
with multiple entry points, as to be able to handle a large amount of connections at every step
(say, 248). Since the values being written into and read from the database are random and with
random addresses, no caching would likely be useful. A barebones implementation could consist in
a mmap’d amount of storage across different machines, with deamons running on as many ports as
possible to handle the incoming connections. This way, cores running the attack require no memory
for storing points, and can use all they have for example to precompute isogeny tables. A different
strategy could be to identify the database partitions with the storage/memory available on the
machines running the attack. It is not clear which method would require less total communication
(for example, machines writing to their own partition would not need to communicate in the
second, peer-to-peer-like configuration) and lead to lower wall times (machines in the peer-to-peer
setting would have less memory to use for isogeny precomputation). A peer-to-peer setting would
make hot-plugging machines nearly impossible.

5 Recommendations and Benchmarks for SIKE

In this section, we propose to use the parameters recommended by Adj et al. [ACVCD+19] and
Jaques and Schanck [JS19] for SIKE targetting the NIST security categories 1 and 3, and rec-
ommend to move the original SIKE parameters for category 3 up to category 5. After providing
concrete classical security estimates for the recommended parameter sets in §5.1, we propose re-
finements to the SIKE submission to deal with the issues arising in §3. Although the impact of the
SIKE-specific optimizations to the van Oorschot-Wiener algorithm described in §3 is small, some
of the countermeasures are simple and increase the security at essentially no cost. These modifi-
cations do not affect the recommendations for parameters made in [ACVCD+19] and [JS19]. We
build on these works and provide assembly-optimized implementations, significantly improving the
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speed and key sizes corresponding to the three NIST security levels. We discuss the refinements
in §5.2, and present benchmarks in §5.3.

5.1 Concrete Security of Proposed Parameters

The analysis of Adj et al. [ACVCD+19] of the complexity of van Oorschot-Wiener prompts the
introduction of parameter sets that are significantly smaller (and thus faster and more compact)
than those found in the SIKE proposal [JAC+17]. In particular, they put forward the prime
p434 = 22163137 − 1 as being a possible choice of an underlying base field for an SIDH/SIKE
parameterization that they say meets the NIST category 2 security requirements [ACVCD+19,
§5.4]. Furthermore, they put forward the prime p610 = 23053192− 1 that they say meets the NIST
category 4 security requirements.

Note that the in-depth quantum security analysis by Jaques and Schanck [JS19] adds further
confidence to the security of these parameters. They consider both Grover’s search and Tani’s
algorithm – the algorithm previously cited as the relevant quantum attack against CSSI – and
conclude that “an adversary with enough quantum memory to run Tani’s algorithm with query-
optimal parameters could break SIKE faster by using the classical control hardware to run van
Oorschot-Wiener”. Jaques and Schanck confirm that the number of classical gates to run quantum
algorithms in their proposed model of computation against parameters with p434 and p610 exceed
the bounds at the NIST security categories 1 and 3, respectively.

In Table 7 we use Equation (1) to count the number of x64 instructions required for an average
run of vOW for each of the three parameter sets, i. e. those defined by the primes p434, p610
and p751. Following [ACVCD+19], we also fix w = 280 as a conservative limit on the number
of units that can be stored. These instruction counts are intended to be lower bounds on the
number of classical gates required to mount vOW, and we argue that these estimates are still
conservative with respect to the true gate count. We use the instruction counts tallied in Table 5
and Table 6, which correspond to the number of instructions required for one call to the half-size
isogeny computation that is needed in the vOW algorithm, for the 2- and 3-torsions respectively.
Our analysis concludes that the number of classical gates required for (i) vOW on SIKEp434 is at
least 2143, (ii) vOW on SIKEp610 is at least 2210, and (iii) vOW on SIKEp751 is at least 2262. Note
that the counts for (i) and (ii) closely agree with required classical gate counts given by Jaques
and Schanck, who are also rather conservative in their costing of the related isogeny functions –
see [JS19, §7.1].

Together with the analyses of Adj et al. and Jaques and Schanck, our analysis concludes that
SIKEp434 meets the security requirements for NIST category 1, SIKEp610 meets the security
requirements for NIST category 3. And, additionally, our analysis reveals that the prime p751 =
23723239 − 1 from the original SIKE proposal can be moved up from category 3 (where it was
originally proposed) to underlie a SIKE implementation at category 5 – NIST’s highest security
level. While the estimate for the number of x64 instructions needed to mount vOW in the 2-
and 3-torsions of SIKEp751 is estimated at 2262 and 2268 respectively, we expect in both cases
that the number of classical gates required to run vOW in practice will exceed NIST’s requisite
2272. Moreover, we reiterate that the numbers in Table 7 correspond to our optimized vOW
instantiation running on the SIKE specification as it stands; if the two recommendations for
refinements described in the following subsection are followed, then we expect the number of gates
required (in the 2-torsion case) to increase by a factor close to 23.

5.2 Refinements to the SIKE Specification

Recall from §3 that an adversary has several advantages due to design choices in the SIKE speci-
fication, i. e.

1. The presence of the distortion map on the node with j = 1728 leads to loops and double edges
in the graph (Fig. 1). This reduces the entropy of the private and public keys.
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Table 5: Costs for isogeny computation of degree 2be2/2c−2 (i. e. omitting single 2-isogenies when the
exponent is odd) using an optimal strategy composed of quadrupling and 4-isogeny steps. DBL denotes a
point doubling, 4-iso a 4-isogeny computation, M a multiplication, S a squaring, add an addition and sub
a subtraction in Fp2 . The symbol imul denotes the number of multiplication instructions, iasl the number
of addition, subtraction and logical instructions, imov the number of move instructions, and log(isum) is
the logarithm of the total number of instructions. Cost for DBL is assumed to be 4M+ 2S+ 2add+ 2sub
and for 4-iso it is 6M + 6S + 7add + 4sub.

DBL 4-iso M S add sub imul iasl imov log(isum)

SIKEp434 282 166 2124 1560 1726 1228 595476 2099108 1534760 22.01

SIKEp610 434 255 3266 2398 2653 1888 1638294 5433856 3553530 23.34

SIKEp751 548 334 4196 3100 3434 2432 3254832 9365124 9863656 24.42

Table 6: Costs for isogeny computation of degree 3be3/2c (i. e. omitting single 3-isogenies when the exponent
is odd) using an optimal strategy composed of point tripling and 3-isogeny steps. TPL denotes a point
tripling, 3-iso a 3-isogeny computation, M a multiplication , S a squaring, add an addition and sub a
subtraction in Fp2 . The symbol imul denotes the number of multiplication instructions, iasl the number
of addition, subtraction and logical instructions, imov the number of move instructions, and log(isum) is
the logarithm of the total number of instructions. Cost for TPL is assumed to be 7M+ 5S+ 3add+ 7sub
and for 3-iso it is 6M + 5S + 14add + 5sub.

TPL 3-iso M S add sub imul iasl imov log(isum)

SIKEp434 199 217 2695 2080 3635 2478 769445 2826741 2067722 22.43

SIKEp610 290 350 4130 3200 5770 3780 2112930 7266720 4861220 23.76

SIKEp751 395 429 5339 4120 7191 4910 4208868 12471749 13228173 24.83

Table 7: Average number of x64 instructions required to run the van Oorschot-Wiener attack on the 2-
and 3-torsion of three SIKE parameterizations. All numbers are presented as the floor of their base-2
logarithms. The set sizes are N = |S| = 2e2/2−1 for the 2-torsion and N = |S| = 3(e3−1)/2 for the 3-torsion
– see §3. The number of isogeny computations, #isog, is computed by setting t = 1 in Eq. (1), and the
number of instructions required for each isogeny, blog(isum)c, are taken from Table 5 and Table 6. The
total number of instructions, vOW, is taken as the product of the number of isogenies with the number
of instructions required for each isogeny. This is intended to act as a lower bound on the number of gates
required to solve the CSSI with the vOW algorithm.

2-torsion 3-torsion

N #isog isum vOW N #isog isum vOW

SIKEp434 107 121 22 143 107 122 22 144

SIKEp610 151 187 23 210 150 187 23 210

SIKEp751 185 238 24 262 188 244 24 268
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2. The presence of the Frobenius endomorphism on the node with j = 1728 reduces the number
of equivalence classes that are at a given distance from j.

3. For ` = 2, the choice of arithmetic maps the kernel of the final 4-isogeny to a point with
x-coordinate 1. As a result, the final step can be immediately recomputed from the public key.

The first problem is easiest to solve. By moving the starting node from E0 to E6 (with j(E6) =
287496), the loop and double edge can be avoided in the case of ` = 2. More concretely, setting
up a torsion basis {P,Q} of E6[2e] such that [2e−1]Q = (0, 0) and choosing private keys r ∈ Z`e
corresponding to kernels 〈P + [r]Q〉 implies this result. Note that the SIKE specification sets up
Q to be a point of order 2e defined over Fp [JAC+17, §1.3.3]. Such a point does not exist on E6,
as E6[2e](Fp) ∼= Z2e−1 ×Z2. As far as we can see, the only implication is that the description of Q
becomes longer since it lies in E6(Fp2) \ E6(Fp).

It is not immediately obvious where the node of E6 lies with respect to E0 in the 3-isogeny
graph, there is no reason to believe that it lies close. Therefore, we believe moving to E6 also
alleviates issues with double edges in the 3-isogeny graph as well.

Secondly, although we have moved away from j = 1728 by the above, the curve E6 still has a
Frobenius endomorphism. Although one could move to a curve where the Frobenius map is not an
endomorphism, this is a subtle issue (see Remark 4). Therefore, we suggest simply staying on E6.
Indeed, in that case it is not helpful to differentiate between j-invariants in the same equivalence
class. As (almost) every equivalence class contains 2 representatives at a certain depth, one bit
less randomness is needed to compute an isogeny of the same degree (see e. g. Fig. 2, where the
final step could always move to the left node).

Remark 4. The curve E0 : y2 = x3 + x has a known endomorphism ring [Sil09, III.4.4], which is
helpful in certain attack scenarios [Pet17]. Although one would prefer to start on a random node
in the graph, there is no known way of randomly selecting one other than choosing a random walk
in the isogeny graph. However, in that case the walk itself cannot be public and it is unclear how
to verifiably achieve this.

Finally, we address the issue of the leakage of the final kernel on the Montgomery curve EA :
y2 = x3 +Ax2 + x. For this purpose, we notice that for any Ā ∈ Fp2 such that j(EĀ) = j(EA) we
have

Ā ∈

{
±A,± 3x2 +A√

x2
2 − 1

,± 3z2 +A√
z2

2 − 1

}
, (3)

where x2, z2 ∈ Fp2 are chosen such that x3 +Ax2 +x = x(x−x2)(x−z2). That is, the isomorphism
class contains exactly six Montgomery curves. One can show that each of the 6 distinct 4-isogenies
emanating from j(EA) can be computed by selecting Ā as above and using a kernel point (of order
4) with x-coordinate 1. Therefore, randomly choosing Ā from any of the options in Eqn. (3) is
equivalent to randomizing the kernel of the final isogeny.

Unfortunately, to the best of our knowledge, selecting Ā to be anything other than ±A re-
quires the computation of an expensive square root. For this reason, we do not recommend fully
randomizing A. However, we emphasize that the random selection of one of ±A leads to a single
bit of randomization at essentially no computational effort, mapping the kernel of the dual to ±1.
Given that the isogeny computation requires exactly one bit less randomness due to the Frobenius
equivalence classes, we can simply reuse this bit for randomizing. As a result, we only leak the
kernel of the final 2-isogeny (with kernel (0, 0)) instead of the last 4-isogeny (see Fig. 5).

5.3 Performance Benchmarks

To assess the performance of the parameterizations proposed for SIKE, we wrote hand-optimized
x64 assembly implementations of the field arithmetic for the primes p434 and p610, and integrated
them into the SIDH library, version 3.0 [Mic19]. All our implementations are written in constant
time, i. e. there are no secret memory accesses and no secret data branches. Hence, the software is
protected against timing and cache attacks.
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2−1

−AA

Fig. 5: A sequence of 2-isogenies starting from the curve EA. Each leaf node is labeled with the Montgomery
coefficient Ā with j(EĀ) = j(EA) such that the isogeny from EA to that node has kernel (1,−). In
particular, it is clear that selecting one of ±A reduces the leakage from 2 bits to 1 bit.

As an additional contribution, we sped up the implementations of the original parameters p503
and p751 by 11% resp. 16% using the faster tripling formula from [CH17], the Montgomery ladder
approach by [FHOR18] and combining radix-r Montgomery reduction with the use of the mulx

and adx instructions for the field multiplication, as done in [FHOR18]. The results on a 3.4GHz
Intel Core i7-6700 processor from the Skylake microarchitecture family are displayed in Table 8.
Following standard practice, TurboBoost was disabled during the tests. For compilation we used
clang version 3.8.0 with the command clang -O3.

Our benchmarks show that the new SIKE parameters introduce roughly 1.4× and 1.5× speedups
for level 1/2 and level 3/4, respectively (comparing the sum of the costs of the encapsulation and
decapsulation operations). In addition, the public key sizes are reduced by approximately 14%
resp. 19% for the levels above. The SIKE submission [JAC+17] does not report results for an
optimized x64 assembly implementation of SIKEp964. In this case, we estimate a speedup of 2×
when replacing this option by SIKEp751 for level 5, with a reduction of 22% in the public key
size.

As a reference, our software achieves roughly the same performance as the implementation
from [ACVCD+19] when running the SIDH protocol using p434 on the same Skylake CPU. In the
case of p751, our software runs SIDH more than 1.2× faster, mainly due to a faster implementation
of operations over Fp2 .

Table 8: Performance benchmarks comparing the speed of SIKE Round 1 parameters and the proposed
parameters in [ACVCD+19, JS19] and this work. The test results (public keys measured in bytes B, speed
rounded to 105 cycles) were obtained on a 3.4GHz Intel Core i7-6700 (Skylake) processor, for the three
SIKE operations: public key generation (Gen.), encapsulation (Enc.), and decapsulation (Dec.).

Target
NIST
security
level

SIKE ([JAC+17] + This) Proposed (This)

log p PK
Speed (× 106 cc)

log p PK
Speed (× 106 cc)

Gen. Enc. Dec. Gen. Enc. Dec.

1 503 378 B 9.0 14.8 15.8 434 326 B 6.5 10.5 11.3

3 751 564 B 26.1 42.2 45.4 610 458 B 15.5 28.4 28.6

5 964 723 B N/A N/A N/A 751 564 B 26.1 42.2 45.4

Acknowledgements. We thank Greg Zaverucha and Christian Konig for helpful discussions and
their input to this paper, and Martin Albrecht for providing access to two of his machines for
running our experiments.
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tems from Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingular
elliptic curves over Fp. Des. Codes Cryptography, 78(2):425–440, 2016. https://arxiv.

org/abs/1310.7789.
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A Recursive Algorithm for Fast Collision Checking

The pseudo-code presented in Algorithm 1 shows the recursive algorithm for fast collision checking
with stored intermediate points as explained in Remark 3 in §3.4. We note that the function
IsGolden called on line 6 simply checks whether the input points are different (ruling out a Robin
Hood) and if so computes the j-invariants corresonding to the two kernel subgroups and returns
true if they are equal, and false otherwise.

Algorithm 1: FastCollisionCheck

Input: x = (xd0 , xd1 , . . . , xdn), (y0, ye) with xdn = ye, 0 = d0 < d1 < · · · < dn.
Output: true, x, y, such that f(x) = f(y) or false

1 if e = 1 then
2 while dn − dn−1 > 1 do
3 xdn−1 ← f(xdn−1)
4 dn−1 ← dn−1 + 1

5 end
6 return IsGolden(xdn−1 , y0)

7 else
8 while e > dn do
9 y0 ← f(y0) e← e− 1

10 end
11 if y0 = xd0 then
12 return false // Robin Hood

13 end
14 k = min{m | dn − dm ≤ e}
15 Initialize z ← y0

16 repeat
17 x← xdk
18 Initialize fresh trail z = (z) // and/or overwrite existing

19 while e > dn − dk do
20 z ← f(z) (trail stored in z) // intermittent storage

21 e← e− 1

22 end
23 k ← k + 1

24 until z = x
25 (y0, ye)← (xdk−2 , x)

26 e← dk−1 − dk−2

27 x← z // overwrite

28 return FastCollisionCheck(x, (y0, ye))

29 end

B Multi-target Attacks

In this section we focus on a specific type of multi-target attack: given k public keys, our goal is
to break (i.e., solve the CSSI problem underlying) any one of them. We show that, on average,
the expected vOW algorithm runtime is appreciably less for the cases of k = 2, k = 3 and k = 4.
We then discuss the practical significance of these findings.

We assume that all public keys are generated in the same SIKE system, i.e., using the same
starting curve, E. The set of curves in the public keys are then of the form E/G1, E/G2, . . . ,
E/Gk, and the Gi are all subgroups of order `e` on E. We then explore two possibilities. The first
is to simply combine the k + 1 curves into a run of vOW that walks uniformly between degree
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`e`/2-subgroups on all of them; this is in §B.1. The second is to define the set S by duplicating the
starting curve, the intuition here being that E is involved in k of the golden collisions that exist,
while the other curves are each only involved in one; this is in §B.2.

B.1 Non-duplication of the Starting Curve

In this setting, the set S is extended to the set S′ that contains elements such that their evalu-
ations under the random function f map uniformly to subgroups belonging to curves in the set
{E,E/G1, E/G2, . . . , E/Gk}. The function f now maps S′ into itself, f : S′ → S′, and we assume
it is a random function. This means that any randomly selected pair of distinct elements from S′

is a collision with probability 1/|S′|. We clearly have k golden collisions. Write N = |S| as usual
and write N ′ = |S′|; then we have N ′ = (k + 1) ·N/2.

Let Tk be the time taken to find the first golden collision during this attack. From §2.4,
mimicking the flawed analysis in [vOW99], we can initially estimate T1 = (N/2) ·

√
8N/w.

Now we have N ′/2 total collisions (on average), and the number of collisions generated before
finding the first golden collision is N ′/(2k), and thus

Tk =
N ′

2k
·
√

8N ′

w

=
(k + 1) ·N

4k
·
√

8(k + 1) ·N
2w

=

(√
(k + 1)3

8k2

)
· T1.

Thus, for two public keys we have T2 ≈ 0.9186 · T1, for three we have T3 ≈ 0.9428 · T1, for four we
have T4 ≈ 0.9882 · T1, but for k ≥ 5 public keys, we have Tk > T1.

B.2 Duplication of the Starting Curve

Recall from above that E is involved in k golden collisions, while the other k curves are each only
involved in one. This bias prompted the extension of the vOW analysis to the scenario where we
artificially duplicate E in our description of f to account for this; k duplicates of E increases the
set size to N ′ = kN , but now we have k2 golden collisions. We are essentially running k versions
of the CSSI problem in parallel, i.e., using the same function at the same time.

A careful analysis reveals that Tk, the average time taken to find the first golden collision, is

Tk =

(
k + 1

4k
· |S|

)
·
√

8|S′|
w

=

(
(k + 1)

2
√
k

)
· T1,

so that Tk > T1 for k > 1.
The intuitive reason here is that, while increasing k makes the number of golden collisions

increase quadratically, the artificial duplication of E also necessarily makes the number of useless
collisions (between copies of E) grow quadratically. Any two subgroups, G and H on E, that give
a useless collision in memory, also find useless collisions with all of the copies of those subgroups
in the copies of E.

B.3 Implications and Alternative Possibilities

The analysis in §B.1 reveals that combining two public keys into one run of vOW is worthwhile, if
the adversary’s goal is to break either one of them. The difference between the two analyses in §B.1
and §B.2 raises the question of whether there is some middle ground, e.g., for what values of k and
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n is it advantageous to combine n public keys into one run of vOW by duplicating the starting
curve k < n times? Furthermore, it is unclear how increasing the number of collisions interacts
with the need to change the function f regularly. Van Oorschot and Wiener’s statement that “for
a given function f , the golden collision may have a very low probability of detection” ultimately
forces us to keep switching function versions, thereby rendering all of the prior distinguished points
useless and essentially restarting. This, combined with the above analysis, raises the question of
the interplay between the existence of multiple/many golden collisions and the success probability
of any given function. So long as vOW remains the best attack against CSSI, we believe theoretical
and experimental investigations in this direction to be worthwhile.

C Linear Speedup for Larger Experiments

Using our generic AES-based XOF we performed experiments up to log |S| = 52, using the
stakhanov sync strategy. We can see in Figure 6 that the speedup remains linear also for larger
states and a higher number of cores, while the total number of steps across cores remains nearly
constant, as shown in Figure 7.

Fig. 6: Box plot for wall time as a function of the number of cores used for the attack, averaged over 64
function versions on Atomkohle. AES-based random function with log |S| = 52, logw = 13. The expected
value was computed by picking the average value on the lowest number of cores, and scaling it by the
appropriate number for the other number of cores. Outliers are hidden to improve plot scale.
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Fig. 7: Box plot for total number of step function calls made as a function of the number of cores used for
the attack, averaged over 64 function versions on atomkohle. AES-based random function with log |S| = 52,
logw = 13.
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D Comparing Sync Strategies

In § 4.2, we described three different sync strategies for updating the version of fn being used, and
claimed that stakhanov was the best performing in our setting. Below, we provide plots for inverse
wall time as a function of the number of cores being used to run vOW, showing the performance
of the other two strategies, and how it indeed diverges from the expected value.
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Fig. 8: Box plot for inverse wall time as a function of the number of cores used for the attack, averaged
over 1000 function versions on Atomkohle. SIKE with e2 = 32, logw = 9 with windowed sync strategy
for W = 10, using no precomputation. Outliers are hidden to improve plot scale. The expected value was
computed by picking the average value on the lowest number of cores, and scaling it by the appropriate
number for the other number of cores.
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Fig. 9: Box plot for inverse wall time as a function of the number of cores used for the attack, averaged
over 1000 function versions on Atomkohle. SIKE with e2 = 32, logw = 9 with the third proposed sync
strategy, using no precomputation. Outliers are hidden to improve plot scale. The expected value was
computed by picking the average value on the lowest number of cores, and scaling it by the appropriate
number for the other number of cores.
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E Non-cryptographic XOFs and PRNGs

One of our main concerns during development of the implementation was to be able to run fast
examples using a generic random function, to check for asymptotic values being met. Adj et al.
use an MD5-based random function for this purpose. Originally, we used an implementation of
cSHAKE [KCP16] as XOF to construct the function, but it resulted in poor performance. We
have hence moved to a custom XOF based on a Merkle-Damgard construction around the AES-NI
instruction set.

We also considered using non-cryptographic hash functions, usually used as part of hash-tables
implementations or for non-secure checksums. These provide random-looking output without for-
mal guarantees regarding malleability (that should not be picked up by vOW), invertibility or
size (they often provide short word-sized output), while being very fast. We implemented an XOF
based on xxHash [Col], and run multiple experiments. In Tables 9, 10, we provide a comparison
of our results using the AES-based XOF vs the xxHash-based one, showing expeirments using the
latter to be slightly more than 50% faster (in the number of cycles required) while displaying the
same asymptotic behaviour.

Regarding random number generation for the attack (for all step functions), we considered two
options. The first was to follow Adj et al.’s example and use C’s rand, which on POSIX.1-2001
is based on the Linear Congruential Generator (LCG) [mpp]. The second was to implement a
PRNG based on AES-CTR using the AES-NI instructions. We reimplemented POSIX.1-2001’s
rand to match our PRNG API and to produce the same numbers on Windows. While it resulted
in slightly faster code, using the LCG has a story of deceiving cryptanalysts using it to key RC4
by introducing small cycles in the key space which were later picked up by their analysis [Pat19].
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Table 9: Reproduction of Table 3 from [ACVCD+19], using our a AES-based generic random function on
Atomkohle. Experiments are run using 20 cores.

Expected Average Median

log |S| logw #runs #fn log
√
|S|3/w #fn log

√
|S|3/w cycles #fn log

√
|S|3/w cycles

18 9 1000 230.40 23.82 220.01 23.93 28.23 157.00 23.45 27.75

20 10 1000 460.80 26.32 429.44 26.32 30.44 325.00 25.92 30.04

22 11 1000 921.60 28.82 832.31 28.76 32.79 577.50 28.23 32.27

24 13 1000 921.60 30.82 873.88 30.78 34.72 622.50 30.29 34.23

Table 10: Reproduction of Table 3 from [ACVCD+19], using our a xxHash-based generic random function
on Atomkohle. Experiments are run using 20 cores.

Expected Average Median

log |S| logw #runs #fn log
√
|S|3/w #fn log

√
|S|3/w cycles #fn log

√
|S|3/w cycles

18 9 1000 230.40 23.82 221.77 23.88 26.92 159.50 23.40 26.44

20 10 1000 460.80 26.32 450.04 26.35 29.13 323.50 25.87 28.65

22 11 1000 921.60 28.82 872.30 28.80 31.32 605.00 28.27 30.79

24 13 1000 921.60 30.82 928.12 30.86 33.35 681.50 30.41 32.91

In light of the risk of something along those lines happening, and given the marginal speedup it
provided, we only used AES-CTR for our experiments.

F Kernel Reconstruction for the Full Order Isogeny

To solve the CSSI problem as presented in Definition 1, we are asked to compute the isogeny φ of
degree `e between the given supersingular elliptic curves E and E/G, or equivalently to determine
a generator R for its cyclic kernel subgroup G. However, both the meet-in-the-middle and the van
Oorschot-Wiener algorithm as presented in [ACVCD+19] and here return two isogenies of degree
`e/2 with cyclic kernels that map from E and E/G to a common curve that lies in the middle. This
section describes how R can be computed from generators of the kernels for those two isogenies.

We discuss the algorithm in the following setting, which is slightly more general than the
specific scenarios for SIDH and SIKE above. Let p, e2, e3 and (`, e`) ∈ {(2, e2), (3, e3)} be as in
§ 2.1. Given two supersingular elliptic curves E(1) and E(2) over Fp2 such that there exists an
isogeny of degree `e with cyclic kernel between them. Suppose, we know a third supersingular
elliptic curve E(3) and isogenies φ1 : E(1) → E(3) and φ2 : E(2) → E(3) with deg φ1 = `e(1) and
deg φ2 = `e(2) such that e(1) + e(2) = e, kerφ1 = 〈R1〉 and kerφ2 = 〈R2〉.

Computing the kernel of φ̂2. First, we compute the dual of φ2, which is an isogeny φ̂2 : E(3) →
E(2). Given the kernel point R2 of φ2, we find a basis {R2, Q2} of E(2)[2

e(2) ]. This can be done
by randomly selecting Q2 of the right order and checking that the Weil pairing of R2 and Q2 has
full order or by using parts of the deterministic basis generation algorithms used for public-key
compression described for example in [AJK+16, CJL+17, ZSP+18]. A generator for the kernel of

φ̂2 is then given as R̂2 = φ2(Q2).
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Composing isogenies. Next, we find a kernel for the composition φ = φ̂2 ◦ φ1. It is generated
by a point R of order `e such that

R1 = [`e(2) ]R, (4)

〈R̂2〉 = 〈φ1(R)〉. (5)

Let {P,Q} be a basis for E(1)[`
e], then {P1 = [`e(2) ]P,Q1 = [`e(2) ]Q} is a basis for E(1)[`

e(1) ].
Assume9 that we know that R1 = P1 + [r]Q1 where r ∈ {0, 1, . . . , `e(1) − 1}. We set R = P + [r +
`e(1)s]Q for a yet unknown s ∈ {0, 1, . . . , `e(2) − 1}. Then, clearly condition (4) is satisfied. It now
remains to determine s such that condition (5) holds.

The value for s can be determined iteratively, coefficient by coefficient in its `-adic represen-

tation. Let s =
∑e(2)−1

i=0 si`
i. Start with i = 0, and determine s0 modulo ` such that the point

φ1(R(0)) lies in the subgroup generated by R̂2, where R(0) = [`e(2)−1](P + [r+ `e(1)s0]Q). This can
be done by computing the Weil pairing e`e(2) (φ1(R(0)), R̂2) and checking whether it is equal to 1
(cf. [Mil04, Prop. 12]). Once a suitable value for s0 is found, continue with s1. Find the value of s1

modulo ` that satisfies e`e(2) (φ1(R(1)), R̂2) = 1, where R(1) = [`e(2)−2](P+[r+`e(1)(s0+`s1)]Q). We
can iteratively determine si by checking the pairing condition for the point R(i) = [`e(2)−i−1](P +
[r + `e(1)(s0 + `s1 + · · ·+ `isi)]Q). At the end of this process, the point R = P + [r + `e(1)s]Q has
full order `e and satisfies both conditions (4) and (5), which means it is a generator for the kernel
of the `e-isogeny φ.

9 The other case, where the factor in front of Q1 can be scaled to 1 is analogous and we omit the details.
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