
Safe Compilation for Encrypted Computing

Peter T. Breuer1 and Simon J. Pickin2

1 Hecusys LLC, Atlanta, GA, USA. Email: ptb@hecusys.com
2 Universidad Complutense, Madrid, Spain. Email: spickin@ucm.es

Abstract. Encrypted computing is an emerging field in which inputs,
outputs and intermediates are maintained in encrypted form in a proces-
sor, conferring security on user data against the operator and operating
system as adversaries, which run unencrypted in the same machine. Sys-
tems that pass encrypted addresses to memory without decryption close
a major attack vector and allow off-the-shelf memory to be used. But
that makes memory unreliable from the program’s perspective, as the
many different encryptions of a plaintext address access different mem-
ory locations that the program sees as the same with varying contents.
A clever ‘obfuscating’ compiler solves the problem, opening up the field.

1 Introduction

This article describes compilation for encrypted computing that allows the pro-
cessor to use addressing without decryption, opening up the emerging technology.

Encrypted computing means running on a processor that works profoundly
encrypted in user mode, taking encrypted inputs to encrypted outputs via en-
crypted intermediate values in registers and memory. Other than that, the
processor is conventional. In the privileged operator mode that the processor
switches to in order to run exception handlers and other operating system code,
the processor works unencrypted entirely as usual. The operator and operating
system can access user data without hindrance, but it is always in the encrypted
form they cannot read or write meaningfully, and security derives from that.

The arrangement aims to protect user data against attacks by the operator
and operating system. The encryption key is embedded inaccessibly in the hard-
ware, and the operator and operating system do not know it. The user knows the
key and can provide encrypted inputs and interpret encrypted outputs – else-
where –, but the operator cannot. That is firstly for lack of the key, and secondly
by virtue of formal arguments in [1]. Several prototype processors for encrypted
computing exist [2–6] (see Section 2). The fastest of these benchmarks like a
433MHz Pentium with a 1GHz base clock [7] and embeds AES encryption [8].
The basic principle is that the arithmetic embedded in the processor is modified,
and that generates encrypted working [9]. To repeat:

The operator and operating system are the (potential) adversaries.

A successful attack is one that reads the plaintext of encrypted user data, or
modifies it to order. The attack may have a statistical aspect, in which case it
should succeed more often than chance.

A problem for processor designs is that addresses are data, hence exist in
encrypted form, so conventional one-to-many encryption means there are many
different encryptions of each plaintext address, up to 296 with AES and 32-
bit plaintext addresses plus random padding, for example. Those 296 encrypted
addresses must all be decoded by the processor to a unique location in memory so
a program may read back what it has written. But equality of plaintext beneath
the encryption can be physically checked by an adversary with access to the
memory chips by seeing if when used for addressing the encrypted data accesses
the same memory location, and that leads quickly to decryption. Locking the
memory chips in place so ‘cold boot’ attacks [10, 11] (physically freezing the
memory sticks to help preserve data while they are taken for analysis) cannot
be used is no defense, as the operator can work the analysis programmatically:
pattern all memory, do user mode writes using the encrypted data as addresses,
then read memory to see where the writes broke the pattern.

Designs that defend against that rely on oblivious random access memory
(ORAM) [12–15], which loses simplicity, and/or they assume some degree of
‘semi-honest’ behaviour by the operator, which compromises the aim, or they do
not have computed addresses (the processor model is non-standard). Without
ORAM, user data is still stored encrypted in memory because all user data enters
and leaves the processor in encrypted form, so it is a pity to need ORAM just
in order to physically protect the addresses that the processor must decrypt in
order for memory to work correctly. It also does not on its own confer protection
against the programmed form of the attack above. However, it turns out that
there is an alternative: that the processor not decrypt addresses when passing
them to memory, that a small translation unit in the processor remap the (say,
128-bit) encrypted addresses one-to-one on the fly down to a 32-bit range, and
clever compilation take care of program correctness in that environment. Unen-
crypted addresses are never created, hence never exposed. The operator trying
to compare encrypted data by using it as addressing only checks identity of the
encrypted form of the address, not the plaintext address beneath the encryption.

The clue is given by ‘obfuscating’ compilation for encrypted computing. It
is proved in [1] that with the appropriate set of primitive operations (see Sec-
tion 2 for the set of machine code instructions used here), – all observations
of and experiments with programs admit of 232 different interpretations of the
data beneath the encryption at any point in the program, given 32-bit plaintext
data. Moreover, each interpretation is equally likely when the program has been
generated by an ‘obfuscating’ compiler. That is described in [16] as:

An obfuscating compiler smooths out statistical biases in runtime traces.

It does that by stochastically varying the generated code from recompilation to
recompilation so that the compiler’s variations at runtime statistically swamp
contributions from human and other biases. To succeed in that, the compiler has
to cope with as well as exercise control over arbitrary variations in data, and
therefore in addressing, as addresses are data. It turns out that those compiler
mechanisms are also able to cope with and control those 296 encrypted variations
of each 32-bit plaintext address that are naturally generated in the course of

running encrypted when the processor does no address decryption, with the
result that programs run correctly. This paper explains the technique.

The only extra hardware required in the processor is the address translation
lookaside buffer (TLB) unit referred to above, which remaps 128-bit encrypted
addresses one-to-one to a 32-bit range as they are encountered during program
running. The compiler also embeds instructions in the program code that free-up
the mapping slots as opportunity arises. The capacity required for the unit is the
maximum number of memory locations at any one time on which read-before-
next-write is pending in the program (write all memory then read all memory is
the worst case), which is never more than a program’s natural memory footprint.

Technically, the compiler solution is for the general problem of deterministic
hardware aliasing in computing platforms. Hardware aliasing [17] is where one
address (here the plaintext address as perceived by the program) sporadically
accesses different physical locations (here those picked out by the many differ-
ent encrypted forms of the address), like a light switch that sometimes turns
on the landing light and sometimes turns on the hall light. The ‘deterministic’
means it is not random but depends on some hidden aspect, here the padding
and check bits that accompany the plaintext beneath the encryption. Processors
are designed to produce repeatable results and those bits are calculated deter-
ministically from the data and the sequence of operations it goes through. The
features of this environment as far as the compiler is concerned are:

Axioms
1. A machine code copy instruction copies the physical bit sequence exactly,

such that a copied encrypted address accesses the same location;
2. repeating the same sequence of operations produces an encrypted address

that has exactly the same bit sequence and accesses the same location;
3. different plaintext addresses encrypt to different encrypted addresses.

Axiom 1 (‘faithful copy’) means the compiler can reliably save an encrypted
address for later use after writing through it, and it will retrieve the written
value. It must not be altered even by adding zero beneath the encryption, as
that may alter the padding or check bits and hence the final encrypted address,
which then fails to access the same memory location.

Axiom 2 (‘repeatability’) allows calculations so long as they are repeated
exactly. That is vital because the machine code instruction to read or write a
memory location takes a base address and introduces a displacement constant
embedded in the instruction to get the final ‘effective’ address for the access. It
is impossible to avoid that one extra operation, but it does not matter because it
is repeated each time, reliably producing the same encrypted address each time.

Axiom 3 (‘no confusion’) guarantees that encryptions of different plaintext
addresses do not step on each other. That is not so obvious considering the TLB
frontend described above remaps the encrypted addresses and it is conceivable
that it could release a target for reuse before the program has finished using the
encrypted address that mapped to it. So the TLB does not release any mappings
automatically. It is up to the compiler to insert instructions into the program
that do the release (they reference the encrypted address, not the target).

Those abstractions allow computer architecture details to be elided and the
layout of this paper is as follows. After some further background in Section 2,
Section 3 explains how to compile following Axioms 1-3 to obtain code safe
against hardware aliasing and therefore that works in the encrypted computing
context. Section 4 incorporates the compiler obfuscation technique from [16]
into the scheme. The compiler maximally varies the generated object code while
always maintaining the same code structure as well as the same runtime trace
structure, causing runtime data beneath the encryption to vary from nominal
according to a determined obfuscation scheme. Section 5 shows how this works in
practice. Short of formal proof of correctness, the only way to show a compiler
works is to test by compiling and run programs that exercise each compiler
construction, and the runtime trace from Ackermann function code is shown.
That is the computable function of maximal complexity so it is difficult to ‘fix’.
The trace of a Sieve of Eratosthenes for primes is also shown, with the array
in memory, so there can be no trickery via running programs in registers only.
Performance is not at issue and that programs work is the breakthrough.

Notation

Encryption of plaintext x is denoted by E [x] or xE , where E is a one-to-many
‘nondeterministic function’, a function of x and extra hidden variables such
as padding. Decryption of ciphertext ζ is denoted by D[ζ], a function, with
D[xE] = x. The key k for encryption/decryption will be implicit when only one
is involved, otherwise E [x, k] and D[ζ, k]. Equality (not identity) of ciphertexts
χ = ζ is defined as D[χ] = D[ζ], so xE = yE iff x = y, with xE 6= yE iff x 6= y.

Operations on ciphertext will borrow the same names as on plaintext but in
square brackets. Thus xE1 [+]xE2 = E [x1 + x2], meaning that xE1 [+]xE2 may be
calculated by decrypting the ciphertexts back to plaintexts x1, x2, adding, then
encrypting again. Whether the calculation is like that or not (the encryption
may already possess that property), the abstraction is applicable.

Relations xE1 [R]xE2 on ciphertexts denote the relation x1Rx2 on plaintexts.

2 Further Background

Several fast processors for encrypted computing are described in [5]. Those in-
clude the KPU [18], which runs encrypted on a 1 GHz clock with AES-128 [8]
at the benchmark speed of a 433 MHz classic Pentium, and the slightly older
HEROIC [4] which runs like a 25 KHz Pentium, embedding Paillier-2048 [19], as
well as the recently announced CryptoBlaze [20], also using Paillier-2048 but 10×
faster than HEROIC (it is not clear how many of those have working compilers).

The machine code instruction set defining the programming interface is im-
portant because a conventional instruction set is insecure against powerful insid-
ers who may steal an (encrypted) user datum x and put it through the machine’s
division instruction to get x/x encrypted, an encrypted 1. Then any desired en-
crypted y may be constructed by applying the machine’s addition instruction to

Box 1: Machine code instruction set axioms. Instructions . . .

(i) are a black box from the perspective of the programming interface, with no
internal states visible;

(ii) take encrypted inputs to encrypted outputs;
(iii) are adjustable via (encrypted) embedded constants to any offsets in de-

crypted inputs and outputs;
(iv) are such that there are no collisions between encrypted constants and run-

time encrypted values.

get 1+ . . .+1 encrypted. Via the order comparator instructions (testing 231≤z,
230≤z, . . .) on an encrypted z and subtracting on branch, z may be obtained
bitwise. That is a chosen instruction attack [1, 21]. An instruction set for en-
crypted computing must resist algebraic attacks like that, but the compiler must
also be involved, else there would still be known plaintext attacks [22] based on
the idea that human programmers intrinsically use values like 0, 1 more often
than others. The compiler’s job is to even out the statistics.

Necessary conditions, first described in [16], are shown in Box 1. Instructions
must (i) execute atomically, or recent attacks such as Meltdown [23] and Spec-
tre [24] against Intel are feasible, (ii) work with encrypted values or an adversary
could read them, and (iii) be adjustable via onboard (encrypted) constants to
offset by arbitrary deltas the runtime values beneath the encryption. The con-
dition (iv) is for the security proofs in [1] and amounts to different padding or
blinding factors for encrypted program constants and encrypted runtime values.

The compiler’s job is to vary the encrypted constants (iii) embedded in the
machine code instructions so all feasible trace variations are exercised equiprob-
ably. [16] describes how an obfuscation scheme is generated. That is a set of
vectors of planned offsets from nominal for the data beneath the encryption per
memory and register location, one vector for each machine code instruction. A
formal outline is that the compiler C[−]r translates an expression e that is to
end up in register r at runtime to machine code mc and plans an offset δr in r:

C[e]r = (mc, δr) (1)

Let s(r) be the value in register r in state s of the processor at runtime. The
machine code mc changes state s to s′ that holds a ciphertext in r whose plaintext
value differs by δr from the nominal value s(e) of e in s. That is:

s
mc
 s′ where s′(r) = E [s(e) + δr] (2)

The encryption E is shared with the user and the processor, but not operator
and operating system. The randomly generated compiler offsets δr are known
to the user, but not the processor nor operator and operating system. The user
compiles the program and sends it to the processor to be executed and knows
the obfuscation scheme, so can create the right inputs and read the outputs.

Table 1. An instruction set for encrypted working.

op. fields mnem. semantics

add r0 r1 r2 κ add r0←r1 [+] r2 [+]κ
sub r0 r1 r2 κ subtract r0←r1 [−] r2 [+]κ
mul r0 r1 r2 κ0κ1κ2 multiply r0←(r1 [−]κ1) [∗](r2 [−]κ2) [+]κ0

div r0 r1 r2 κ0κ1κ2 divide r0←(r1 [−]κ1) [÷](r2 [−]κ2) [+]κ0

. . .
mov r0 r1 move r0←r1
beq i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [=] r2 [+]κ
bne i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [6=] r2 [+]κ
blt i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [<] r2 [+]κ
bgt i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [>] r2 [+]κ
ble i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [≤] r2 [+]κ
bge i r1 r2 κ branch if b then pc←pc+i, b⇔ r1 [≥] r2 [+]κ
. . .
b i branch pc ← pc + i
sw (κ)r0 r1 store memJr0 [+]κK← r1
lw r0 (κ)r1 load r0 ← memJr1 [+]κK
jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

Legend
r – register index
κ – encrypt. const.
pc – prog. count reg.
j – prog. count
‘←’ – assignment
ra – return addr. reg.
E[] – encryption
i – prog. incr.
r – register content

xE – encrypted val. E[x]
xE [o] yE = E[x o y]
xE [R] yE ⇔ xR y

An encrypted bit decodes
beq/bne, ble/bgt, blt/bge.

The integer part of a generic instruction set architecture (ISA) satisfying
(i-iv) above is shown in Table 1. It is adapted from the OpenRISC ISA v1.1
(http://openrisc.io/or1k.html), which has about 200 instructions. As well
as the integer part, there are instructions for single and double precision integer
operations, single and double floating point, and vector operations, all 32 bits
long. Instructions access up to three 32 general purpose registers (GPRs), but
one register operand may be replaced by a (‘immediate’) constant. Four 32-bit
‘prefixes’ precede a 32-bit instruction with 16 bits spare to provide 128=4×28+16
bits for one encrypted constant. That ISA covers the target instructions here.

3 Compiling aroundHWAliasing inEncryptedComputing

The compiler attempts to implement the following basic strategy:

Each address that is written is saved for later read.

But it cannot do that. Though copying the address to stack3 works (Axiom 1),
the conundrum is that it is saved at an address that must also be saved.

Axiom 2 puts a backstop on the recursion, allowing an address that is cal-
culated at compile time and recalculated at runtime (with the same result!) to
be used. But a finite set of addresses cannot suffice for unbounded call depth.
The real first problem to be solved is how to manipulate the stack pointer so
addresses and other data can indeed be saved and recovered reliably from stack.

3.1 Stack Pointer 101

A standard function-entry code sequence decrements the stack pointer register
sp by the amount needed for the stack frame3, then the standard function-exit

3 By ‘stack’ or ‘(stack) frame’ is meant a runtime work area unique to a function call.

Table 2. Function call sequences

(a) standard/optimized (b) with frame pointer (c) complete

decrement sp
...

increment sp
return

copy sp to fp
decrement sp
. . .
copy fp to sp
return

save old fp to 1 below sp
copy sp to fp
decrement sp
. . .
copy fp to sp
restore old fp from 1 below sp
return

code sequence increments it again, as in Fig 2(a). That does not work in a hard-
ware aliasing environment like encrypted computing, because the increment does
not restore the exact bit sequence (the encrypted address) that was originally in
the stack pointer register. Instead the caller gets back a different encryption of
the same plaintext address and that accesses a different memory location.

But the frame pointer register fp can be used to save the stack pointer,
and the latter restored from it as in Fig. 2(b). That is the typical unoptimized
call sequence code produced by a compiler but default optimization ordinarily
replaces it with the Fig. 2(a) code and frees up the frame pointer register for other
uses. The GNU gcc compiler (for example) with -fno-omit-frame-pointer on
the command line turns off optimization and produces the Fig. 2(b) code.

That is not yet perfect because the caller’s frame pointer register must still
be saved from being trampled here, and later restored, as shown in Fig. 2(c).
Saving below the caller’s stack pointer puts it in the callee’s stack frame, so
the frame size must be over-stated for the decrement. As many as the compiler
wants of the caller’s registers can be saved at the top of the callee’s frame.

Rather than decrement the stack pointer again for sub-blocks, the compiler
reserves extra space for subframes within the function frame. Otherwise the same
trick would have to be repeated for sub-blocks and accessing the function-level
variables would need a chase through the sequence of stack pointers on the stack.

The final code in Fig. 2(c) works with hardware-aliasing. It sets up the func-
tion’s stack frame so it can be reliably addressed as σ [+] dE from within the
function, using the notation that will be standard in this document (see end of
Section 1). Here d is a displacement between 0 and the frame size, provided as
an encrypted constant dE in a load or store machine code instruction, and σ is
the encrypted address in the stack pointer register.

3.2 Accessing Variables

Given that setup for the stack pointer, accessing function local variables is sim-
ple. A word-sized local variable x is assigned a position d on the stack and the
compiler issues a load instruction to read from there to register r:

lw r (d E)sp # load from offset d from sp

The processor does addition σ [+] dE in executing the instruction, but repeats
that same calculation at every access, so by Axiom 2 of Section 1 the same
sequence of bits for the encrypted address is produced every time, and it accesses
the same spot in memory. To write the variable, a store instruction replaces load :

sw (d E)sp r # store to offset d from sp

For global variables, which reside at a compiler-decided address a in (heap)
memory, the compiler offsets from the zero register zer instead of sp:

lw r (a E)zer # load from address a

The zero register contains a fixed zero value (not necessarily zero, indeed it
is varied along with everything else for obfuscation as explained in Section 4).
The encrypted effective address calculated by this instruction is always ζ [+] aE ,
where ζ is the encrypted value in the zer register (notionally zero, but varied
for each function) so the same memory location is always accessed.

The actual values of those encrypted addresses do not matter. They are just
labels. They are all different as guaranteed by Axiom 3, and the processor remaps
the 128-bit or more ciphertext of the encrypted addresses to 32-bit numbers that
reference a physically backed area of memory, as discussed in Section 1.

3.3 Accessing Arrays

The real difficulties in an encrypted computing/hardware aliasing context arise
with accessing arrays. One can access arrays in several ways, but whatever way
one chooses one should stick to it and only use that, because in a hardware
aliasing context like encrypted computing the answer for the encrypted address
of the array element depends on the way it is calculated. One should not allow
two ways of accessing the same array, because two different calculations for the
encrypted address give two different answers.

The elements a[d] of array a can in principle be accessed either via a load or
store instruction with fixed displacement dE from the encrypted array address α,
or via a pointer that ranges through the array starting at α and steps through the
elements until the one of interest is reached, at which point a load or store instruc-
tion with displacement zero from the pointer is used. The two calculations for
the effective address are respectively α [+] dE and α [+] 1E [+] 1E . . . [+] 1E [+] 0E .
The calculations produce different bit sequences as encrypted addresses for the
same plaintext address, so the two methods are incompatible and one ought to
be used for each array. But in practice that is too restrictive. It is common, for
example, both to step a pointer down through an array and step up through it.

We have accepted instead that general purpose array access is not going to be
constant time in this kind of environment. For arrays of size N the compiler can
provide access in logN time in a simple manner that works for all methods of
access. In the encrypted computing context, it is even preferable that array access
be nonconstant time, because in order to obfuscate which element is accessed,
code should step through many, summing each in turn into an accumulator

multiplied by either 1 or 0 (encrypted). The observer not privy to the encryption
cannot tell which multiplier is a 1 and which is a 0.

Linear complexity code will be presented. To read array element a[n], index
n is tested against 0, . . . , N−1 in turn. The code produced is equivalent to:

(n == 0)?a[0]:

(n == 1)?a[1]:

...

The equality tests are insensitive to the particular encryption nE of plaintext
number n in the variable n. The processor evaluates nE [==] 0E to n == 0, and
branches accordingly. The encrypted address passed to memory for a[n] is always
α [+]nE . Here n is the displacement from the base of the array and α is the
encrypted address for the lowest array element a[0]. That is α = σ [+] kE , where
k is the allocated position of the array on the stack and σ is the encrypted
address in the stack pointer register. So the address passed to memory for a[n]
is σ [+] kE [+]nE and the machine code sequence generated by the compiler to
do the read is:

addi r sp kE # add kE to σ from sp to form α in r
lw r (nE)r # load from address α[+]nE with α in r to r (3)

where the addi instruction adds its constant operand to the register as indicated.
Improving this code to logN complexity entails using a binary tree structure.

Code for writing to a[n] follows the same pattern, with store instead of load.
The same code structure works for access via a pointer p, but the compiler

needs to know which array it points into. The problem is that pointers in C can
point anywhere at runtime and the compiler can hardly ever predict where, so
the equality tests above must run over all 232 possible plaintext addresses for
each access. That is impractical so we have tightened the type system of C so
the pointer is declared along with the name of a (possibly overlarge) array a into
which it will definitely point at runtime:

restrict a int *p

The restrict keyword selects the target array for the pointer. This means a
certain amount of porting has to be done for existing code, marking out global
areas into which pointers can point. It generally means declaring a global array
from which objects of the kind pointed to are allocated from, or declaring a
function as interior to another function where the target of the pointer is defined
as a local. As the new pointer type is narrower than the original and (ideally)
we make no semantic changes, confidence in type safety should be increased.

Then the code generated does lookup via pointer p like this:

(p == a+0)?a[0]:

(p == a+1)?a[1]:

...

It is insensitive to the way the pointer p is calculated in a dereference ∗p just
as the code for a[n] is insensitive to the way n is calculated. The code can

similarly be made over to logN complexity with a binary tree lookup structure,
and converted to write by replacing load instructions at the leaves with stores.
These constructions make pointer access the same as access via array index.

3.4 Long Types

Records with named fields (‘struct’ in C) are treated by the compiler as arrays
and the field name is translated to an array displacement. The declaration

struct { int a; int b; } x

declares x with two named fields, a and b, each one word wide. It occupies two
words on the stack at displacements k and k + 1 respectively from the stack
pointer. The compiler generates accesses to x.a and x.b just as it would for any
local variables situated there as described in Section 3.2. Source code attempting
to access the fields of the struct as though it were an array still works, which
helps in porting C code that uses this type-unsafe but commonly used pattern.

Long atomic types such as double (a 64-bit float encoded as two encrypted
32-bit integers following the IEEE 754/ISO 60559 standard) are also treated as
arrays with the compiler generating single word load and store instructions to
access separately the (encrypted) high and low words of the long type.

But platforms for encrypted computing also can have double-word load and
store instructions that fetch/write two encrypted words at once:

ld r (k E)sp # double word load

The effective address of the first word is σ [+] E [k], σ being the encrypted address
in the stack pointer register. Registers are indexed in pairs for this instruction,
and the second of the pair is loaded up by it with a second encrypted word. But
that comes from the address (σ [+] E [k]) + 1 in memory, not σ [+] E [k+ 1]. It has
to be so because the memory is by design not privy to the encryption and so
cannot decrypt the effective address of the first word and add one and encrypt
again to get the address of the second word.

Even if it could do so, the best it could produce is σ [+] E [k] [+] E [1] since
σ [+] E [k] is what is given (that is possible if the encryption is partially homo-
morphic so the encrypted addition can be done without the key) and that is not
the same encrypted value as σ [+] E [k + 1], which is the effective address of the
second word of the double accessed like an array. A second processor with the
key would be needed within the memory management unit to which to offload
the calculation checking σ [+] E [k] [+] E [1] is an encryption alias of σ [+] E [k+1].

The conclusion is that either double word instructions must be used all the
time, including for single words (there would follow an arithmetic operation to
extract the encrypted 32-bit half required), or the single word instructions must
be used all the time. We in our prototype compiler have chosen to never invoke
double word, just single word instructions.

3.5 Short Types

The difficulty in accessing the second word of a double in memory translates
to a difficulty with the individual bytes of a word. For indexed access to the
characters of a string a, a compiler should generate a sequence of arithmetic
operations that splits the character index i into a word index d and an offset j
for the character within the word, equivalent to this code:

d = i/4;

j = i%4;

(a[d] / 256j) % 256 # jth char of dth word

In our own prototype compiler we have preferred to avoid this complication and
pack characters one to a word, at the cost of an inefficient use of memory for
strings (the upper bits are random). Then no arithmetic as above is required.

4 Integrating Compiling and Obfuscation

Although hardware aliasing takes place ubiquitously from the point of a program
running in an encrypted computing environment, that is not the only hurdle for
a compiler. As described in Section 1, the compiler has to vary code and data to
swamp out human programming influences that could lead to statistically based
attacks. If zero is the most common data item, it pays to mount a statistical
known plaintext attack [22] supposing any given encrypted datum is zero. The
technique (for integers only) is set out in [16] and it is to vary offsets from the
nominal values in the plaintext beneath the encryption in the content of memory
and registers, as described in (2) of Section 1. That fits with the address control.

4.1 Varying Address Displacement Deltas

Instead of generating a load instruction to read from a variable at position n on
the stack as in (3) of Section 3.2:

lw r (nE)sp # load from offset n from sp

the compiler will vary the displacement constant n to ∆:

lw r (∆E)s # load from offset n from sp

Here ∆ is a previously chosen random number and the register s has been pre-set
with the value σ [+]nE [−]∆E to accommodate this, where σ is the encrypted
address in the stack pointer register. The effective address passed to memory is:

σ [+]nE [−]∆E [+]∆E

and is always the same when that calculation/instruction sequence is repeated
and always accesses the same memory location (Axiom 2, Section 1). The com-
piler has to ensure separately that ∆E is always the same for the same n. It
maintains a vector ∆E indexed by stack location n, as well as a similar vector
∆EZ for the heap, and the load instruction above has ∆E = ∆En.

4.2 Varying Content Deltas

The stack pointer sp does not contain the value it notionally should have but
is offset by a random delta and that is true of every register at every point in
the code. The compiler maintains a vector δER of offsets δER r in each register r,
varying it as it makes its pass through the code.

It also maintains a vector δE of delta offsets of stack contents indexed by
stack location n, and a vector δEZ for the delta offsets of heap contents indexed
by heap location n. Code for accessing the nth location on the stack is:

addi r sp kE # where k = n− δR sp−∆n
lw r (∆En)r # read nth location on stack

and the effective address received by memory is

σ [+] E [n− δR sp−∆n] [+] ∆En

where the stack pointer register sp contains the encrypted address σ=spE [+]δERsp
differing in δR sp from the nominal plaintext value sp. Summing, the address has
the plaintext value sp + n. The calculation for the effective address is the same
every time so the bit sequence passed to memory is the same every time, by
Axiom 2 of Section 1. A write just replaces the load instruction by store.

The δ and ∆ values are changed randomly by the compiler just before every
point in the code where a write occurs. A result in work presently under review
[25] measures the variability in a runtime trace in terms of its entropy viewed as
a stochastic random variable over recompilations of the same source code:4

Theorem 1. The entropy in a trace over recompilations is the sum of the en-
tropies of every instruction that writes that appears in it, counted once each.

An instruction has entropy inasmuch as its effect can be varied by the compiler
from recompilation to recompilation by changing the constants embedded in
it. Machine code instructions like load and store that copy from one place to
another do not contribute entropy to the trace except as they may write to
different places and the address displacement deltas (Section 4.1) contribute
entropy there. But though the compiler varies the contribution ∆n in the addi
instruction in the load sequence above, potentially supplying 32 bits of entropy
(say), ∆n is fixed through reads and only varied at writes, so it must be ‘old
news’ when the sequence runs and contributes no entropy.

The compiler’s job is to do everything it can to maximize the trace entropy:

Theorem 2. Trace entropy is maximized when the compiler varies every instruct-
ion that writes to the maximal extent possible (i.e., with flat distribution). (H)

(again from [25]). That provides a stochastic setting in which an attacker cannot
be sure what the numerical value of the runtime plaintext should be, even in

4 The entropy is the expectation E[− log2 p(X)] for variable X with distribution p(X),
and it expresses roughly a number of independent (binary) degrees of freedom.

Table 3. Code patterns

(a) while loop (b) conditional

start: mce # compute e in r
beqz r end # goto to end if r zero
mcs # compute s
b start # goto start
end:

start: mce # compute e in r
beqz r else # goto to else if r zero
mcs1 # compute s1
b end # goto end
else: mcs2 # compute s2
end:

terms of a statistical tendency. The principle is that the compiler provides an
extra, additive, uniformly distributed input at each instruction where it is able to
contribute (H). Via Shannon’s Law [26], the resulting plaintext data distribution
beneath the encryption at runtime has maximal entropy over its 32 bits at any
point. That means data beneath the encryption in the trace is no more vulnerable
to statistical plaintext attack than random (encrypted) data is, given that the
encryption is independently secure (this paraphrases the proof in [7]).

All that is required per Theorem 2 is to confirm that each of the compiler’s
constructions vary maximally every instruction that writes that it outputs (H).

4.3 Doing It for Loops and Conditionals

Just two compiler constructions will be detailed here. Loops (while, for, back-
ward goto, etc.) reduce the available entropy in traces and this is why. Let the
statement compiler C[−] produce code mc from statement s of the source lan-
guage, altering the combined database D = (∆,∆Z , δ, δZ , δR) to Ds. Let D be of
type DB, statements s of type Stat, machine code mc of type MC, then the type
statement for the compiler is (pairs (D,x) are written D : x here for legibility):

C[− :−] :: DB× Stat→ DB×MC

C[D : s] = Ds : mc (4)

(compare (1) for expressions e). Compiling while e s means producing code mc
constructed from code mce for e, mcs for s, with the pattern in Table 3(a). The
compiler produces first De then Ds, dropping out codes mce, mcs, in that order:

D
C[−:e]r
;
mce

De C[−:s]
;
mcs

Ds (5)

But the pattern in Table 3(a) does not quite work, because it does not reestablish
the deltas at loop start and second time through the loop goes wrong. Extra
trailer instructions are needed at the end of the loop body after mcs. This trailer
reverts r to its initial delta δER r from the final delta δsR

Er off nominal:

addi r r kE # add k = δR r − δsR r (6)

Trailer instructions also reestablish the start-of-loop address displacements. The
trick is to read with the end-of-loop displacement ∆sn then write with the start-
of-loop displacement ∆n, sandwiching the revert above:

addi t0 sp jE # j = n− δR sp−∆sn
lw t0 (∆sEn)t0 # load nth stack location

addi t0 t0 kE # modify by k = δn− δsn
addi t1 sp lE # l = n− δR sp−∆n
sw (∆En)t1 t0 # store nth stack location

(7)

It does not matter if kE = E [δR r − δsR r] or, e.g., δER r [−] δsR
E r is used because

even used as an address it is immune to differences in calculation given the com-
piler constructions of Section 3. The point is that the numbers j, k, l are com-
pletely determined by the compiler’s earlier choices (of deltas) for instructions
in the loop. It is impossible to get to the trailer instructions without traversing
the loop and executing those earlier instructions, so these numbers are always
‘old news’ and they introduce no more entropy into the trace. Apart from those,
which cannot be made to import more entropy, each instruction that writes in
mc is in one of mce or mcs, and those (by induction) may be varied maximally
by the compiler, confirming (H) as required for Theorem 2.

Resynchronization is needed wherever two control paths join and after an
if-then-else in particular: the final deltas in the two branches must be equalized
and the compiler emits trailer instructions for that. Code mc for if e s1 else s2
has the pattern in Table 3(b) and the compiler emits mce, mcs1 , mcs2 in order:

D
C[−:e]r
;
mce

De C[−:s1]
;
mcs1

Ds1 C[−:s2]
;
mcs2

Ds2 (8)

But that code also does not work as-is. Trailer instructions (6-7) must be placed
after mcs2 to set the final deltas in the ‘else’ branch equal to those in the ‘then’
branch. If the ‘else’ branch is executed first then the trailers import to the trace
the entropy from the final choices of delta in the (not yet executed) ‘then’ branch
but they cannot be varied further to introduce more entropy than that. If the
‘then’ branch is executed first then the trailers import no more entropy into the
trace when they do execute because their numbers are determined by instructions
executed earlier, but they still could not have been varied to introduce more
entropy than that as they are determined by the requirements. So the conclusion
is that the trailers do introduce all the entropy they can, and by induction the
instructions in mce, mcs1 , mcs2 do all they can too, confirming (H). Similarly
for other compiler constructions (not shown). Then by Theorem 2:

Corollary 1. Trace entropy is maximized by the compiler constructs.

The principle (H) guides design. It dictates that every entry in an array must
have a separate delta in the obfuscation database D, rather than all the entries
sharing the same delta. A write to an entry must be followed by a change of
delta, as it is an opportunity for the compiler to vary the writing instruction. If
the delta were shared, then all entries in the array would have to be updated to
the new delta, but then the instructions in the ‘write storm’ to the other entries
would not introduce more entropy, as their delta is already known.

Table 4. Trace for Ackermann(3,1)

PC instruction trace updates
...
35 addi t0 a0 −86921031E t0 ← −86921028E
36 sub t1 zer zer −327157853E t1 ← −327157853E
37 beq t0 t1 2 240236822E

38 sub t0 zer zer −1242455113E t0 ← −1242455113E
39 b 1
41 sub t1 zer zer −1902505258E t1 ← −1902505258E
42 xor t0 t0 t1 −1734761313E 1242455113E 1902505258E

t0 ← −17347613130E
43 beqz t0 9 −1734761313E
53 addi sp sp 800875856E sp ← 1687471183E

54 addi t0 a1 −915514235E t0 ← −915514234E
55 sub t1 zer zer −1175411995E t1 ← −1175411995E
56 beq t0 t1 2 259897760E

57 sub t0 zer zer 11161509E t0 ← 11161509E

...

143 addi v0 t0 42611675E v0 ← 13E # result
...
147 jr ra
STOP

Legend
op. fields semantics

addi r0 r1 κ r0 ← r1[+]κ
. . . (see Table 1)
register semantics
a0,a1,. . . function argument
pc program counter
ra return address
sp stack pointer
t0,t1,. . . temporaries
v0,v1,. . . return value
zer null

5 Examples

Our own prototype C compiler http://sf.net/p/obfusc covers ansi C and
GNU C extensions, including statements-as-expressions and expressions-as-state-
ments, gotos, arrays, pointers, structs, unions, floating point, double integer and
floating point data. It is missing longjmp, computed goto, efficient strings (char
is the same as int), and global data shared across different files (a linker issue).

A trace5 of the Ackermann function6 [27] compiled by that compiler is shown
in Table 4. The trace illustrates how the compiler’s variation of the delta offsets
for register content through the code results in randomly generated constants
embedded in the instructions and randomly offset runtime data. The Ackermann
function is the toughest test possible of the correctness of the compiler’s strate-
gies for function call, assignment and conditionals. It is not realistically feasible
to get the correct result without being perfect all the way through.

Running a Sieve of Eratosthenes program7 for primes shows that arrays work
too. How memory access is affected by address displacement constants is visible
in the trace in Table 5, which also shows the padding on the data as well as the
(decrypted, plaintext) data itself. One stack read has been marked in red. The
address base and displacement from base in the are in blue so it can be seen how
the base register is first decremented arbitrarily low by the compiler and then
compensated high in the displacement in the load. The variation is arbitrary but

5 Initial and final content offset deltas are set to zero here, for readability.
6 Ackermann C code: int A(int m,int n) { if (m == 0) return n+1; if (n == 0)

return A(m-1, 1); return A(m-1, A(m, n-1)); }.
7 Sieve C code: int S(int n) { int a[N]={[0. . . N-1]=1,}; if (n>N||n<3) return 0; for

(int i=2; i<n; ++i) { if (!a[i]) continue; for (int j= 2*i; j<n; ++j) a[j]=0; }; for
(int i=n-1; i>2; --i) if (a[i]) return i; return 0; } .

Table 5. Trace for sieve showing hidden bits in data (right). Stack read instructions
in red, address base and address displacement in blue.

PC instruction trace updates | hidden
...
22340 addi t1 sp −418452205E t1 ← −877254954|1532548040E
22360 bne t0 t1 84
22384 addi t1 sp −407791003E t1 ← −866593752|1532548040E # read local array

22404 lw t0 (866593746E)t1 t0 ← −866593745|1800719299E # a[7] at sp+40

22424 addi t0 t0 −1668656853E t0 ← 1759716698|1081155516E
22444 b 540
22988 addi t1 zer 1759716697E t1 ← 1759716697|1325372150E
23008 bne t0 t1 44
...
23128 addi t0 sp −1763599776E t0 ← 2072564771|−1935092797E # read local

23148 lw t0 (−2072564772E)t0 t0 ← 2072564779|−1773201679E # i at sp+45

23168 addi t0 t0 1723411350E t0 ← −498991167|−981581771E

23188 addi t0 t0 −1862832992E t0 ← 1933143137|−1629507929E

23208 addi v0 t0 −1933143130E v0 ← 7E |1680883739 # return
...
23272 jr ra
STOP

exactly the same sequence of instructions must be repeated at every access, as
the padding (shown) would differ otherwise, and it forms part of the effective
address that is passed to memory.

6 Conclusion

This paper shows how to compile for encrypted computing environments that
pass encrypted addresses undecoded to memory, resulting ‘hardware aliasing’
from the perspective of a program, due to the one-to-many nature of good en-
cryption and the many different encryptions of a single plaintext address.

That is an advance that allows ordinary RAM to be used as the memory de-
vice in processors for encrypted computing, validating the emerging technology.
That aims to provide security for user programs, which run encrypted, against
the operating system, which runs unencrypted but otherwise with unlimited
access and privileges.

The technique adapts obfuscating compilation, which varies and controls off-
sets from nominal in the content of each memory location at runtime, to control
also offsets in the addresses.

The compiler constructions described in this paper generate log or linear
complexity array accesses. Constant complexity would be possible but at the
price of making index- and pointer-based access incompatible, which would make
porting existing source codes to the platform much more difficult.

References

1. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: On security in encrypted com-
puting. In Naccache, D., et al., eds.: Proc. 20th Int. Conf. Info. Comms. Sec.
(ICICS’19). Number 11149 in LNCS, Cham, Springer (October 2018) 192–211

2. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for en-
crypted computation on untrusted programs. In: Proc. 7th ACM Scalable Trusted
Comp. Workshop (STC’12), New York, ACM (2012) 3–8

3. Tsoutsos, N., Maniatakos, M.: Investigating the application of one instruction
set computing for encrypted data computation. In Gierlichs, B., Guilley, S.,
Mukhopadhyay, D., eds.: Proc. Sec., Priv. Appl. Cryptog. Eng. (SPACE’13).
Springer, Berlin/Heidelberg (2013) 21–37

4. Tsoutsos, N., Maniatakos, M.: The HEROIC framework: Encrypted computation
without shared keys. IEEE Trans. CAD Integ. Circ. Sys. 34(6) (2015) 875–888

5. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: Superscalar encrypted RISC: The
measure of a secret computer. In: Proc. 17th Int. Conf. Trust, Sec. Priv. Comp.
Comms. (TrustCom’18), CA, USA, IEEE Comp. Soc. (August 2018) 1336–1341

6. Breuer, P.T., Bowen, J.P.: (un)encrypted computing and indistinguishability obfus-
cation. CoRR abs/1811.12365 (2018) (Extended abstract) Princip. Sec. Compil.
Track (PRiSC’19), 46th ACM SIGPLAN Symp. Princip. Prog. Lang. (POPL’19).

7. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: The secret processor will go to the
ball: Benchmark insider-proof encrypted computing. In: Proc. 3rd Work. Safety
& Security aSSurance Critical Infrastructures Protection (S4CIP’18) / 3rd Euro.
Symp. Security and Privacy Workshops (EuroS&PW’18), CA, USA, IEEE comp.
soc. (April 2018) 145–152

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Springer, Berlin/Heidelberg (2002)

9. Breuer, P.T., Bowen, J.P.: A fully homomorphic crypto-processor design: Cor-
rectness of a secret computer. In Jürjens, J., Livshits, B., Scandariato, R., eds.:
Proc. 5th Int. Symp. Eng. Sec. Soft. Sys. (ESSoS’13). Number 7781 in LNCS,
Berlin/Heidelberg, Springer (February 2013) 123–138

10. Simmons, P.: Security through amnesia: A software-based solution to the cold
boot attack on disk encryption. In: Proc. 27th Ann. Comp. Sec. Appl. Conf.
(ACSAC’11), New York, NY, ACM (2011) 73–82

11. Gruhn, M., Müller, T.: On the practicability of cold boot attacks. In: 8th Int.
Conf. Availability, Reliability, Sec. (ARES’13). (September 2013) 390–397

12. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Proc. 22nd Ann.
ACM Symp. Th. Comp. (1990) 514–523

13. Ostrovsky, R., Goldreich, O.: Comprehensive software protection system (June 16
1992) US Pat. 5,123,045.

14. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
rams. Journal of the ACM (JACM) 43(3) (1996) 431–473

15. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party computa-
tion. In Sahai, A., ed.: Proc. 10th Th. Cryptog. Conf. (TCC’13). Volume 7785 of
LNCS. Springer, Berlin/Heidelberg (March 2013) 377–396

16. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: On obfuscating compilation for
encrypted computing. In Samarati, P., Obaidat, M.S., Cabello, E., eds.: Proc.
14th Int. Conf. Security and Cryptography (SECRYPT’17). Volume 4., Portugal,
INSTICC, SCITEPRESS (July 2017) 247–254

17. Barr, M.: Ch. 6, Memory. In Oram, A., ed.: Programming Embedded Systems in
C and C++. 1st edn. O’Reilly & Associates, Inc., Sebastopol, CA (1998) 64–92

18. Breuer, P.T., Bowen, J.P., Palomar, E., Liu, Z.: A practical encrypted micro-
processor. In Callegari, C., et al., eds.: Proc. 13th Int. Conf. Sec. Cryptog. (SE-
CRYPT’16). Volume 4., Portugal, SCITEPRESS (July 2016) 239–250

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Proc. EUROCRYPT’99. Adv. Cryptol., Springer (1999) 223–238

20. Irena, F., Murphy, D., Parameswaran, S.: Cryptoblaze: A partially homomorphic
processor with multiple instructions and non-deterministic encryption support. In:
Proc. 23rd Asia S. Pac. Design Autom. Conf. (ASP-DAC), Los Alamitos, CA,
USA, IEEE (2018) 702–708

21. Rass, S., Schartner, P.: On the security of a universal cryptocomputer: The chosen
instruction attack. IEEE Access 4 (2016) 7874–7882

22. Biryukov, A.: Known plaintext attack. In van Tilborg, H.C.A., Jajodia, S., eds.:
Encyclopedia of Cryptography and Security. Springer, Boston, MA (2011) 704–705

23. Lipp, M., et al.: Meltdown. ArXiv e-prints (January 2018)
24. Kocher, P., et al.: Spectre attacks: Exploiting speculative execution. ArXiv e-prints

(2018)
25. Breuer, P.T.: An information obfuscation calculus for encrypted computing. Cryp-

tology ePrint Archive, Report 2019/084 (January 2019)
26. Shannon, C.E.: A mathematical theory of communication. Bell System Technical

Journal 27(3) (October 1948) 379–423
27. Sundblad, Y.: The Ackermann function. a theoretical, computational, and formula

manipulative study. BIT Num. Math. 11(1) (March 1971) 107–119

