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Abstract. Logical cryptanalysis, first introduced by Massacci in 2000, is a viable
alternative to common algebraic cryptanalysis techniques over boolean fields.
With XOR operations being at the core of many cryptographic problems, recent
research in this area has focused on handling XOR clauses efficiently. In this pa-
per, we investigate solving the point decomposition step of the index calculus
method for prime degree extension fields F2n , using SAT solving methods. We
propose an original XOR-reasoning SAT solver, named WDSAT, dedicated to this
specific problem. While asymptotically solving the point decomposition problem
with our method has exponential worst time complexity in the dimension l of the
vector space defining the factor base, experimental running times show that our
solver is significantly faster than current algebraic methods based on Gröbner ba-
sis computation. For the values l and n considered in the experiments, WDSAT

was up to 300 times faster then MAGMA’s F4 implementation, and this factor
grows with l and n. Our solver outperforms as well current best state-of-the-art
SAT solvers for this specific problem.
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symmetry, satisfiability, DPLL algorithm

1 Introduction

The index calculus algorithm originally denoted a technique to compute discrete log-
arithms modulo a prime number, but it now refers to a whole family of algorithms
adapted to other finite fields and to some algebraic curves. It includes the Number Field
Sieve (NFS) [24], dedicated to logarithms in Zp and the algorithms of Gaudry [15]
and Diem [7] for algebraic curves in Fpn . Index calculus algorithms proceed in two
main steps. The sieving (or point decomposition) step concentrates most of the num-
ber theory and algebraic geometry needed overall. By splitting random elements over a
well-chosen factor base, it produces a large sparse matrix, the rows of which are “rela-
tions”. In a second phase, the matrix step produces ”good” combinations of the relations
by finding a non-trivial vector in the kernel of this matrix. This in turn enables the effi-
cient computation of any discrete logarithm on the input domain. A crucial step of the
index calculus on elliptic curves is to solve the point decomposition problem (PDP), by
generating sufficiently many relations among suitable points on the curve. Using the



so-called summation polynomials attached to the curve, this boils down to solving a
system of polynomial equations whose solutions are the coordinates of points. The re-
sulting algorithm has complexity O(p2−2/n), but this hides an exponential factor in n
which comes from the hardness of solving the point decomposition problem.

Consequently, when p is large and n is small, the Gaudry-Diem algorithm has a
better asymptotic complexity then generic methods for solving the discrete logarithm
problem and Gröbner basis algorithms have become a well-established technique [19]
to solve these systems. Since a large number of instances of PDP needs to be solved,
most of the research in the area has focused on improving the complexity of this step.
It was noticed that there are two degrees of freedom when we model the problem -
the number of points in a relation and the size of the factor base. The hardness of the
problem for the Gröbner approach is determined by the choice of these parameters, and
also by the choice of an equation for the elliptic curve. Several simplifications such as
symmetries and polynomials with lower degree obtained from the algebraic structure of
the curve have been proposed [9].

When we consider elliptic curves defined over F2n with n large, solving the PDP
system via Gröbner basis quickly becomes a bottleneck, and index calculus algorithms
are slower than generic attacks, from a theoretical and a practical point of view. More-
over, when n is prime, it is not known how to define the factor base in order to exploit
all the symmetries coming from the algebraic structure of the curve, without increasing
the number of variables when solving PDP [35]. Finally, note that for random systems,
pure Gröbner basis algorithms are both theoretically and practically slower than simpler
methods, typically exhaustive search [5,25], hybrid methods [2] and SAT solvers. It is
thus natural that we turn our attention towards combinatorics tools to solve the PDP in
characteristic 2.

Until recent years, SAT solvers have been proven to be a powerful tool in the crypt-
analysis of symmetric schemes. They were successfully used for attacking secret key
cryptosystems such as Bivium, Trivium, Grain, AES etc. [16,22,17,33,32]. Their use in
public key cryptosystems, although little explored, suggests that they may yield better
performance than algebraic attacks in some cases. Recently, Galbraith and Gebregiyor-
gis [14] observed experimentally that generic SAT solvers (such as MINISAT) are more
efficient than available Gröbner basis implementations, on CNF instances derived from
the polynomial system for the PDP over binary curves.

In this paper, we take important steps towards fully replacing Gröbner basis tech-
niques for solving PDP with constraint programming ones. First, we model the point
decomposition problem as a logical formula, with a reduced number of clauses, when
compared to the model used in [14]. Secondly, we propose a dedicated SAT solver for
our model. Specifically, our solver is adapted for XOR-reasoning, which is one of the
core operations in polynomial systems. We implement a DPLL-based backtracking pro-
cedure with three modules - a state-of-the-art unit propagation module and two XOR-
reasoning modules. We experimented with the index calculus attack on the discrete
logarithm for elliptic curves over prime degree binary extension fields. We obtain an
important speedup in comparison with the best currently available implementation of
Gröbner basis (F4 [10] in MAGMA [4]) and generic solvers [34,33]). In addition, our
experiments show that Gröbner basis cannot compete with SAT solvers techniques in
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terms of memory requirements. To illustrate, a system, which is solved with a SAT
solver using between 60MB and 200MB of memory, requires 38GB when using the
Gröbner basis method.

We estimate that our solver can be used for any attack that can be reduced to the
problem of solving a multivariate boolean polynomial system. Notable examples are
the HFE cryptosystem [26] and HFE-inspired schemes which are promising candidates
for the NIST Post-Quantum Cryptography Standardization [27,13,1].

This paper is organized as follows. Section 2 gives an overview of the index cal-
culus algorithm on elliptic curves, introduces the PDP problem and briefly recalls al-
gebraic and combinatorial techniques used in the literature to solve this problem. Sec-
tions 3 and 4 detail the reasoning models used in our experiments and our SAT solver.
In Section 5 we give worst time complexity estimates for solving a PDP instance and
derive the complexity of our SAT-based index calculus algorithm. Finally, Section 6
presents benchmarks obtained with our implementation. We compare this against re-
sults obtained using MAGMA’s F4 implementation and several available best generic
SAT-solvers, such as MINISAT, CRYPTOMINISAT and GLUCOSE.

2 An Overview of Index Calculus

Given a finite group (G,+) and two elements g, h ∈ G, the discrete logarithm problem
(DPL) consists in finding x ∈ Z such that h = x · g. The security of a great number of
asymmetric cryptosystems relies on this problem.

The index calculus method yields subexponential complexity for solving the DLP
in the multiplicative group of a finite field. We briefly recall the three phases of this
method, using the additive notation for the group law.

1. Choice of an appropriate factor base B = {g1, ..., gn}, such that B ⊆ G.
2. Decomposition phase : compute random integers ai, bi and try to decompose [ai]g+

[bi]h into the factor base. This is also called the relation search phase, since every
successful decomposition of the form [ai]g + [bi]h =

∑n
j=1[cij ]gj is called a

relation.
3. Linear algebra : when more than k = #B linearly independent relations are found

and the matrices A = (aibi) and M = (cij) are stored, use linear algebra to find
a kernel vector v = (v1...vk) of the matrix M . The discrete log of h can be solved
by computing x = −(

∑
i aivi)/(

∑
i bivi).

Performing this attack on elliptic curve groups is technically more difficult, notably
because it is hard to find a factor base over which we can perform the decomposition
phase efficiently. In 2008 and 2009, Gaudry [15] and Diem [7] independently proposed
a technique to perform point decomposition for elliptic curves over extension fields,
using Semaev’s summation polynomials [29]. Since this paper focuses on binary elliptic
curves, we introduce Semaev’s summation polynomials here directly for these curves.

Let F2n be a finite field and E be an elliptic curve defined by the equation

E : y2 + xy = x3 + ax2 + b, (1)
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with a, b ∈ F2n . Using standard notation, we take F̄2n to be the algebraic closure of
F2n and E(F2n) (resp. E(F̄2n)) to be the set of points on the elliptic curve defined over
F2n (resp. F̄2n ). Let O to be the point at infinity on the elliptic curve. For m ∈ N, the
mth-summation polynomial is a multivariate polynomial in F2n [X1, . . . , Xm] with the
property that, given P1, . . . , Pm ∈ E(F̄2n) points, then P1 + . . .+Pm = O if and only
if Sm(xP1 , . . . , xPm) = 0. We have that

S2(X1, X2) = X1 +X2, S3(X1, X2, X3) = X2
1X

2
2 +X2

1X
2
3 +X1X2X3 +X2

2X
2
3 + b,(2)

and for m ≥ 4 we have the following recursive formula:

Sm(X1, . . . , Xm) = ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xr, X).(3)

The polynomial Sm is symmetric and has degree 2m−2 in each of the variables. Let V
be a vector subspace of F2n/F2, whose dimension l will be defined later. We define the
factor basis B to be :

B = {(x, y) ∈ E(F2n)|x ∈ V }.

Heuristically, we can easily see that the factor base has O(2l) elements.

Definition 1. Let V be a vector subspace of F2n/F2. Given a point R ∈ E(F2n),
the point decomposition problem is to find m points P1, . . . , Pm ∈ B such that R =
P1 + . . .+ Pm.

Using Semaev’s polynomials, this problem is reduced to the one of solving a multi-
variate polynomial system.

Definition 2. Given s ≥ 1 and a l-dimensional vector subspace V of F2n/F2 and f ∈
F2n [X1, . . . , Xm] any multivariate polynomial of degree bounded by s, find (x1, . . . , xm) ∈
V m such that f(x1, . . . , xm) = 0.

Using the fact that F2n is a n-dimensional vector space over F2, the equation
f(x1, . . . , xm) = 0 can be rewritten as a system of n equations over F2, with ml vari-
ables. In the literature, this is called a Weil restriction [15] or Weil descent [28]. The
probability of having a solution to this system depends on the ratio between n and l.
Roughly, when n/l ∼ m the system has a reasonable chance to have a solution.

Recent work on solving the decomposition problem has focused on using advanced
methods for Gröbner basis computation such as Faugère’sF4 andF5 algorithms [10,11].
This is a natural approach, given that similar techniques for small degree extension
fields in characteristic > 2 yielded index calculus algorithms which are faster than the
generic attacks on the DLP.

2.1 Solving the decomposition problem using Gröbner basis

In this section, we give a brief account on the complexity of the index calculus algorithm
obtained using the Gröbner approach. It is well known that the complexity of Gröbner
basis algorithms based on Lazard’s Gaussian elimination on Macaulay matrices [23]
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strongly depends on the maximal degree D reached during the computation, called the
degree of regularity of the system.

In 2012, Faugère et al.[12] proposed a dedicated Gröbner basis algorithm based on
techniques ”à la Lazard” which solves PDP in time O(2ωτ ) and memory O(22τ ), where
ω is the linear algebra constant and τ ≈ n/2. This running time is obtained under the
unproven yet plausible heuristic assumption that a certain set of equations arising in
the algorithm is linearly independent and also by establishing a certain bound on the
degree of regularity. As a consequence, they derive an index calculus algorithm solving
the DLP over an elliptic curve defined over a binary field F2n having a worst time
complexity O(2ωτ+l). 1

Later on, experiments carried by Petit and Quisquater [28] using MAGMA’s F4 [4]
implementation suggested that the degree of regularity of the system derived from a PDP
instance via the Weil restriction is much smaller than the bound obtained in [12]. Going
further, the authors of [28] introduce new heuristic assumptions on the bound on the
degree of regularity of such a system and claim the existence of a subexponential index
calculus algorithm under these assumptions. If correct, the result of Petit and Quisquater
would be remarkable. Unfortunately, the experimental data available in the literature
concerns all small values of l and n and several papers in this area [18,30] debate on the
validity of the assumptions made in [28]. For this reason, we only compare ourselves to
the results obtained in Faugère et al.

A common technique when working with Semaev’s polynomials is to use a sym-
metrization process in order to further reduce the degree of the polynomials appearing
in the PDP system. In short, since Sm is symmetric, we can rewrite it in terms of the
elementary symmetric polynomials

e1 =
∑

1≤i1≤m

Xi1 ,

e2 =
∑

1≤i1,i2≤m

Xi1Xi2 , (4)

. . .

em =
∏

1≤i≤m

Xi.

We denote S′m+1 the polynomial obtained after symmetrizing Sm+1(X1, X2, . . . , Xm, Xm+1)
in the first m variables, i.e. we have

S′m+1 ∈ F2n [e1, . . . , em, Xm+1].

In [35], the authors report on experiments lead on systems obtained using a careful
choice of the vector space V and application of the symmetrization process. Using
Magma’s F4 available implementation, we experimented with both the symmetric and
the non-symmetric version for PDP systems and found, as in [35], that the symmet-
ric version yields better results. Therefore, in order to set the notation, we detail this
approach here.

1 In [12] the authors state the complexity is O(2ωτ ). In the proof of their Theorem 3, the exact
time is 2m logm+l+ωτ . Since l is large, we cannot ignore it here.

5



Let t be the root of the defining polynomial of F2n over F2. Following [35], we
choose the vector space V to be the l-dimension subspace generated by 1, t, t2, . . . , tl−1.
Therefore we can write:

e1 = d1,0 + . . .+ d1,l−1t
l−1

e2 = d2,0 + . . .+ d2,2l−2t
2l−2 (5)

. . .

em = dm,0 + . . .+ dm,m(l−1)t
m(l−1),

where the di,j with 1 ≤ i ≤ m, 0 ≤ j ≤ i(l − 1) are binary variables. After choosing
xm+1 ∈ F2n and substituting e1, . . . , em as in Equation (5), we get:

S′m+1(e1, . . . , em, xm+1) = f0 + . . .+ fn−1t
n−1,

where fi, 0 ≤ i ≤ n − 1 are polynomials in the binary variables di,j , 1 ≤ i ≤ m,
0 ≤ j ≤ i(l − 1) . After a Weil descent, we obtain the following polynomial system

f0 = f1 = . . . = fn−1 = 0. (6)

One can see that with this approach, the number of variables is increased by a factor
m, but the degrees of the polynomials in the system are seriously reduced. The system
in Equation (6) is also the starting point for our SAT model of the point decomposition
problem.

2.2 Solving the decomposition problem using SAT solvers

Before presenting our approach for finding solutions of the PDP using SAT solvers, we
give preliminaries on the Satisfiability problem, its terminology and solving techniques.

Propositional variables can take two possible truth values: TRUE and FALSE. We
denote a propositional variable by x.

• A literal is a signed propositional variable. Therefore, it can be positive (denoted
by x) or negative (denoted by ¬x). A literal x (resp. ¬x) is satisfied if it is assigned
to TRUE (resp. FALSE ). A literal x (resp. ¬x) is falsified if it is assigned to FALSE
(resp. TRUE ) ;

• An OR-clause is a non-exclusive disjunction (∨) of literals (e.g. x1 ∨ ¬x2 ∨ x3).
An OR-clause is said to be falsified if all of its literals are falsified and it is set to be
satisfied if at least one of its literals is satisfied ;

• A XOR-clause is an exclusive disjunction (⊕) of literals. (e.g. x1 ⊕ ¬x2 ⊕ x3). A
XOR-clause is said to be satisfied (resp. falsified) if an even (resp. odd) number of
its literals is satisfied ;

• An interpretation of a given propositional formula consists in assigning a truth
value to a set of its variables ;

• A CNF formula is a conjunction (∧) of one or more OR-clauses. A CNF formula is
said to be satisfiable if there exists at least one interpretation which satisfies all of
its OR-clauses, and it is said to be unsatisfiable when the opposite is true. Every
formula in propositional logic has a closed-CNF form.
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In the remainder of this paper, we will refer to an OR-clause simply by a clause, since
CNF is the standard form used in SAT solvers. A clause where the operation between
literals is an exclusive OR, will be referred to as a XOR-clause.

Propositional satisfiability or SAT is the problem of determining whether a (usually
CNF) formula is satisfiable. A SAT solver is a special purpose program to solve the SAT
problem. The most straightforward method for solving the SAT problem is to complete
the truth table associated to the formula in question. This is equivalent to an exhaustive
search method and thus impractical. Luckily, in some cases a partial assignment on the
set of variables can determine whether a clause is satisfiable. Assigning l, a literal from
the partial assignment, to TRUE will lead to :

1. Every clause containing l is removed (since the clause is satisfied).
2. In every clause that contains ¬l this literal is deleted (since it can not contribute to

the clause being satisfied).

The second rule above can lead to obtaining a clause composed of a single literal, called
a unit clause. Since this is the only literal left which can satisfy the clause, it must be
set it to TRUE. A new truth value is propagated by the unit clause. Hence, the described
method is called unit propagation. The reader can refer to [3] for more details.

In the case where the unit clause literal is already assigned to the opposite truth
value, we consider that we have encountered a conflict. The last partial assignment that
lead to this conflict has to be undone. This is commonly known are backtracking.

Example 1. For instance, these two atomic operations can be illustrated thanks to the
following sample built on a set of 10 clauses numbered C1 to C10.

C1 : x1 ∨ x2 ∨ x3 C2 : ¬x3 ∨ x4 ∨ ¬x5 C3 : ¬x3 ∨ x1 ∨ ¬x4

C4 : ¬x2 ∨ x5 ∨ x6 C5 : ¬x6 ∨ ¬x4 ∨ x5 C6 : x1 ∨ ¬x4 ∨ x6

C7 : x3 ∨ x4 ∨ ¬x5 C8 : x1 ∨ ¬x2 ∨ ¬x4 C9 : x4 ∨ ¬x5 ∨ ¬x6

C10 : ¬x2 ∨ x3 ∨ x4

Assigning the variable x5 to TRUE leads the clauses C4 and C5 to be satisfied by
the literal x5. As well and as a consequence, clauses C2, C7 and C9 cannot be satisfied
thanks to the literal x5. Hence, ¬x5 can be deleted from these clauses. At this step, our
formula is :

C1 : x1 ∨ x2 ∨ x3 C2 : ¬x3 ∨ x4 C3 : ¬x3 ∨ x1 ∨ ¬x4

C4 : C5 : C6 : x1 ∨ ¬x4 ∨ x6

C7 : x3 ∨ x4 C8 : x1 ∨ ¬x2 ∨ ¬x4 C9 : x4 ∨ ¬x6

C10 : ¬x2 ∨ x3 ∨ x4

Using the same reasoning, assigning the variable x3 to TRUE leads the clauses C1,
C7 and C10 to be satisfied and the literal ¬x3 to be deleted from the clauses C2 and C3.
At this step, our formula is :
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C1 : C2 : x4 C3 : x1 ∨ ¬x4

C4 : C5 : C6 : x1 ∨ ¬x4 ∨ x6

C7 : C8 : x1 ∨ ¬x2 ∨ ¬x4 C9 : x4 ∨ ¬x6

C10 :

Then, C2 is a unit clause composed of the literal x4 and as a consequence, x4 has
to be assigned to TRUE. We say that the truth value of x4 is inferred through unit prop-
agation.

The basic backtracking search with unit propagation that we described composes
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6], which is a state-of-the-
art complete SAT solving technique. DPLL works by trying to assign a truth value to
each variable in the CNF formula, recursively building a binary search tree of height
equivalent (at worst) to the number of elementary variables. After each variable assign-
ment, the formula is simplified by unit propagation. If a conflict is met, a backtracking
procedure is launched and the opposite truth value is assigned to the last assigned lit-
eral. If the opposite truth value results in conflict as well, we backtrack to an earlier
assumption or conclude that the formula is unsatisfiable - when there are no earlier as-
sumptions left. The number of conflicts is a good measure for the time complexity of a
SAT problem solved using a DPLL-based solver. If the complete search tree is built, the
worst case complexity is O(c2v), where c is the number of clauses in the formula and
v is the number of variables.

A common variation of the DPLL is the conflict-driven clause learning (CDCL) al-
gorithm [31] which consists in deriving a new clause each time a conflict is met. Both
methods are complete methods, which means they are guaranteed to give an answer.
State-of-the-art CDCL solvers, such as MINISAT and GLUCOSE, have been shown to
be a powerful tool for solving CNF formulas. However, they are not equipped to handle
XOR-clauses and thus parity constraints have to be translated into CNF. Since handing
CNF-clauses derived from XOR constraints is not necessarily efficient, recent works have
concentrated on coupling CDCL solvers with a XOR-reasoning module. Furthermore,
these techniques can be enhanced by Gaussian elimination, as in the works of Soos et
al. (resulting in the CRYPTOMINISAT solver) [33,32], Han and Jiang [17], Laitinen et
al.[22,21]. The CRYPTOMINISAT solver, specifically designed for exploiting the XOR
operation in cryptographic problems, offers the possibility either to perform only top-
level Gaussian elimination or to perform this operation dynamically during the CDCL
process. One has to choose the best strategy depending on the problem at hand.

3 Model description

This section gives in full detail the three models we used in our experiments: the alge-
braic one used by Yun-Ju et al [35], the CNF model used by Galbraith and Gebregiyor-
gis [14] and the model we propose.
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3.1 The algebraic model

Since the logical models are constructed starting from the algebraic one, we present
first the model used when solving the PDP problem using Gröbner basis. The elemen-
tary symmetric polynomials ei are written in terms of the di,j binary variables, as in
Equation (5). Similarly, since we look for a set of solutions (x1, . . . , xm) ∈ V m, the Xi

variables are written formally as follows:

X1 = c1,0+ . . . +c1,l−1t
l−1

X2 = c2,0+ . . . +c2,l−1t
l−1

. . .

Xm = cm,0+ . . . +cm,l−1t
l−1,

where ci,j , with 1 ≤ i ≤ m, 0 ≤ j ≤ l − 1, are binary variables. Using Equation (4),
we derive the following equations:

d1,0 = c1,0+ . . . +cm,0

d1,1 = c1,1+ . . . +cm,1 (7)
. . .

dm,m(l−1) = c1,l· . . . ·cm,l.

The remaining equations correspond to polynomials fi, 0 ≤ i ≤ n − 1, obtained
in Equation (5) via the Weil descent on S′m+1. Recall that these are polynomials in
the binary variables di,j . We now describe how we derive logical formulas from this
system.

3.2 The XOR model

When creating constraints from a boolean polynomial system, the multiplication of
variables becomes a conjunction of literals and the sum of multiple terms becomes a
XOR-clause. From the two sets of equations in the algebraic model, we obtain two sets
of XOR-clauses, where the terms are single literals or conjunctions. To illustrate, the
logical formula derived from Equation (7) is as follows:

¬d1,0 ⊕ c1,0 ⊕ . . .⊕ cm,0
¬d1,1 ⊕ c1,1 ⊕ . . .⊕ cm,1 (8)
. . .

¬dm,m(l−1) ⊕ (c1,l ∧ . . . ∧ cm,l).

SAT solvers adapted for XOR reasoning in the literature contain XOR clauses formed
by xoring single literals, and not conjunctions of several ones. Since our solver follows
this paradigm, we have to transform the system above further. We substitute all con-
junctions in a XOR clause by a newly added variable. Let c′ be the variable substituting
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a conjunction (ci1,j1 ∧ ci2,j2 ∧ ...∧ cik,jk). We have c′ ⇔ (ci1,j1 ∧ ci2,j2 ∧ ...∧ cik,jk),
which rewrites as

(c′ ∨ ¬ci1,j1 ∨ ¬ci2,j2 ∨ ... ∨ ¬cik,jk) ∧
(¬c′ ∨ ci1,j1) ∧
(¬c′ ∨ ci2,j2) ∧ (9)
· · ·
(¬c′ ∨ cik,jk) ∧

For clarity, variables introduced by substitution of monomials containing exclu-
sively the variables ci,j will be denoted c′ and clauses derived from these substitutions
are said to be in theX-substitutions set of clauses. Similarly, substitutions of the mono-
mials containing only the di,j variables are denoted by d′ and the resulting set is referred
to as the E-substitutions set of clauses.

Note from Equation (9) that the number of clauses obtained by substitution of a
k-degree monomial is k + 1. This will be further discussed in our complexity analysis.

After substituting conjunctions, we will refer to the set of clauses obtained from
Equation (8) as the E-X-relation set of clauses. Finally, the equations corresponding
to polynomials fi, 0 ≤ i ≤ n − 1, are derived in the same manner and the resulting
clauses will be referred to as the F set of clauses.

That concludes the four sets of clauses in our SAT model. This model does not
represent a CNF formula, since the E-X-relation set and the F set are made up of XOR-
clauses. Hence, it will be referred to as the XOR model. The WDSAT solver is adapted
for XOR reasoning and takes a XOR model as input.

Proposition 1. Assigning all ci,j variables, for 1 ≤ i ≤ m and 1 ≤ j ≤ l, leads to the
assignment of all variables in the XOR model through unit propagation.

Proof. Let us examine the unit propagation process for each set of clauses separately.

1. Clauses in the X-substitutions set are obtained by transforming c′ ⇔ (ci1,j1 ∧
ci2,j2 ∧ ... ∧ cik,jk). We note that on the right of these equivalences there are only
ci,j variables and on the left there is one single c′ variable. The assignment of all
of the ci,j variables will yield the assignment of all variables on the left of the
equivalences, i.e. all c′ variables.

2. Clauses in the E-X-relations set are obtained by transforming the algebraic system
in (7). We observe that on the right of the equations there are only ci,j and c′

variables and on the left there is one single di,j variable. When all ci,j and all c′

variables are assigned, all di,j variables will have their truth value assigned through
unit propagation on the E-X-relation set.

3. Clauses in the E-substitutions set are obtained by transforming d′ ⇔ (di1,j1 ∧
di2,j2 ∧ ... ∧ dik,jk). Similarly as with the X-substitutions set, we have only di,j
variables on the right of these equivalences and one single d′ variable on the left.
The assignment of all of the di,j variables will thus yield the assignment of all d′

variables.
4. Finally, parity constraints in set F decide whether the obtained interpretation satis-

fies the formula.
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This concludes the four types of variables present in the XOR model. ut

Transformation of the polynomial S′m+1 to a reasoning model is certainly not the
bottleneck of the PDP. It is however done once for each point decomposition, hence at
least 2l times in a full ECDLP computation. To optimize the transformation, we split
the process in two phases. The first phase is done after choosing a factor base, and
before starting point decomposition. At this point, we can do the whole Weil descent
process except for the last step - multiplying all monomials with the coefficients of vec-
tor Xm+1. Three sets of clauses (X-substitutions, E-substitutions and E-X-relations)
are created during this phase.

When a random point to decompose is chosen, we can do the last step and deduce
the F set. Without giving too much detail, we implement the transformation in a way
that the second phase is computationally faster at the expense of the first one.

3.3 The CNF model

Since most of the modern SAT solvers can read and process CNF formulas, we explain
the classical technique for transforming a XOR model to a CNF model. In fact, this
is also the technique used in MAGMA’s available implementation for deriving a CNF
model from a boolean polynomial system.

A XOR-clause is said to be satisfied when it evaluates to TRUE, i.e. when there
are an odd number of literals set to TRUE. The CNF-encoding of a ternary XOR-clause
(x1 ⊕ x2 ⊕ x3) is

(x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (10)
(¬x1 ∨ ¬x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3)

Similarly, a XOR-clause of size k can be transformed to a conjunction of 2k−1 OR-
clauses of size k. Since the number of introduced clauses grows exponentially with the
size of the XOR-clause, it is a good practice to cut up the XOR-clause into manageable
size clauses before proceeding with the transformation. To cut a XOR-clause (x1⊕ . . .⊕
xk) of size k in two, we introduce a new variable x′ and we obtain the following two
XOR-clauses:

(x1 ⊕ . . .⊕ xi ⊕ x′) ∧
(xi+1 ⊕ . . .⊕ xk ⊕¬x′).

In our our experiments with MINISAT in Section 6, we used a CNF model obtained af-
ter cutting into ternary XOR-clauses, since any XORSAT problem reduces in polynomial
time to a 3-XORSAT problem [3]. To the best of our knowledge, MAGMA’s implemen-
tation adopts a size 5 for XOR clauses. Determining the optimal size at which to cut
the XOR-clauses was out of scope for our work and we did not experiment with this
parameter.
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Table 1 serves as a comparison on the number of variables, equations and clauses
between the three models described in this section. Values for the algebraic and XOR
model are exact, whereas those for the CNF model are averages obtained from experi-
ments presented in Section 6.

Gröbner model CNF model XOR model
l n #Vars #Equations #Vars #CNF-clauses #Vars #CNF-clauses #XOR-clauses

5
13 42 40 2474 9552 502 1505 40
15 42 42 2687 10409 502 1505 42
17 42 44 2941 11433 502 1505 44

6
17 51 50 4686 18237 767 2364 50
18 51 51 4752 18505 767 2364 51
19 51 52 5019 19577 767 2364 52

7
19 60 58 6981 27216 1101 3466 58
21 60 60 7566 29565 1101 3466 60
23 60 62 8223 32201 1101 3466 62

8
23 69 68 11036 43210 1510 4835 68
24 69 69 11318 44339 1510 4835 69
26 69 71 12074 47374 1510 4835 71

9

27 78 78 16130 63325 2000 6495 78
37 78 88 20969 82721 2000 6495 88
47 78 98 25456 100709 2000 6495 98
59 78 110 31942 126702 2000 6495 110
67 78 118 35917 142632 2000 6495 118

10

30 87 87 22472 88397 2577 8470 87
47 87 104 32866 130040 2577 8470 104
59 87 116 40203 159437 2577 8470 116
67 87 124 45394 180232 2577 8470 124
79 87 136 52510 208743 2577 8470 136

11

33 96 96 29700 116976 3247 10784 96
59 96 122 49538 196434 3247 10784 122
67 96 130 55310 219553 3247 10784 130
79 96 142 63531 252485 3247 10784 142
89 96 152 71556 284626 3247 10784 152

Table 1: Number of variables and equations/clauses in three models.

In 2014, Galbraith and Gebregiyorgis [14] used MAGMA’s implementation to com-
pute the equivalent CNF logical formulas of the polynomial system resulting from the
Weil descent of a PDP system and ran experiments using the general-purpose MINISAT
solver to get solutions for these formulas. One can see from Table 1 that the model they
used has a significantly larger number of clauses and variables, when compared to the
XOR model. This motivated our choice of the XOR model for this work.
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4 A dedicated SAT solver for solving PDP

In this Section, we present a built-from-scratch SAT solver, named WDSAT, dedicated
to solving the model described in Section 3. We recall from Proposition 1 that assigning
all ci,j variables in the XOR model leads to the assignment of all variables through
unit propagation. Following the DPLL algorithm explained in Section 2, we construct a
binary search tree by trying to recursively assign a truth value to each ci,j variable. The
solver implements three reasoning modules - one module for the CNF-part and two for
XOR-reasoning. They are briefly detailed below.

• CNF module This module, dedicated to reasoning from the CNF-part of the model,
contains structures designed for fast unit propagation on CNF-clauses.

• XORSET module This module performs unit propagation on the parity constraints.
When all except one literal in a XOR clause is assigned, we infer the truth value of
the last literal according to parity reasoning.

• XORGAUSS module The second XOR-reasoning module performs Gaussian elim-
ination on the XOR system dynamically - once before starting the solving process
and then on each level of the binary search tree. During the initialization process,
XOR-clauses are normalized and represented as equivalence classes. A clause in
normal form contains only positive literals and does not contain more than one oc-
currence of the same variable. Presenting the XOR-clauses simply as equivalence
classes allows us to avoid performing matrix operations, that can be computation-
ally intensive.

All modules implement a SET IN function which takes as input a list of literals and
a propositional formula F . It consists in setting all literals from the list to TRUE and
in consequence, simplifying F and inferring truth values for other literals through the
appropriate unit propagation technique. This function sends a conflict signal when a
conflict is reached. In addition, all modules have a LAST ASSIGNED function which
returns the list of literals that were assigned during the last call to the respective SET IN
function.

When an assumption of a truth value for a literal x is made, the solver initially
tries to set it in the CNF module. If the literal x is set successfully (it does not result in
conflict), it will infer truth values for other literals. All of the inferred, as well as the
initial literal are set in the XORSET module. The new list of XOR-implied literals is then
set in the CNF module. We do this process back and forth until there are no more new
implications.

When the process stops, the list of all inferred literals since the beginning of the
process, as well as the initial x, are transferred to the XORGAUSS module. If the XOR-
GAUSS module finds new XOR-implied literals, the list is sent to the CNF module and
the process is restarted. When all modules are stabilized and there are no more inferred
literals to set, we go one level further in the search tree and a new assumption is made.

If a conflict is reached in any of the reasoning modules, the process is stopped and
a backtracking procedure is launched.

This concludes the entire process of assigning a truth value which is presented as
the ASSIGN function detailed in Algorithm 1. In the algorithm, to set is a list containing
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literals to be set in the CNF and XORSET modules, whereas to set in XORGAUSS is a
list containing literals to be set in the XORGAUSS module.

Algorithm 1 Function ASSIGN(F , x) : Assigning a truth value to a literal x in a formula
F , simplifying F and inferring truth values for other literals.
Input: Propositional formula F , Literal x
Output: FALSE if a conflict is reached, TRUE and F simplified thanks to unit propagation within
the three modules otherwise.
1: to set← {x}.
2: to set in XORGAUSS ← {x}.
3: while to set 6= ∅ do
4: while to set 6= ∅ do
5: if SET IN CNF (to set, F )→ conflict then
6: return (FALSE, – ).
7: end if
8: to set← LAST ASSIGNED IN CNF().
9: to set in XORGAUSS ← to set.

10: if SET IN XORSET(to set, F )→conflict then
11: return (FALSE, – ).
12: end if
13: to set← LAST ASSIGNED IN XORSET().
14: to set in XORGAUSS ← to set ∪ to set in XORGAUSS.
15: end while
16: if SET IN XORGAUSS(to set in XORGAUSS, F )→conflict then
17: return (FALSE, – ).
18: end if
19: to set← LAST ASSIGNED XORGAUSS().
20: end while
21: return (TRUE, F ).

The ASSIGN function is called by a recursive SOLVE function which is at the core of
the WDSAT solver and is detailed in Algorithm 2. On line 4 of Algorithm 1, we arbi-
trarily choose one of the ci,j variables. At first, we try to assign a truth value of FALSE
to the chosen ci,j variable. If the formula can not be satisfied after this assumption, we
apply the classic backtracking technique (function BACKTRACK) and the opposite truth
value is set. If the formula can not be satisfied with a value of TRUE for ci,j either, we
conclude that the formula is unsatisfiable.

Remark 1. The conflict-driven clause learning (CDCL) variation [31] of the DPLL algo-
rithm has been shown to yield a significant performance improvement for a number of
SAT problems. Indeed, it is at the core of many modern general-purpose SAT solvers.
However, because of the nature of SAT models coming from a boolean polynomial sys-
tem, we estimate that the cost of CDCL would outweigh its eventual benefit for this par-
ticular problem. Indeed, the only information that the CNF-part holds is the equivalence
between a literal and a conjunction. A set of clauses of the form (9) is independent from
other such sets. Consequently, WDSAT does not implement CDCL techniques. Compar-
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Algorithm 2 Function SOLVE(F ) : Recursive function for solving a SAT formula de-
rived from PDP.
Input: Propositional formula F
Output: TRUE if formula is satisfiable, FALSE otherwise.
1: if all clauses and all XOR-clauses are satisfied then
2: return TRUE.
3: end if
4: choose one ci,j .
5: (contradiction, F ′)← ASSIGN(F , ¬ci,j).
6: if contradiction then
7: BACKTRACK().
8: else
9: if SOLVE(F ′) returns FALSE then

10: BACKTRACK().
11: else
12: return TRUE.
13: end if
14: end if
15: (contradiction, F ′)← ASSIGN(F , ci,j).
16: if contradiction then
17: BACKTRACK().
18: return FALSE.
19: end if
20: return SOLVE(F ′).

isons of running times obtained with WDSAT to running times for CDCL based solvers,
in Section 6, confirm this assumption.

4.1 Breaking symmetry

From the symmetry of Semaev’s summation polynomials we have that when {x1, . . . , xm}
is a solution, all permutations of this set are a solution as well. These solutions are
equivalent and finding more that one is of no use for the PDP. We observe redundancy
in the binary search tree. Indeed, for m = 3 when a potential solution {x1, x2, x3} has
been eliminated, {x2, x1, x3} does not need to be tried out. To avoid this redundancy,
we establish the following constraint x1 ≤ x2 ≤ . . . ≤ xm.

It would be tedious to add this constraint in the model itself. Any solution implies
adding clauses and weighing the SAT model. Instead, we decided to implement this
constraint in the solver using a tree-pruning-like technique. We apply this technique on
top of the recursive function SOLVE in Algorithm 2. In the function SOLVE we were try-
ing out both FALSE and TRUE for the truth value of a chosen variable. In the breaking
symmetry variation of SOLVE, denoted SOLVE BR SYM, in some cases the truth value
of FALSE will not be tried out as all potential solutions after this assignment would not
satisfy the constraint x1 ≤ x2 ≤ . . . ≤ xm. The new algorithm for the SOLVE BR SYM
function is detailed in Algorithm 3 and the line numbers that distinguish it from Algo-
rithm 2 are in bold. Note that one crucial difference between the two algorithms is the
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choice of a variable on line 4. While this choice was arbitrary in Algorithm 2, in Algo-
rithm 3 variables need to be chosen in the order from the leading bit of x1 to the trailing
bit of xm. If this is not respected, SOLVE BR SYM does not yield a correct answer.

Continuing with the notation from Section 3, ci,j corresponds to the jth bit of the
ith x-vector, where 2 ≤ i ≤ m and 1 ≤ j ≤ l. In Algorithm 3, we decide whether to
try out the truth value of FALSE for ci,j or not by comparing two x-vectors bit for bit,
in the same way that we would compare binary numbers. When we are deciding on the
truth value of ci,j we have the following reasoning:

• If ci−1,j is FALSE, we try to set ci,j both to FALSE and TRUE (if FALSE fails). When
ci,j is set to FALSE, all of the potential xi solutions are greater than or equal to xi−1,
thus we continue with the same bit comparison on the next level. However, when
ci,j is set to TRUE, all of the potential xi solutions are strictly greater than xi−1 and
we no longer do bit comparison on further levels.
• If ci−1,j is TRUE, we only try out the truth value of FALSE and we continue to do

bit comparison since the potential xi solutions are greater than or equal to xi−1 at
this point.

Lastly, we give further information which explain in full detail Algorithm 3. We use
a flag denoted compare to instruct whether to do bit comparison at the current search
tree level or not. On line 6 we reset the compare flag to TRUE since ci,j , when j = 0,
corresponds to a leading bit of the next x-vector. Lastly, if-conditions on line 8 have to
checked in the specified order.

Algorithm 3 hides a depth-first transversal of a binary search tree with a symmetry
breaking technique. We specifically designed it for the PDP, but it can be applied to
similar problems that deal with symmetry.

5 Time complexity analysis

As we explained in Section 2, the time complexity of a SAT problem in a DPLL context
is measured by the number of conflicts. This essentially corresponds to the number of
leaves created in the binary search tree. The worst case complexity of the algorithm is
thus 2h, where h is the height of the tree.

As per Proposition 1, we only reason on ci,j variables from the XOR model. There-
fore, h = ml and the worst-case complexity for the PDP is 2ml.

Furthermore, with the symmetry breaking technique explained in Section 4.1, we
optimize this complexity by a factor of m!. Indeed, out of the m! permutations of the
solution set {x1, . . . , xm}, only one satisfies x1 ≤ x2 ≤ . . . ≤ xm (neglecting the
equality).

This concludes that the worst-case number of conflicts reached for one PDP compu-
tation is

2ml

m!
. (11)

Going further in the time complexity analysis, we observe that to find one conflict
we go through (in the worst case) all clauses in the model during unit propagation.
Hence, the running time per conflict grows linearly with the number of clauses. First,
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Algorithm 3 Function SOLVE BR SYM(F , compare) : Recursive function for solving
a SAT formula derived from PDP.
Input: Propositional formula F and a flag compare
Output: TRUE if formula is satisfiable, FALSE otherwise.
1: if all clauses and all XOR-clauses are satisfied then
2: return TRUE.
3: end if
4: choose one ci,j .
5: if j=0 then
6: compare← TRUE.
7: end if
8: if (compare is FALSE) or (i = 1) or (ci−1,j is set to FALSE) then
9: (contradiction, F ′)← ASSIGN(F , ¬ci,j).

10: if contradiction then
11: BACKTRACK().
12: compare← FALSE.
13: else
14: if SOLVE BR SYM(F ′, compare) returns FALSE then
15: BACKTRACK().
16: compare← FALSE.
17: else
18: return TRUE.
19: end if
20: end if
21: end if
22: (contradiction, F ′)← ASSIGN(F , ci,j).
23: if contradiction then
24: BACKTRACK().
25: return FALSE.
26: end if
27: return SOLVE BR SYM(F ′, compare).

let us count the number of clauses in the X-substitution set. For every 2 ≤ d ≤ m
there exist

(
m
d

)
· ld monomials of degree d given by products of variables ci,j , and

they each yield d + 1 clauses (see Equation (9)). In total, the number of clauses in the
X-substitutions set is

(

m∑
d=2

(
m

d

)
· ld)(d+ 1).

Recall that degree one monomials are not substituted and thus do not produce new
clauses. We can adapt this reasoning for the E-substitutions set as well.

The number of XOR-clauses in the XOR model is equivalent to the number of equa-
tions in the algebraic model. We have m(m+1)

2 (l − 1) +m in the E-X-relation set and
n in the F set.

Remark 2. Using this analysis, we approximate the number of clauses for m = 3,
as all experiments presented in this paper are performed using the fourth summation
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polynomial.

#C ≈
(

3

2

)
· 3l2 +

(
3

3

)
· 4l3 +

((
3

2

))
· 3(3l − 2)2 + (6l − 3) + n ≈ (12)

≈ 4l3 + 171l2 − 210l + n+ 69.

In practice, many monomials have no occurrence in the system after the Weil de-
scent process. In fact, the value in (12) is a huge overestimate and exact values for
l ∈ {6, . . . , 11} are shown in Table 1.

Assuming that we take m small, we conclude that the number of clauses in our
model, denoted by C, is polynomial in l. Let t be a constant representing the time to
process one clause. The running time of the PDP is bounded by

t · C · 2ml/m!.

This allows us to establish the following result on the complexity of our SAT-based
index calculus algorith.

Theorem 1. The complexity of the index calculus algorithm for solving ECDLP on a
curve defined over F2n , using a factor base given by a vector space of dimension l ≈ n

m ,
is Õ(2n+l), where the Õ hides a polynomial factor in l.

Proof. In order to perform a whole ECDLP computation, one has to find 2l relations.
Following [8], when l ≈ n

m the probability that a random point can be written as a sum
of m factor basis elements is heuristically approximated by 2ml

m!2n . The time complexity
for the full decomposition phase, using our dedicated WDSAT solver is:

#Ct2n+l.

ut

This worst case complexity is to be compared to the O(2ω
n
2 +l) complexity of

Faugère et al [12]. Moreover, we underline here that Faugère et al’s proof of this result
is based on heuristic assumption on the Gröbner basis computation for PDP, while our
analysis for the SAT-based approach simply relies on the rigourously proved worst case
for the DPLL search tree.

6 Experimental Results

We conducted experiments using S′4 on binary Koblitz elliptic curves [20] defined over
F2n . We experimented with Gröbner basis and SAT approaches. All tests were per-
formed on a 2.40GHz Intel Xeon E5-2640 processor.

The Gröbner basis approach takes as input an algebraic model. We used the grevlex
ordering, as this is considered to be optimal in the literature. MINISAT and GLUCOSE
solvers process a CNF model input, whereas CRYPTOMINISAT and WDSAT use the
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XOR model. Using the XOR model is a huge advantage, as it has far less clauses and
variables than the CNF model.

Gaussian elimination can be beneficial for SAT instances derived from cryptographic
problems. However, it has been reported to yield slower runtimes for some instances
as performing the operation is very costly. For this reason, CryptoMiniSat does not
include Gaussian elimination by default, but the feature can be turned on explicitly. We
experimented with both variants, as we did for WDSAT .

In Table 2 CRYPTOMINISATXG and CRYPTOMINISAT denote CryptoMiniSat with
and without Gaussian elimination respectively. Same notation is adopted for the WD-
SAT solver. These experiments were performed using WDSAT before applying the
breaking symmetry technique as Table 2 serves as comparison between the different
approaches and breaking symmetry is a feature that none of the other solving tools pos-
sess. The performance of the complete WDSAT solver is shown in Table 3 where we
increase l up to 11. With other approaches, we could not handle these larger values of l
in reasonable time.

We experimented with different values of n for each l and we performed tests on
20 instances for each parameter size. Half of the instances have a solution and the other
half do not. We show averages on satisfiable and unsatisfiable instances separately, since
running times differ between the two cases. SAT solvers stop as soon as they find a
solution and if this is not the case they need to respond with certainty that a solution
does not exist. Hence, running times of SAT solvers are significantly slower when there
is no solution. On the other hand, [35] indicates that the computational complexity of
Gröbner basis is lower when a solution does not exist.

We set a timeout of 10 hours for each run and #RunsXG corresponds to the number
of instances that were successfully solved within this time frame. Note however, that
Gröbner basis computations for l = 8 did not halt because they reached a timeout. They
were stopped because of the memory limit of 200GB.

Other information in Table 2 are the average runtime in seconds and the average
number of conflicts.

SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts #Runssucc Runtime #Conflicts #Runssucc

Gröbner

6
17 207.220 NA 10 142.119 NA 10
18 208.859 NA 10 147.373 NA 10
19 215.187 NA 10 155.765 NA 10

7
19 3854.708 NA 10 2650.696 NA 10
21 3485.273 NA 10 2444.487 NA 10
23 3128.844 NA 10 2286.136 NA 10

8
23 0 0
24 0 0
26 0 0
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SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts #Runssucc Runtime #Conflicts #Runssucc

MINISAT

6
17 62.702 408189 10 270.261 1463309 10
18 45.220 297995 10 238.731 1211297 5
19 229.055 1778377 10 388.719 2439933 10

7
19 406.918 1919565 10 6777.431 25180492 10
21 1324.932 6809454 10 9933.959 42480226 10
23 12945.613 61610582 10 13260.586 59289671 10

8
23 8027.974 63384411 8 0
24 0 0
26 0 0

GLUCOSE

6
17 81.898 711918 10 119.694 815185 10
18 50.981 387141 10 104.625 655006 6
19 299.175 2332066 10 269.212 2077689 10

7
19 908.091 5357976 10 1356.990 5884897 9
21 1626.805 9467330 8 3138.480 14451643 8
23 2585.200 12528231 7 3760.138 16898505 8

8
23 6755.026 20886673 7 0
24 0 0
26 0 0

CRYPTOMINISAT

6
17 133.983 775948 10 363.513 1709971 10
18 107.568 629571 10 3097.879 13549468 6
19 560.080 3396192 10 1172.740 5726372 10

7
19 1210.612 5713259 10 10258.351 26079224 10
21 5298.106 22233588 10 23009.998 66918515 9
23 3637.032 12159752 10 19857.454 47086152 10

8
23 9846.554 18509058 10 0
24 7902.745 12121156 10 0
26 6905.477 13269631 10 0

CRYPTOMINISATXG

6
17 119.866 677336 10 436.811 1877699 10
18 168.428 956679 10 1469.945 6304762 10
19 224.484 1219840 10 615.952 2763754 10

7
19 893.425 3722805 10 3587.929 8642108 10
21 737.768 2366264 10 4272.053 12340513 10
23 580.007 1753040 10 3253.786 8183887 10

8
23 11265.010 19604250 10 0
24 6839.968 11582517 10 0
26 3933.637 7920920 9 0
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SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts #Runssucc Runtime #Conflicts #Runssucc

WDSAT

6
17 .601 49117 10 3.851 254686 10
18 1.295 97283 10 3.856 254602 10
19 .470 38137 10 3.913 255491 10

7
19 9.643 534867 10 44.107 2073089 10
21 7.636 403434 10 45.780 2072053 10
23 9.303 477632 10 47.347 2067168 10

8
23 68.929 2646071 10 525.057 16666331 10
24 114.945 4291229 10 524.715 16691522 10
26 185.480 6261107 10 533.607 16684378 10

WDSATXG

6
17 9.193 48178 10 56.718 253123 10
18 20.043 95283 10 58.001 252985 10
19 7.041 36835 10 58.876 252799 10

7
19 169.629 528383 10 736.863 2062232 10
21 131.272 397758 10 763.570 2061408 10
23 159.101 473223 10 779.432 2060501 10

8
23 1290.702 2630567 10 9124.361 16639322 10
24 2145.313 4256384 10 9421.994 16638399 10
26 3404.765 6231289 10 9623.677 16636122 10

Table 2: Comparing different approaches for solving the PDP.

As expected, the Gröbner basis approach was outperformed by state-of-the-art SAT
solvers when a solution exists. When there is no solution, it yields faster running times
than solvers, but it quickly becomes impractical because of the memory requirements.
For comparison, the memory used by SAT solvers for l = 7 is between 60MB and
200MB, whereas Gröbner basis require 38GB.

Our dedicated WDSAT solver yields significantly faster running times than any of
the state-of-the-art tools. As we explained in Section 5, the number of conflicts found by
WDSAT is bounded by 23l. We observe however, that running times are slower for the
WDSATXG variant. This is explained by observing that the number of conflicts is only
slightly better when Gaussian elimination is used. The cost of performing a Gaussian
elimination at every level of the binary search tree outweighs the benefit of having
reached less conflicts.

Choosing the WDSAT variant without Gaussian elimination as optimal, we contin-
ued experiments for bigger size parameters using this variant coupled with the breaking
symmetry technique. Table 3 shows results for l = 6, 11 and n sizes up to 89. As before,
all values are an average of 10 runs. If we compare the number of conflicts for the first
three l sizes of the complete WDSAT solver with its symmetrical variant in Table 2,
we observe a speedup factor that rapidly approaches 6.2 This confirms our claims in
Section 5.

Comparing results for l = 6 and l = 7 in Table 3 with the equivalent results for
the Gröbner basis method in Table 2, we observe that WDSAT is up to 300 times faster

2 We compare the cases where there is no solution, as these have more stable averages.
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than Gröbner basis for the cases where there is no solution and up to 1300 times faster
for instances allowing a solution. This is a rough comparison, as the factor grows with
parameters l and n and running times for satisfiable instances can vary remarkably.

6.1 Whole Point Decomposition Phase Computation

Previously shown experiments for solving PDP are done with arbitrary choices of pa-
rameters n and l. However, when performing a whole ECDLP attack, choosing the
factor base is a crucial step in the index calculus method. The number of relations that
needs to be found is exponential in l, as is the running time for one point decomposition
(see 11). However, taking a smaller l decreases the probability of successfully decom-
posing a randomly chosen point, and thus increases the number of times we solve the
PDP .

To understand better the optimal ratio n/l, we computed the whole point decom-
position phase for n = 24 using different l sizes. The experiment consists essentially
in computing the PDP on instances for randomly chosen Xm+1 until we find 2l valid
decompositions. Instances that turn out to not have a solution are tossed.

Results from these experiments are in Table 4. We present average running times
in hours (Runtime), the number of generated satisfiable (#Generated SAT) and unsat-
isfiable (#Generated UNSAT) instances and the probability that a random point can be
decomposed (P ). This probability is, in fact, the ratio between the number of generated
instances that have a solution and the total number of generated instances. We compare
this to the heuristically approximated probability 2ml

m!2n , denoted by (Papprox). #Runs
denotes the number of times we ran the experiment for each n/l ratio.

Further research is needed to fully understand the best choice of l, but current ex-
perimental results suggest that it is not l ≈ n/m. With this ratio, even though there is
a good chance of finding a composition for a randomly chosen point, the runtime of
PDP and the number of relations needed are too high. The cost of the final phase linear
algebra increases with l as well.

At the time of submission of this paper, we do not have results for bigger values of
n and l. For this reason, we refrain from drawing a conclusion from Table 4, as results
can be ambiguous for such small parameters. As an example, the time to compute the
Weil descent and derive the XOR model, is not negligible in the cases of l = 4 and l = 5
where the time to solve the instance is less than 60 milliseconds long. This might be the
only reason we observe a decrease of the runtime between l = 4 and l = 5, whereas
from the remaining results in Table 4 we observe that the time increases with l.

7 Conclusions and Future Work

Gröbner basis methods have been shown powerful in solving the PDP in the index calcu-
lus attack for elliptic curves defined over small degree extension fields in characteristic
> 2. In this paper we argue that for finite fields in characteristic 2 a SAT-based approach
yields more practical results. We started by explaining that general-purpose SAT solvers
cannot yield considerably faster running times because the number of variables in a SAT
model is significantly larger than the number of variables in the algebraic model.
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SATisfiable UNSATisfiable

l n Runtime #Conflicts Runtime #Conflicts

6

17 .233 18517 .645 43867

18 .395 29115 .642 43798

19 .200 15715 .641 43995

7

19 3.138 176931 7.107 351329

21 2.576 138494 7.337 351133

23 3.280 169294 7.622 350068

8

23 24.642 967945 83.797 2800507

24 41.603 1563509 83.673 2805893

26 52.181 1800948 86.122 2803872

9

27 371 10204950 915 22412545

37 511 11890506 1047 22395287

47 736 15300468 1170 22378061

59 753 13462450 1333 22387826

67 652 11058755 1420 22392359

10

30 4137 82804327 9760 179133743

47 7244 116867105 12129 179024622

59 8829 124714894 13951 179065509

67 6437 85315820 14381 179054617

79 6387 77450682 15979 179033814

11

33 51271 780737411 101832 1432516919

59 92322 1011596679 136314 1432242942

67 52514 577957022 143946 1432211311

79 48268 491455095 157801 1432104989

89 53292 485794746 171274 1432071999
Table 3: Running times and number of conflicts using the complete WDSAT solver.
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n l Runtime #Generated SAT #Generated UNSAT P Papprox #Runs
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4 2.59 16 149475 .00010 .00004 10
5 1.83 32 49484 .00064 .00032 10
6 2.49 64 11478 .00557 .00260 10
7 6.45 128 2994 .04275 .02083 10
8 17.99 256 688 .37209 .16666 8

Table 4: Whole Point decomposition phase computation.

Our first contribution is to propose a PDP XOR model with only ml core variables,
whose assignment propagate all remaining variables in the model. Consequently, with
appropriate solving methods the time complexity of the PDP is in fact 2ml. To this end,
we conceived a SAT solver dedicated to solving systems derived from a Weil descent,
named WDSAT . We further optimized the time complexity of this solver by a factor of
m! using a symmetry breaking technique.

We presented experiments for the PDP on prime degree extension fields using pa-
rameter sizes of up to l = 11 and n = 89. In addition, our experiments with a full
ECDLP computation for small size parameters suggest that further research is needed
to find the optimal n/l ratio for the index calculus attack on these curves.

Another perspective would be to find and set an early abort threshold for our solver,
since experiments suggest that PDP instances that have no solution have slower running
times than instances allowing a solution.
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